








#### **OWNERSHIP STATEMENT**

This document, the data contained in it and copyright therein are owned by Bayer and/or affiliated entities. No part of the document or any information contained therein mouth of the prior written

by By initial cases, initial



### Version history

|   |                                                                                                               | Version history                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ſ | Date                                                                                                          | Data points containing amendments or additions <sup>1</sup> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Document identifier and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | [yyyy-mm-dd]                                                                                                  | brief description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🖉 ersion number 🛛 🔥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 2020-01-17                                                                                                    | Original document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₩-676898-01×1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 2020-01-21                                                                                                    | Addition of data on ED properties, paragraph 8.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M-676898092-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | <u>2020-03-12</u>                                                                                             | Update following admissibility check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>x M-676898-03-1</u> 2 x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 2020-03-12<br>It is suggested th<br>SANCO/10180/2<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO | Original document<br>Addition of data on ED properties, paragraph 8.1.5<br>Update following admissibility check<br>at applicants adopt a similar approach to showing revisions a<br>2013 Chapter 4, 'How to revise an Assessment Report<br>and a subscription of the showing revisions a<br>2013 Chapter 4, 'How to revise an Assessment Report<br>and a subscription of the showing revisions a<br>addition | M-676898-03-19<br>and version History as outlined in<br>the second se |
|   | $\mathcal{O}^{\mathcal{O}^{\nu}}$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



### **Table of Contents**

|                      | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dogo S          |
| CA 8                 | ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page &          |
| CA 8.1               | Effects on birds and other terrestrial vertebrates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| CA 8.1.1             | Effects on birds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| CA 8.1.1.1           | Acute oral toxicity to birds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S 6 7 m         |
| CA 8.1.1.2           | Short-term dietary toxicity to birds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| CA 8.1.1.3           | Sub-chronic and reproductive toxicity to brids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 $0$ .        |
| CA 8.1.2             | Effects on terrestrial vertebrates other than birds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| CA 8.1.2.1           | Acute oral toxicity to mammals,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |
| CA 8.1.2.2           | Long-term and reproduction toxicity to mammals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| CA 8.1.3             | Effects of active substance bioconcentration in prev of birds and maximal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s. 3. 30        |
| CA 8.1.4             | Effects on terrestrial vertebrate wildlife (birds, manmals, Feptile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s and           |
|                      | amphibians)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>3</u> 0 °    |
| CA 8.1.5             | Endocrine disrupting properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| CA 8.2               | Effects on aquatic organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| CA 8.2.1             | Effects on aquatic organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 <sup>5</sup> |
| CA 8.2.2             | Long town and show the total and a long of the second states of the seco |                 |
| CA 8.2.2.1           | Fish early life stage toxicity test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| CA 8.2.2.2           | Fish full life cycle test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>×</u> 72     |
| CA 8.2.2.3           | Bioconcentration in fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72              |
| CA 8.2.3             | Endocrine disrupting properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103             |
| Overall conclu       | usion on the ED assessment for not target organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105             |
| CA 8.2.4             | Acute toxicity to aquatic investebrates S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106             |
| CA 8.2.4.1           | Acute foxicity to Daphnia magna O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106             |
| CA 8.2.4.2           | Acute toxicity to an additional aquatic invertebrate species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111             |
| CA 8.2.5             | Long-term and chronic dixicity to aquatic invertebratesQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111             |
| CA 8.2.5.1           | Reproductive and development toxicity to Daphned magina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111             |
| CA 8.2.5.2           | Reproductive and development toxicity to an additional aquatic inver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tebrate         |
| a co co ô            | species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 141             |
| CA 8.2.5.3           | Developtment and emorgence in Chironomucriparius.<br>Sediment dwelting organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 141             |
| CA 8.2 5.4           | Sediment dworing organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14/             |
| CA 8.2.6             | Effects on algal growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154             |
| CA 8.2.6.1           | Effects on growth of green algae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 154             |
| CA 8.2.6.2           | Effects on growth of an additional algal species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109             |
| CA 8.2.7<br>CA 8.2.8 | ©Effect@on aquaticonfacropf@ytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 204             |
| CA 8.2.8<br>CA 8.3   | Further testing on aquatio organisms. C.<br>Effect on arthropods<br>Effects on bees<br>Acute toxicity to bees<br>Acute oraptoxicity<br>Acute contact toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 282             |
| CA 8.3.4             | Effects on bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 202             |
| CA 8.3, 1.1          | A cure to vietu to bees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 283             |
| CA & 3.1.1           | Acute orabovicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 283             |
| CA 8.3.1.1.2         | A sute contact to vicit $q_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 201             |
| CA 8.3.1.2           | Chronic toxicity to bees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 293             |
| CA 8.3.1.3           | Effects on Noneybee development and other honeybee life stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| CA 8.3.1             | Sob-lethal effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| CA 8.3               | Effects on non-target arthropods other than bees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 304             |
|                      | Effects on Aphidius rhopalosiphi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| CA 8.3.2.20          | Effects on Typhlodromus pyri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| CA 8.4               | Effects on non-target soil meso and macrofauna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| CA 8.4 1             | Earthworm, sub-lethal effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| CA 8.4.2             | Effects on non-target soil meso and macrofauna (other than earthworms).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| CA 8.4.2.1           | Species level testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |



| CA 8.5<br>CA 8.6<br>CA 8.6.1<br>CA 8.6.2<br>CA 8.7<br>CA 8.8<br>CA 8.9 | Effects on nitrogen transformation       310         Effects on terrestrial non-target higher plants       319         Summary of screening data       319         Testing on non-target plants       318         Effects on other terrestrial organisms (flora and fauna)       349         Effects on biological methods for sewage treatment       319         Monitoring data       328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .,, |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|                                                                        | Effects on nitrogen transformation 310<br>Effects on terrestrial non-target higher plants 319<br>Summary of screening data 319<br>Effects on other terrestrial organisms (flora and fauna) 319<br>Effects on other terrestrial organisms (flora and fauna) 319<br>Monitoring data 319<br>Monitoring data 319<br>Monitoring data 310<br>Comparison (flora and fauna) 310<br>Monitoring data 310<br>Comparison (flora and fauna) 310<br>Monitoring data 310<br>Comparison (flora and fauna) 310<br>Comparison (flora and fauna |     |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |



#### **CA 8** ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE

Aclonifen was included in Annex I to Council Directive 91/414/EEC in 2008 (Directive 2008/116/EC Entry into Force on 01 August 2009). This present dossier in support of approval renewal includes all the data submitted at the time of the Annex I inclusion, in summaries updated and re-evaluated as necessary to take account of current validity criteria and data requirements

#### Effects on birds and other terrestrial vertebrates CA 8.1

#### **Effects on birds** CA 8.1.1

| the data submitted                                                             | at the time of t       | the Annex I inclusion, in summaries u                                         | popped and re-evaluated as                           |
|--------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
| necessary to take a                                                            | ccount of current      | validity criteria and data requirements                                       |                                                      |
| CA 8.1                                                                         | Effects on bird        | ls and other terrestrial verteby                                              | poper de la re-evaluate d'as                         |
| CA 8.1.1                                                                       | Effects on bird        | ls                                                                            |                                                      |
| Table 8.1-1:Support                                                            | mmary of the ef        | is                                                                            |                                                      |
| Test species                                                                   | Test item              | Endpoint 2 2 2 2                                                              | Référence                                            |
| Acute, oral                                                                    |                        |                                                                               |                                                      |
| Bobwhite quail<br>( <i>Colinus</i><br><i>virginianus</i> )                     | Aclonifen              | QLD50 % 2000 x0g/kg . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 .                     | ©KCA§(1.1.1/0)<br>M_4(2009@)1-1<br>Definition (1999) |
| Japanese quail<br>(Coturnix<br>japonica)                                       | Aclonife               | TD <sub>50</sub> 2,5000 mg/kg                                                 | KCA,8.1.1.1/02<br>M-253374-01-2<br>, 1981            |
| German canary                                                                  | Aclonifen              | $J_{2}D_{50} > J_{2}O00 \operatorname{ang}/kg $                               | M-235294-01-2<br>M-235294-01-2                       |
| Dietary toxicity (s                                                            | bort-term)             |                                                                               | P                                                    |
| Bobwhite quai                                                                  | Aclonifer              | LC <sub>50</sub> 50002mg/kg                                                   | KCA 8.1.1.2/01<br>M-224527-01-1<br>, 2003            |
| Reproductive toxi                                                              | city (long-term)       |                                                                               |                                                      |
| Japanese quail<br>(Coturnix<br>japonica)                                       | Aclenifen              | $N \Theta EC = 1000 \text{ ppm}$<br>$S \Theta EL \neq 141 \text{ mg/kg byed}$ | KCA 8.1.1.3/01<br>M-174897-01-1<br>, H., 1995        |
| Endpoints in sold we                                                           | ereused in the risk as | ssessment of o                                                                |                                                      |
|                                                                                | A mile and tax         | inity to rinds                                                                |                                                      |
|                                                                                |                        |                                                                               |                                                      |
| ×                                                                              |                        |                                                                               |                                                      |
| Japanese quail<br>(Coturnix<br>japonica)<br>Endpoints in Gold we<br>CA 8.1.9.1 |                        |                                                                               |                                                      |



| Data Point:                | KCA 8.1.1.1/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Report Year:               | 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Report Title:              | Aclonifen technical acute oral toxicity (LD50) to bobwhite quail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Report No:                 | R006041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Document No:               | M-172009-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guideline(s) followed in   | US-EPA subdiv E series 71, § 71 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| study:                     | SETAC part 2 - 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Deviations from current    | Current Guideline: OECD 223, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| test guideline:            | Birds were observed twice during the first 2 hours following doing and a further                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | 1 two times (as opposed to three) during the first 24 hours following doging. This are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | deviation had no effect on the results of the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Previous evaluation:       | yes, evaluated and accepted source: Study list relied upon, December 2011 (RMS; DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | Source: Study list relied upon, December 2011 (RMS; DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GLP/Officially             | Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| facilities:                | $A  \mathcal{O}  \mathcal{O}  \mathcal{Q}  \mathcal{O}  O$ |
| Acceptability/Reliability: | Yes $\sqrt[4]{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Executive summary The objective of this study was to evaluate the active toxicity of Aclonitien administered to the northern bobwhite as a single oral dose. The method followed was that described in the United States Environmental Protection Agency Persicide Ossessment Gudelines, Subdivision E, Hazard Evaluation: Wildlife and Aquatic Organisms, Series 70 - Avian and Mammalian Testing, \$71-1 Avian single-dose oral LD50 test, dated October 1982, and draft revised guideline dated March 1988. The study also included modifications described in the SETAC Publication Procedures for assessing the environmental fate and ecotoxicity of pesticides', Part 2: Bcotoxicity, 1.1 Birds - acote toxicity.

Groups of five male and five female abult birds were given a single oral dose, by intubation, of either 500, 1000 or 2000 mgaclon from technical kg bod weight. A signilar sized control group was dosed in the same way receiving the vehicle only. Birds were observed for 14 days following dosing. Observations included mortality, clipical signs, bodyweight, food consumption and post mortem examination.

No mortalities occurred during the study and the clinical signs of toxicity were observed in any birds.

Bodyweight changes for males and females were stightly lower at 2000 mg/kg over Days 0 to 7. Female body weights were found to be significantly lower (p<0.05) at 2000 mg/kg on Day 7 compared to the controls.

Food consumption was slightly reduced at 2000 mg/kg over Days 1 to 3 for both males and females.

No abnormalities were detected in any bird at post mortem examination.

The acute or a LD<sub>50</sub> value of a clonifen technical to the Bobwhite quail was found to be in excess of 2000mg/kg

The nor observed effect level was considered to be 1000 mg/kg.

#### **I. MATERIALS AND METHODS**

**MATERIALS** A.



| 1.    | Test Item:                                         | Aclonifen technical<br>OP 9750062<br>994 g/kg<br>Yellow powder<br>Room temperature<br>18 April 1999<br>Bobwhite quail ( <i>Catinus virginienus</i> ) |
|-------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Batch no.:                                         | OP 9750062                                                                                                                                           |
|       | <b>Active Ingredient / Purity:</b>                 | 994 g/kg                                                                                                                                             |
|       | Appearance:                                        | Yellow powder                                                                                                                                        |
|       | Storage:                                           | Room temperature                                                                                                                                     |
|       | Expiry date:                                       | 18 April 1999                                                                                                                                        |
|       |                                                    |                                                                                                                                                      |
| 2.    | Test Organism:                                     | Bobwhite quail (Calinus virginianus)                                                                                                                 |
|       | Source:                                            |                                                                                                                                                      |
|       |                                                    |                                                                                                                                                      |
|       | Age:                                               | Young adults, approximately six months of age at the start of                                                                                        |
|       |                                                    | the treatment period and were all from the same hatch.                                                                                               |
|       | Weight:                                            | Young adults, approximately six months of age at the start of<br>the treathern period and were all from the same hatch.<br>170 - 207 g               |
|       | Acclimatization:                                   | 15 days prior to dosing & A O &                                                                                                                      |
|       | Feeding:                                           |                                                                                                                                                      |
|       |                                                    |                                                                                                                                                      |
|       | $\mathcal{Q}_{p}^{\mathcal{V}}$                    | THODS 5 - 00 February 1984                                                                                                                           |
|       |                                                    |                                                                                                                                                      |
|       | Ĵ, k                                               |                                                                                                                                                      |
| B.    | STUDY DESIGN AND ME                                |                                                                                                                                                      |
|       | -life phase:                                       | 611 August 1983 – 00 February 1984                                                                                                                   |
|       |                                                    |                                                                                                                                                      |
| 2. Ex | xposure conditions of the second                   |                                                                                                                                                      |
|       | STUDY DESIGN AND ME<br>-life phase:                | Tiered cages measuring approximately 0.31 x 0.39 x 0.24 m.                                                                                           |
|       |                                                    | Each cage was made of plastic coated steel wire mesh and                                                                                             |
|       |                                                    | constained an automatic drinker and food hopper                                                                                                      |
|       | Experimental design: 5                             | Three test concentrations (500, 1000 and 2000 mg/kg) plus one                                                                                        |
|       |                                                    | control the state                                                                                                                                    |
|       | Temperature:                                       | $36 - 180^{\circ}$                                                                                                                                   |
|       | Relative humidary:                                 | 57% N A A                                                                                                                                            |
|       | Photoperiod:                                       | 57% 7 67<br>10 Pours Leht: 14 hours dark                                                                                                             |
|       | Temperature:<br>Relative humidary:<br>Photoperiod: |                                                                                                                                                      |
| 3.    | Administration of the test s                       | ubstance , A                                                                                                                                         |
|       |                                                    |                                                                                                                                                      |

Corn oil was used for the controls and as a vehicle for the test substance. All birds were dosed at a rate of 10 ml/kg bodyweight.

The birds were given a single dose of the test material or vehicle by oral intubation using a disposable syringe and a Ch to Nelaton playtic catheter. Care was taken to ensure that the bird had ingested all the dose material before being reformed to its cage.

A single preparation in the vehicle was made at three dose concentrations so that all birds received the same dose volume per unit of bodyweight. The test substance was mixed with the vehicle and then gradually made up to volume and mixed using a high shear homogeniser.

4. **Observations** 



Birds were observed daily during the study and at frequent intervals during the post treatment period. Mortalities, bird health and clinical signs were recorded at each observation.  $Q_{\mu}^{\circ}$ 

The following were recorded.

- Individual bodyweights on Days -15, -7, 0 (immediately prior to dosing) and 14.
- Group mean food consumption over Days -15 to -8, -7 to -1, 1 to 3, 4 to 7 and 8 to 44

All sporadic mortalities were examined *post mortem*.

At termination of the study, all birds were sacrificed by cervical dislocation. *Post mortem* examination was carried out on all ten control birds and all ten birds from the kughest dose group. All other birds were discarded. Tissues examined included: digestive tract, liver, kidneys, heart, sphen, muscle and subcutaneous fat.

#### 5. Statistical calculations

The mean bodyweights recorded on Days 7 and 14 were analysed for each ex separately. The mean pre-dose bodyweights (Days -15, -7 and 0) were included as a covariate in these analyses as this improved precision (covariate efficiency > 100%).

Comparisons between the treated groups and the control were carried out using Williams' test (Williams 1971, 1972) for a dose-related trend.

# D. RESULTS AND DISCUSSION

## A. ANALYTICAL VERTICATION

No analytical verification of the dose solutions was performed

### B. BIOLOGICAL DATA

There were no mortalities and no clinical signs of toxicity or repurgitation of dose were observed. Bodyweight changes for males and fertiles were slightly lower at 2000 mg/kg over Days 0 to 7. Female bodyweights were found to be significantly lower (p<0.05) at 2000 mg/kg on Day 7 compared to the controls.

Food consumption was slightly reduced at 2000 ms kg over Days 1 to 3.

No abnormalities were detected in any bird examined during the macroscopic *post mortem* examination.

# Table: Body weight and body weight change in bobwhite quail following exposure to Aclonifer

|              |           |       |                 | Q,         |     | ]   | Days of s              | tudy      |         |        |         |
|--------------|-----------|-------|-----------------|------------|-----|-----|------------------------|-----------|---------|--------|---------|
| Group        |           |       | Body weight (g) |            |     |     | Body weight change (g) |           |         |        |         |
|              | (@g/kg)   | , Sex | -55             | <b>~</b> - | 0   | 7   | 14                     | -15 to -7 | -7 to 0 | 0 to 7 | 7 to 14 |
| 1            | Control 1 | / %/  | ©<br>≫191       | 192        | 189 | 195 | 197                    | 1         | -3      | 6      | 2       |
|              |           |       | 186             | 190        | 187 | 193 | 195                    | 4         | -3      | 6      | 2       |
| مي 2<br>مي 2 | ×         | m     | 192             | 195        | 192 | 200 | 203                    | 3         | -3      | 8      | 3       |
|              | 500       | f     | 188             | 191        | 189 | 194 | 195                    | 3         | -2      | 5      | 1       |



| 3 | Aclonifen | m | 192 | 193 | 191 | 199 | 202 | 1 | -2             | 8   | 3   |
|---|-----------|---|-----|-----|-----|-----|-----|---|----------------|-----|-----|
|   | 1000      | f | 188 | 188 | 186 | 192 | 194 | 0 | -2             | 6   |     |
| 4 | Aclonifen | m | 192 | 193 | 192 | 193 | 198 | 1 | <b>&gt;</b> -1 | 107 | 5   |
|   | 2000      | f | 189 | 192 | 189 | 192 | 196 | 3 | -3             | 2   | ×94 |

The acute oral LD<sub>50</sub> value of aclonifen technical to the **B**obwhite quait was found to be in excess of 2000 mg/kg. The no observed effect level was considered to be 1000 mg/kg.

#### VALIDITY CRITERIA С.

|                       | ¥ |                                            |     |          |
|-----------------------|---|--------------------------------------------|-----|----------|
| Validity criterion    |   | స్తో Required చో<br>స్ట్రీ (OEOp 223 2016) |     | Achieved |
| Mortality in controls |   |                                            | Ş , | 0% 0%    |

The validity criterion was satisfied and therefore this stud dy can be considered to be valid.

#### D. TOXICITY ENDPO Table: Summary of endpoi

| rubic. Summary   | • «" |                                | × 0  | 0 |
|------------------|------|--------------------------------|------|---|
| Endpoint         |      | minal Concentration<br>(mg/kg) |      |   |
| LD <sub>50</sub> |      | \$ >2000 \$                    | 4. × | Š |
| NOEC             |      | <u>1000</u>                    | o 4  |   |
| Č                |      | E III CONCE                    |      |   |

## & III CONCLUSION

The acute oraDLD50 Value of aclonnen technicat to the Bobwhite quail was found to be in excess of 2000 mg/kg2 The no observed effect level was considered to be 1000 mg/kg.

(1999) Assessment and conclusion by applicant All validity criteria were satisfied and therefore this study can be considered to be valid. The LD50 of Acloniten to Bobwhite quar, was determined to be greater than 2000 mg/kg. The no observed effect level was considered to be 1000 mg/ag Contraction of the second seco



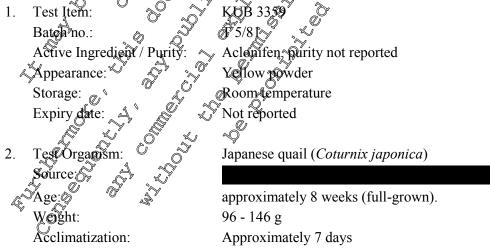
| Data Point:                | KCA 8.1.1.1/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | KUB 3359 Batch T 5/81 - Acute oral toxicity in Japanese quails (Coturnix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            | coturnix japonica)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Report No:                 | R003366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document No:               | M-235374-01-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current    | Current Guideline: OECD 223, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test guideline:            | No control group included in study $O^{\circ}$ $\swarrow$ $\delta^{\circ}$ $\delta^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Previous evaluation:       | yes, evaluated and accepted Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            | Source: Study list relied upon, December 2011 (BMS: DO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLP/Officially             | No, not conducted under GLP/Officially recognised testing facilities and the second se |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Yes A O Q Q O Q O Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Executive summary**

The objective of this study was to evaluate the acute toxicity of KO B 3359 Batch T 5481 (Aclonifen) administered to the Japanese quail (*Coturnes japonica*).

Groups of ten male and ten female adult birds were given a single oral dose, by intubation, of 15 g aclonifen/kg bodyweight. Birds were observed for 4 days following dosing. Observations included mortality, clinical signs, bodyweight, food consumption and postmorten examination.

No mortalities occurred during the study and no clinical signs of toxicity were observed in any birds.


After 14 days the average body weights of all animals showed the normal increases as compared to the baseline values

No abnormalities were detected in any bird at post moltem gramination.

The active oral  $LD_{so}$  value of  $KUB^3359^{\circ}Batco T 5^{\circ}V$  to the Japanese quail was found to be >15000 mg aclonifen/kg.

### . MATERIALS AND METHODS

A. MATERIALS





Feeding: Memo sole feed for chicks (Hemo-KLiken-Alleinfutter) A CHARLES (CMC standard type B. **STUDY DESIGN AND METHODS** 1. In-life phase: 24 September – 13 October 1981 2. Exposure conditions Test cages: Type III Makrolon cage/2 quail Experimental design: Single test concentration of Temperature:  $21 \pm 2 \,^{\circ}C$ 45 - 55% 🐇 Relative humidity: Photoperiod: 12 hours light: 101 3. Administration of the test substance The test item was administered as a 60% suspension if 0 suspension had a pH value of 7.5. the Osing a Hgid stomach tube. The test suspension was administered once to the animals by the oral 4. **Observations** The clinico-toxicological symptoms were assessed in each individual animal at intorvals depending on the course of the symptoms (modified screening method adopted from Irvin). The procedure followed was such that in animals showing unchanging effects over a prolonged period of time a corresponding note was made on the regord sheets. Reassessments took place only when changes in the symptoms were observed. The exacuations were made after periods of 20 minutes, 1, 3, 24 and 72 hours as well as 7 and 14 days following administration. The body weights were determined on day 0 beginning destudy and day 14 (final autopsy) in the

The body weights were determined on day 0 (beginning of study) and day 14 (final autopsy) in the surviving animals.

Animals dying from acute or debyed effects of dosing were autopsied immediately after discovery of their bodies and investigated for macroscopic organ changes in the cranial, thoracic and abdominal cavities. The final post-mortern was performed in all surviving animals from the individual study groups at the end of the follow-upobservation period

#### 5. Statistical calculations

No statistical analysis of the generated data was performed.

### <sup>7</sup> IF RESURTS AND DISCUSSION

## A. ANALYFICAL FERIFICATION

No analytical verification of the dose solutions was performed.

## B. S BIOLOGICAL DATA

No mortalities occurred throughout the 14-day observation period.

In the treated animals a yellowish discoloration of the faeces was observed approximately 1 hour following administration. Twenty-four hours following administration, however, this discoloration



could no longer be detected. Throughout the observation period there were no further clinical symptoms observed.

During the final autopsy performed 14 days following administration no macroscopically visible organized changes were revealed in the cranial, thoracic and abdominal cavities.

After 14 days the average body weights of all animals showed the normal increases as compar baseline values.

#### Body weight in Japanese quail following exposure to Acionifen Table:

| Group | Treatment<br>(mg/kg) | Sex | Day 0                | odyvæight (g)<br>$\hat{Q}$ $\hat{D}$ D | )<br>ay 14 / |
|-------|----------------------|-----|----------------------|----------------------------------------|--------------|
| 1     | Aclonifen<br>(15000) | f Ø | 0 109.3 7<br>4 129.5 |                                        | 143          |

the Japanese quail was found to be in excess of 15 The acute oral LD50 value of aclonifen to the Japanes bodyweight.

#### C. VALIDITY CRITER

| Validity criterion    | Achieved Achieved                                                     |
|-----------------------|-----------------------------------------------------------------------|
| Mortality in controls | $\sim$ |
| n.d.: not determined  |                                                                       |

No control group was included in the study and therefore the validity of the study according to current guideline requirements cannot be assessed.

# Table: Summary of endpoints

| *                                      |     | × .   |           |              | 0        |
|----------------------------------------|-----|-------|-----------|--------------|----------|
|                                        | 0″4 | Nomin | al Concer | ntration     | × 4      |
| Endpoint                               | × A | Ľ     | (mg/kg)   |              |          |
| LD                                     | °,  | Ĵ. Ĉ  | >15000    | Ő            |          |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0 0 |       | Ň         | <sup>2</sup> | <u>~</u> |
| 4                                      | O,  | .\$°  | ATIL.C    | <b>ÖNCE</b>  | USION    |

The acute or al  $LD_{50}$  value of a clonifen to the Japanese quail was found to be in excess of 15000 mg/kg. (1981)

#### Assessment and conclusion by applicant:

No control group was included in the study and therefore the validity of the study according to current guideline requirements cannot be assessed. There were no known circumstances which may have affected the quality or inegrity of the study and hence the study may be used as supporting evidence of the low acute toxicity of Actonifen to birds.

The LD<sub>50</sub> Acloration to Japanese quail, was determined to be greater than 15000 mg/kg.

Assessment and conclusion by RMS:



|                                                                                                     | Q° x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Data Point:                                                                                         | KCA 8.1.1.1/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Report Author:                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Report Year:                                                                                        | 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Report Title:                                                                                       | KUB 3359 Batch T5/81 - Acute oral toxicity in canaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Report No:                                                                                          | R003647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Document No:                                                                                        | M-235294-01-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Guideline(s) followed in study:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Deviations from current                                                                             | Current Guideline: OECD 223, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| test guideline:                                                                                     | No control group included in study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Previous evaluation:                                                                                | yes, evaluated and accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                     | Source: Study instruction percentage 20 (in (invis. 202)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| GLP/Officially                                                                                      | No, not conducted under GLO Officially recognised esting facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| recognised testing                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| facilities:                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Acceptability/Reliability:                                                                          | Yes in a straight when the straight is a straight when the straight is a straight when the straight is a straight |  |  |  |  |
|                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Executive summary                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| The objective of this stud                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| administered to German                                                                              | ly was to evaluate the acute toxicity of KUB 3359 Batch T 5/81 (Aclonifen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Groups of ten male and ten female adult birds were given a single oral dose, by intubation, of 15 g |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| aclonifen/kg bodyweight                                                                             | Birds were observed for 14 days following dosing. Observations included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| mortality clinical gigns                                                                            | bodywerght, food consumption and post mortem examination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

No mortalitie occurred during the study and no official signs of loxicity were observed in any birds.

After 14 days the average body weights of all animals showed the formal increases as compared to the baseline values. Ŵ

No abnormalities were detected if any bird at *post martem* examination. The acute oral  $LD_{50}$  value of KUB 3359 Batch T 5591 to the Japanese qua 5/81 to the Japanese quail was found to be >15000 mg aclonifen/kg.

#### **AATER** D METHODS

MATERI А. 1. **Test Item**: Batch no 5/ Active orgredient / Pority Appearance Aclonifen, purity not reported Yollow powder Room temperature Storage: @ Not reported date: Test Organism: 2. German canaries Source:



| Age:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | approximately 9 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 - 22 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acclimatization:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approximately 7 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Feeding:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D STUDY DESIGN AND MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approximately 7 days<br>Approximately 7 days<br>CTHODS<br>02 November – 16 November 1981<br>Volary (60 & 80 x 60 cm)/5 birds<br>Single test concentration of 15 g/kg<br>21 ± 2 °C<br>45 × 55%<br>12 hours hight, 12 hours dark<br>50% suspension in 0.5% carboxymethyl cellanose (CMC). This test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>D. STUDY DESIGN AND MI</li> <li>1 In-life phase:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $02 \text{ November} = 16 \text{November} 1681 \qquad \bigcirc \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. m-me phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ETHODS<br>02 November – 16 November 1981<br>Volary (60 80 x 60 cm) 5 birds<br>Single test concentration of 16 g/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Exposure conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test cages:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volary (60 $\times$ 80 x 60 cm) $\times$ birds $\sim$ $\sim$ $\sim$ $\sim$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Experimental design:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single test concentration of 16 g/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $21 \pm 2$ °C $(1 \pm 2)$ °C $(1 \pm$ |
| <b>Relative humidity:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $45 \div 55\%$ $\checkmark$ $\checkmark$ $\land$ $\land$ $\land$ $\land$ $\land$ $\land$ $\land$ $\checkmark$ $\land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Photoperiod:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 hours hight; 12 hours dark O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>3.</b> Administration of the text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | substance a si o o ci w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The test item was administered as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50% suspension of 0.5% carboxymethyl cellarose (CMC). This test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| suspension had a pH value of 7.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The test suspension was administere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d office to the animals by the oral route using a rigid stomach tube.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. Observations of the second se | d office to the animals by the oral route using a rigid stomach tube.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The clinico-toxicological symptoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | were assessed in each individual animal at intervals depending on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| the course of the symptoms (modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d screening method adopted from tryin). The procedure followed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ichanging effects over a prolonger period of time a corresponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| note was made on the record sheets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reassessments took place only when changes in the symptoms were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| observed The evaluations were mad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | after periods of 20 minutes 1, 3, 24 and 72 hours as well as 7 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14 days following administration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The body weights were determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ab day (beginning ) study) and day 14 (final autopsy) in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| surviving aningls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | after periods of 20 minutes 1, 3, 24 and 72 hours as well as 7 and<br>b day 0 (beginning of study) and day 14 (final autopsy) in the<br>d effects of dosing were autopsied immediately after discovery of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Animals dying from acute or delaye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d effects of dosing were autopsied immediately after discovery of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| their bodies and investigated for m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acroscopic organ changes in the cranial, thoracic and abdominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | berformed in all surviving animals from the individual study groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| at the end of the follow-up observati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5. Statistical calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No statistical analysis of the generat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed ata was performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| X O X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESULTS AND DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No analytical verification of the dos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e solutions was performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| B. BIOLOGICAL DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



No mortalities occurred throughout the 14-day observation period.

In the treated animals a yellowish discoloration of the faeces was observed approximately 1 four following administration. Twenty-four hours following administration, however, this discoloration could no longer be detected. Throughout the observation period there were no further clinical semptoos observed.

During the final autopsy performed 14 days following administration no macroscopical changes were revealed in the cranial, thoracic and abdominal cavities.

After 14 days the average body weights of all animals showed the pormal increases baseline values.

| Table: | Body weight in Japanese qua | ail following exposure to Aclonifien |
|--------|-----------------------------|--------------------------------------|
|--------|-----------------------------|--------------------------------------|

| Group | Treatment<br>(mg/kg) | A Sex                                 | Bodywei<br>Day 0 S | ight (g)<br>Day 14 |
|-------|----------------------|---------------------------------------|--------------------|--------------------|
| 1     | Aclonifen<br>(15000) | m m m m m m m m m m m m m m m m m m m | 19.3 Y 19.3 Y 180  |                    |
|       | (13000)              |                                       |                    | <u> </u>           |

The acute oral LD<sub>50</sub> value of actonifer to German caparies was found to be in excess of 15000 mg/kg bodyweight.

#### C. VALIDITY CRITERI

|                       |     |        |                  | % /      |
|-----------------------|-----|--------|------------------|----------|
| Validity criterion    |     |        | (OF D 223, 2016) | Achieved |
| Mortality in controls | ý " | 28 - Q |                  | n.d.     |
| n.d.: not determined  |     |        |                  |          |

No control group was included in the study and therefore the validity of the study according to current guideline requirements cannot be assessed. D. TOXICITY ENDPOINTS

| Endpoint          | 6   |     | nal Concer | tration |
|-------------------|-----|-----|------------|---------|
| JLD <sub>50</sub> | , Ô | Q.  | ©>15000    |         |
|                   |     | 4 8 | Í.         | 2       |

QÍII. CONCLUSION

The acute oral LD<sub>30</sub> value of actionife@to German canaries was found to be in excess of 15000 mg/kg.

(1981)

#### Assessment and conclusion by applicant:

No control group was included in the study and therefore the validity of the study according to current guideline requirements cannot be assessed. There were no known circumstances which may have affected the quality or integrity of the study and hence the study may be used as supporting evidence of the low acute toxicity of Aclonifen to birds.

The  $LD_{50}$  of Aclonifen to German canaries, was determined to be greater than 15000 mg/kg.



Assessment and conclusion by RMS:

#### CA 8.1.1.2 Short-term dietary toxicity to birds

| Assessment and conclus          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA 8.1.1.2 Short                | t-term dietary toxicity to birds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data Point:                     | KCA 8.1.1.2/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Author:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title:                   | 5-day-dietary LC50 for Boby pite Quail (Colinus virginianus) Acloraten (tech.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | a.s.) A Q' so A O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Report No:                      | $C038216 \qquad \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Document No:                    | M-224527-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in study: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current         | Current Guideling OECD 205, 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| test guideline:                 | None in the second seco |
| Previous evaluation:            | yes, evaluated and accepted Source: Start teled upon, December 2011 (RMS: DIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | Source: Story list relied upon, December 2011 (RMS: DB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLP/Officially                  | Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability:      | Yes a good a goo |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Executive Summary

Bobwhite quail Colinus virginianus, received Actonifen mixed directly with their feed at nominal concentrations of 3, 5, 625, 1250, 2500 and 5000 mg a.s/kg or five days. Following the five-day exposure period all groups were given intreaded feed ad libitum for a further 3 days. Observations, including mortality, clipical signs, bodyweight and food consumption, were made during the study. At termination of the study, post-more exonination was carried out on all surviving birds.

None of the birdshowed any signs of intoxication at any time of the study. There were no difference in the body weight development between test groups and controls.

The dietary  $L_{50}$  of Aclomfen to the by white quail was found to be greater than 5000 mg a.s./kg food; equivalent to 1027 mg a.s./kg@w/day

## MATERIALS AND METHODS

MATER A. Test Item: 1. Batch no.; Active Ingredient / Purity: Sppearance: Storage:

Actonifen (tech. a.s.) OP2150250 98.6% Yellow crystalline powder  $25^{\circ}C \pm 5^{\circ}C$ 07 April 2005

**Test Organism:** 2.

Expiry date:

Bobwhite quail (*Colinus virginianus*)

BAYER E R

Page 18 of 328 2020-01-17, rev. 2020-03-12

Document MCA – Section 8: Ecotoxicological studies Aclonifen

Source: Three days old Age: Weight: 23 - 27 g Ô Acclimatization: 7 days A standard rearing diet for quals, type: "Wachter und 7 days Feeding: THODS 21 May 2002 – 26 June 2003 27 27 27 27 27 27 B. **STUDY DESIGN AND METHODS** 1. In-life phase: 21 May 2002 2. Exposure conditions canos measuring 000 cm x 55 cm with a Test cages: @ight off 25 cm Five test concentrations **Experimental design:** a.s./kg) plus a control **Temperature: Relative humidity:** light:12 hours dark **Photoperiod:** 3. Administration of the test item Diet preparations were performed according to the following preparation scheme Total Bartch NominalDietary Test Hem Date of **Basal Diet Oreatment** Level Ø Amount Preparation **(g)** (g) (mg a.s. / kg diet) (kg) May 21, 2003 @1.587 4998.0 (for homogeneity & stability 25.355 4974.0 analysis) .000 10000.0 1.588 4998 3.169 4996 5 000 June 16,2003 (for posure) **500**00 6.340 4994 5.000 12.679 4987 **5000** 5.000 25.356 4974

Immediately after preparation, the total prepared amount for each treatment level was partitioned into separate sub-samples corresponding to the amount required for one day and stored in a freezer until use. The appropriate amounts of the test item were directly admixed to the basal diet. No vehicles were used for diet-preparation. Accuracy and usefulness of the applied methods were proofed by the analytical verification of homogeneity, stability and a.s.-content of the prepared diets

#### 4. Test organism assignment and treatment



Three days prior to exposure the chicks were allocated randomly to each of the five treatment levels and two control groups. Each group consisted of 10 chicks. Afterwards, the test units were arranged in a randomised order. The birds were individually identified by leg bands and were observed daily on health and compatibility until start of exposure.

Food was provided ad libitum throughout the study. At all times, birds had free access to food and tesh tap water. During the post exposure period, weighed amounts of untreated food were placed into the cage-feeders. During exposure period, the birds received pre-weighed mantities of frozen-stored test diet, which were thawed immediately before exposure. In daily intervels, all uneater food was removed from the feeders and feeders were refilled with fresh food after cleaning. During exposure and post exposure period, the remaining uneaten food for diet was re-weighed for determination of food consumption. After weighing, the uneaten amounts were disposed of

#### 5. Measurements and observations

Observations on signs of intoxication were made daily during acclimatisation wice on the first exposure day, continued at least once daily throughout the following study days until terminal sacrifice.

At the end of the study the birds were sacrificed by  $CO_2$  as physical on and gross here provide a complete carried out on all survivors.

Body weights were determined at the beginning of exposure (day 3), at the end of exposure (day 5) and after terminal sacrifice (day 8).

#### 6. Statistics/Data evaluation

Due to the clear results a statistical analysis of the data was not necessary.

I. RESUL PŠ

### A. Analytical Verification

The analytical data revealed that the test item feeding mixtures were homogenous. The content checks confirmed that during the story appropriate and equal mixture procedures were followed.

Based on the measured concentrations, the test concentrations were determined to be 322, 628, 1318, 2559 and 5072 mg a.s. grad food.

The validated method is sommarised in Document MCA4 (CA 4.1.2/55).

# B. Mortalities and clinical observations

None of the birds showed any signs of infoxication at any time of the study. There were no difference in the body weight development between test groups and controls.

During the exposure days the food consumption varied from day to day at the control and at 625 and 1250 mg as /kg food. In the other test groups (313, 2500 and 5000 mg a.s./kg food) the differences between the daily food consumption was smaller. A trend in regard of test concentration in the food was not visible.

The only pathological finding at gross necropsy were two enlarged gall bladder at 5000 mg a.s/kg, which were of no toxicological concern.



(2003)

| Measured<br>Concentration |                |           | od consumption<br>bird/24h) |                      | s. uptake             |
|---------------------------|----------------|-----------|-----------------------------|----------------------|-----------------------|
| (mg a.s./kg<br>diet)      | Day 0-4<br>(g) | Days 0 -4 | Days 5 -7                   | mg a.s./burd<br>/240 | mg a.s./kg bw<br>/24h |
| 0                         | 32.2           | 10.6      | 9.7                         | e 0                  | 0.0 9                 |
| 322                       | 32.2           | 7.1       | <b>(6</b> ,8                | 2.3                  | L'ZIM S               |
| 628                       | 32.5           | 13.1      | ₩3.4                        | 8.2                  | 252.3 L               |
| 1318                      | 32.1           | 16.9      | J 14.2                      | 22.3                 | Q 694.5               |
| 2559                      | 28.0           | 6.2       | 7.4 🖓                       | کې °15.9             | L 567.9 L             |
| 5072                      | 30.1           | 6.1       | 8.3                         | 30.9                 | 1926.6                |
| bw: body weight           |                | ×.        |                             |                      | N N                   |

#### Table: Mean daily food consumption and mean active substance (Aclonifen) intake

The LC<sub>50</sub> for juvenile bobwhite quails was higher than 5000 mg a.s./kg food

#### C. VALIDITY CRITERIA

Mortality in the controls was less than 10% at the end of the test and the active substance was shown to be stable in the prepared diet over a period of 5 days. In addition, there was no mortality or toxic effects at the lowest test concentration. Therefore, the calidity criteria specified in DECD 205 (1984) were satisfied and the test is considered to be faild.

### D. TOXICITY ENDPOIN

| Table: | Summary | offendpoir |
|--------|---------|------------|
|        |         |            |

|                  |     |              |             | Í SÍ DÍ                                |        |
|------------------|-----|--------------|-------------|----------------------------------------|--------|
| Endpoin          |     | mg a skg foo | <b>ð</b> "Ú | ∼, mg a, s kg l                        | bw/day |
| LC <sub>50</sub> | Ø V | >5000        |             | ~~ <sup>©</sup> >102                   | f      |
| NOEC             | R.  | 5000         | O,          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1      |
|                  |     |              |             |                                        |        |
|                  |     | ្រុំ បា      | Î. CÔNCL    | KSION 3                                |        |

The dietary LC<sub>50</sub> of Aclouifen of the boowhite quail was found to be greater than 5000 mg a.s./kg food; equivalent to  $\frac{10027}{10027}$  mg a.s./kg bw/day.

Assessment and conclusion & applicant:

Alf validity criteria were satisfied and derefore this study can be considered to be valid.

The dietary  $\text{KC}_{50}$  of Aclon ten to the bolt hite quail was found to be greater than 5000 mg a.s./kg food; equivalent to 1027 mg a.s./kg by tay.

Assessment and conclusion by RMS:

CA 8.1.1.3 Sub-chronic and reproductive toxicity to birds



| Data Point:                | KCA 8.1.1.3/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Report Year:               | 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report Title:              | Aclonifen - Avian subchronic toxicity test - Oral toxicity in japanese quail (including effects on reproduction following a 6-week administration in the diet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Report No:                 | R007424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Document No:               | M-174897-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Guideline(s) followed in   | OECD: Draft guideline for testing of chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deviations from current    | Current Guideline: OECD Draft, 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| test guideline:            | None $\mathcal{A}_{\mathcal{A}} \cap \mathcal{A}_{\mathcal{A}} \cap \mathcal{A} \cap \mathcal{A}_{\mathcal{A}} \cap \mathcal{A} \cap $ |
| Previous evaluation:       | yes, evaluated and accepted $Q^{Y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | Source: Study list relied upon, December 2011 (RMIS: DO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GLP/Officially             | Yes, conducted under GEP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Acceptability/Reliability: | Yes A & Q Q A O O Q' A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### **Executive Summary**

ر. مي مي بر الا مي Dary Lage Japanese quail (Coturnix japonicg) received Aclonifen mixed directly with their feed at nominal , N concentrations of 100, 300 pr 1000 mg actionifed kg diet over a 6 week period.

r O

Effects monitored included, and surgival, adult body weight, egg production, og shell thickness, egg fertility, egg cracks, hatching success, 14 day posthatch survival of choks, chick bodyweight and gross pathology.

Analytical verification of actonifen concentrations in the diet showed that the actual levels were near nominal. Actonifen was seen to be homogeneously mixed with the diet, and sufficiently stable over a 7 day period between diet renewals.

No treatment related mortalities occurred among adult birds and no adverse effects of aclonifen were seen on any of the other parameters tested. No reatment related effects were observed in clinical signs and behaviour of chick

was determined to be 1000 ppm (equivalent to 141 mg/kg bw/d). The no-adverse effect le

### MATERIALS AND METHODS

« "MATERI A. Actionife 1. <sup>A</sup>Test Item: Batch nog Active ongredient / Rurit @DA 960 995,g/kg Yellow powder Storage: Room temperature in the dark xpirx@ate:« 22 November 1995 2. Test Organism: Japanese quail (Coturnix japonica) Source:



Age:

Weight: Feeding:

# Avian layer diet, manufactured by Special Diets Services, & Witham, Essex, England B. **STUDY DESIGN AND METHODS**

- 1. In-life phase:
- 2. Exposure conditions

**Test cages:** 

ach cage, which housed a replicate of one male and one female was constructed of polythene coated steel wire and neasured approximately 0.36 x 0.39 x 0.24 m.

Approximately eight weeks old at the start of the treatment

period of the study and were Approaching Their First

Rages had sloping floors with 0.1 m egg-catchers, and had xternally attached food hoppers and antomatic drinkers

**Experimental design** 

concentrations (100, 300 and 1000 ppm) plus a

Temperatur Relative humidit

bours light:

reproductive season 為

144 - 234 g

Lightantensitv

Photoperiod:

3. Administration of the test item

A premix of suitable strength was prepared weekly by mixing the required quantity of test substance with untreated basal det. Blending of the premis was achieved by mixing in a Turbula mixer for a minimum period of minutes. The test diet concentrations were prepared by direct dilution of the prepared premix. Blending of the inclusion levels for feeding was achieved by mixing in a Turbula mixer for a minimum period of 7 minutes.

Priot to the start of the main study, samples were taken from a trial mix to determine stability and homogeneity of aclonifen in SOS layer diet at 100 and 1000 ppm. Duplicate 500 g samples were taken from the top, widdle and bottom of the mix for analysis of homogeneity. Additional samples were taken to determine the stability of a clonifer in avian diet over 0, 4, 8 and 15 days under animal room condition. Day and 4 samples were taken as contingency only, and were not subsequently analysed. Results from the trial mix indicated that aclonifen in avian diet was stable under normal animal room conditions for up to fifteen days, therefore no further analysis was undertaken.

#### 4. Test organism assignment and treatment



Prior to the start of the treatment period, the birds were allocated to cages with one male and one female in each cage. There were three test groups plus a control group and 12 cages (replicates) for each treatment.

Test diets were fed to the birds weekly during the six week egg production period. Controls received untreated basal diet.

#### 5. Measurements and observations

Adult birds and chicks were observed daily for mortalities and ofinical signs. Individual adult bodyweights were recorded in Weeks -2, 0 (immediately prior to the introduction of test diets) and at termination, Week 6. Food consumption for each replicate was recorded weekly throughout the pte-treatment and treatment periods of the adult phase. Individual abirk bodyweights were recorded worthin 24 hours of Hatching and again after 14 days.

All data relating to food consumption, eggs and chicks were considered over weekly intervals except for egg shell thickness which was recorded for Weeks 2 and 4.

All sporadic mortalities were subjected to a macroscopic external and internal examination. At termination, all adult birds were examined following sacrifice by certical dislocation. Net weights of heart, liver, spleen, testis/oviduct (without developing eggs) were recorded and examined for gross pathological changes. Clicks were not examined *post mortem* at termination of 14 daysobservation.

#### 6. Statistics/Data evaluation

Williams' test (**1975**, **1972**) for contrasting increasing dose levels of a compound with a zero dose control was used to compare the treatest groups with the control.

NO VII. RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

The analytical data revealed that the lost item feeding mixtures were homogenous and that aclonifen was stable in the aviat diet over a period of 15 days.

â

The validated method is summarized in Document MCA4 (CA 4.1.2/56).

# B. MORTALIŢÕES AND CLONICAD OBSERVATIONS

#### Mortalities

Mortalities which occurred during the treatment phase of the study are summarised below:

# Table: Adult mortalities during the treatment phase

| Group | Dose level            | <b>Replicate</b> | Bird number | Day of death |
|-------|-----------------------|------------------|-------------|--------------|
| 1     | O' Control, Oppm      | 2 3              | 6♀          | 29           |
| 2     | z Selonifen, 100 ppm  | 14               | <b>28</b> ♀ | 13           |
|       | Z' Selonifea, 100 ppm | 22               | 44♀         | 21           |
| L     | Or A V                |                  |             |              |

Bird  $6^{\circ}$  Group 1 was subdued immediately prior to being found dead on Day 29. The only other observation was in bird  $56^{\circ}$ , Group 3, where a swelling on the head was observed on Day 27 and remained until termination of the study. The bird was in good health otherwise.



#### **Organ weights**

| At study ter | mination, organ weights | were determined. | No differences | between treatment | groups and O |
|--------------|-------------------------|------------------|----------------|-------------------|--------------|
| control were | e detected.             |                  |                | *                 |              |
| Table:       | Adult organ weights (g  | )                |                |                   |              |

| able: Adu          | ult organ weights (g | <b>)</b>       |                    |                  |                                |
|--------------------|----------------------|----------------|--------------------|------------------|--------------------------------|
| Treatment<br>(ppm) | Sex                  | Heart          | Liver              | Spleen           | Testes/Ovidfuct                |
| Control            | Male<br>Female       | 1.70<br>1.81   | 90<br>5.99         | © 0.06<br>Q 0.07 | 2 2 2 4 0 1<br>20.57 2 5       |
| 100                | Male<br>Female       | 1.87<br>1.84   | 2.96<br>5.53       | 0.05             | Q 4.690 Q                      |
| 300                | Male<br>Female       | 1.85<br>1.80   | 2.50 ~<br>• 6.09 @ | 0.08             | Ø <b>Ø</b> .95 Ø<br>↓ ∞0.71,29 |
| 1000               | Male<br>Female       | 1.69 ×<br>1.73 | 2.67 (<br>548 0    | 0.05             | 4.29<br>4.29                   |
| dult Bodyweig      | ght and Feed Consu   | metion, y      |                    |                  |                                |

#### Adult Bodyweight and Feed Consumption

Bodyweights over the study period were analysed for each sex separately. There were no treatment related effects in bodyweight gain observed during the 5-weets treatment period.

#### Group mean bodyweight - acult birds (g) Table:

| -      |                                            | Q                                                                                                                                                                                                                                                             |
|--------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sev    | So O Star Week of study                    | Y L                                                                                                                                                                                                                                                           |
| 564    |                                            | 6                                                                                                                                                                                                                                                             |
|        |                                            | 210                                                                                                                                                                                                                                                           |
| Female |                                            | 235                                                                                                                                                                                                                                                           |
| Male   | 180 ~ 5 <sup>3</sup> 184 Q <sup>4</sup> ~  | 207                                                                                                                                                                                                                                                           |
|        |                                            | 241                                                                                                                                                                                                                                                           |
| Mal    |                                            | 191                                                                                                                                                                                                                                                           |
| Female |                                            | 233                                                                                                                                                                                                                                                           |
| Male   |                                            | 187                                                                                                                                                                                                                                                           |
| Female | 208                                        | 224                                                                                                                                                                                                                                                           |
|        | Female<br>Pemale<br>Male<br>Female<br>Male | Sex         Week of stuff           Male $-2$ $0$ Male $190$ $190$ Female $07$ $210$ Male $190$ $211$ Male $07$ $216$ Female $077$ $216$ Male $172$ $7$ Male $172$ $7$ Male $172$ $7$ Male $202$ $230$ Female $202$ $230$ Male $166$ $175$ Female $202$ $230$ |

Food consumption was similar in all groups with the evidence of a treatment-related effect.

# Table: A Group mean week food consumption (g/bird/day)

|   |                   |               | ४ .∾    |          |      |
|---|-------------------|---------------|---------|----------|------|
|   | Week S            |               | Treatme | nt (ppm) |      |
|   | vveek V           | , Control     | 100     | 300      | 1000 |
|   | -2                | <u>گ</u> 27 ک | ©° 27   | 28       | 26   |
|   | 4 A `             | J Z           | 28      | 29       | 27   |
|   |                   | 29            | 30      | 30       | 29   |
|   |                   | స్ 30         | 31      | 30       | 28   |
|   |                   | 29            | 30      | 29       | 27   |
|   | S 04 S ~          | 29            | 30      | 28       | 28   |
| Ľ |                   | 29            | 30      | 29       | 27   |
|   | <sup>0</sup> 6    | 29            | 30      | 29       | 28   |
|   | Mean, weeks 1 - 6 | 29            | 30      | 29       | 28   |



A summary of the reproductive results obtained is presented in the tables below.

| Cable: Summary of reproductive effects of Aclonifen on Japanese quails |                            |         |                  |                    |  |
|------------------------------------------------------------------------|----------------------------|---------|------------------|--------------------|--|
| Reproductive parameters                                                | Control                    | 100 ppm | <b>30</b> 0 ppm  | 1000 ppm           |  |
| Eggs laid per female                                                   | 37.9                       | 37      | \$ 34.4          | ~ 38.6 V           |  |
| Mean weight egg (g)                                                    | 11.3                       | 11.8    | 11.5             | × 11.3             |  |
| Group mean egg shell thickness (mm)                                    | 0.2                        | 0.19    | 0.19             | . <b>0</b> 919 ∠   |  |
| Cracked eggs of eggs laid (%)*                                         | 154                        | 22      | 26.2             | × 19 0×            |  |
| Non-cracked eggs of egges laid (%)                                     | 84.6                       | £7%.8   | 73.1             | D 80 0             |  |
| Candling results: fertile eggs of eggs set (%)                         | <u>م</u> و <sup>ب</sup> 84 | 82      | 085              |                    |  |
| Candling results: viable embryos of eggs set (%)                       | Ø <sup>r</sup> 83 🔿        | 803     | Q* 840¥          | © 91 🗸             |  |
| Hatching                                                               |                            | , ja je | r <u>`</u> ∂` `≈ |                    |  |
| - % hatchlings of eggs set                                             | 0 83                       | 68 0    | \$ <sup>71</sup> | 83                 |  |
| - % hatchlings of viable embryos                                       | ° XIII                     | Q 86    | 890              | \$ <sup>9</sup> 91 |  |
| Number of dead in shell as a proportion of fertile<br>eggs (%)         |                            |         |                  |                    |  |
| Number of surviving chicks as a proportion of %                        | \$ \$ \$ ~                 |         | 5 97 C           | © 99               |  |
| Chick bodyweights at hatching (g)                                      | 28.5                       | 8.5     | ÂN <sup>2</sup>  | 8.2                |  |
| Chick bodyweights at 14 days (a)                                       | 57,8                       | Q 59.3  | \$57.7 ₺         | 57.2               |  |

\*The data on cracked eggs were transferred in a more meaningful way (no. of uncracked eggs related to eggs laid). It is now the state of the art to perform the statistical analyses with dese data.

The number of cracked eggs was anazingly bigh in all groups including the control. It was reported that problems with egg-pecking occurred in the study with different pairs which at least to some extent may explain the abnormal rate of cracked eggs.

No statistically significant differences were detected for any of the endpoints. Dose responses were never observed.

Dietary administration of up 6 1000 ppm aclonifer to Japanese diail had no adverse effect on health, growth and reproduction performance of adult birds or on the chicks. The no-adverse effect level (NOEL) was determined to be 1000 ppm.

### C. VALDITYCRITERIA

The study was performed according to a draft test guideline and hence no specific validity criteria exist. The quality criteria of the Draft Guideline (4982) were fulfilled:

- The test item concentration in the diet was satisfactorily maintained throughout the 42-day exposure period. A premix of suitable strength was prepared weekly by mixing the required quantity of test substance with untreated basal diet. Stability of the test substance in the food under test conditions was verified. On day +15 the concentration at the highest level was +0.3 of the concentration on day 0.
- The hatching success for the incubated eggs of the control during the 5th and 6th week of the administration was higher than 50% (amounted to 83%).
- The viability of the quails amounted to 99% and was therefore significantly greater than the Grequired 50%.
- 11 breeding pairs of the control group survived until the end of the test (quality criterion: at least 10 pairs).



A 995)

Additionally, mortality in the controls was less than 10% at the end of the test and there was no mortality or toxic effects at the lowest test concentration. Therefore, as there were no known circumstances which may have affected the quality or integrity of the study, the test is considered to be valid.

| Endpoint | ррт  |
|----------|------|
| NOEL     | 1000 |

 Image nave affected une quality or integrity of the study, the test is considered to be valid.

 D. TOXICITY ENDPOINTS

 Table:
 Summary of endpoints

 Endpoint
 ppm

 NOEL
 1000

 III. CONCLUSION
 4

 Grave administration of up to 1000 ppm aclonifen to Japanese qual had no adverse effect level

 NOEL
 1000 ppm aclonifen to Japanese qual had no adverse effect level

 growth and reproduction performance of adult birds or on the chick The no-adverse effect level (NOEL) was determined to be 1000 ppm

#### Assessment and conclusion by applicant:

The study was performed according to a draft testoguidetine and hence no specific Artidity criteria exist, however, as there were no known circumstances which may have affected the quality or integrity of the study, the test is considered to be valid.

Compared with the mallars and bobwhite reproduction according OECD 206, the exposure of Japanese quails is shorter in this study. When the bird study was performed, the Draft OECD Guideline for testing of Chemicals - avian subchronic test - oral toxicity in Japanese quails, in version of November 0992 was state of the art and to some extent this is still the case (for the improved version of 1997). The non-adoption of this was not driven by science. But even OECD 206 recommends using proven breeders if the test is performed with Japanese Quails. This is only possible if exposure during the pre-Paying phases is omitted (& week of short days and first weeks after switching to long day before egg laying starts Minsofar the reduced exposure period in the submitted study was in compliance with the OECD 206 The existing study deviates from OECD 206 in three aspects, while it followed the Draft OECD Guidenne of November 1992.

1. The reduced exposure period of 6 weeks was in line with that draft, while OECD 206 requires 10 egg-laying week that the egg laying rate is very reduced in the first egg laying weeks according GECD 206). The OECD draft of November 1992 and all successive versions aimed to avoid the shortconongs of the OECD 206, mainly its poor statistical power. Reason for the defigrency is the high variability of the animals in starting egg-laying after switching to long day conditions- therefore the recommendation to use proven breeders resp. sexually mature birds

The new draft design allows following the development of impacts over the exposure periods and by including observations of organ weights (e.g. testes, oviduct) may give hints on adverse effects on reproductive system. Compared with OECD 206, the study conduct  $\mathcal{R}_{i}^{Q}$  according new draft gives additional valuable information about the potential toxicity of a test compound.



On behalf animal welfare reasons, the OECD Draft of 1992 only recommends incubating the eggs from exposure week 1 to 4 only for 10 days and discarding all the eggs after candling on day 10. Only the chicks of week 5 and 6 were incubated until hatch and and reared for 2 further weeks.

The NOAEL used in the avian long-term risk assessment derives from this reproduction study with Japanese quails. The NOAEC was determined to be at the highest test concentration. The findings that dose were either equal or even slightly more favourable than in the control.

At that dose level no effects occurred with deviations of more than 00% in comparison to the costrol hence an EC10 or an EC20 cannot be calculated on the basis of this study. No dose-effect relationship between test concentrations and any reproductive parameter was found. The statistical test kincluded in the report, revealed no significant differences.

Since the study did not reveal any indication of treatment related effects, further stanstical analyses are not necessary.

Dietary administration of up to 1000 ppm actionifer to Japarese quail had no adverse effect on health, growth and reproduction performance of adult Dirds or on the chicks. The no-adverse effect level (NOEL) was determined to be 1000 ppm, equivalent to 1410mg/kgbw/dt

\*Calculated according to SANCO/4145/2000 and considering the mean body weight of adult birds at 1000 ppm at week 0 and week 6 of the stude of 1985 g and the mean food consumption of birds at 1000 ppm over the period of week 1-6 of as g/bird/day

Conc.in food (npm)x Daily food consumption (g/bird/d) Daily dietary do a (mg/kg bw) a Body weight (g)

1.80, Conclusion on the peer review of aclonifen Accepted in EFSA scientific report (2008) 149 Õ

Assessment and conclusion b

Effects on terrestral vertebrates other than birds **CA 8.1.2** 

| . 🔊                | (V 4 <sup>·</sup> Y |                                                                                                                                                                                                  |                                         |
|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Test species       | Testitem            | Endpoin                                                                                                                                                                                          | Reference                               |
| Acute, oral        |                     |                                                                                                                                                                                                  |                                         |
| Rat C C C          | Aclonifer           | ~∽<br>LD₅0 > 5000 mg/kg                                                                                                                                                                          | KCA 5.2.1/01<br>M-174876-01-1<br>, 1981 |
| Short-term dietary |                     |                                                                                                                                                                                                  |                                         |
| 28-da∳ Mouse       | Aclonifen           | $\label{eq:NOEC} \begin{split} \text{NOEC} &= 780 \text{ ppm} \\ \text{NOEL}_{\text{males}} &= 121.2 \text{ mg/kg bw/d} \\ \text{NOEL}_{\text{females}} &= 143.1 \text{ mg/kg bw/d} \end{split}$ | KCA 5.3.1/01<br>M-174234-01-1<br>1988   |

Summary of the effects of Aclonifien on mammals Table 8.4-2:



| Test species                                         | Test item        | Endpoint                                                                                                                                                                       | Reference                                                                          |
|------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 90-day Rat                                           | Aclonifen        | $\begin{array}{l} \text{NOEC} = 500 \text{ ppm} \\ \text{NOEL}_{\text{males}} = 26.4 \text{ mg/kg bw/d} \\ \text{NOEL}_{\text{females}} = 29.4 \text{ mg/kg bw/d} \end{array}$ | KCA 5.3.2/01<br>M-174843-01-2<br>M-174843-01-2                                     |
| 90-day Rat                                           | Aclonifen        | NOEC = 50 ppm<br>NOEL <sub>males</sub> = $3.6 \text{ mg/kg bw/d}$<br>NOEL <sub>females</sub> = $4.2 \text{ mg/kg bw/d}$                                                        | KCA 5.3.2/02<br>M-17492001-1<br>, 1997                                             |
| 90-day Rat                                           | Aclonifen        | NOEC = 500 ppm<br>NOEL <sub>males</sub> = 29.4 mg/kg bw/d<br>NOEL <sub>females</sub> = 365 mg/kg bw/d                                                                          | KCA 5.3.203<br>M 205288 91-1<br>, Q 20016<br>K                                     |
| Reproductive toxi                                    | city (long-term) |                                                                                                                                                                                |                                                                                    |
| Rat<br>Two-generation                                | Aclonifen        | NOEC = $300 \text{ pp} \text{ pp}^{\circ}$<br>NOEL = $35 \text{ ng/kg by d}$                                                                                                   | Ø \$€A 556,1/01 €<br>91-174748-01-1<br>1985 €                                      |
| Rat<br>Embryotoxicity                                | Aclonifen        | NOEL = 60 mg/kg bw/d-                                                                                                                                                          | KCA 5.6.201           Mail 174846-01-1           174846-01-1           174846-01-1 |
| Rat<br>Embryotoxicity<br>Endpoints in <b>bold</b> we | Aclonifen        | $NOEL \ge 25 \text{ mg/k} Obw/d to 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $                                                                                                     | KSA 5.6•202<br>M2174853¥01-1<br>2000 € 1984                                        |

\*No effects at the highest dose tested

#### cute oral toxicity to manimals CA 8.1.2.1

CA 8.1.2.1 Acute oral to cicity to manimals Please refer to the manufalian toxicology section of this dossier: Document M-CA5, Section 5.2.1 for studies performed on the active substance, actionized. 

# Long-term and reproduction toxicity to mammals CA 8.K2.2

CA 8. F.2.2 Long-term and reproduction to sterty to mammals Please refer to the anamalian to acology section of this dossier; Document M-CA5, Section 5.6.1 for studies performed on the active substance, actimiten, the standard of the s



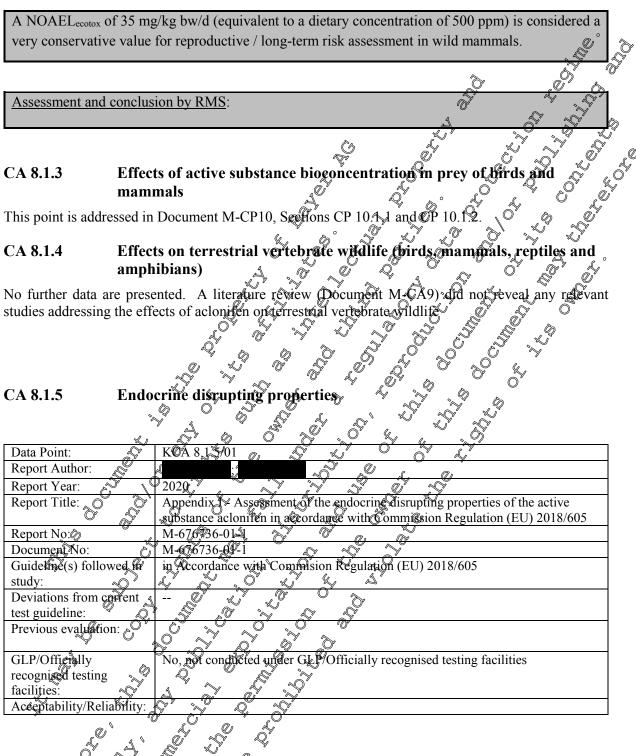
| Data Point:                | KCA 8.1.2.2/01                                                          |
|----------------------------|-------------------------------------------------------------------------|
| Report Author:             |                                                                         |
| Report Year:               | 2019                                                                    |
| Report Title:              | Aclonifen: Endpoint selection for long-term risk assessment for mammals |
|                            | (updated)                                                               |
| Report No:                 | M-675718-01-1                                                           |
| Document No:               | M-675718-01-1                                                           |
| Guideline(s) followed in   |                                                                         |
| study:                     |                                                                         |
| Deviations from current    |                                                                         |
| test guideline:            |                                                                         |
| Previous evaluation:       |                                                                         |
| GLP/Officially             | No, not conducted under GLP/Officially recognised testing fac Nities    |
| recognised testing         |                                                                         |
| facilities:                |                                                                         |
| Acceptability/Reliability: |                                                                         |
|                            |                                                                         |

#### **Executive Summary**

This document provides an updated assessment of the relevant scientific dataset to define a single, ecotoxicologically relevant endpoint for the long-term risk assessment of mammals exposed to Aclonifen (NOAEL $_{ecotox}$ ). The identification of the ecotoxicologically relevant endpoint for mammals is based on the mammalian toxicology studies.

The appropriate information has been contated, analysed, tab@ated and the relevant endpoint derived. The data available, the method used and the EF\$A guidance applied are described. This updated endpoint selection includes consideration of hewly available, performent, data and guidance as well as the previous assessment for Actonife.

The selected endpoint is based on the consideration of eleven different mammalian toxicology studies. These studies showed no effect of repeated. Aclonaten exposure on: fertility, reproduction, pup development, survival, carcinogenicity or neurotoxicity. In the absence of any overt systemic toxicity, a potentially ecotoxicologically relevant effect is a significant reduction ( $\geq$ 20%) of F1 and F2 pup bodyweight changes were small (<10%), grew even smaller as the pups matured ( $\leq$ 6%) and were not associated with any adverse biological effects. These slight bodyweight changes were considered ecologically non-relevant the pup exposure is represented by the F0 parent pre-mating dietary exposure, per dose level.


The derived LOAEL  $c_{vox}$  is at 2000 ppm (>140/152 mg ai/kg bw/day, M/F) and the mid-dose level from that study is the basis for the NQAEL  $c_{vox}$  = 500 ppm (>35 /40 mg Aclonifen/kg bw/day, M/F).

(2019)

Assessment and conclusion by applicant:

The re-ovaluation of the available study data is considered to be acceptable and hence the conclusions drawn are considered to be valid.





# Executive Summary

The potential of aclonifen to ofteract with endocrine systems in birds and other terrestrial vertebrates has been reviewed, of facilitate an assessment of whether aclonifen may be judged to be an endocrine discopter (ED) within the framework of European legislation.

Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009 has been published (EFSA/ECHA, JRC, 2018). This guidance document describes how to gather, evaluate and consider all relevant information for the assessment, conduct a



MoA analysis, and apply a WoE approach, in order to establish whether the ED criteria are fulfilled. The guidance states that a substance shall be considered as having endocrine disruption properties if it meets all of the following criteria:

- i. It shows an adverse effect in an intact organism or its progeny, which is a change in the morphology, physiology, growth, development, reproduction, or, life span of an organism.
- ii. of the capacity to compensate for additional stress, or an increase in susceptibility to other influences.
- iii. It has an endocrine mode of action, i.e. it alters the function(spot the endocrine syste

iv. The adverse effect is a consequence of the endocrine mode of action. Standard toxicology and ecotoxicology studies conducted to meet to the data requirements under Regulation (EU) 283/2013 have been submitted in this renewal dossier. A literature search was conducted to find relevant studies in the open relevance conducted in the last 10 years. Further in vitro studies have been conducted to investigate EATS mediated endocrine activity.

A summary of all relevant studies is provided in the excel spreadsheet Appendix E

## Overall conclusion on the ED assessment for birds and other terrestrial vestebrates

EAS and T modalities in mammals have been sufficiently investigated

Aclonifen caused adversity and changes in thyroid hormores. The MoA analysis provided sufficient evidence to demonstrate that the most physical MoA was via enhanced hepatic chearance of thyroid hormones.

Aclonifen is not an ED via the EAS modality in mammals as there was no evidence of EAS adversity in *in vivo* studies. *In vitro* findings of endocrine activity via the A-modality were not replicated *in vivo*. All parameters that were investigated in the Avian Reproduction test are either not assignable to any

endocrine modality of sensitive to, but not diagnostic of EATO modalities.

According to the ED Guidance investigation of ED properties in birds is currently hampered by a lack of test methods investigating indocrine specific endpoints. Once such methods become available, they should be considered in the ED assessment strategy with regard to non-target organisms. Information on birds is therefore given as supportive information only.

Assessment and conclusion by applicant:

The review of the available data is considered to be acceptable and hence the conclusions drawn are considered to be valid.

Assessment and conclusion by RMS:



## CA 8.2 Effects on aquatic organisms

| Test species                                         | Test item        | Endpoint                                                                                                                                                                                                                                                                                        | Réference                                       |
|------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Acute toxicity to fi                                 | ish              |                                                                                                                                                                                                                                                                                                 | Or Strange                                      |
| Rainbow trout<br>(Oncorhynchus<br>mykiss)            | Aclonifen        | 96-Hour LC <sub>50</sub> = 0.67 mg/L (nom)                                                                                                                                                                                                                                                      | KCA 8.2.1/04<br>M-474317 04-1                   |
| Common carp<br>( <i>Cyprinus carpio</i> )            | Aclonifen        | 96-Hour LC <sub>50</sub> = $mg/L$ (nom)                                                                                                                                                                                                                                                         | OKCA 8.2.1/02<br>M-144326-01-1                  |
| Long-term and ch                                     | ronic toxicity t | o fish                                                                                                                                                                                                                                                                                          |                                                 |
| Rainbow trout<br>(Oncorhynchus<br>mykiss)            | Aclonifen        | 21-Day NOEC \$0.10 mg/L (nom)<br>21-Day LC <sub>50</sub> 0.132 mg/L (nom) <sup>1</sup>                                                                                                                                                                                                          | KCA 8.2,201<br>Mu174328-01-1<br>091             |
| Rainbow trout<br>(Oncorhynchus<br>mykiss)            | Aclonifen        | $2$ P-Day NOEC $\sim 0.0924$ mg/L (mm) $\sim 2$<br>21-Day LC <sub>50</sub> = 0.206 mg/L (mm) <sup>1</sup>                                                                                                                                                                                       | K CA 8.2, 2002<br>M 1748X -01-1<br>, C.A., 1993 |
| Fathead minnow<br>(Pimephales<br>promelas)           | Aclonifen        | 37-Day SOEC <sub>patchability</sub> = $0.0094$ mg/L (mm)<br>37-Day NOEC <sub>patchability</sub> = $0.044$ mg/L (mm)<br>37-Day NOEC <sub>growth</sub> = $0.004$ mg/L (mm)<br>30-Day EO <sub>10,hat</sub> (mm) = ND<br>37-Day EC <sub>10,subwal</sub> = ND<br>37-Day EC <sub>10,subwal</sub> = ND | XCA 8.2.2.1/01<br>M-174931-01-1<br>. A., 1997   |
| Fathead minnew<br>(Pimephales<br>promelas)           |                  | Day OEChaterability 0.117 mg/L (nom)<br>4-Day EC <sub>10</sub> mg/hability ND                                                                                                                                                                                                                   | KCA 8.2.2.1/02<br>M-408628-01-1                 |
| Fathead minnow «<br>( <i>Pimephales</i><br>promelas) | Aclonifen @      | <b>35-Day NOEC</b> mvival = 0.0425 mg/L (mm)<br>35-Day NOEC growth \$0.106 mg/L (mm)<br>35-Day EC n, survival = ND \$<br>30 Day EC 10, growth = ND \$                                                                                                                                           | KCA 8.2.2.1/03<br>M-626723-01-1<br>, 2018       |
| Bioconcentration i                                   | n fish           |                                                                                                                                                                                                                                                                                                 |                                                 |
| Rainbów trout<br>(Oncorhynchus &<br>mykiss)          | Aclonition       | BCF <sub>5</sub> # 2248 L/kg <sup>3</sup>                                                                                                                                                                                                                                                       | KCA 8.2.2.3/01<br>M-174910-01-1<br>, L.E., 1995 |
| Rainbow trout<br>(Oncorhynchus<br>mykiss)            | Aclonicen        | $BCF_{K} = 1301 L/kg^3$                                                                                                                                                                                                                                                                         | KCA 8.2.2.3/02<br>M-235029-01-1<br>1995         |
| Rainboy Otrout<br>(Oncorhynchus<br>mylass)           | Acloniter        | $BCF_{K} = 1169 \text{ L/kg}^{3}$                                                                                                                                                                                                                                                               | KCA 8.2.2.3/03<br>M-235556-01-2<br>, 1992       |
| Kainbow trout<br>(Oncordynchus<br>mykiss)            | Aclonifen        | BCF <sub>KgL</sub> = 1349 L/kg                                                                                                                                                                                                                                                                  | KCA 8.2.2.3/04<br>M-667576-02-1<br>, H.S., 2019 |



| Test species                   | Test item         | Endpoint                                                                                                                                                                                                                                                                                                                                            | Reference                                                                                 |
|--------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Acute toxicity to a            |                   |                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |
| Leute to Alerty to a           |                   |                                                                                                                                                                                                                                                                                                                                                     | 1991 a                                                                                    |
| Daphnia magna                  | Aclonifen         | 48-Hour EC <sub>50</sub> = 1.2 mg/L (nom)                                                                                                                                                                                                                                                                                                           | M-174313-01-1<br>KCA 8.224.1/01                                                           |
| Long-term and ch               | ronic toxicity to | aquatic invertebrates                                                                                                                                                                                                                                                                                                                               |                                                                                           |
| Daphnia magna                  | Aclonifen         | 21-Day NOEC <sub>reproduction</sub> $= 0.016 \text{ mg/L}$<br>(mm)<br>21-Day EC <sub>10,reproduction</sub> = ND <sup>4</sup>                                                                                                                                                                                                                        | K@A 8.23.1/01<br>M-174321-01-D<br>1991 K                                                  |
| Daphnia magna                  | Aclonifen         | 21-Day NOEC body length = 0.0042 mg/L<br>(twa)<br>21-Day $EC_{10,body}$ being the = 0.0193 mg/L (two)                                                                                                                                                                                                                                               | CA 8:2,5.1/02<br>M-573305-02-1<br>2015                                                    |
| Daphnia magna                  | Aclonifen         | Pulse exposure (Day 0-2 and 7-9)<br>21 day NOFC morthily, reproduction, body length<br>0.213 mg/L (gmm)<br>21-day EC10, nortality, reproduction, kory length<br>ND                                                                                                                                                                                  | KCA \$2.5.1/09<br>M-6-0399-91-1<br>2019                                                   |
| Daphnia magna                  | Aclonopen         | Prinse exposure (Days 0-2 and 14 16)<br>21-day OEC flortality, reproduction, body length<br>< 0.257 mg/L (nom)<br>21-day EC primortality eproduction, body length = NB                                                                                                                                                                              | KCA 8.2.5.1/04<br>Me670403-01-1<br>, 2019                                                 |
| Development and                | emergence in (    | Gironomus riparius 5                                                                                                                                                                                                                                                                                                                                | ф<br>7 <sub>1</sub>                                                                       |
| Chironomus                     | Asclonifen        | <b>21-Day spiked water NOEC</b> emergence =<br><b>472 mg/L (im)</b><br>21-Day spiked water PC <sub>10,emergence</sub> = ND                                                                                                                                                                                                                          | KCA 8.2.5.3/01<br>M-174918-01-1<br>, 1996                                                 |
| Sediment dwelling              | g organismos      |                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |
| Chironomus©<br>riparius        | Aclonition        | 28 Day spiked sediment NOEC <sub>emergence</sub> =<br>32 mg/kg (nom)<br>28 Day spiked sediment EC <sub>10</sub> , emergence =<br>36 mg/kg (nom)                                                                                                                                                                                                     | KCA 8.2.5.4/01<br>M-227300-01-1<br>2004<br>&<br>KCA 8.2.5.4/02<br>M-674905-01-1<br>, 2019 |
| Effects on growth              | of green algae    |                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |
| Scened Smus 5<br>subspicatus 5 |                   | $\begin{aligned} & VOEC_{\text{growth rate}} (0 - 24h) = 0.0025 \text{ mg/L} \\ & (nom) \\ & E_{r}C_{50} (0 - 24h) = ND \\ & E_{r}C_{50} (0 - 24h) = 0.0069 \text{ mg/L (nom)}^5 \\ & NOEC_{\text{AUC}} (0 - 96h) = 0.0025 \text{ mg/L (nom)} \\ & E_{b}C_{10} (0 - 96h) = ND \\ & E_{b}C_{50} (0 - 96h) = 0.0067 \text{ mg/L (nom)} \end{aligned}$ | KCA 8.2.6.1/01<br>M-174303-01-1<br>1990                                                   |
| Scenedesmus<br>subspicatus     | Aclonifen         | NOEC <sub>growth rate</sub> $(0 - 96h) = 0.0055 \text{ mg/L}$<br>(nom)<br>E <sub>r</sub> C <sub>10</sub> $(0 - 96h) = \text{ND}$                                                                                                                                                                                                                    | KCA 8.2.6.1/02<br>M-201114-01-1                                                           |



| Test species                            | Test item       | Endpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                 | $E_r C_{50} (0 - 96h) > 0.046 \text{ mg/L} (nom)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference<br>, 2005<br>, 200 |
|                                         |                 | $NOEC_{AUC} (0 - 96h) = 0.0055 mg/L (nom)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | $E_b C_{10} (0 - 96h) = ND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | $E_bC_{50} (0-96h) = 0.0215 \text{ mg/L (nom)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | NOEC <sub>growth rate</sub> $(0 - 96h) \oplus 0.0000811 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | Aclonifen       | (mm) 🕅 🖉 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | $E_rC_{10} (0 - 96h) = 0.0104 \text{ mg/L} (mm)$<br>$E_rC_{50} (0 - 96h) = 0.0203 \text{ mg/L} (mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Desmodesmus                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathcal{K}$ KCA(8.2.6.1/ $\Theta$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| subspicatus                             |                 | NOEC <sub>yield</sub> $(0 - 96h) = 0.0000871 \text{ mgA}$<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         |                 | $E_yC_{10} (0 - 96h) = 0.0244 \text{ mg/L} (mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F L A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                 | $E_yC_{50}$ (Q-96h) $= 0.0107$ mg/L Qnm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Effects on growth                       | of an additiona | l algar species is in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | Å               | $\sqrt[4]{OEC_{gaw_{wth rate}}} = 0.23 \text{ ymg/L (b)} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | Ø               | $E_{g} C_{s\delta} (0 - 10h) = 122 \text{ mg/J}(mm)_{5}^{5} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KCA 8.2.6.2/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Navicula                                | Aclonifen       | $\sqrt{2}$ | M-171422-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pelliculosa                             |                 | $E_bC_{rb}(0-72h) = ND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y J.R., 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         |                 | $E_{h}C_{50}(0-2h) = 0.47 \text{ mg/} (\text{nom})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | NOE growth rate $(0 - 72b) = 0.085 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Č.                                      | , Ó , Ý         | (mm) 🔨 🖓 🖓 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                 | $\mathbb{E}_{rC_{10}}(0 - \pi^{2}h) = 0.129 \text{ mg/L}(mm)$<br>$\mathbb{D}_{rC_{50}}(0 - \pi^{2}h) = 0.45 \text{ mg/L}(mm)^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chlorella yulgaris                      | OAclonifien o   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | NOTE $_{AUC}$ ( $0^{-}$ , 72h) < 0.037/5 mg/f $\sigma$ (mm)<br>E $_{10}$ ( $0^{-}$ , 72h) = 0.0162 mg/L (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ĩ,                                      |                 | $E_bC_{50}$ (Q= 72h) = 0.0868 mg/2 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KCA 8.2.6.2/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ŵ,                                      |                 | NOEC growin rate $(0 - 72h) = 9.00342 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ~Ģ                                      |                 | $\hat{E}_{r}C_{10}(0-72\dot{h}) = 0.0051 \text{ mg/L (mm)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chlamydomonas                           | A Alonifen      | $E_rC_{40}(0-72h) = 0.00753 \text{ mg/L (mm)}^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| reinhardiii                             | Actonifen       | NOEC $(0 - 0^2 h) = 0.00342 \text{ mg/L (mm)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M-278578-02-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Å<br>A                                  |                 | $E_b C_{10} (0 - 72h) = 0.00243 \text{ mg/L (mm)}$<br>$E_b C_{50} (0 - 72h) = 0.0158 \text{ mg/L (mm)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| "<br>())                                |                 | $\mathcal{L}_{b} = 0.0138 \text{ mg/L} (\text{mm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Xanthonema 2<br>debale                  | A &             | NOEC growth rate $(0 - 72h) = 0.0456 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | (mm)<br>E <sub>r</sub> C <sub>10</sub> (0 – 72h) = 0.108 mg/L (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yanthoma a                              |                 | $E_rC_{50} (0 - 72h) = 0.108 \text{ mg/L} (mm)$<br>$E_rC_{50} (0 - 72h) = 0.319 \text{ mg/L} (mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| debile                                  | Aclonition      | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | NOEC <sub>AUC</sub> $(0 - 72h) = 0.0066 \text{ mg/L} (mm)$<br>E <sub>b</sub> C <sub>10</sub> $(0 - 72h) = 0.0215 \text{ mg/L} (mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| è <sup>Q°</sup>                         |                 | $E_b C_{50} (0 - 72h) = 0.0.0987 \text{ mg/L} (\text{mm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                 | $NOEC_{growth rate} (0 - 72h) = 0.111 mg/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Closterium cornu                        | Aclonifen       | (mm) $(0 - 72\pi) = 0.111 \text{ mg/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Test species                  | Test item    | Endpoint                                                                                                                                                                                                                                                                                                                                             | Reference                                 |
|-------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                               |              |                                                                                                                                                                                                                                                                                                                                                      |                                           |
|                               |              | $\begin{aligned} &\text{NOEC}_{\text{AUC}} \left( 0 - 72h \right) < 0.0163 \text{ mg/L (mm)} \\ &\text{E}_b \text{C}_{10} \left( 0 - 72h \right) = 0.0195 \text{ mg/L (mm)} \\ &\text{E}_b \text{C}_{50} \left( 0 - 72h \right) = 0.0682 \text{ mg/L (mm)} \end{aligned}$                                                                            |                                           |
| Synechococcus<br>leopoliensis | Aclonifen    | NOEC <sub>growth rate</sub> $(0 - 72h) = 0.0193 \text{ mg/b}$<br>(mm)<br>$E_rC_{10} (0 - 72h) = 0.0344 \text{ mg/L} (mm)$<br>$E_rC_{50} (0 - 72h) = 0.0749 \text{ mg/L} (mm)^5$<br>NOEC <sub>AUC</sub> $(0 - 72h) = 0.0193 \text{ mg/L} (mm)$<br>$E_bC_{10} (0 - 92h) = 0.0201 \text{ mg/L} (mm)$<br>$E_bC_{50} (0 - 72h) = 0.037 \text{ mg/L} (mm)$ | Reference                                 |
| Nannochloropsis<br>limnetica  | Aclonifen @  | NOTEC growth rate $(0 - 2h) = 0.263 \text{ mg/L}$<br>(Ama)<br>$E_rC_{10} (0 - 72h) \neq 0.389 \text{ mg/L} (mm)$<br>$E_rC_{56} (0 - 72h) = 0.263 \text{ mg/L} (mm)$<br>NOTEC Arcs $(0 - 72h) = 0.263 \text{ mg/L} (mm)$<br>$E_bC_{10} (0 - 72h) \neq 0.303 \text{ mg/L} (mm)$<br>$E_bC_{56} (0 - 72h) = 0.461 \text{ mg/L} (mm)$                     |                                           |
| Synechococcuo<br>leopoliensis | Aclonifon    | NOEC growth rate $(0 - 96h) \neq 0.00$ mg/L<br>(gmm)<br>ErC ( $0 - 96h$ ) = 0.9136 mg/L (gmm)<br>EqC 50 (0 - 96h) = 0.644 mg/L (gmm)<br>NOEC yield (0 - 96h) = 0.0145 mg/L (gmm)<br>EyC (0 - 96h) = 0.0145 mg/L (gmm)<br>EQC (0 - 96h) = 0.0145 mg/L (gmm)<br>EQC (0 - 96h) = 0.0376 mg/L (gmm)                                                      | KCA 8.2.6.2/03<br>M-649614-01-1<br>, 2018 |
| Navicula<br>pellicular        | Aclonifen 59 | (gmm)<br>$EC_{10}$ (0) 96h) 0.231 mg/L (gmm)<br>$E_rC_{50}$ (0) 96h) 0.231 mg/L (gmm)<br>$E_rC_{50}$ (0) 96h) 0.672 mg/L (gmm)<br>$E_yC_{10}$ (0) 96h) 0.157 mg/L (gmm)<br>$E_yC_{10}$ (0) 96h) 0.157 mg/L (gmm)                                                                                                                                     | KCA 8.2.6.2/04<br>M-648378-01-1<br>, 2018 |
| Chlorella vulgaris            | Aclonition   | NOEC growth rate $(0 - 96h) = 0.0935 \text{ mg/L}$<br>(gmm)<br>$E_rC_{10} (0 - 96h) = 0.132 \text{ mg/L} (gmm)$<br>$E_rC_{50} (0 - 96h) > 1.583 \text{ mg/L} (gmm)$<br>NOEC <sub>yield</sub> $(0 - 96h) < 0.0935 \text{ mg/L} (gmm)$<br>$E_yC_{10} (0 - 96h) = 0.0563 \text{ mg/L} (gmm)$<br>$E_yC_{50} (0 - 96h) = 0.190 \text{mg/L} (gmm)$         | KCA 8.2.6.2/05<br>M-646486-01-1<br>, 2018 |



| Test species                   | Test item   | Endpoint                                                                                                                                                                                                                                                                                                                                                                         | Reference                                                                        |  |  |
|--------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Effects on aquatic macrophytes |             |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |  |  |
| Lemna gibba                    | Aclonifen   | NOEC growth rate, dry weight = $0.00200 \text{ mg/L}$<br>(mm)<br>$E_rC_{10} (0 - 14d)_{dry weight} = 0.000265 \text{ mg/L}$<br>(mm)<br>$E_rC_{50} (0 - 14d)_{dry weight} = 0.0136 \text{ mg/L}$<br>(mm)                                                                                                                                                                          | KCA 8.2.7/07<br>M-171423-04-1<br>1998<br>KCA 8.2.7/07<br>M-25553-001-1<br>, 2005 |  |  |
| Ceratophyllum<br>demersum      | Aclonifen   | Water-sediment system<br>NOEC growth rate tick weight = 0.00056 mg/b<br>(gmm)<br>$E_rC_{10} (0 - 4d)_{fresh seght} = 0.00046 mg/L$<br>(gmm)<br>$E_rC_{50} (0 - 14d)_{fresh weight} = 0.0108 \mu g/L$<br>(gmm)                                                                                                                                                                    | ArcA 8.2.7/03<br>MI-408091-02-1<br>MI-408091-02-1<br>ArcA 8.2.7/03               |  |  |
| Elodea<br>canadensis           | Aclonifen O | Water-settiment system $4$<br>NOEC growth rate, shoot length $\geq 0.306$ mg/L<br>(gm/g)<br>ExCr0 (0 - 14d) <sub>shoot</sub> ength = $40$<br>ErCs0 (0 = 14d) <sub>shoot</sub> length > 0.306 mg/L<br>(gmm)                                                                                                                                                                       | , 2019                                                                           |  |  |
| Cabomba<br>caroliniana         | Aclossifien | Water-section network $20.079$ mg/L<br>(gmm)<br>ErCiti (0 - 14d) show length $> 0.079$ mg/L<br>ErCiti (0 - 14d) show length $> 0.079$ mg/L<br>ErCiti (0 - 14d) show length $> 0.079$ mg/L                                                                                                                                                                                        | KCA 8.2.7/05<br>M-408124-01-1                                                    |  |  |
| Limnophila<br>heterophylla     | Aclomen     | Water-sediment system<br>NGEC growth rate, shortstength $<0.089$ mg/L<br>(gmm)<br>$E_rC_{10}$ $0$ $-14d$ short let the $=0.064$ mg/L<br>(gmm)<br>$E_{1050}$ $(0 - 14d)$ short let the $=0.064$ mg/L<br>(gmm)<br>0 $0$ $-122$ mg/L<br>(gmm) $0$ $0$ $-122$ mg/L                                                                                                                   | KCA 8.2.7/06<br>M-408152-01-1                                                    |  |  |
| Hetépanthera<br>zostérifolia   | Acloshten   | NOEC growth rate, show length = $0.0938 \text{ mg/L}$<br>(gmm)<br>$E_rC_{40}(0 - 140)_{\text{shoot length}} = \text{ND}$<br>$E_rC_{50}(0 - 14d)_{\text{shoot length}} > 0.0985 \text{ mg/L}$<br>(gmm)                                                                                                                                                                            | KCA 8.2.7/07<br>M-408168-01-1                                                    |  |  |
| Egerind denstor                | Aclonition  | $\label{eq:sediment system} \begin{split} & \text{Water-sediment system} \\ & \text{NOEC}_{\text{growth rate, shoot length}} \geq 0.221 \text{ mg/L} \\ & (\text{gmm}) \\ & \text{E}_r \text{C}_{10} \ (0-14\text{d})_{\text{shoot length}} = \text{ND} \\ & \text{E}_r \text{C}_{50} \ (0-14\text{d})_{\text{shoot length}} > 0.221 \text{ mg/L} \\ & (\text{gmm}) \end{split}$ | KCA 8.2.7/08<br>M-408189-01-1                                                    |  |  |
| Myriophyllum<br>spicatum       | Aclonifen   | Water-sediment system<br>NOECgrowth rate, dry weight = 0.00015 mg/L<br>(gmm)                                                                                                                                                                                                                                                                                                     | KCA 8.2.7/09<br>M-398530-01-1<br>2011                                            |  |  |



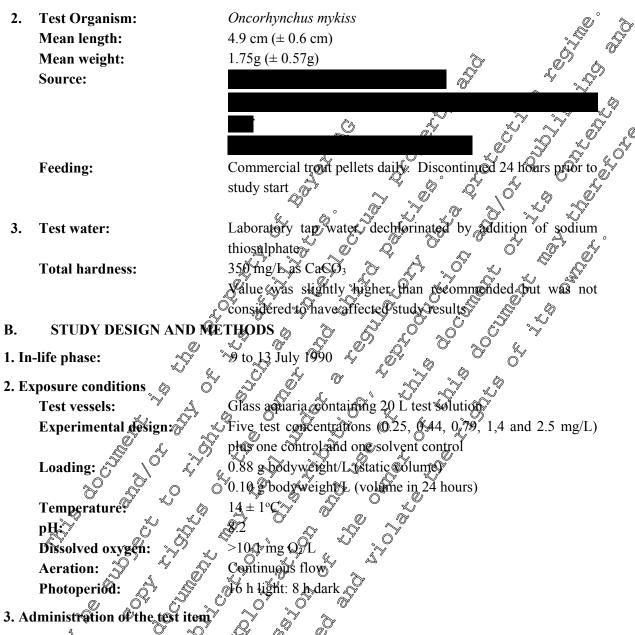
| Test species                                                                                                                                                                                                                                                                                    | Test item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{l} E_r C_{10} \ (0 - 14d)_{dry \ weight} = ND \\ E_r C_{50} \ (0 - 14d)_{dry \ weight} = 0.0421 \ mg/L \\ (gmm) \end{array} $                                                                                                                                                                                                                                                                                                                                                      | KCA 8.2.7/10<br>M-543492-04<br>2016                                                           |
| Lemna gibba                                                                                                                                                                                                                                                                                     | Aclonifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water-sediment system<br>NOEC growth rate, frond number = $0.024 \text{ mg/L}$<br>(nom)<br>$E_rC_{10} (0 - 14d)_{\text{frond number}} = 0.0388 \text{ mgO}$<br>(nom)<br>$E_rC_{50} (0 - 14d)_{\text{frong number}} = 0.116 \text{ mg/L}$ .<br>(nom)                                                                                                                                                                                                                                                | KCA 8.2 711<br>M2263843201-1<br>, 2006                                                        |
| Lemna gibba                                                                                                                                                                                                                                                                                     | Aclonifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak exposure (Days 0, 3 and 6)<br>NOEC growth rate, frithe/number $\neq 0.0000$ mg/L<br>(nom)<br>$E_rC_{10}(0 - 14k)$ from number $= 0.0101$ mg/L<br>(nom)<br>$E_{7}C_{10}(0 - 14k)$ from number $= 0.1142$ mg/L<br>(nom)<br>Peak exposure (Days 0 and 7)<br>NOEC growth rate, from area $= 0.0007$ frig/L<br>(nom)<br>$E_rC_{10}(0 - 14k)$ from area $= 0.0119$ mg/L<br>(nom)<br>$E_rC_{50}(0 - 14k)$ from area $= 0.1149$ mg/L<br>(nom)<br>$E_rC_{50}(0 - 14k)$ from area $= 0.1127$ mg/L (nom) | KEA 8.2¢7/12<br>0-612847-01-1<br>0-57<br>0-57<br>0-57<br>0-57<br>0-57<br>0-57<br>0-57<br>0-57 |
| Lemna gibba                                                                                                                                                                                                                                                                                     | Aclonifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak exposure (Day 0 and 3)<br>NOEC grant rate, from number $= 0.0007 \text{ mg/L}$<br>(nom)<br>ErC 10 (0 - 146) frond number $= 0.0622 \text{ mg/L}$<br>(noma)<br>Ex 50 (0 - 14d) frond number $= 0.6000 \text{ mg/L}$<br>(nom)                                                                                                                                                                                                                                                                   | KCA 8.2.7/13<br>M-612732-01-1<br>, 2018                                                       |
| <ul> <li><sup>2</sup>: Study does not mee</li> <li><sup>3</sup>: Study does not mee</li> <li><sup>4</sup>: Study does not mee</li> <li><sup>5</sup>: Study does not mee</li> <li><sup>6</sup>Endpoints in <b>bold</b> we</li> <li>ND not determin nom: nominal testimm: mean measure</li> </ul> | t the validity crit<br>the validity crit<br>the validity crit<br>t the vali | required for the registration of active ingredients in<br>eria of OEC 210 (2013)<br>ena of QECD 219 (2012)<br>ria of QECD 219 (2012)<br>eria of DECD 201 (2011)<br>assessment<br>ations<br>used test concentrations<br>rations<br>st concentrations                                                                                                                                                                                                                                                | the EU                                                                                        |



| Data Point:                | KCA 8.2.1/01                                                           |
|----------------------------|------------------------------------------------------------------------|
| Report Author:             |                                                                        |
| Report Year:               | 1991                                                                   |
| Report Title:              | The acute toxicity of ACLONIFEN to Rainbow trout (Oncorhynchus mykiss) |
| Report No:                 | R007151                                                                |
| Document No:               | M-174317-01-1                                                          |
| Guideline(s) followed in   | OECD no. 203                                                           |
| study:                     |                                                                        |
| Deviations from current    | Current Guideline: OECD 203, 2009                                      |
| test guideline:            | None V Q Q Q X                                                         |
| Previous evaluation:       | yes, evaluated and accepted $\sqrt{2}$                                 |
|                            | Source: Study list relied upon, December 261 (RMS: DE)                 |
| GLP/Officially             | Yes, conducted under GLD Officially recognised sting Ocilities         |
| recognised testing         |                                                                        |
| facilities:                |                                                                        |
| Acceptability/Reliability: | Yes O O O O O A                                                        |
|                            |                                                                        |

**Executive Summary** The acute toxicity of aclonifen to rainbow trough, Oncorhynchus metass, was determined in a 96-hour, flow-through exposure. Test solutions were prepared using stock solutions prepared in Tween 80 acetone. Ten rainbow trout per test group were exposed to an untreated control, solvent control and nominal Aclonifen concentrations of 0.25, 0.44, 0.79, 1,4 and 2.5 mg/L. The total test period was96 hours. Samples for analytical confirmation of actual exposure concentrations were taken at the start and after 24 an 296 hours of exposure 9

Dissolved oxygen, pH, and temperature were measured in the controls and each test concentration at the beginning of the test and encof the dest. Daily observations were made of mortality and symptoms of toxicity.


Analysis of test samples resulted in measured consentrations remaining within the range 89 to 110% throughout the study with the exception of the highest tested concentration (2.5 mg/L). Settlement of undissolved test material was considered to have accounted for the low measured value (75%) at 24 hours. The results of the study were based on the dominal test concentrations.

The 96-Hour LC<sub>50</sub> of Actonifen to rainform trout was determined to be 0.67 mg/L (confidence limits 0.52 - 0.84 mg/L). The NOEG was  $0^{\circ}$  mg/L

## I MATERIALS AND METHODS

| L' L' A IM                  | ATERIALS AND METHODS              |
|-----------------------------|-----------------------------------|
| A. MATERIALS                |                                   |
| 1. Test Iten: 🔿 🖉 💞         | Actonifen technical               |
|                             | 29 hloro-6-nitro-3-phenoxyaniline |
| Batch no                    | DA 618                            |
| Active Ingredient / Parity: | 91.3%                             |
| Appearance:                 | Green yellow powder               |
| Date received:              | 20 June 1990                      |
| Storage:                    | Room temperature, in the dark     |
| Expiry date:                | December 1990                     |
|                             |                                   |





Stock solution prepared in 10% Tween 80-actione. Continuous flow apparatus set up 24 hours prior to study start to allow equilibration of test concentrations. Solutions supplied continuously to test aquaria at 1 k mL/min by a Watson Markow ® multi=channel variable speed peristaltic pump with solvent stock solutions dosed by 2 Braun Perfusor ® triple channel syringe pumps at 0.3553 mL/h.

## 4. Measurements and observations

Observations for mortality were undertaken at 24, 48, 72 and 96 hours. Mortality was defined as absence of respiratory provement and absence of response to physical stimulation.

Dissolved oxygen conceptrations and pH values were measured in all the test groups and the control and solvent control vessels at the beginning and at the end of the test. The temperature was recorded at 0, 24 and 48 hours.



Samples were taken from the solvent control and each test concentration for analysis at 0, 24 and 96 hours (end of the test).  $Q_{\mu}^{\circ}$ 

## 5. Statistics/Data evaluation

The LC50 and associated 95% confidence limits were calculated following the method described by

(1952). The No Observed Effect Concentration (NOE()) was determined by visual

inspection of the data.

## II. RESULTS AND DISCUSSION

## A. ANALYTICAL VERIFICATION

Analysis of nominal test treatment concentrations 0.25, 0.44, 0.79 and 1.4 mg/L remained within 89 to 110% of nominal throughout the study. At the trighes nominal test treatment concentration (2.5 mg/L) measured values were 83 and 75% of nominal at 0 and 24 hours, respectively, indicating some settlement of undissolved test substance. This slight reduction in measured concentration was not considered to affect the test results. Test results were calculated using nominal test concentrations since analysis had shown test substance stability over the period of the test.

## Table: Measured concentrations of Actonife

| Nominal concentration<br>(mg/L) | Mean measured concn       | Mean % of nominal                      | No. samples |
|---------------------------------|---------------------------|----------------------------------------|-------------|
| Solvent control                 |                           | L ~ ~ ~ ~                              | 3           |
| 0.25                            | 0,247                     | Ø 0 <sup>×</sup> 9%                    | . 5 3       |
| 0.44                            | Q.445                     |                                        | 3           |
| 0.79                            | <u>,</u> 20.797, 2        | <i>⊅ µ</i> 101                         | ₹ 3         |
| 1.4 5                           | 1.2 <b>52</b>             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2           |
| 2.5                             | <sup>4</sup> <b>4</b> 981 | √ <sup>~</sup> 79 √ <sup>×</sup>       | 2           |
|                                 |                           |                                        |             |

The validated method is summarised in Document M-CA4 (QA 4, 102/57).

# B. BIOLOGICAL DATA

The cumulative mortality of rambow front after 3, 6, 24, 48, 72 and 96 hours are presented in the following table

| Table: | A Cumulativ | ve mortality i | for rainbow | trout from | the exposure to Aclonifen |
|--------|-------------|----------------|-------------|------------|---------------------------|
|--------|-------------|----------------|-------------|------------|---------------------------|

| Nominal           |       |       | Gumulativ | e mortality |     |     |
|-------------------|-------|-------|-----------|-------------|-----|-----|
| concentration     | 3 h   | 6k0 ( | 24h       | 48h         | 72h | 96h |
| Control           |       |       | 0         | 0           | 0   | 0   |
| Solvent control   |       |       | 0         | 0           | 0   | 0   |
| 0.25              |       | S Q   | 0         | 0           | 0   | 0   |
| 0.44              | r G Ô | ° 0   | 0         | 0           | 0   | 1   |
| ×0.79 5           |       | 0     | 0         | 0           | 0   | 7   |
| 5 1.4 g           | O QY  | 0     | 4         | 8           | 10  | 10  |
| 2 5 <sup>57</sup> | Ő     | 0     | 8         | 10          | 10  | 10  |

Symptoms of toxicity, other than death, were swimming at the surface, increased pigmentation, lethargy, slight and total loss of equilibrium, lying on the bottom and moribundity.



| All chemical and physical parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs in the definitive test were wit                                                         | hin expected ranges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Based on the observed mortality, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e LC <sub>50</sub> values at each observatio                                               | n point were determined to be 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table:LC50 values from the optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | exposure of rainbow trout <i>On</i>                                                        | corhynchus mykiss to Acloudfen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time (Hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LC <sub>50</sub> (mg/L)                                                                    | 95% confidence limits (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                        | 1.2 - 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 72<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>1.1</u>                                                                                 | $\begin{array}{c} 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.$ |
| 96<br>No Observed Effect Concentration (96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            | $\frac{1}{2} \qquad 0.22 - 0.43 \qquad 0^{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C. VALIDITY CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Validity criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            | quired Achieved 493, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mortality in controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | 10% E 0% O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dissolved oxygen concentration at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | end of the test 5 60                                                                       | % ASV C 2 5 % ASV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analytical measurement of test concer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ntrations Con                                                                              | pulsory & Rerformed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| All validity criteria were satisfied as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rd therefore this study can be co                                                          | nstred to be valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D. TOXICITY ENDPOINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XV & Vamina and                                                                            | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conduction of the second secon | $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ (mg/L) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lençê limitê $\sqrt{2}$ $9,52 - 0$                                                         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KC , , , , , 023                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di. conclusion                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The 96-Hour LC of Agoniferso ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inbow trout, Oncorhynchus myk                                                              | iss, was determined to be 0.67 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| confidence limits 0.52 – 0.82 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The NOEC was 0.25 mg/L.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Assessment and conclusion by app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | licant:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Alf validity criteria were satisfied a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The 96-Hour Con of Aclorifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rainfow trout, Oncorhynch                                                                  | us mykiss, was determined to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.67 mg/L confidence limits 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X & A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Assessment and conclusion by RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>IS</u> :                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Data Point:                | KCA 8.2.1/02                                                            |
|----------------------------|-------------------------------------------------------------------------|
| Report Author:             |                                                                         |
| Report Year:               | 1991                                                                    |
| Report Title:              | The acute toxicity of ACLONIFEN to Common Carp (Cyprinus carpio)        |
| Report No:                 | R007155                                                                 |
| Document No:               | M-174326-01-1                                                           |
| Guideline(s) followed in   | OECD: 203                                                               |
| study:                     |                                                                         |
| Deviations from current    | Current Guideline: OECD 203, 2009                                       |
| test guideline:            | None 🕅 🖉 🖉 🖉                                                            |
| Previous evaluation:       | yes, evaluated and accepted $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ |
|                            | Source: Study list relied upon, December 26 (RMS: DE)                   |
| GLP/Officially             | Yes, conducted under GLOOfficially recognised esting actilities         |
| recognised testing         |                                                                         |
| facilities:                |                                                                         |
| Acceptability/Reliability: | Yes O Q Q Q Q A C                                                       |
|                            |                                                                         |
|                            |                                                                         |

Executive Summary The acute toxicity of aclonifen to compare carp, *Cyprinus carpio* was determined in a 96-hour, flow-through surgery Tarter by through exposure. Test solutions were prepared using stock solutions prepared in Tween 80 acetone. Ten common carp per test group overe exposed to an untreated control, softwent control and nominal Aclonifen concentrations of 0.25, 0.44, 0.79 1.4 and 2.5 mg/L. The total test period was 96 hours. Samples for analytical confirmation of actual exposure concentrations were taken at the start and after 24 and 96 hours of exposure.

Dissolved oxygen, pH and temperature were measured in the controls and each test concentration at the beginning of the test and end of the test. Daily observations were made of mortality and symptoms of toxicity. 🦿

Analysis of test samples resulted in measured concentrations remaining within the range 82 to 99% throughout the study, with the exception of the highest tested concentration (2.5 mg/L). Undissolved test material in the analytical sample was considered to have accounted for the high measured value (183%) at 0 hours. The results of the study overe based on the nominal test concentrations.

The 96-Hour LC<sub>50</sub> of Actonifer to common carp was determined to be 1.7 mg/L (confidence limits 1.2 - 2.5 mg/L). The NOEC was 0.44 mg/L

## JMATERIALS AND METHODS

| A.   | MATERIALS                 |                                   |
|------|---------------------------|-----------------------------------|
| 1.   | Test Item:                | Actonifen technical               |
|      |                           | 2-chloro-6-nitro-3-phenoxyaniline |
|      | Batch no?: A              | DA 618                            |
| . 6  | ActiveIngredient /Purity: | 91.3%                             |
| liz, | Appearance:               | Green yellow powder               |
|      | Date received:            | 20 June 1990                      |
|      | Storage:                  | Room temperature, in the dark     |
|      | Expiry date:              | December 1990                     |
|      | Expiry date:              | December 1990                     |





Stock solution prepared in 10% Dween 89-accepte. Continuous flow apparatus set up 24 hours prior to study start to allow equifibration of test concentrations. Solutions supplied continuously to test aquaria at 118 mL/min by a Watson-Marloy ® mplti=chapnel variable speed peristaltic pump with solvent stock solutions dosed by 2 Brann Perios or ® triple Gannel syringe pumps at 0.3553 mL/h.

## 4. Measurements and observations

Observations for pertality were undertaken at 24, 48, 72 and 96 hours. Mortality was defined as absence of respiratory movement and absence of response to physical stimulation.

Dissolved oxygen concentrations and pH values were measured in all the test groups and the control and solved control vessels at the beginning and at the end of the test. The temperature was recorded at 0, 24 and 48 hours.

Samples were taken from the solvent control and each test concentration for analysis at 0, 24 and 96 hours (end of the test).



## 5. Statistics/Data evaluation

The LC<sub>50</sub> and associated 95% confidence limits were calculated following the method described by (1952). The No Observed Effect Concentration (NOEC) was determined by visual

inspection of the data.

## **II. RESULTS AND DISCUSSION**

## A. ANALYTICAL VERIFICATION

Analysis of nominal test treatment concentrations 0.25, 0.44, 0.79 and 1.4 mg/L remained within 82 to 99% of nominal throughout the study. At the highest nominal test freatment concentration (26 mg/l) measured values were 183 and 85% of nominal at 0 and 24 hours, respectively. It was considered that the high value determined at 0 hours was attributable to undisplyed test substance in the water sample. This increase in measured concentration was not considered to affect the test results. Test results were calculated using nominal test concentrations, since analysis had shown test substance stability over the period of the test.

## Table: Measured concentrations of aclosifien

| Nominal concentration | Mean measured conign |                               |
|-----------------------|----------------------|-------------------------------|
| (mg/L)                | (mg/L) 🗸             | Mean & of nominal No, samples |
| Solvent control       | Not detected         |                               |
| 0.25                  | 0.231                |                               |
| 0.44 %                | 0.390                |                               |
| 0.79                  | 0,764                |                               |
| 1.4                   | Ø 4.212 Ø            |                               |
| 2.5                   | ×3.352 ×             | 2                             |
|                       |                      |                               |

The validated method is summarised in Document M-Q4 (CA4.1.2/38).

## B. BOOLOGICAL PATA

The cumulative mortality of common card are presented in the following table:

# Table: Cumulative mortanty for common carp from the exposure to Aclonifen

| Nominal                 | <ul> <li>Eumulativ</li> </ul> | e mortality |     |     |
|-------------------------|-------------------------------|-------------|-----|-----|
| concentration<br>(mg/上) | 2.40                          | 48h         | 72h | 96h |
| Control                 | ×~0                           | 0           | 0   | 0   |
| Solvent control         | <u>کې</u> 0                   | 0           | 0   | 0   |
| 0.25                    | 0 <sup>v</sup>                | 0           | 0   | 0   |
| 0.44                    | 0                             | 0           | 0   | 0   |
| 0.79                    | 0                             | 0           | 0   | 0   |
| 1.4                     | 0                             | 4           | 5   | 7   |
|                         | 9                             | 10          | 10  | 10  |

Symptoms of toxighty, other than death, were lethargy, slight and total loss of equilibrium and moribundary.

All chemical and physical parameters in the definitive test were within expected ranges.

Based on the observed mortality, the LC<sub>50</sub> values at each observation point were determined to be:



| Time (Hours)                                                                                                                                               | LC <sub>50</sub> (mg/L)                                                                                                | 95% confidence limits (mg/L                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 24                                                                                                                                                         | 2.1                                                                                                                    | 1.6 - 2.8                                                                                                                                    |
| 48                                                                                                                                                         | 2.3                                                                                                                    | 1.6 - 3.4 <sup>(1)</sup>                                                                                                                     |
| 72                                                                                                                                                         | 2.1                                                                                                                    | 0 1.5 - 3.1                                                                                                                                  |
| 96                                                                                                                                                         | 1.7                                                                                                                    | 1.2 - 2.5                                                                                                                                    |
| No Observed Effect Concentration (                                                                                                                         | (96 hours) = 0.44 mg/L                                                                                                 | 4 1 X X                                                                                                                                      |
|                                                                                                                                                            |                                                                                                                        |                                                                                                                                              |
| C. VALIDITY CRITERIA                                                                                                                                       | Å,                                                                                                                     | <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |
| Validity criteria                                                                                                                                          |                                                                                                                        |                                                                                                                                              |
| -                                                                                                                                                          |                                                                                                                        |                                                                                                                                              |
| Mortality in controls                                                                                                                                      |                                                                                                                        |                                                                                                                                              |
| Dissolved oxygen concentration at t                                                                                                                        | he end off the test >                                                                                                  | 50% ASV 0 298% ASV                                                                                                                           |
| Analytical measurement of test cond                                                                                                                        | centrations V Co                                                                                                       | topulsory Defformed                                                                                                                          |
| Il validity criteria were satisfied                                                                                                                        | and therefore this study can be                                                                                        | conserved to be wand.                                                                                                                        |
| ). TOXICITY ENDPOINT                                                                                                                                       |                                                                                                                        |                                                                                                                                              |
|                                                                                                                                                            |                                                                                                                        |                                                                                                                                              |
| able: Summary of endpoi                                                                                                                                    |                                                                                                                        |                                                                                                                                              |
| , str                                                                                                                                                      | ndpoint Mominal cor                                                                                                    | icentration 757<br>St.) a s. D                                                                                                               |
| 2 LC <sub>50</sub> 4                                                                                                                                       | 1. 20 hour & 1.                                                                                                        | $\frac{2}{7}$ $\sqrt[6]{9}$ $\sqrt[6]{9}$                                                                                                    |
|                                                                                                                                                            | Hidence limits                                                                                                         | 245 C                                                                                                                                        |
|                                                                                                                                                            | NORC NORC Of                                                                                                           |                                                                                                                                              |
| ð <del>Í</del> v                                                                                                                                           |                                                                                                                        | <u> </u>                                                                                                                                     |
|                                                                                                                                                            |                                                                                                                        |                                                                                                                                              |
| Ê <sup>Î</sup> , Î, ÎÎ                                                                                                                                     | III. CONCLUSION                                                                                                        | Y                                                                                                                                            |
| he 96-Hour LC50 of Aclonifen                                                                                                                               | to comprion carp, Cyprinus ar                                                                                          | pio, was determined to be 1.7 mg/L                                                                                                           |
| confidence limits $1.2 - 3.5 \text{ mg}$                                                                                                                   | ). The NOEC was 0.44 mg/L.                                                                                             |                                                                                                                                              |
| · ~ ` _ ~ ``                                                                                                                                               |                                                                                                                        | Douglas, M.T. (1991)                                                                                                                         |
|                                                                                                                                                            |                                                                                                                        |                                                                                                                                              |
|                                                                                                                                                            |                                                                                                                        |                                                                                                                                              |
| Assessment and conclusion by                                                                                                                               | pplicant:                                                                                                              |                                                                                                                                              |
| Assessment and conclusion by a All validity criteria were satisfied                                                                                        | pplicant:                                                                                                              |                                                                                                                                              |
| Assessment and conclusion by a<br>All validity criteria were satisfied<br>The 96-Hour LC50 of Actioniten                                                   | pplicarit:<br>d and therefore this study can be<br>to common carp, <i>Cyprinus carp</i>                                | e considered to be valid.<br><i>vio</i> , was determined to be 1.7 mg/L                                                                      |
| Assessment and conclusion by a<br>All validity criteria sere satisfie<br>The 96-Hour LC50 of Actionites                                                    | pplicarit:<br>d and therefore this study can be<br>to common carp, <i>Cyprinus carp</i>                                |                                                                                                                                              |
| Assessment and conclusion by a All validity criteria were satisfied                                                                                        | pplicarit:<br>d and therefore this study can be<br>to common carp, <i>Cyprinus carp</i>                                |                                                                                                                                              |
| Assessment and conclusion by a<br>All validity criteria stere satisfier<br>The 96-Hour LC <sub>50</sub> of Actionifen<br>(confidence limits 1.2 – 2.5 pg/l | pplicarit:<br>d and therefore this study can be<br>to common carp, <i>Cyprinus carp</i>                                |                                                                                                                                              |
| Assessment and conclusion by a<br>All validity criteria stere satisfier<br>The 96-Hour LC <sub>50</sub> of Actionifen<br>(confidence limits 1.2 – 2.5 mg/l | pplicarit:<br>d and therefore this study can be<br>to common sarp, <i>Cyprinus carp</i><br>L). The NSEC was 0.44 mg/L. |                                                                                                                                              |
| Assessment and conclusion by a<br>All validity criteria vere satisfier<br>The 96-Hour LC <sub>50</sub> of Actionifen<br>(confidence limits 1.2 – 2.5 pg/l  | pplicarit:<br>d and therefore this study can be<br>to common sarp, <i>Cyprinus carp</i><br>L). The NSEC was 0.44 mg/L. |                                                                                                                                              |
| Assessment and conclusion by a All validity criteria were satisfied. The 96-Hour $LC_{50}$ of Actionitien (confidence limits $1.2 - 2.5$ mg/l              | pplicarit:<br>d and therefore this study can be<br>to common sarp, <i>Cyprinus carp</i><br>L). The NSEC was 0.44 mg/L. |                                                                                                                                              |



| Data Point:                | KCA 8.2.2/01                                                                                               |
|----------------------------|------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                            |
| Report Year:               | 1991                                                                                                       |
| Report Title:              | The prolonged toxicity of ACLONIFEN to Rainbow trout (Oncorhynchus                                         |
|                            | mykiss)                                                                                                    |
| Report No:                 | R007156                                                                                                    |
| Document No:               | M-174328-01-1                                                                                              |
| Guideline(s) followed in   | OECD: 204                                                                                                  |
| study:                     |                                                                                                            |
| Deviations from current    | Not applicable as OECD 204 guideline has been deleted and there is no<br>equivalent current test guideline |
| test guideline:            | equivalent current test guideline $O^{\vee}$ $$ $$                                                         |
| Previous evaluation:       | yes, evaluated and accepted $\sim$                                                                         |
|                            | Source: Study list relied upon, December 2011 (RMS: DO                                                     |
| GLP/Officially             | Yes, conducted under GLP/Officially recognised testing facilities                                          |
| recognised testing         |                                                                                                            |
| facilities:                |                                                                                                            |
| Acceptability/Reliability: | Supportive only A & C & C & C & C                                                                          |
|                            |                                                                                                            |
|                            |                                                                                                            |

In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for risk assessment purposes. This study design and endpoint is no longer required for the registration of active ingredients in the EU and hence a summary of this study is not presented in this dossier.

| Assessment and conclusion by RMS: 6 & & & & &                                                                            |
|--------------------------------------------------------------------------------------------------------------------------|
| Assessment and conclusion by RMS:                                                                                        |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
| Data Point: $\mathcal{O}$ KCA8.2.2/02 $\mathcal{O}$ $\mathcal{I}$ $\mathcal{O}$ $\mathcal{O}$                            |
| Report Author                                                                                                            |
| Report Year: 1993 6 A A A                                                                                                |
| Report Year Acloriten: 20 day rambow frout toxicity study under flow-through conditions                                  |
| Fight reports S S O                                                                                                      |
| Report No: 5 18007413 5 27 6 5                                                                                           |
| Document No: N-174971-014 0                                                                                              |
| Guideline(s) followed in OECO: 204                                                                                       |
| study: $\mathcal{O}_{I} \cap \mathcal{O}^{\vee} \cap \mathcal{O}^{\vee} \cap \mathcal{O}^{\vee} \cap \mathcal{O}^{\vee}$ |
| Deviations from current Oot applicable as OECD 204 guideline has been deleted and there is no                            |
| test guideline: Pequiçaent cucent tearguideline                                                                          |
| Previous evaluation: vestevaluated and accepted                                                                          |
| Source: Study list relied from December 2011 (RMS: DE)                                                                   |
| GLP/Officially Ses, conducted under GLP/Officially recognised testing facilities                                         |
| recognised testing                                                                                                       |
| facilities:                                                                                                              |
| Acceptability Veliability: Supportive only                                                                               |
|                                                                                                                          |
|                                                                                                                          |

In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for risk assessment purposes. This study design and endpoint is no longer required for the registration of active ingredients in the EU and hence a summary of this study is not presented in this dossier.

Assessment and conclusion by RMS:



| CA 8.2.2.1 Fish            | early life stage toxicity test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Point:                | KCA 8.2.2.1/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Report Year:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Report Title:              | Aclonifen - Early life stage toxicity test to fathead minnow (pimphales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Report No:                 | R007440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Document No:               | M-174931-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Guideline(s) followed in   | OECD: 210; USEPA (=EPA): 72-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| study:                     | OECD: 210; USEPA (=EPA): 72-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deviations from current    | Current Guideline: $OKCD 2160 2013 \overset{\sim}{\sim} $ |
| test guideline:            | Only two replicate vessels per treatment group were used, cariation in measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | concentrations exceeded the validity criterion of $\pm 20\%$ and dissolved oxed on was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | not maintained at >60% throughout the study , O &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Previous evaluation:       | not maintained at >60% throughout the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                            | Source: Study list relied upon, December 2011 (RMS: DR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GLP/Officially             | Yes, conducted under GLP/Officially recognised lesting facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Acceptability/Reliability: | Supportive only a good of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## **Executive Summar**

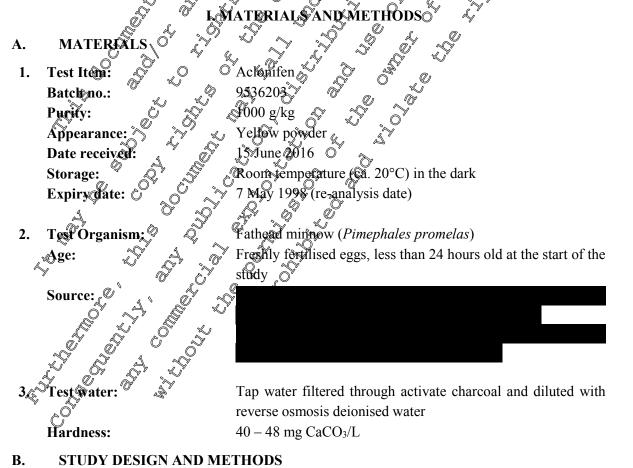
The purpose of the study was to evaluate the effects of acloniten to tathead minnow (Pimephales promelas) under flow through test conditions, during an exposure period of 35 days.

160 embry (2 replicates of 80) were prosed to each of five concentrations of the test substance, a solvent (DMF) control and a muticin water control Following Patching of the embryo (completed on day 4 of the test), 80 newly hatched fry (Preplicates of 40) were exposed to the same concentrations of the test substance for a further 2 days

Analytical verification of the nominal concentrations of test substance at test initiation showed the measured concentrations were cose to the nominal values (70 - 96% recovery). Further analytical verifications once a week during the test period and at test termination, showed that the nominal concentrations of test substance were generally maintained by the flow-through test system (58-101% recovery). The majority of recoveries were within the range 71 - 101% of nominal values, with three lower values of  $\mathcal{B}$ , 62 and 64% observed at the lowest concentration of 4.0  $\mu$ g/L.

The results of the test are reported in terms of the measured concentrations recorded during the test period. These concentrations were as follows; 4.0, 9.1, 19.7 44.0 and 103.6 µg/L.

Following completion of hatch; 95.0, 93.8, 91.3, 90.6 and 95.7% live normal fry were recorded at the concentrations of 4.0, 9.1 19.7, 44.0 and 103.6  $\mu$ g/L. In the control and solvent control groups 93.2 and 97.5% hatch was recorded respectively. At test termination the percentage survival of fry recorded at these same concentrations was 100, 98.8, 96.3, 98.8 and 91.3%. In the control and solvent control groups 98.8 and 100% survival was recorded.




The lengths and weights of all live normal fry in the controls and at each test concentration at test termination were 205.3, 216.8, 225.5, 178.2, 193.8, 198.4 and 163.3 mg in the control, solvent control and at the concentrations of: 4.0, 9.1, 19.7, 44.0 and 103.6 µg/L, respectively. The mean total length of the test fish at test termination was 28.1, 28.0, 28.2, 26.6, 26.3, 26.5 and 25.8 mm respectively in these same test groups.

No statistically significant difference was observed between the control and solvent control groups for any of the biological variables, therefore, the exposed groups were compared to the solvent control for subsequent comparisons. No statistically significant differences were observed between the replicates of any test group, replicates were pooled for subsequent analysis. Statistical analysis of the hatch and fry survival data showed that the percent hatch was significantly reduced compared to the solvent confol at the concentrations of 19.7 and 44.0 µg/L, no significant difference was observed at the fower concentrations of 4.0 and 9.1 ug/1 or at the higher concentration of 103.6 pg/L. Percentage survival of fry at test termination was significantly reduced (a, 0.01) compared to the solvent control at the highest concentration of 103.6 µg/L no significant difference was observed at the lower test concentrations.

Statistical analysis of the length and weight data showed significant differences occurred between the solvent control and the concentrations of 91, 19. V and 44.0 µg/L. No significant difference occurred between the solvent control and the lowest concentration of 4.0 µg/L. The highest concentration of 103.6 µg/L was excluded from the analysis of length and weight pariables.  $\bigcirc$ 

Based on all of the statistical analyses of the test data, the no observed offect concentration (NOEC) was estimated to be 4.0 µg/L, and the lowest effection contration (LOEC) was estimated to be 9.1 µg/L.





24 July – 28 August 1997 **In-life phase:** 1. 2. Exposure conditions Glass aquaria with a total volume of 20 L filled with **Test vessels:** approximately 15 L of test medium Test aquaria were positioned in a water bath containing circulating water. The embryos were incubated in, egg incubation Jups constructed from glass cylinder of 44 mm internal diameter. A nylon mesh (pore size 450 µm) support was attacked using silicone sealant to the lower and. The egg cups were gently oscillated in the test solutions by means of a rocker arm apparatus driven by a 2 rpm electric motor. During approximately 30 days post hatch the fry were contained in an enclosure (inside the relevant aquarium) made of a nylon screen attached to a glass petri (ish. The purpose of ° the fry enclosure is to facilitate feeding and bological observations when the fish are very small. A single fry onclosure was suspended in each test aquation OFive pominal test concentrations of 5,6, 11, 4.2, 53.2 and **Experimental design:** 117.1 µg gclonifen/L plus a control and a solvent control two replicate pessels were pepared for each trestment **Replicates:** Loading: 80 epbryos per egg incubation cup 40 Realth frv released into fry enclosure (any remaining fry Temperature pH: (vgen saturation) Dissolved oxygen 8.0 mg/ Aeration No aeration 16 h light 8 h dark with 30-nmmute transition periods Photoperiod Light intensit of the test item 3. Administration Dose preparation

Replicate test vessels (A and B) were employed for all concentrations and controls. For each test concentration, one stock solution was prepared approximately every 15 days by dissolution of the test substance in the solvent, dimethylformamide (DMF). At the nominal concentrations of 5.0, 11.0, 24.2, 53.2 and 117.1  $\mu$ g/L the concentrations of the stock solutions of test substance were 0.1, 0.22, 0.48, 1.06 and 2.34 mg of acloritien per mL of solvent (DMF) respectively.

For each test solution (each replicate), a 25 ml plastic syringe in conjunction with a Harvard syringe pump was calibrated to defiver approximately 2.5  $\mu$ L/min of the relevant stock solution into a chemical mixing clamber which also received approximately 50 mL/min of dilution water via a peristaltic pump.

The final concentration of solvent (DMF) in the solvent control and at each of the test substance concentrations was 0.05 mL/L.

Dosingaystem



The test was performed using an exposure system consisting of a continuous flow of fresh test solution, a temperature-controlled water bath and a set of 14 exposure aquaria (two replicate aquaria for each test group).

The test system was designed to provide five concentrations of the test substance, a solvent control and a dilution water control.

Test concentrations were maintained by introducing approximately 5.0 aquarium volumes per day, of newly prepared test solution via a constant flow system consisting of peristaltic pumps providing field flow rates of dilution water (approximately 50 mL/min.) and syringe@mectors providing fixed volumes C of the test substance stock solutions (approximately 2.5 µL/min). The test solutions homogenized in a pre-mixing chamber prior to delivery to the test apparia. The test solutions in the mixing chamber were maintained in suspension by magnetic stirring. The flow through system was started at least 24 hours prior to test initiation.

Calibration by measuring delivery volumes of dilution water was performed the day before test initiation at test termination and once a week during the test period. The function of the system was disually inspected at least every 24 hours during the test period.

Analysis of the exposure solutions for the test substance concentration was also used to verify proper operation of the flow through system.

Ű

The test was initiated when the fertilized empryos (in the egg cups) were randomly placed in the test aquaria. Embryos which were not ever praque or showed any signs of coagulation and/or precipitation of protein were not used. The embryos were probled in a clean glass dish with dilution water at 25°C  $\pm 2$ °C. The viability of eggs used for test initiation was verified using a microscope. Viable embryos were and only selected and assigned to gg cups at a rate of 5 at a time until each egg cup contained 80 embryos. The egg cups were immersed in dilution water at test temperature while they received embryos.

When the percentage embry hatch for any individual test level was at least 90% complete or 48 hours after first hatch, 40 live healthy fy were released into the for enclosure in the same aquarium and any remaining fry were discarded. Theory were fed five brine shrimp nauplii (Anemia salind). Feeding began on the same day the Fry were transferred from the egg cups. The fish were fed three times per day on weekdays and twice daily on weekends. When the fry were approximately 10 days post hatch they were released into the main aquaria. At each feeding, fry were fed an excess of live brine shrimp ad libitum such that all fry were afforded equal access to food.

## 5. Measurements and observations

From the test initiation unto hatching began (Day 3) the embryos in each egg cup were examined daily and the number of dead oggs was recorded. Dead eggs were discarded after counting. Once hatching began the eggs were not have led until about 90% of the embryos had hatched or 48 hours after first hatch was observed

When hatching was complete the number of live normal, deformed, dead and unaccounted for fry were recorded. Following transfer of 40 fry into each aquarium (fry enclosure), observations of mortality, abnormal, behaviour and physical appearance were recorded daily. Fry enclosures and test aquaria were



cleaned when required. Uneaten food was removed by siphoning at least once every day from enclosures and aquaria.  $\mathbb{Q}_{\mathbb{A}}^{\circ}$ 

After 31 days of post hatch exposure, the number of surviving fry in each test vessel was recorded.

Temperature, pH and dissolved oxygen were recorded in each test aquarium at test initiation, termination, and three times a week during the test. The water temperature in one test aquarium was continuously recorded throughout the test period. Total hardness, alkability and specific conductance were measured from one replicate of the highest and lowest test substance concentrations, the solvent control and the of dilution water control, at test initiation, termination and once a overk during the test period. Light intensity (immediately above the test aquaria) was measured at test initiation and termination and once per week during the test period.

Samples (100 mL each) of each replicate at each treatment level were collected at test initiation (before the introduction of test embryos), at test termination and once per week during the duration of the test. All samples were collected in duplicate from the approximate midpoint of the test solutions. One sample was prepared immediately after sampling and analyzed within 24 hours after preparation. The second sample was appropriately preserved and stored in case required for verification purposes.

## 5. Statistics/Data evaluation

Statistical analysis was performed in three steps: comparison between the two peplicates of each treatment level; comparison (when relevant) between the control and solvent control groups and comparison between the control (or solvent control) and test concentrations.

For each parameters and for each concentration, replicates & and B were compared using a t-test for length and weight data or Fisher's exact test (2 tails) for percentage embryo hatch and percentage of hatched eggs that produce normal live fry at test termination.

If statistical comparisons of the percentage embryo hatch percentage of hatched eggs that produce normal five fry at test termination, weight or length of the dilution water control and solvent control groups establish that no significant differences existed (u=0.01) between the two replicates, the replicate A and the replicate B were pooled for subsequent comparisons.

For each parameter, the dilution water control group was compared to the solvent control group using Fisher's exact test (two tar) for percentage or bryo batch, percentage of hatched eggs that produce normal live fry at test termination and using F-test for results of length and weight variables. If the F-test was not significant, a t test was performed. If the F-test was significant, a modified t test was performed.

If no significant difference is observed between the dilution water control group and the solvent control group, the treatment group will be compared to the solvent control group for subsequent comparison.

Percentage embryo hatch, percentage of hatched eggs that produce normal live fry at test termination were analyzed by comparing each exposed group to the solvent control group using Fisher's exact test (1 tai).

Results of the length and weight variables of individually fish were intercompared for the exposed groups and the control solvent group by use of test for homogeneity of variances, analysis of



variance (ANOVA). If Bartlett test indicated homogeneous variances and the ANOVA was significant, the exposed group means were intercompared to the solvent control group using the Dunnett test.

If Bartlett's test indicated heterogeneous variances, non-parametric statistical procedure was performed using the Kruskal-Wallis non-parametric one-way analysis of variance by ranks If the Kruska-Wabis test was significant, Mann-Whitney test was used to compare each group to the solvent control group mean.

Percentage embryo hatch data were analyzed before percentage of hatched eggs that produce norma live fry at test termination; if there was a concentration(s) that caused significant effects, then that treatment level was excluded from the statistical analysis of the survival, length and weight data unless there was a higher concentration without significant effects. Ľ

For comparative purposes, an additional comparison between the didution water control group and each of the exposed groups was also performed for each parameter. 

The alpha levels for each statistical comparison were 0.05 and 0.01

Statistical analyses were performed using SAS programs.

# RESULTS AND DISCUSSION

#### ANALYTICAL VEROFICATION A.

Analytical verification of the nominal concentrations of test substance at test inflation showed the measured concentrations were close to the mominal values (70,- 96% recovery). Further analytical verifications once a week during the test period and at test formination, showed that the nominal concentrations of test substance were generally maintained by the flow-through test system (58 - 101% recovery). The projective recoveries were between M - 105% of minals, with three lower recoveries of 58, 62 and 64% observed at the owest concentration of 4.0 kg/L. The majority of the recoveries were within 20% of the nominal test concentrations.

The results of the test are reported in terms of the measured concentrations recorded during the test period (4.0, 9.1, 19, 7, 44.0 and 103.6 µg/b). A

The flow-through system provided approximately 4.8 complete test solution renewals per 24-hour exposure period under the conditions of the test. All of the control samples were below the quantification limit (LoQ) for the test substance in the dilution water (0.5  $\mu$ g/L).

Mean measured test concentrations from the continuous exposure of Fathead Table: minnows to Aclonifen ő, 2 K 1

| Nominal<br>Concentration |                                                                                                                                                                                     | Measured concentration (μg/L)       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ       Δ     Δ <th>SD</th> |                                                                                                                             |                                                                                                 |                                                                     |                                         |                 | SD     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|-----------------|--------|
| (μg/L) 0 <sup>ν</sup>    |                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | @14                                                                                                                         | 21                                                                                              | 28                                                                  | 35                                      | concn<br>(μg/L) | (µg/L) |
| Contra                   | S <loq< td=""><td>Steo Q</td><td>~LoQ</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<></td></loq<>                             | Steo Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~LoQ                                                                                                                        | <loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<>   | <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>   | <loq< td=""><td></td><td></td></loq<>   |                 |        |
|                          | ≤≜oQ                                                                                                                                                                                | ~LoQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>-</td><td>-</td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td>-</td><td>-</td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td>-</td><td>-</td></loq<></td></loq<> | <loq< td=""><td>-</td><td>-</td></loq<> | -               | -      |
| Control                  | &LoQ~                                                                                                                                                                               | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<></td></loq<>   | <loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<>   | <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>   | <loq< td=""><td></td><td></td></loq<>   |                 |        |
|                          | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>_</td><td>_</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>_</td><td>_</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>_</td><td>_</td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td>_</td><td>_</td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td>_</td><td>_</td></loq<></td></loq<> | <loq< td=""><td>_</td><td>_</td></loq<> | _               | _      |
| 5.0                      | 4.8                                                                                                                                                                                 | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3                                                                                                                         | 3.7                                                                                             | 3.8                                                                 | 3.2                                     | 4.0             | 0.6    |
| 5.0                      | 4.3                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                                                                         | 3.1                                                                                             | 4.6                                                                 | 2.9                                     | 4.0             | 0.0    |
| 11.0                     | 10.6                                                                                                                                                                                | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.1                                                                                                                         | 8.8                                                                                             | 8.8                                                                 | 9.2                                     | 9.1             | 0.7    |



|                       | 9.7          | 9.4          | 9.8          | 8.0          | 7.9         | 9.0         |               |          |                |
|-----------------------|--------------|--------------|--------------|--------------|-------------|-------------|---------------|----------|----------------|
| 24.2                  | 19.7         | 21.9         | 20.2         | 19.2         | 17.2        | 17.4        | 10.7          |          | $\sim$         |
| 24.2                  | 22           | 20.7         | 21.0         | 20.7         | 17.1        | 19.5        | 19.7          |          | Ş              |
| 52.3                  | 45.3         | 44.1         | 47.8         | 45.9         | 40.5        | 43.5        | \$ 110        |          | g.             |
| 32.5                  | 41.8         | 39.3         | 48.6         | 45.2         | 40.2        | 45.2        | 44.0          |          |                |
| 117.1                 | 112.1        | 118.7        | 92.9         | 101.1        | 111.2       | 114.6       | 102           |          | Ŝ              |
| 11/.1                 | 82.3         | 113.1        | 90.0         | 92.5         | 104.3       | 169.9       | 103,60°       |          | 1              |
| Stability of 500      | mg/L stock s | solution (DI | MF) prior to | o definitive | test was 49 | 9@ng/L (day | y 0), #24 mg  | AV(day 🜒 | e <sup>(</sup> |
| and 477 mg/L (day 14) |              |              |              |              |             |             | Ô             |          |                |
| LOO Linit CO          | 1.6          | 0.7 /1       |              |              | 6           | /           | $\sim$ $\sim$ |          | ,              |

 $LOQ = Limit of Quantification = 0.5 \ \mu g/L$ 

The validated method is summarised in Document, CA4 (CA 4. M.2/82).

## B. BIOLOGICAL DATA

Following completion of hatch the % survival was 95.0, 99.8, 91.9, 90.6 and 95.7% live normal fry at the concentrations of 4.0,9.1, 19.7, 44.0 and 103.6 µg/L. In the control and solvent control groups 95.2% and 97.5% hatch was recorded, respectively. At test termination the percentage survival of fry recorded at these same concentrations was 106, 98.8% 96.3, 98.8 and 91.3%. In the control and solvent control groups 98.8% and 100% survival was recorded, respectively.

Some embryo and fry remained unaccounted for on completion of hatch and also at fest termination. The number of unaccounted embryo was nost notable at the concentrations of 19.7  $\mu$ g/L (replicate B) and 44.0  $\mu$ g/L (replicate A). The number of unaccounted fry was nost notable at the highest concentration of 103.6  $\mu$ g/L (replicate B). Unaccounted for organisms were included with the mortality data for calculation of % hatch and % survival and for subsequent statistical analysis of these parameters. The statistical results for the % hatch and survival data should therefore be considered as worst-case conclusions.

The lengths and weights of all live normal fry in the controls and at each test concentration were recorded at test termination. The mean wet weights of the test fish were 2059, 216.8, 225.5, 178.2, 193.8, 198.4 and 162, mg in the control solvent control and at the concentrations of: 4.0, 9.1, 19.7, 44.0 and 103.6  $\mu$ g/L respectively. The mean total length of the test fish at test termination was 28.1, 28.0, 28.2, 26.6, 26.3, 26.5 and 26.8 mm respectively in these same test groups. The length and weight data at test termination, showed that the certificity is the response was observed at the three intermediate concentrations of 9.1, 19.7, 44.0 and 103.6  $\mu$ g/L. However, no clear dose response was observed at the three intermediate concentrations of 9.1, 19.7 and 44.0  $\mu$ g/L

|        | Summary U                         |                            |                                            | osure or fatheau      |                    |
|--------|-----------------------------------|----------------------------|--------------------------------------------|-----------------------|--------------------|
| . 4    | Mean<br>measured<br>concentration | Hatching<br>Success<br>(%) | O'ost hatch<br>survival<br>(day 35)<br>(%) | Total length,<br>(cm) | Wet weight<br>(mg) |
|        | 🖉 Control 🖒                       | ې<br>\$93.2 °              | 98.8                                       | 28.1                  | 205.3              |
| A<br>D | Solvent control                   | <u>م</u> ې 97.5            | 100                                        | 28.0                  | 216.8              |
|        | 4.0                               | 95.0                       | 100                                        | 28.2                  | 225.5              |
| R,     | 9.1                               | 93.8                       | 98.8                                       | 26.6**                | 178.2**            |
| Ĉ      | 19.7                              | 91.3*                      | 96.3                                       | 26.3**                | 193.8**            |
|        | 44.0                              | 90.6**                     | 98.8                                       | 26.5**                | 198.4**            |
|        | 103.6                             | 95.7                       | 91.3**                                     | 25.8 ª                | 163.3ª             |

Table: Summary of effects from the continuous exposure of fathead minnow to Aclonifen



\*Significant compared to solvent control ( $\alpha = 0.05$ )\*\*Significant compared to solvent control ( $\alpha = 0.01$ )aExcluded from statistical analyses

## Statistical analysis

There was no significant difference between replicates of the control, solvent control or the test concentrations for any of the biological parameters (% hatch, % survival and length and weight data), therefore, the replicate data (A and B) of each of the treatment levels were pooled for further statistical of comparisons.

Statistical analysis also determined that no statistically significant difference existed for % hatch, survival of fry, total length or wet weight data between the control and solvent control groups. The exposed groups were therefore compared to the solvent control group for subsequent comparisons.

Statistical analysis of the % hatch and fry survival data showed that the hatch was significantly reduced compared to the solvent control at the concentration of 19  $f'(\alpha = 0.05)$  and 44.0  $\mu$ g/L ( $\alpha = 0.05$ ). No significant difference was observed at the higher concentration of 103.6  $\mu$ g/L or at the lower concentrations of 4.0 and 9.1  $\mu$ g/L. Because no significant effect was observed at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the higher concentration of 103.6  $\mu$ g/L or at the hig

Percentage survival of fry at test termination was significantly reduced ( $\alpha = 0.94$ ) compared to the solvent control at the highest concentration of 103 s µg/L. No significant difference was observed at any of the lower test concentration. This concentration was excluded from subsequent analysis of the length and weight data.

Statistical analysis of the total fish length data showed significant differences ( $\alpha = 0.01$ ) occurred between the solvent control and the concentrations of 9 V, 19.7 and 44 0 µg/L. No significant difference occurred between the solvent control and the lowest concentration of 4.0 µg/L. The highest concentration of 103 (µg/L) was excluded from the analysis.

Statistical analysis of the wet fish weight data showed significant differences occurred between the solvent control and the concentration of 9.1, 19.7 ( $\alpha = 0.07$ ) and 44.0 ( $\alpha = 0.05$ ) µg/L. No significant difference occurred between the solvent control and the lowest concentration of 4.0 µg/L. The highest concentration of 103.6 µg/L was excluded from the analysis. For both the length and weight parameters, Bartlett's test was significant, therefore the non-parametric Kruskal-Wallis test and the Mann-Whitney test were used to perform the analyses.

Statistical analysis of the hater and fry survival data showed no significant difference between the control and any of the test concentrations. Percentage survival at test termination was significantly reduced ( $\alpha = 0.05$ ) compared to the control at the highest concentration of 103.6 µg/L. No significant difference was observed at the ower test concentrations.

The weight of surviving tish was significantly lower ( $\alpha = 0.01$ ) than the control group at the concentration of 9.1 µg/L no significant reduction was observed at any of the other test concentrations analyzed. The mean weight of the surviving fish at the concentration of 4.0 µg/L was significantly greater ( $\alpha = 0.01$ ) than the control group. This was not considered to be an adverse effect of the test substance.



The length of surviving fry was significantly different ( $\alpha = 0.01$ ) from the control group at the concentrations of 9.1, 19.7 and 44.0 µg/L. No significant difference occurred between the control and the lowest concentration of 4.0 µg/L. The highest concentration of 103.6 µg/L was excluded from the analysis.

In conclusion, although no significant differences were observed for the % which data and the bergth parameter was inconclusive compared to the dilution water control, the estimation of the NOBC and LOEC values are the same whether the exposed groups are compared to the dilution water contra solvent control groups.

#### С. VALIDITY CRITERIA

|                                               | Ŵ                |              | ¢° ~~           |        | Ô.  | Ľ  |
|-----------------------------------------------|------------------|--------------|-----------------|--------|-----|----|
| Validity criteria                             | Å.               | • Required   | Achie           | ved    | . A | Ĵ, |
| Dissolved oxygen concentration (% ASV)        | A                | ~            | ₄ ≥84           | % O    |     |    |
| Water temperature between test chambers g     | r between        | ±k%C         | Not rec         | we had |     | S. |
| successive days at any time during the test   | , Č              |              | N (             | 7 n 🖌  | ÿ Č |    |
| Temperature range for test species            |                  | 25±1.5°C     | <u>مَ</u> 25 ج  | .4°C   | Ŵ.  |    |
| Analytical verification of test concernations |                  | Computsory C | <sup>C</sup> Ye | s 🔊    |     |    |
| Overall survival of fertilised eggs@control)  | , O,             | \$ Ø0% Q     | © 93.2          | Ş (    | 1   |    |
| Post-hatch success (control)                  | ŝ <sup>o</sup> d | ≥75% © °     | 9.8.8           | 5% O   | ~   |    |
| ~                                             |                  | 0            |                 | Ĉ      |     |    |

Validity criteria set out in ØECD 210 (1992) and EPA/FIRA 72-4 (1986) rejevant to percent hatch and survival were met. Validity criteria relevant to the current test guideline (OECD 210, 2013) for the control treatment persent hatch and survival wers also satisfied. The dissolved oxygen concentration was not maintained at greater than 00% ASV at nominal exposure concentrations 4.0, 9.1, 19.7 and 44.0 µg a.s./L. Therefore, according to the current test guideline, this study is not valid.

#### TOXICITYENDROINTS D.

Table: Summary of endpoints

| Mean measur<br>concentration<br>(μg/L) | Ω AγH             | atching             | Post hatch<br>surviva<br>(day 35) | Total length, | Wet weight |
|----------------------------------------|-------------------|---------------------|-----------------------------------|---------------|------------|
| NORC                                   | jo <sup>×</sup> o | <sup>9</sup> 9.1. 0 |                                   | 4.0           | 4.0        |
| LÕEC                                   | 8                 | 19 ¥ Q              | \$103.6°                          | 9.1           | 9.1        |
| Tê l                                   |                   |                     |                                   | N             |            |

The early life stages of fathead minnow (Pinterhales promelas) were examined under flow through conditions and exposure to aclonifen.

as determined to be 0 µg/L, based on hatching success, post-hatch survival, total The overal length

(1997)

sment and conclusion by applicant:



0

Validity criteria set out in OECD 210 (1992) and EPA/FIRA 72-4 (1986) and in OECD 210, 2013 relevant to percent hatch and survival were met. However, the dissolved oxygen concentration was not maintained at greater than 60% ASV at all test concentrations throughout the study.

Analytical verification of the nominal concentrations of test substance at test mitiation showed the measured concentrations were outside  $100 \pm 20\%$  (70 - 96% recovery) and further analytical verifications during the test period and at test termination, showed that the nominal concentrations, of test substance were maintained by the flow-through test system between 58 - 101% recovery. The majority of recoveries were between 71 - 101% of nominal, however, three lower recoveries of 58, 62 and 64% observed at the lowest nominal exposure concentration of 4.0 µg/L

In addition to the above validity criteria deviations the study design also did not meet current guideline requirements. In this study only creplicates of 40 embryos were used, instead of 4 replicates of 20 embryos.

During statistical analysis of the study it was assumed that any unaccounted for embryos and ry should be considered mortalities. The number of maccounted for embryos was most notable at nominal exposure concentrations of 19 7, 44.0 and 103.6 µg/L where this study also found statistically significant differences from the control for hatching success and post-hatch survival.

Therefore, this study does not meet current OECD guideline validity criteria and should be considered as being supportive only. A full assessment of the validity of this study is provided in KCA 8.2.2.1/04 (M-676414-01-1).

| Assessment | and | condu | sion by | RMS. |
|------------|-----|-------|---------|------|
|            | ()  |       | ()) -   | -    |

| A.             |                 | al a |                  |   |
|----------------|-----------------|------|------------------|---|
| <u>RM\$</u> /. | 40 <sup>7</sup> | J.   | ð                | 4 |
|                | ×.              | No.  | (O) <sup>p</sup> | 2 |

| Ki <sup>n</sup> . O        |                                                                           |
|----------------------------|---------------------------------------------------------------------------|
| ^Ò`                        |                                                                           |
| Data Point:                | KCA@2.2.1/02 0° ~                                                         |
| Report Author:             |                                                                           |
| Report Year:               |                                                                           |
| Report Title:              | Foxicity of actonifen (cchn.) or embryo and egg hatch life stages of fish |
|                            | (Pimerhales prometar)                                                     |
| Report No:                 | EBQLX030 &                                                                |
| Document No:               | <u>M</u> -408628-01-12                                                    |
| Gufgeline(s) followed in   | SEPA-FJFRA SZ2-4a/SEP-EPA-560/6-82-002 (1982)                             |
| study:                     | ASTM E 1241-92 (1992)                                                     |
| × . 1 `                    | OPTS 850.1400 Q 996)                                                      |
|                            | SECD No. 210/(1992)                                                       |
| Deviations from citrent    | Current Guidenne: OECD 210, 2013                                          |
| test guid@ine:             | Noge                                                                      |
| Previous evaluation:       | No, not previously submitted                                              |
|                            |                                                                           |
| Qual/Oniquality 4          | Yes, conducted under GLP/Officially recognised testing facilities         |
| recognized testing         |                                                                           |
| facilities:                |                                                                           |
| Acceptability/Reliability: | Yes                                                                       |



## **Executive Summary**

A study was performed to determine the toxicity of the test item to the embry and egg hat bing life stages of fathead minnow (*Pimephales promelas*) under semi-static conditions expressed as NOEC and LOEC. The study was performed to investigate possible effects of Aclonifen on the hatching success of fathead minnows. The study was necessary to verify findings of an existing Fish Early fife Stage Test with fathead minnow (*Pimephales promelas*).

The earliest life stages of fathead minnow (embryos antil egg hat thing) were exposed to various test item concentrations, a control and a solvent control ander semi-static conditions with four replicates per test level for 5 days (post hatch day 1). The definitive test was conducted at nominal test concentrations of 5.00, 11.0, 24.2, 53.2 and 117  $\mu$ g a.s./L under semi-static conditions.

Recoveries of Aclonifen were measured in one alternating replicate in all powly prepared test media (study day 0 and 3) and in addition in all aged test media (study day 5 and 5).

Based on analytical measurements of the newly prepared test media recoveries between 111 and 116% of nominal were found. Regarding aged test media measured after 3 days of 2 days of use, respectively, the mean measured values still deflecting well the nominal galues the recoveries ranged between 106 and 115% of nominal. Therefore, all reported results refer to the nominal concentrations of Aclonifen.

Egg hatching began on study day 3 (post hatch day -t) and was completed on study day 5 (post hatch day 1) in all test levels, when all fertilised and living embryos successfully hatched. Start and end of hatching showed no significant difference@ompared to the pooled control data.

Post hatch day 0 was reached on study day 4, when 99% of all fertilized and living embryos in the pooled controls had hatched. On study day 4 (post hatch day 0) mean embryos survival / hatching success (based on the total number of inserted eggs) ranged overall between 87 and 93% and showed no significant difference in any test level compared to the pooled control cata.

Based on statistical analysis of time to hatch and embryo survival / hatching success the NOEC was determined to be 107 μg a.s./L, the highest concentration tested.

## <sup>7</sup> I. MATERIALSAND METHODS

## A. MATERIALS

Aclonation (tech.) 1. Test Item: AF#1068300 Batch no.: 99.6%**,**Ww **Purity:** Appearance: Yellow powder Novavailable Date received?  $5^{\circ}C \pm 5^{\circ}C$ Storage: Expiry date: 02 April 2018 Test Organism: Age:

Fathead minnow (*Pimephales promelas*) Freshly fertilised eggs, less than 24 hours old at the start of the study



|       | Source:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.    | Test water:                                                                           | Reconstituted water (according to ISO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Hardness:                                                                             | $40 - 60 \text{ mg/L} (as CaCO_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B.    | STUDY DESIGN AND MI                                                                   | ETHODS (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | -life phase: 22 F                                                                     | ebruary – 05 May 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Ex | posure conditions                                                                     | Reconstituted water (according to ISO)<br>40 – 60 mg/L (as CaCO <sub>3</sub> )<br><b>CTHODS</b><br>ebruary – 05 May 2011<br>Glass crystallizing dish with a diameter of 140 mm (w) x 74<br>mm (h) filled up to about 35 mm. The test volumes amounted<br>to 500 mL each. Each test vessel was covered with a glass petry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Test vessels:                                                                         | Glass crystallizing dish with a diameter of 140 mm (w) x 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                                                                       | mm (h) filled up to about 35 mm. The test volumes amounted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                       | to 500 mL each. Each test cessel was covered with a glass petry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                       | distriplate (With a drameter of 145, mm) during exposure to avoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Experimental design:                                                                  | Five nominal test concentrations of 5.0 1.0 4.2. 53.2 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Q,                                                                                    | 11.7 μg a.s./L plus one control and one solvent control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Į.                                                                                    | χμου μL/μL). δ μ μ δ δ κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Replicates:                                                                           | Foustenlicate vessels were prepared for each treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Loading:                                                                              | 30 embryos per replicate vesses (120 embryos per treatment)<br>$25 \pm 2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | Temperature:                                                                          | $25 \pm 220^{\circ}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Loading:<br>Temperature:<br>pH:<br>Dissolved oxegen: 4<br>Aeration: 6<br>Photor and a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Dissolved oxogen: 4                                                                   | > 60% oxygen saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Aeration:                                                                             | No aerstion X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Aeration:                                                                             | 16 kught: Sh darto S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Light intensity:                                                                      | 165 - 34 Shux of the second se |
|       |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Ad | lministration of the test item,                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dose  | Light intensity:                                                                      | 30 embryos per replicate vessel (120 embryos per treatment)<br>$25 \pm 2$<br>6.0 = 8.0<br>> 60% oxygen saturation<br>No aeration<br>16 is light: S h dark<br>165 - 34 S lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

For the entire study, one series of stock solutions of the lest item Aclonifen was prepared. The stock solutions were prepared by weighing the adequate amount of test item into the solvent dimethylformamide (DMF). Afterwards the were intensely stirred over 1 hour at room temperature. As solvent control a stock solution with pure dimethylformamide was used.

On study Day 0 and 3, respectively, new test solutions were prepared by adding 0.05 mL of each stock solution into each of the four replicates per test level with 500 mL test water, resulting in a solvent concentration of 100 µL dimethylformanude per litre test water and in a dilution factor of 10 000, except for the dilution water control group. Each test medium was mixed as homogeneously as possible after addition of the stock solution, with magnetic stir bars for approximately 10 minutes. In case of test medium renewal on day 3 old medium was decanted from each test vessel after all living eggs were carefully removed with a plastic pipette in another small vessel containing old medium. Then the new test medium was prepared as described above in the same test vessel as used before with the following exception that the test water used for all test vessels was tempered to 25°C before use on a temperature



controlled heating plate. Afterwards the eggs were carefully placed again in the corresponding test vessel with newly prepared test medium.  $Q_{\mu}^{\circ}$ 

## 4. Test organism assignment and treatment

Fertilized eggs were distributed among the test vessels by adding groups of 5 eggs via a glass pipele and this procedure was repeated until each test vessel contained the desired number of eggs

## 5. Measurements and observations

Every day all test vessels were observed for embryo mortality, as discerned by a distinct change in a coloration (white opaque appearance). Dead embryos were recorded and discarded Hatched larvie were recorded and sacrificed. In this study the post-hatch period began on study Day 4 when 29% of all fertilised and living embryos in the control(s) had hatched. The study was terminated when all fertilised and living embryos in the control had hatched, on study Day 5.

Dissolved oxygen (in percent saturation), the water temperature and the pH-value was measured in two alternating replicates of all test levels on study Days (1, 2, 4, 4 and 5. On study Day 3, when the test medium was changed in all test vessels, water quality parameters were measured twice. In the aged and the newly prepared test medium.

Samples of test solutions, including the control and the solvent control, were taken from alternating replicate test chambers on study Days 0 (new medium), 3 (aged and new medium) and 5 (aged medium) in order to measure actual test concentrations of Aclonifen.

Samples of newly prepared stock solutions were taken once during the test on study Day 0 and samples of aged stock solutions were taken on study Day 6 (corresponding to study Day 5 for all replicates C and D, because the were started with one day delay)

## 5. Statistics/Data evaluation

Biological data (embryo survival and hatching success) for the replicate test vessels of each concentration were grouped together for analysis. Replicate means were used for statistical analysis. For each parameter analysed the following statistical tests were conducted:

-Student t-test to determine if policites A-B of the diluent control and the solvent control could be pooled Q

-Shapiro Wilk-test procedure in order to sest the correspondence with normal distribution

-Levene -test to check homogeneity of variances

Control data (control and solvent control) were pooled if the t-test criteria were met.

The percent data were arcsine transformed before analysis.

The William's test on multiple pair-wise comparisons was used subsequently to determine a significant difference between the treatment groups and the control.

Statistical analyses were conducted using a PC-based computer program (TOXRAT<sup>®</sup> Professional Version 2, 50) developed by ToxRat Solutions GmbH, 52477 Alsdorf, Germany) with conclusions of statistical significance based on a 95% confidence level ( $\alpha = 0.05$ ).

## **II. RESULTS AND DISCUSSION**



#### ANALYTICAL VERIFICATION A:

Based on analytical measurements of the newly prepared test media recoveries between 111 and 146% of nominal were found. Regarding aged test media measured after 3 days or 2 days of use, respectively the mean measured values still reflecting well the nominal values, the recoveries ranged between 106 and 115% of nominal. Therefore, all reported results refer to the nominal concentrations of Acloniten.

Measured test concentrations from the exposure of Fathead minnows to Actorifen Table:

|                    |                                                                                                                                                                            |            |                                                                                                                                      |       | (( <                                                                            | 3      | - S                                                             |        | $\ll$        |              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|--------|--------------|--------------|
| Nominal            |                                                                                                                                                                            |            |                                                                                                                                      | Study | y Day 🚿                                                                         |        | Ø                                                               | 0      |              |              |
| Concentration      | 0 (fr                                                                                                                                                                      | esh)       | 3 (0                                                                                                                                 | old)  | ر (fr                                                                           | esh)   | . Õ <sup>∛</sup> 5 (o                                           | old) 🔬 | Ovecall      |              |
| (µg/L)             | μg/L                                                                                                                                                                       | %          | μg/L                                                                                                                                 | %     | <b>∭</b> g∕L                                                                    | %      | ∲µg/L                                                           | %      | µĝ∕ŧL        | ,0% ×        |
| Control            | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><b>LOQ</b></td><td>- 1</td><td>r <løq< td=""><td>Â</td><td><i>S</i>LOQ</td><td>- 4</td></løq<></td></loq<></td></loq<> | -          | <loq< td=""><td>-</td><td><b>LOQ</b></td><td>- 1</td><td>r <løq< td=""><td>Â</td><td><i>S</i>LOQ</td><td>- 4</td></løq<></td></loq<> | -     | <b>LOQ</b>                                                                      | - 1    | r <løq< td=""><td>Â</td><td><i>S</i>LOQ</td><td>- 4</td></løq<> | Â      | <i>S</i> LOQ | - 4          |
| Solvent<br>Control | <loq< td=""><td>-</td><td><loq< td=""><td>- @</td><td><loq< td=""><td>2ª</td><td>°≪¢OQ</td><td>or - S</td><td></td><td>J.</td></loq<></td></loq<></td></loq<>              | -          | <loq< td=""><td>- @</td><td><loq< td=""><td>2ª</td><td>°≪¢OQ</td><td>or - S</td><td></td><td>J.</td></loq<></td></loq<>              | - @   | <loq< td=""><td>2ª</td><td>°≪¢OQ</td><td>or - S</td><td></td><td>J.</td></loq<> | 2ª     | °≪¢OQ                                                           | or - S |              | J.           |
| 5.00               | 5.91                                                                                                                                                                       | 118        | 5.76                                                                                                                                 | 145   | 5,92                                                                            | ×114 A | 5.71                                                            | 114    | 5.78         | <u>a</u> 116 |
| 11.0               | 12.3                                                                                                                                                                       | 112        | 12.0                                                                                                                                 | 109   | ×12.9                                                                           | 117    |                                                                 | 1 12   | A12.4        | > 113 C      |
| 24.2               | 26.9                                                                                                                                                                       | 111        | 27.1                                                                                                                                 | 112 🦕 | ° 277                                                                           | 114    | 27.1                                                            | A112   | 27.2         | 1100         |
| 53.2               | 59.3                                                                                                                                                                       | 111        | 57.7 🔬                                                                                                                               | 108   | 60.7                                                                            | ©14    | £ 55.9 s                                                        | ₽ 105≪ | 58.4         | A\$0         |
| 117                | 129.0                                                                                                                                                                      | 110        | 121.                                                                                                                                 | Ł03⁄  | 1\$0.0                                                                          | 111    | D″128.@/                                                        | 109    | 127.0        | <b>S</b> 109 |
| I OO: Limit of Ou  | ntitation = (                                                                                                                                                              | ) 500 mg/I | Ð.                                                                                                                                   |       |                                                                                 |        |                                                                 |        | 0.9          |              |

LOO: Limit of Ouantitation = 0.500 mg/L

The validated method is summarised i

#### B: **BIOLOGICAL D**

Time to Hatch

Egg hatching began on study Day 3 (post hatch Day-1) and was completed on study Day 5 (post hatch Day 1) in all test levels, when all certilised and bying embryos successfully hatched. Start and end of hatching showed no significant difference compared to the pooled control data.

# Embryo Surviva / Hathing Succes

Post hatch Day 0 was reached of study Day when 99% of all prtilised and living embryos in the pooled controls had hatched on stary Day 4 (post hatch Day ) mean embryo survival / hatching success (based on the total number of inserted eggs) ranged overall between 87 and 93% and showed no significant difference in any est level compared to the pooled control data.

Sammary of embryo survival/hatehing success of Fathead Minnows exposed to Table: Aclonifen on study day 4 (post hatch day 0)

| Nomination<br>(µg/L) | Embryo Survival = Hatching Success<br>(Egg, Hatel() in %) | Hatching Success<br>(Egg Hatch <sup>2</sup> in %) |
|----------------------|-----------------------------------------------------------|---------------------------------------------------|
| 🙏 Control 🗸          |                                                           | 99                                                |
| Solvent Control      |                                                           | 98                                                |
| Solvent Control      | Q <sup>*</sup> 2 <sup>°</sup> 91                          | 99                                                |
| \$00 J               | × ~ ~ 87                                                  | 97                                                |
| £11.0 \$ C           | <sup>م</sup> <sup>°</sup> 93                              | 97                                                |
| 24 2 A               | \$ 87                                                     | 99                                                |
| ST \$9.2 \$ 23       | 90                                                        | 100                                               |
| \$ \$117 \$          | 88                                                        | 98                                                |

Egg Hateh 1 = hatch data (cumulative) =(no. of larvae)/(no. of inserted eggs on study Day 0)\*100

Egg Hatch 2 = hatch data (cumulative) =(no. of larvae)/(no. of living and fertilized eggs on Day 4)\*100



Based on statistical analysis of time to hatch and embryo survival / hatching success the NOEC was determined to be 117  $\mu$ g a.s./L, the highest concentration tested.

## C. VALIDITY CRITERIA

|                                                                                                | C                         |                           |
|------------------------------------------------------------------------------------------------|---------------------------|---------------------------|
| Validity criterion                                                                             | Required (OECD 210, 2013) | Achieved                  |
| Dissolved oxygen concentration (% ASV)                                                         | >60%                      | £ ≥83% £                  |
| Water temperature between test chambers or between successive days at any time during the test |                           | ±239°C*                   |
| Temperature range for test species                                                             | 2\$€1.5°€°                | 25±1.5°C                  |
| Analytical verification of test concentrations                                                 | Compulsory                | Yes V                     |
| Overall survival of fertilised eggs (control)                                                  | ° 57 - 70% x              | <u>≫</u> 98% √″           |
| Post-hatch success (control)                                                                   | <u>ک</u> 75%              | $0^{\circ}$ $1 \geq 90\%$ |
|                                                                                                |                           |                           |

\* The difference of water temperatures was in nearly all test devels higher than  $3.5^{\circ}$ C between the study day 0 and study day 1, since the preparation of test media on study day 0 has to be performed using slightly to cold drivent water due to time limitations. Water temperatures measured on study day 0 ranged between  $22.3^{\circ}$ C and  $23.2^{\circ}$ C for all test levels. After exposure in the temperature controlled room over night water temperatures ranged between  $24.3^{\circ}$ C and  $25.2^{\circ}$ C for all test levels on study day 1. This level of temperature was kept over the following days of exposure until test termination without any deviations, including the test mediau exchange on study day where  $5^{\circ}$ C-tumperated diluent water was used for the preparation of new test media. Since his deviation similarly affected at test levels and was onloobserved on one day, this deviation was regarded to have no relevance on the auther outcome of this study, because overall the development of embryos was not negatively influenced.

All validity criteria were satisfied and therefore this study can be considered to be valid.

## D. ΤΟΧΙCΙΩΫ́ ΕΝΦΡΟΙΜΫ́S

Table: Summary of endpoin

| Parameter 🖉 🔔                                  | Nominal Con                                        | centration (µg/L) |
|------------------------------------------------|----------------------------------------------------|-------------------|
|                                                | NOTEC S                                            | , LOEC            |
| Time to Hatch (study Day 3-5)                  | 0 <sup>°</sup> 2 <sup>°</sup> 117 4 5 <sup>°</sup> | > 117             |
| Embryo Survival Hatching Success<br>(study Day |                                                    | > 117             |
|                                                |                                                    |                   |

## MI. CONCLASION

Based on Statistical analysis of time to hatch and embryo survival / hatching success, Aclonifen was shown to have no effect at concentration up to and including 117  $\mu$ g a.s./L, the highest concentration tested.

(2011)

Assessment and conclusion by applicant:

All validity generia avere satisfied and therefore this study can be considered to be valid.

Actinifen was shown to have no effect on time to hatch and embryo survival / hatching success at concentrations up to and including 117  $\mu$ g a.s./L, the highest concentration tested. Correspondingly, the NOEC was determined to be 117  $\mu$ g a.s./L.

Due to the lack of significant effects,  $EC_{10}$  and  $EC_{20}$  values were not able to be calculated.



| Assessment and conclus                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Point:                             | KCA 8.2.2.1/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Author:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title:                           | Early life stage toxicity test with fathead minnow (Pimephales prometas) under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | continuous flow through conditions and pulsed exposure Aclopten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report No:                              | EBCL0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Document No:                            | M-626723-01-1 & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Guideline(s) followed in                | Test conditions following QECD 240 (2013).<br>Guideline for Testing of Gremicals – Fishcearly, life stage, toxicity test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| study:                                  | Guideline for Testing of Gremicals – Fishearly life stage toxicity test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deviations from current                 | Current Guideline: OECD 210, 2013 🖉 🦪 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| test guideline:                         | None of the of the second seco |
| Previous evaluation:                    | No, not presedusly submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GLP/Officially                          | Yes, conducted under GLP/Officially recogniged testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability:              | Yes & O & A & S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Executive Summary

A Fish Early Life Stage (FELS) Toxicity Dest was performed to identify potential adverse effects of aclonifen to Fathead minnow (*Pimephales promelas*) following a continuous and a pulsed exposure to the test item.

The first approach was applied as continuous expressive with the goal to record and assess the effects of aclonifen to fish early life stages compared to existing data, including survival and growth. Five test concentrations of the test item were applied, 2,56, 6,40, 16,40 and 100  $\mu$ g aclonifen/L. In this continuous exposure setup, the eggs and larvae remained constantly exposed to the test item throughout the test period.

In the second part #2 of the study, a pulsed exposure scenario was applied at three concentration levels of the test item, 129, 250 and 500  $\mu$ g ccloniten/L. The pulses were set as precisely as possible by transferring the frv chambers holding the larvae from the vessels containing the test substance to dilution water only and vice versa. Four dilution water control vessels were run in parallel to the treatment vessels. Within the controls, the same transfer procedures were applied as set for the treatment concentrations.

The first pulse was initiated at the day of fertilization (day 0) and was applied until 24 hours after hatch was completed (>90%) in controls. The first pulse was followed by a recovery period of 7 days where only dilution water was applied. The second peak was applied for 24 hours only. After completion of the second peak, the larvae were kept unexposed in dilution water under flow through conditions until test end.



The concentrations of the test item aclonifen were assessed by chemical analysis using LC/MSMS. The LOQ was set to 1.5  $\mu$ g aclonifen/L. At test start, samples were taken from all test vessels in order to confirm correct dosing of the flow through device.

## Continuous exposure

Mean measured concentrations in the test vessels of aclonifen treatments were calculated to be between 85.3% and 142.6% of the nominal concentrations. The mean measured concentrations of the single treatment steps were determined to be between 92.7 and 122.0% of the nominal concentrations. The mean measured concentrations were calculated to be 2037, 7.22, 19.5 42.5 and 106 µg actionifent. As the mean measured test concentrations deviated by more than 20% of the nominal test concentrations the evaluation of biological effects was based on the arithmetic mean measured concentrations.

Hatch of larvae was total in controls. No dose related impact could be observed. Post hatch survival was determined to be  $\geq$  90% in controls. Post hatch survival after 35 days, i.e. at test end, was significantly reduced at 105.8 µg aclonifen/L (NOEC: 42.5 µg aclonifen/L)

No substance related impact on individual length as well as w

## Pulsed exposure

The pulsed mean measured concentrations were 103, 210 and \$08 kg aclenifen/L at nominal concentration levels 125, 250 and 500 µg/L, espectively.

No dose related impact on hatch could be observed. A significant decrease of post hatch survival rates after 35 days pf could be observed at 103, 210 and 508 µg adonifer/L (NGEC: < 103 µg aclonifen/L). Furthermore, the post batch survival rates decreased in a dose dependent manner. The maximum of mortality occurred within the first 14 days of inflife phase, thus, was clearly related to the aclonifen exposure. After 21 days no further mortality of fish occurred.

Sufficient growth of knyae and juvenile fich could be confirmed for control fish. Although fish growth was impacted within the pulsed exposure period, finally, a recovery of growth performance could be observed for treated fish groups kept in dilution water until the end of the test period.

Finally, no substance related impact on individual length as well as wet and dry weights could be detected. Thus, the NOEC for fish growth was determined to be  $\geq$  508 µg aclonifen/L. Due to an effect size for by mortality of already 47.9% compared to control at the lowest test concentration, it was not possible to derive an EC<sub>10</sub> and EC<sub>20</sub> for this parameter.

## Conclusion

All results reparding biological effects following continuous and pulsed exposure to the test item are summarized in the following table:

 Summary of effects during the time course of the study (based on mean measured concentrations of aclonifen)

| Parameter                       | Continuous exposure<br>NOEC | Pulsed exposure<br>NOEC |
|---------------------------------|-----------------------------|-------------------------|
| Hatching success                | ≥106 μg/L                   | >508 µg/L               |
| Post-hatch survival at test end | 42.5 µg/L                   | <103 µg/L               |



| Individual length at test end                                                                    | ≥106 μg/L                                         | >508 µg/L                                                                |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|
| Individual weight at test end                                                                    | ≥106 μg/L<br>≥106 μg/L                            | >508 μg/L<br>>508 μg/L @/ 🕵                                              |
| individual weight at test end                                                                    | <u>-100 μg/L</u>                                  | <u> </u>                                                                 |
| It was not possible to determine EC                                                              | $_{10}$ or EC <sub>20</sub> values from the gener | rated data. 💊                                                            |
| · ·                                                                                              | MATERIALS AND METHO                               | >508 μg/L<br>>508 μg/L<br>ated data.                                     |
|                                                                                                  | WATERIALS AND WEITIO                              |                                                                          |
| A. MATERIALS                                                                                     | (ČA)                                              |                                                                          |
| 1. Test Item:                                                                                    | Aclonifen 🚿                                       |                                                                          |
| Batch no.:                                                                                       | AE F068300-01-15                                  |                                                                          |
| Purity:                                                                                          | 99.5% w/w                                         |                                                                          |
| Appearance:                                                                                      | Yellow crystalline solid                          |                                                                          |
| Date received:                                                                                   | 15 June 2016                                      |                                                                          |
| Storage:                                                                                         | $25^{\circ}C_{\pm}\pm 5^{\circ}C_{\mp}$           |                                                                          |
| Expiry date:                                                                                     | 15 February 2018                                  |                                                                          |
|                                                                                                  |                                                   |                                                                          |
| 2. Test Organism:                                                                                | Pathead mintow (Phinephate                        | s provelas)                                                              |
| Age:                                                                                             | Freshly fertilised eggs, loss th                  | han 24 hours old at the start of the                                     |
| Source:                                                                                          |                                                   |                                                                          |
| Source:                                                                                          |                                                   |                                                                          |
|                                                                                                  |                                                   |                                                                          |
| Source:<br>3. Test water:<br>Havdness:<br>B. STUDY DESIGN AND<br>1. In-life phase;               |                                                   | W Se'                                                                    |
|                                                                                                  |                                                   |                                                                          |
| ST ST ST                                                                                         |                                                   | y _Q                                                                     |
|                                                                                                  |                                                   |                                                                          |
| 3. Test water: S                                                                                 | Purified tap water was used a                     | acording to the OECD-Guideline                                           |
|                                                                                                  | 270 8 0                                           |                                                                          |
| Hardness:                                                                                        | $\sqrt{1.1} - k2 \text{ mmol/L} \sqrt{1.0}$       | <i>"</i>                                                                 |
|                                                                                                  | 270 07 07 07<br>M.1 – k2 mmol/L 27 07             |                                                                          |
| Hardness:<br>B. STUDY DESIGN AND<br>1. In-life phase:<br>2. Exposure conditions<br>Test vessels: | ETHODS<br>September – 36 October 2017             |                                                                          |
| <b>1. In-life phase:</b>                                                                         | September – 36 October 2017                       |                                                                          |
| ¥ * .0 ~.                                                                                        |                                                   |                                                                          |
| 2. Exposure conditions                                                                           |                                                   |                                                                          |
| Test vessels:                                                                                    | Glass aquaria with a tota                         | l volume of 12 L filled with                                             |
|                                                                                                  | approximately 10 L of test                        | medium. At test start, each test                                         |
|                                                                                                  | yessel was equipped with a f                      | ry cage, being an analytical sieve<br>eter of 10 cm and a brim height of |
|                                                                                                  | y of stateliess steel with a diamo                | etter for 10 cm and a orim neight of                                     |
|                                                                                                  | Fach replicate group kent in                      | ottom had a mesh width of 355 μm.<br>n an individual fry cage. The fry   |
|                                                                                                  | cages in the nulse setup way                      | s equipped with a flat petri dish.                                       |
|                                                                                                  | Placing the cage in a dish pres                   | vented dry fall of larvae during the                                     |
| 2. Exposure conditions<br>Test vessels:                                                          | transfer procedure.                               | vented dry fan of fai vae during the                                     |
| © <sup>∞</sup><br>Kynerimental design•                                                           | Continuous exposure · Five n                      | ominal test concentrations of 2.56,                                      |
| Baper intental design.                                                                           |                                                   |                                                                          |

6.40, 16, 40 and 100  $\mu$ g aclonifen/L plus a control.



Pulsed exposure: Five nominal test concentrations of 125, 250

, gen saturation , gen saturation 16 h light: 8 h dirk Approximately 1000 lux ...unistration of the test item Dose preparation For preparation of the test media, a primery stock solution was prepared. An appropriate amount of test item was weighed out and was dissolved in diffution value. Appropriate amount of test item was weighed out and was dissolved in diffution value. Approximately 1000 lux was prepared and was treated by plrasonification overnight. Of rasonification of Libour duration w-pplied, followed by 2 hours with no treatment, followed by foour treatment, and of forth. Th-ock solution was acidified before ultrasonic treatment in order to increase test frem fer overnight treatment, a secondary stock was prepared by transferr-ss bottle. The bottles were pig-filled with of uni-vadded. Afterwards the bottle was filled with of uni-bottles were placed on a magnetic sin-ndary stock solutions were tra-; solutions served as -; is with of the test increase in an appreciase increase incr

To achieve the final concentration in the test vessels, the application solutions were mixed with dilution water in adequate volumes via dosing pumps

## Dosing system

Controls and all test Sucentrations were run in 4 Peplicare aquaria, each. For each treatment plot, an individual dosage system onsisting of two dosage pumps was used. Dilution water was pumped by a water dosage pump (membrane pump prominent, Heidelberg, Germany) into a mixing chamber, placed on a magnetic stirrer An adequate amount of the stock solution was added into the magnetic stirrer via a stock solution dosage pump (membrane pump with a stainless steel head, Prominent, Heidelberg, Germany). The prepared test solution flows into the test vessels via flexible tubes, distributed to the four vessels by an electronically egulated distributor driven by compressed air. The dilution water control was served by dilution water only. For every test vessel an appropriate water flow rate was adjusted. A daily exchange rate of 50 volumes per vessel and day was applied.

## Pulsed exposure

For the pussed exposure, the pulses were set as precisely as possible by transferring the fry chambers holding the larvae from the vessels containing the test substance to dilution water only and vice versa.

The first pulse was initiated at the day of fertilization (day 0) and was applied until 24 hours after hatch was completed in controls. Hatch completion of  $\geq$  90% of living eggs was achieved at 6 dpf. Thus, the



first peak was finished after 7 days. The first peak set was followed by a recovery period of 7 days where only dilution water was applied. The second peak was applied at 14 dpf for 24 hours only. After completion of the second peak (15 dpf), the larvae were kept unexposed until test end.

## 4. Test organism assignment and treatment

At test start, 20 fertilized and randomized eggs were placed on stainless steel nets forming the bottom of fry cages fixed at the water surface of each test vessel. Each aquarium was equipped with one cage 80 eggs (i.e. 4 x 20) were used for each test concentration

## 5. Measurements and observations

One day after hatch of first larvae (e.g. from 7 dppon (dpf = days post fertilization)) larvae were fed once daily with ground breeding food (TetraMin® Baby, Tetra Werke, Melle, Gennary) and 24 f old brine shrimp nauplii (Artemia salina).

From day 14 (dpf) on, ground TetraMin® flakes were added once daily to the fish feed. Visual assessment of feeding (qualitative, and manifative estimate of feeding take during the in-fife phase) was performed on each working day. After two weeks of exposure, the fish were transferred from the fry cages to the main water body of the test aquaria. In the continuous exposure conditions, fish farvae were held in fry cages until day 16 pf. For the pulsed exposure, the fish larvae were transferred on day 15 dpf, i.e. after the end of the second peak exposure. The fish larvae were transferred to the main vessel to ensure undisturbed growth of the animals up to test end.

Qualitative observations on hatching and survival were made daily. Dead embryos, larvae and juvenile fish were removed as soon asobserved. Observations on abnormal appearance of behaviour were made daily, too.

After 16, 21, 28 and 35 dpf (continuous exposure), and after 15, 21, 28 and 35 dpf (pulsed exposure), larvae/juvenile fish overe photographed and the survivar rates as well as the individual lengths of the animals were determined. The pictures were assessed using digital image processing software (UTHSCSA ImageToo) Version 3.0; University of Pexas Health Science Center at San Antonio, USA).

At test end, the remaining fish of each test vessel were plotted dry and the individual wet weight of each fish were measured using an analytical balance. Afterwards they were dried overnight in a cabinet dryer. The group dry weight was measured using an analytical balance. The single dry weight per fish was calculated by dividing the group dry weight by the number of surviving fish at test end.

## 5. Statistics/Data evaluation

For each endpoint, the NOEC was determined All statistics were calculated using ToxRat<sup>®</sup> Professional 3.2.1.

For NOEC / LOEC determination, quantal data were arcsine-transformed prior to analysis. No Observed Effect Concentrations (NOEC) were calculated, using ANOVA, followed by Dunnett's, or Williams test or respective non-parametric approaches (e.g. Jonckheere- Terpsta test).

In the continuous exposure, the observed dose response relationship did not allow a suitable regression analysis. Sig. probit analysis. In the pulsed exposure, the maximum effect size of the most prominent effect, i.e. reduction of post hatch survival, was already about 40% compared to control. Thus,  $EC_{10}$  and  $EC_{20}$  could not be derived.



## **II. RESULTS AND DISCUSSION**

## A. ANALYTICAL VERIFICATION

In the continuous exposure, mean measured concentrations in the test vessels of aclonifen treatments were calculated to be between 85.3% and 142.6% of the nominal concentrations. The mean measured concentrations of the single treatment steps were determined to be between 92.7 and 122.0% of the nominal concentrations. The mean measured concentrations were calculated to be 2.37, 7, 22, 193, 42, 5 and 106 µg aclonifen/L.

The measured test concentrations deviate by more than 20% of the nominal test concentrations. Thus, the evaluation of biological effects was based on the arithmetic mean measured concentrations.

| Table: | Mean measured to   | est | concentrations | from 4 | re con | tinugus                                | expo | sure of | Fath | ead |
|--------|--------------------|-----|----------------|--------|--------|----------------------------------------|------|---------|------|-----|
|        | minnows to Aclonif | fen | Ő "C           | y s    | Å      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Å    | 1       | 4    | 0   |

| Nominal Concentration        | Mean Measured Concentration % Nombral |
|------------------------------|---------------------------------------|
| (µg/L)                       | μg/kg SD SD Concentration             |
| Control                      |                                       |
| 2.56                         | 2.37 0° ° 0,2 ° 5° 5° 92.7°           |
| 6.40                         |                                       |
| 16.0                         | 2 19,5 0 2 4, 3.6 v 122.0             |
| 40.0                         | * & 42.5 ° * ~ ~ 4 6 ° * 106.2        |
| 100 %                        | \$ 106 \$ \$ 11.3 \$ \$ 105.8         |
| I OO = Limit of Quantitation |                                       |

LOQ = Limit of Quantitation = 1.5 L

For the pulsed exposure samples from all test vessels were taken at start and end of each peak. Additionally, samples of water only vessels were taken after the transfer in order to confirm the absence of the test item.

A final sampling of the water-only vessels was performed at test end. After transfer to the water only vessels of non-monomial values and the should have only minor impact. The pulse mean measured concentrations were 193, 210 and 508 µg actonifed/L at nominal concentration levels of 125, 250 and 500 µg/L, respectively.

No aclonifan was found after the second transfer and of the end of in-life phase.

 Table: Image: Table and the structure of th

| Nominal Concentration 🖉 🖉 Mean Measured (      | Concentration | % Nominal     |
|------------------------------------------------|---------------|---------------|
| (µg/Lo A D A D A C A C A C A C A C A C A C A C | SD            | Concentration |
| Control 2 - Control                            | -             | -             |
| Q125 Q 2 103                                   | 6.8           | 82.4          |
| 250° A 210                                     | 19.8          | 84.0          |
| 508                                            | 28.5          | 101.5         |

 $LOQ = Light of Quantitation = 1.5 \mu g/L$ 

The validated method is summarised in Document M-CA4 (CA 4.1.2/77).



## B. BIOLOGICAL DATA

## Continuous exposure

Hatch of larvae started after day 4 post fertilization (pf). Mean hatching rates >90% in control and in treatment groups were achieved after 6 days pf.

In the treatment concentrations, a slight decrease of survival rates could be observed. However, Scleary dose-relationship could not be detected.

Post hatch survival after 35 days, i.e. test end, were significantly reduced at concentration of 106  $\mu$ g aclonifen/L (NOEC = 42.5 g aclonifen/L)

Due to the lack of a clear dose response relationship, it was not possible to calculate an EC  $\alpha$  and  $\beta$  for any of the biological parameters.

No substance related impact on fish length could be observed (NQEC  $\geq$  106 µg acloni(n/L) for impact on individual wet and dry weight could be detected (NQEC  $\geq$  006 µg acloni(n/L)  $\ll$ 

| Mean<br>Measured<br>Concentration<br>(µg/L) | Hatching<br>success<br>(%)        | Post hatch<br>wurvivato<br>(%) | Fotal length, A                   | Wetweight<br>(mg) | Dry weight<br>(mg) |
|---------------------------------------------|-----------------------------------|--------------------------------|-----------------------------------|-------------------|--------------------|
| Control                                     | 10000                             | <b>\$0</b> .0                  | 1.95                              | S 7671 S          | 17.2               |
| 2.37                                        | 100.0                             | 67.5                           | 0 <sup>°</sup> 2,0 <sup>°</sup> ( | لاي 1.0 ي         | 20.5               |
| 7.22                                        | J00.0                             | × 73.8                         | 2.04                              | \$ 89,37          | 20.0               |
| 19.5                                        | 92,5                              | S ~ 5.4 ~                      | ♪ 1.97 <sub>0</sub>               | 87.7              | 19.5               |
| 42.5                                        | \$ <sup>5</sup> 8 <sup>9</sup> .8 | 78.6                           | ~~ 1. <b>95</b>                   | .~\$79.4          | 17.3               |
| 106                                         | Q700.0                            | o <sup>™</sup> 62,50° , <      | × 51.88                           | 70.2              | 15.5               |

## Table: Summary of effects from the continuous exposure of Fathead minnows to Aclonifen

<sup>1</sup>: Significant reduction compared to control. Jouckheere Ferpstraftest, p>0.05, one-sided smaller

## Pulsed exposure

Hatch of larvae started after day Apost fertilization (pt). Mean hatching rates of  $\geq 85\%$  in controls and in treatment groups were achieved after 6 days pf. As 90% batch in controls was observed on day 6 pf, the first exposure pulse was this of on day 7 pf Following a 7-day recovery where all larvae were placed in diffusion water, the second pulse was set on day 14 pf and was finished at day 15 pf.

Post hatch survival was first recorded on dat 15 pf before the fish were transferred to the main water body of the test vessels. Post hatch survival in controls was determined to be 87.4% for day 15 pf and decreased to 84.8% at test end.

In the treatment concentrations, a clear decrease of survival rates could be observed. Furthermore, post hatch survival decreased in a dose dependent manner.

The maximum of mortality occurred within the first 14 days of in life phase, thus, was clearly related to acloniten exposure. After 21 days, no mortality of fish was observed.

Post hatch survival after 35 days, i.e. test end, were significantly reduced to 51.1, 32.6 and 16.3% at mean measured concentrations of 103, 210 and 508  $\mu$ g aclonifen/L, respectively, (NOEC < 103  $\mu$ g aclonifen/L).



Due to an effect size for fry mortality of already 47.9% compared to control at the lowest test concentration, it was not possible to derive an  $EC_{10}$  and  $EC_{20}$  for this parameter.

Length measurements on day 15 revealed a significant decrease at 508 µg aclonifen/L (NOEC: 20 µg aclonifen/L). The following length measurements on day 21 pf revealed a significant decrease at 200 and 508 µg aclonifen/L (NOEC: 103 µg aclonifen/L). On the following dates of measurement, no impact on fish length could be found. A NOEC for fish length at  $\geq$  508 µg aclonifen/L was determined it can be postulated, that the remaining fish recovered from acconifen exposure in the non-exposure phase following day 15 pf.

No substance related impact on individual wet and dry weight could be detected growth was determined to be  $\geq 508 \ \mu g$  aclonifen

| Mean<br>Measured<br>Concentration<br>(µg/L) | Hatching<br>success<br>(%) | Post fratch                   | Total length,       | Wet Fight | Dryweight |
|---------------------------------------------|----------------------------|-------------------------------|---------------------|-----------|-----------|
| Control                                     | 97.5                       | L 8408 ~                      | × ×2.15 ~           | 8 103 ×   | 3.6       |
| 103                                         | 88.8                       | Ø <b>€</b> 1.1 <sup>1</sup> Ø | 2.22                | 0 108.5 V | *≫26.4    |
| 210                                         | 95.0                       | 32.61                         |                     | 112.4°    | 26.4      |
| 508                                         | 85.0 %                     | & 163 <sup>4</sup> &          | <sub>0</sub> 2.44 × | 15404     | 38.4      |

#### Summary of effects from the pulsed exposure of Fathead minnows to Actonifen Table:

<sup>1</sup>: Significant reduction compared to control. Walliams (5, p>0.05, one-sided smaller VALIDITY RITERIA

### С. VALIDITY CRITER

|                                                   | Required                                 | Achieved                |          |
|---------------------------------------------------|------------------------------------------|-------------------------|----------|
| Validity criterion                                | (OECD 210, 2013)                         | <sup>©</sup> Continuous | Pulsed   |
|                                                   |                                          | exposure                | exposure |
| Dissolved oxygen concentration (% ASV)            |                                          | ≥86%                    | ≥77%     |
| Water remperature between test hambers or between | <sup>™</sup> √ <sup>×</sup> 0<br>+1 5¢99 | <1.0°C                  | <1.0°C   |
| successive days at any time during the test O     | ±1.5°C                                   | <1.0 C                  | <1.0 C   |
| Temperature range for test species                | 25⊕1.5°C                                 | 25±1.2°C                | 25±1.3°C |
| Analytical verification of test concentrations    | <b>Compulsory</b>                        | Yes                     | Yes      |
| Overall survival of fertilised@ggs (control)      | ⊘ ≥70%                                   | 90%                     | 97.5%    |
| Post-hatch-success (control)                      | ≥75%                                     | 90%                     | 84.8%    |
|                                                   | Y                                        |                         |          |

were satisfied and therefore this study can be considered to be valid. All *kalidity* criteria

#### Y.ENDPØINT D.

#### ummary opendpoints Table:

| Parameter S                     | Continuous exposure<br>NOEC | Pulsed exposure<br>NOEC |
|---------------------------------|-----------------------------|-------------------------|
| A Hatching success              | ≥106 µg/L                   | >508 µg/L               |
| Post-haten survival at test end | 42.5 μg/L                   | <103 µg/L               |
| Individual length at test end   | ≥106 µg/L                   | >508 µg/L               |
| Individual weight at test end   | ≥106 µg/L                   | >508 µg/L               |



It was not possible to determine  $EC_{10}$  or  $EC_{20}$  values from the generated data.

## **III. CONCLUSION**

The early life stages of fathead minnow (Pimephales promelas) were examined under flow through conditions and exposure to aclonifen. The study was performed at five test concentrations under continuous exposure and at three concentrations applied in a pulsed exposure design with two pulses (1<sup>st</sup> pulse from test start to 24 hours post hatch, 2<sup>nd</sup> pulse starting at approximately 15 (i.e. the end of the 1<sup>st</sup> pulse) days post fertilization (dpf) for 24 bours).

## *Continuous exposure*

Hatch of larvae was total in controls. No dose related impact could be observed for determined to be  $\geq$  90% in controls.

Post hatch survival after 35 days, i.e. at test end was significantly reduced at a mean measured concentration of 106 µg aclonifen/L (NOEQ: 42,5 @g aclonifen/L).

eight could be detected Thus, No substance related impact on individual length as well as wet and dry the NOEC for growth was determined to be 106 up aclosifen/I

Due to the lack of a clear dose response relationship, it was not possible to calculate an  $EC_{50}$  for any of the biological parameters

## Pulsed exposure

No dose related impact on hatch could be observed.

A significant decrease of survival rates could be asserved at mean measured concentrations of 103, 210 and 508 µg aclonifen/L (MOEC 2 103 µg aclonifen)L). Furthermore, the post hatch survival rates decreased in a dose dependent manner.

The maximum of mortality occurred within the first 14 ways of m-life phase, thus, was clearly related to the aclonifien exposure. After 2 Clays to further mortality of fish occurred.

Sufficient growth of tarvae and juvenile fish could be confirmed for control fish. Although fish growth was impacted within the pulsed xposure period, finally, a recovery of growth performance could be observed for treated fish groups kept or dilution water until the end of the test period.

Finally, no substance related impact on individual length as well as wet and dry weights could be detected. Thus, the NOEC for fish growth was determined to be  $\geq$  508 µg aclonifen/L.

For post hatch survivation day 35 pt, due for an effect size for fry mortality of already 47.9% compared to control at the lowest test concentration, if was not possible to derive an EC10 and EC20 for this parameter.

(2018)

## Assessment and conclusion by applicant:

All validity criter were vatisfied and therefore this study can be considered to be valid.

Mean measured concentrations in the continuous exposure scenario ranged from 92.7 to 122.0% of Guideline recommendations are that measured concentrations should be used where nominal. measured test concentrations deviate by more than 20% of nominal concentrations. However, in this



instance statistical analyses were conducted using nominal concentrations. As measured concentrations were typically higher than nominal then basing statistical analyses on nominal concentrations represents a 'worst-case' outcome. In the continuous exposure scenario, aclonifen was shown to have no effect on hatching success or growth at concentrations up to and including 106 μg a.s./L, the highest concentration tested. Correspondingly, the NOEC for these parameters was determined to be 106 μg a.s./L Effects on post-hatch survival were observed and the NOEC for this parameter was determined to be 42.5 μg a.s./L. In the pulsed exposure scenario, aclonifen was shown to have no effect on hatching success or growth at concentrations up to and including 508 μg a.s./L, the highest concentration tested. Correspondingly, the NOEC for these parameters was determined to be 508 μg a.s./L. Significant effects on post-hatch survival were observed and the NOEC for this parameter was determined to be 508 μg a.s./L. Significant effects on post-hatch survival were observed and the NOEC for this parameter was determined to be 508 μg a.s./L. Significant effects on post-hatch survival were observed and the NOEC for this parameter was determined to be 508 μg a.s./L.

| Data Point:     KCA(8.2.2.1/64     A     A     A     A     A       Report Author:     Image: Comparison of the second                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Data Point: KCA48.2.2.1/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Data Point:     KCA48.2.2.1/64       Report Author:     Image: Construction of the second se |
| Report Year: $2020 \sqrt{2}$ $Q_1$ $Z_2$ $Q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Report Year:     2020       Report Title:     Aclonich: Re-ovaluation of carly life stage (ELS) toxicity studies with aclonifen and tathead minnow. Pimephales promelas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and fathead minnow. Pimephales promelas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Report No: 0 VC/19/016/01 0 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report Title:       Acloniten: Re ovaluation of carly life stage (ELS) toxicity studies with aclonifen and fathead minnow Pimephales promelas         Report No:       VC/19/016/01         Document No:       W-676414-01-1         Guideline(sofollowed in study:       W         Deviations from current test guideline:       W         Previous evaluation       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Guideline Sofollowed in , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| study: A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deviations from current +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| test guideline: $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report No:       VC/19/016/01         Document No:       W-676414-01-1         Guideline(%) followed in study:       W-676414-01-1         Deviations from current test guideline:       W-676414-01-1         Previous evaluation:       W-676414-01-1         GLP/Officially       W-676414-01-1         GLP/Officially       W-676414-01-1         Acceptability/Reliability       W-676414-01-1         Executive Summary       W-676414-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GLP/Officially Conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| recognised testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Acceptability/Reliability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Executive Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Two fish carly the stage toxicity tests with a clonifen have been conducted, together with an additional bespoke study designed to determine the toxicity of a clonifen to the embryo and egg hatching life stage of fathead minnow, *Pimephales promelas*. The first study (1992) and was completed in 1997, M-174931-01-1) was conducted according to OECD test guideline 210 (1992) and was completed in 1997. The second study (1997), 2018, M-626723-01-1) was conducted according to OECD test guideline 210 (2013) and was completed in 2018. An additional bespoke study (1997), 2011 M-408628-01-1) was designed to



2020)

follow as closely as possible several internationally accepted guidelines including OECD test guideline 210 (1992).  $\mathbb{Q}_{p}^{\circ}$ 

The data generated in these studies have been re-evaluated to define an appropriate regulatory evaluation for the risk assessment of aclonifen in aquatic organisms.

The study by (2018) followed the current OECD test guideline, adopted 2013, and all validity criteria laid out in the current guideline were satisfied. Additionally, the struct design perpetted adequate statistical analysis be conducted in order to detect changes of biological importance. The endpoints determined in this study are therefore suitable for risk assessment pupposes.

Based on the current re-evaluation, this study should be considered the key study for a clonifen and the endpoint for risk assessment should be 42.5 µg actionifen/L, depived from post-hatch survival.

Sufficient deviations were identified in the earlief study (1997) for the study to be considered unreliable. This study is therefore considered to be a supplementary study.

Assessment and conclusion by applicant:

The re-evaluation of the available study data is considered to be acceptable and hence the conclusions drawn are considered to be valid.

The No Observed Effect Concentration of 42.5 µg aclonifen/L, derived from post-hatch survival is therefore considered the relevant chronic fish endpoint to be used for risk assessment purposes.

Assessment and condusion by RMS!

# CA 8.2.2.2 Fish full life cycle test

No data submitted. While the broconcentration factor (BCF) of a clonifen was determined to be > 1000, the time required to reach 95% deputation was determined to be less than 14 days (BCF = 1349 L/kg,  $t_{95D} = 7.38$  days, see section CA 32.2.303). In addition, the LC<sub>50</sub> for a clonifen was determined to be > 0.1 mg/s (LC<sub>50</sub> = 0.67 mg/L see section CA 8.24/01). A fish life cycle test with a clonifen is not therefore required.

CA 8.2.2.3 Bioconcentration in fish



| Data Point:                | KCA 8.2.2.3/01                                                                  |    |
|----------------------------|---------------------------------------------------------------------------------|----|
| Report Author:             |                                                                                 |    |
| Report Year:               | 1995                                                                            | ð, |
| Report Title:              | Aclonifen: Bioconcentration of (14C)-Residues in Rainbow Trout                  |    |
| Report No:                 | R007430                                                                         |    |
| Document No:               | M-174910-01-1                                                                   |    |
| Guideline(s) followed in   | OECD: 305E                                                                      |    |
| study:                     |                                                                                 |    |
| Deviations from current    | Current Guideline: OECD 305-I, 2012                                             | Ø  |
| test guideline:            | BCFk was not corrected for fish growth. Lipid content of fish pot determined no | Ş  |
|                            | npid concertion of Ber. Variation in measure concentrations exceeded ±200c      | Ŷ  |
| Previous evaluation:       | yes, evaluated and accepted Q                                                   |    |
|                            | Source: Study list relied upon, December 2011 (RSAS: DE)                        |    |
| GLP/Officially             | Yes, conducted under GEP/Officially recognised testing facilities               |    |
| recognised testing         |                                                                                 |    |
| facilities:                |                                                                                 |    |
| Acceptability/Reliability: | Supportive only A O Q Q O Q                                                     |    |
|                            |                                                                                 |    |

#### **Executive Summary**

The bioconcentration and deputation of (14 aclonifen was determined in edible, nonedible and whole rainbow trout tissues using a flow proughtest system.

The fish were continuously exposed to  $({}^{14}C)$  containing at a mean measured concentration of 26.9 µg/L for a period of 28 days. Thereafter, the fish were transforred to clean tanks containing dilution water only for a depuration period of 20 days.

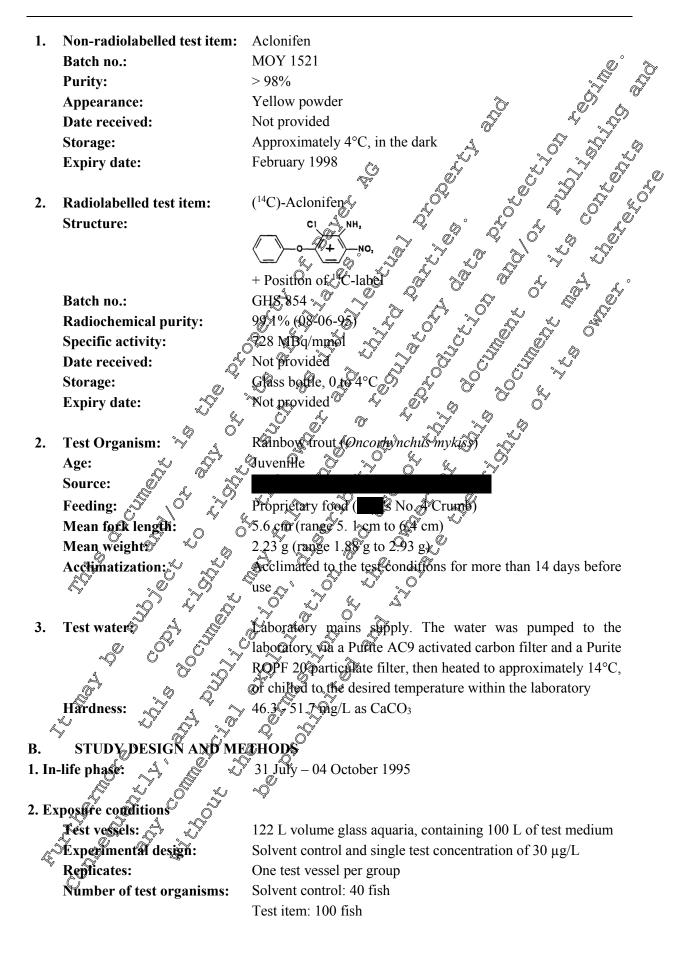
The range of ( ${}^{1}$ C)-residues in fish tissues from Day 10 to Day 28 of uptake were 31.35 to 46.0, 72.7 to 102 and 49.1 to 77.9  $\mu$ g/g for edible, non-edible and whole fish tissues/respectively.

After two days of depuration (since transfer of fish to clean tanks and dilution water only), approximately 45% (4.2  $\mu$ s/g), 50% (36  $\mu$ g/g) and 46% (22  $\mu$ g/g) of the (<sup>14</sup>C)-residues, relative to those residues at the end of the uptake phase, were detected in edible, non-edible and total fish tissues.

By the end of the 20 Day depuration period, 0.9% ( $0.271 \ \mu g/g$ ), 1.2% (0.840  $\mu g/g$ ) and 1.0% (0.479  $\mu g/g$ ) of the ( $^{\circ}C$ )-residues remained in edible, non-edible and total fish tissues, relative to those residues at the end of the uptake phase 4

The time taken for 50% of the ( $^{14}$ C) residues to be Diminated from fish tissues were 1.9, 2.3 and 2.0 days for exible, non-edible and whole fish tissues. The corresponding 95% elimination values were 8.3, 9.7 and 8.8 days.

Static bioconcentration factors (BCF's) for the uptake period of 10 to 28 days ranged from 1165 to 1710, 2703 to 3792 and 825 to 2896 for edible non-edible and whole fish tissues respectively.


The kinetic bic oncentration factors (BCF<sub>k</sub>) were 1369, 3344 and 2248 for edible, nonedible and whole fish the successful to the second seco

Ĉ<sup>0</sup>

#### I. MATERIALS AND METHODS

A. MATERIALS







| Temperature:      | 12.0 – 14.2 °C |
|-------------------|----------------|
| рН:               | 7.4 – 7.9      |
| Dissolved oxygen: | 62 – 100% ASV  |

#### 3. Administration of the test item

#### Dose preparation and dosing

A radiodilution of aclonifen was prepared by mixing non-adiolabelled and (<sup>14</sup>C)-aclonifen as a nombrain ratio of 8.9/1 w/w (non-radiolabelled) radiolabelled) radiolabelled) radiolabelled and HPLC grade acetone. The total parget  $\bigcirc$ concentration of aclonifen in the radiodilution was 4.2 mg/mC. The radiodilution was stored and approximately -20°C until use. The target specific radioactivity in the radiodilutions was 7.5 µCi/mg.

Every day during the uptake phase two volumes of a  $\sqrt{7}$  mg/L (nominal) ( $\sqrt{2}$ )-actionifen stock solution were prepared by the addition of a volume of the radiodilution (as above) to 6 L of mains treated water. The solution was swirled then the mixing vessel topped up to the correct stock solution volume of  $\sqrt{2}$  L. The mixing vessel contents were connected during their period of use in the test system. The nominal target exposure concentration of aclouifen in the test medium was 30 µgL.

#### Test apparatus

The dilution water and prepared solvent stock solutions of the test dem were pumped into the test vessels by means of Watson Marlow peristaltic pumps of the nominal flow rates of the dilution water and the stock solutions of the test item were 335 mL/min and 15 mL/min respectively.

Following the completion of the exposure phase, the fish were transferred to clean tanks, pre-filled with clean dilution water. Throughout the deputation phase the diluent pumps were adjusted to deliver an additional 15 ml/min (approximately) per test vessel.

#### 4. Test organism assignment and treatment

Forty fish were allocated to the vessel containing the solvent control test medium and 100 fish were allocated to the test vessel containing (14C) acloniten.

Ø

The fish were fed daily at a rate of approximately 2% we body weight per day. Approximately two hours after feeding, the danks were cleaned using a siphon sube to remove debris.

#### 5. Measurements and observations

Samples of the stock solutions over taken daily. The test media from both test vessels was sampled daily during the uptake phase and daily until Day 16 and then on Days 19 and 20 during the depuration phase. Fish were removed from the control test vessel on Days 1 and 28 of uptake and Day 20 of depuration. From the test vessel containing (<sup>14</sup>C) acloniten fish were removed on Days 0, 4, 10, 16, 22 and 28 of uptake and QDays 0, 2, 6 0, 14 and 20 of depuration.

### 7. Statistics/Data evaluation

# Uptake and depuration

The uptake rate constant  $k_1$ , was calculated using replicated data from sampled fish tissues (calculation performed using non-linear regression and software MINSQ, MicroMath Inc., USA); the depuration rate constant  $k_2$  was calculated using the same software.

Bioconcentration



The static bioconcentration factors (BCFs) were calculated by dividing the fish <sup>14</sup>C-residue concentration by the mean measured concentration in the test medium. The kinetic bioconcentration factor (BCF<sub>k</sub>) was calculated by dividing  $k_1$  by  $k_2$ .

#### **II. RESULTS AND DISCUSSION**

#### ANALYTICAL VERIFICATION A.

The mean measured concentration of (14C)-residues during the 28-Bay uptake phase of the test 26.9 µg/L for a target concentration of 30 µg/L. Three of the 30 mean determinations (mean of pplicate samples) were less than 20% of the overall mean measured concentration and one mean determination was greater than 20% of the overall mean measured concentration.

#### 14C-residues (total radioactivity) as parent equivalents of the test media during the Table: untake phase

| uptake pnas                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Time<br>(days)                          | Measured<br>concentration<br>(ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ | Mensured<br>concentration<br>Δμg/L<br>C 30 |
| 0 (-2 hours)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30×<br>30×<br>30×                          |
| 0 (+4 hours)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>گ</u><br>گ                              |
| 1                                       | V 6 17 ŠÝ S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 Q<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | × 30                                       |
| 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                         |
| 3                                       | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0/ × 18. ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                         |
| 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19° ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                         |
| 5                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 0<br>27 21 0 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                          |
| 6                                       | 26 $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $26$ $27$ $27$ $26$ $27$ $27$ $27$ $27$ $27$ $27$ $27$ $27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                         |
| 7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0 02/ 🗶 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                         |
| <u> </u>                                | × 20. ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                         |
| <u>ن</u> وَبَحْهُ                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                         |
| 10 × 10                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                         |
| 11 S<br>12 S                            | $\begin{array}{c} 29 \\ \hline 7 \\ 7 \\$ | 24<br>24<br>25<br>25<br>25<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27                                         |
| 12 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27<br>27<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                         |
| 130 04                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>2</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                         |
| Mean measured concentr                  | 29<br>30<br>29<br>30<br>29<br>30<br>29<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.9                                       |
| Standard deviation                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ký –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.99                                       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |

From the start to Day 3 of depuration the  $(^{14}C)$  residue concentration fell from 7 to 4  $\mu$ g/L. From Day 4 until the end of depuration the  $\chi^4$ C)-residue concentration was between zero and 2 µg/L.

#### BIOGOGIÇAL DATA B.

Throughout the exposure phase one fish in each of the control and aclonifen treated test medium died. There were no further observations of toxicity or mortalities throughout the exposure or depuration phase of the test.

### Uptake $G^{(14}C)$ -residues

The range of (<sup>14</sup>C)-residues in fish tissues from Day 10 to Day 28 of uptake were 31.35 to 46.0, 72.7 to 102 and 49.1 to 77.9  $\mu$ g/g for edible, non-edible and whole fish tissues respectively.



#### Depuration of $({}^{14}C)$ -residues

After two days of depuration, approximately 45% (14.2  $\mu$ g/g), 50% (36.6  $\mu$ g/g) and 46% (22.8  $\mu$ g/g) of  $\bigcirc$  the (<sup>14</sup>C)-residues, relative to those residues at the end of the uptake phase, were detected in edible, non  $\bigcirc$  edible and total fish tissues.

By the end of the 20-Day depuration period, 0.9% (0.271  $\mu$ g/g), 1.2% (0.840  $\mu$ g/g) and 1.0% (0.479  $\mu$ g/g) of the (<sup>14</sup>C)-residues remained in edible, non-edible and total fish tissues, relative to those residues at the end of the uptake phase.

The time taken for 50% of the ( $^{14}$ C)-residues to be eliminated from fish tissues were Y.9, 2.2 and 237 days, for edible, non-edible and whole fish tissues the corresponding 95% elimination values were 8.3, 97 and 8.8 days.

| Table: | <sup>14</sup> C-residues in e | edible and               | non | edible | parts | and | whole | fishat | mean           | measured |
|--------|-------------------------------|--------------------------|-----|--------|-------|-----|-------|--------|----------------|----------|
|        | concentration of 2            | 26.9 μg/L <sub>_</sub> " | 1   | . °`,  | Ŵ     | Ą,  | Q°    |        | Ô <sup>¥</sup> | Q" A     |

| Б         | AC-residue concentrations (µg/g                                                                                   |                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Day       | Edible Q Non edible                                                                                               |                                         |
| Uptake ph | ase 4.44 9 36 5 4                                                                                                 |                                         |
| 0         |                                                                                                                   | 0 0 5.65 V                              |
| 4         | 22.1                                                                                                              |                                         |
| 10        | 33.2 % 6 894 %                                                                                                    | × 57.3                                  |
| 16        | 46, P P A A A A A A A A A A A A A A A A A                                                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 22        |                                                                                                                   | 63.5                                    |
| 28        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                             | ¥ 49.1                                  |
| Depuratio | n phase the second second second                                                                                  | <u>v</u>                                |
| 0         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                             | <b>2</b><br><b>45.9</b>                 |
| 2         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                             | 22.8                                    |
| 6         | 6 4.80 Q A 64.2                                                                                                   | 8.50                                    |
| 10        | $\begin{array}{c} 6 \\ \hline \\$ | 2.23                                    |
| 14        |                                                                                                                   | 1.05                                    |
| 20        |                                                                                                                   | 0.479                                   |
|           |                                                                                                                   |                                         |

Bioconcentration of  $\mathcal{Q}^{4}C)_{=}$  esidues

Static biogencentration factors BCF's for the uptake period of 10 to 28 days ranged from 1165 to 1710, 2703 to 3792 and 1825 to 2896 for edible non-edible and whole fish tissues respectively.

 Table:
 Bioconcentration factors for ediple, non-edible tissues and total fish, exposed to (14C)-actorifen

 actorifen
 4

| Time             |        | S Mean measured exposure concentration 26.9 μg/L |       |  |  |  |
|------------------|--------|--------------------------------------------------|-------|--|--|--|
| (days)           | Edible | Non-edible                                       | Total |  |  |  |
| A CO C           | 165    | 274                                              | 210   |  |  |  |
|                  | 822    | 1959                                             | 1283  |  |  |  |
| 4 ~ ~ 10 *       | 1234   | 3323                                             | 2130  |  |  |  |
| <sup>0°</sup> 16 | 1710   | 3792                                             | 2896  |  |  |  |
| 22               | 1491   | 3688                                             | 2361  |  |  |  |
| 28               | 1165   | 2703                                             | 1825  |  |  |  |



The kinetic bioconcentration factors  $(BCF_k)$  were 1369, 3344 and 2248 for edible, non-edible and whole fish tissues respectively.

#### С. VALIDITY CRITERIA

|                                                             | 4                                 |               |
|-------------------------------------------------------------|-----------------------------------|---------------|
| Validity criterion                                          | Required ()<br>(OECD 305-1, 2012) | Achieved      |
| Variation in water temperature                              | <±2%                              | C C C         |
| Dissolved oxygen concentration (% saturation)               | 260%                              | 0 <u>260%</u> |
| Limit in variation of measured test item concentration from |                                   |               |
| the mean measured concentration                             |                                   |               |
| Test concentration                                          | Colubility                        | Yes A         |
| Mortality or other adverse effects/disease                  |                                   | 2.5% (max)    |
|                                                             | No No                             |               |

Three of the 30 mean determinations (mean of triplicate samples) for the measurement of test item concentrations were less than 20% of the overall mean measured concentration and one mean determination was greater than 30% of the overall mean measured concentration. Therefore, according to current validity criteria requirements the study is not valid. 

#### Ø POINTS ΤΟΧΙCITY Ε D.

Summary of endpoints

#### Table:

|                                |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Q. *¥                                   |            |
|--------------------------------|-----------|----------------------------------------|-----------------------------------------|------------|
| Endpoint                       |           | dible Tissue                           | Non-Adible Pissue                       | Whole Fish |
| Static bioconcemation dactor   | (BCFs)    | 1200                                   | \$ 3792                                 | 2896       |
| Kinetic bioconcentration facto | or (BÇFk) | ×369 \$                                | <sup>0</sup> ≪3344                      | 2248       |
| Depuration rate constant day   |           | 0.360                                  | 0.308                                   | 0.343      |
|                                |           |                                        | \$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |

### III. CONCLUSION

In fish continuously posed to (14 Gaclon fen af mean measured concentration of 26.9 µg/L for a period of 28 days static bicconcentration factors (BCFs) for the uptake period of 10 to 28 days ranged from 1165 to 1710, 2703 to 392 and 1825 to 28% for edible non-edible and whole fish tissues respectively.

The kinetic bioconcentration factors (BC k) were 1369, 3344 and 2248 for edible, nonedible and whole fish tissues respectively.

The time taken for 50% of the (14C)-residers to be eliminated from fish tissues were 1.9, 2.3 and 2.0 days for edible won-edible and whole fish tissues. The corresponding 95% elimination values were 8.3, 9.7 and 8.

(1995)

sment and conclusion by applicant:



In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for risk assessment purposes. The study was conducted in accordance with OECD Guideline for Testing of Chemicals No. 305E (1981) and Draft OECD 305 (1992) and it was considered that all refevant validity criteria for the guidelines that were in force at the time of performing the study were satisfied.

The validity of the study has been re-evaluated against the current test guideline, OECD 305-I (2012) and the variation in measured concentrations exceeded the current validity criterion  $OE \pm 20\%$ In addition, BCF<sub>k</sub> was not corrected for fish growth and the lipid content of the fish was not determined so no lipid correction of BCF could be performed.

Therefore, as this study does not meet current OECD guideline validity criteria, it should be considered as supportive only and hence no simmary for this study is provided.

A full assessment of the validity of this study is provided in SCA 8,22.3/05 (M-675783-01-1).

|                           |      |     | n |
|---------------------------|------|-----|---|
| Assessment and conclusion | by F | SW. | 1 |
|                           | -    | ()  | Г |

| Data Point of Or           | KCA 8.2.23/02 m 4 4 4                                                            |
|----------------------------|----------------------------------------------------------------------------------|
| Report Author              |                                                                                  |
| Report Year                | 1995 A & Q                                                                       |
| Report Title:              | Find report Bioconcentration of Q4C)-Actonifen in Oncorhynchus mykiss            |
|                            | under flow-through conditions                                                    |
|                            | \$6345 <u>6</u> 0 . O' & A</td                                                   |
| Document No:               | M-238029-04-1 0 0                                                                |
| Guideline(s) followed in   |                                                                                  |
|                            | Eurrent Guideline: OFOD 30597, 2012                                              |
| Deviations from current    | Eurrent Guideline: OEOD 30507, 2012                                              |
| test guideline:            | BCED was not corrected for tish growth. Lipid content of fish not determined, no |
| test guideune.             | lipid correction of BCF. Variation in measured concentrations exceeded ±20%.     |
| Previous evaluation        | ses, evaluated and accepted                                                      |
|                            | Source: Study ast reliest upon, December 2011 (RMS: DE)                          |
| GLP/Officially             | Yes conducted under GLP/Officially recognised testing facilities                 |
| recognised testing         |                                                                                  |
| facilities: O'             |                                                                                  |
| Acceptability/Reliability: | Supportive only                                                                  |
| Acceptability/Reliability: |                                                                                  |
| L' G A                     |                                                                                  |
|                            | У́                                                                               |
| le de la                   | ۵<br>۵                                                                           |

# Executi Summary

The bioconcentration and depuration of (<sup>14</sup>C)-aclonifen was determined in edible, non-edible and whole rainbow trout tissues using a flow-through test system.



The fish were continuously exposed to (<sup>14</sup>C)-aclonifen at two mean measured concentrations, 4.24 and 37.7 µg/L for a period of eight days. Thereafter, the fish were transferred to clean tanks containing dilution water only for a depuration period of 14 days.

None of the fish exposed to (14C)-aclonifen or in the solvent control vessel showed signs periodicity throughout the test.

At both exposure concentrations a plateau of (<sup>14</sup>C)-residues in fish tissues were reached 3.5 days. Static bioconcentration factors (BCFs) for the 24 and 37.7 grg/L exposure treatments were these periods averaged 841,1914 and 1284 for edible, non-edible and whole fish tissues respective

The calculated kinetic bioconcentration factors (BCFx) for both exposure concentrations averaged 1921 and 1301 for edible, non-edible and whole fish tissues respectively.

During depuration, 50% of the radioactivity present with end of the uptake phase was climinated after an average of 0.868, 0.784 and 0.827 days for edible, non edible and whole fish tissue respectively by the end of the 14-Day depuration period in average of 0.6% of the radioactivity present at the end of the uptake phase, remained in the various dish tissues.

#### sk tissueste: .sk tissueste: A. MATERIALS Aclonifer Non-radiolabelled test item: 1. MØY Batch no.: 98% **Purity: Appearance:** Yellow powder ; in the dark Nøt prøvided Date receive Approximately Storage: February 1998 Expiry date: )-Aclonifien Radiolabelled 2. Structure: Sition of 14 Cabel ₀1846A. Baten no.: Radiochemical purity: 99.1% (08-Ø6-95) 9 mCilmmol, 74.7 μCi/mg Specific activity: Not provided Date received Approximately -20°C, in the dark Storager Novprovided Expire dat Test Organismi Rainbow trout (Oncorhynchus mykiss) 2. Juvenile Source: Feeding: Proprietary food ( 's No. 4 Crumb) Mean fork length: 6.4 cm (range 5.3 cm to 7.0 cm) Mean weight: 3.3 g (range 1.7 g to 4.7 g)

**ATERIALŠ** 



|             | Acclimatization:                | Acclimated to the test conditions for more than 14 days before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                 | use $Q^{\circ}$ $>$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.          | Test water:                     | Laboratory mains supply. The water was pumped by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                 | ROPF 20 particulate filter, then heated to approximately 16°C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                 | or chilled to the desired temperature within the laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | Hardness:                       | 40.4 – 43.0 mg/L as CaCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B.          | STUDY DESIGN AND ME             | THODS A Q A Y A Y A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | -life phase:                    | or chilled to the desired temperature within the laboratory $40.4 - 43.0 \text{ mg/L} \approx \text{CaCO}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | r                               | k of J J B D m V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2. Ex       | posure conditions               | 40.4 – 43.0 mg/L as $CaCO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b> L</b> A | Test vessels:                   | THODS<br>31 July – O October 1995<br>122 D volume glass aquaria, containing 100 L of test medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | Experimental design:            | Solvent control and test concentrations of 6 and 60 µg L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Replicates:                     | One test vessel per group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Number of test organisms:       | Solvent control dominal test concentrations of 6 and 60 up L<br>One test vessel per group<br>Solvent control: 40 fish<br>Test item: 80 fish per concentration<br>14 - 16 °C<br>6.8 7.4 0<br>78 - 99% ASV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Number of test of gamsins,      | Fort item 80 feb par empanetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Tomorotomo                      | X4 16 9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Temperature:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | pH:                             | 0.07 / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Dissolved oxygen:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | Iministration of the test iten  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. Ad       | Iministration of the test item  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dose        | preparation and dosing &        | $\begin{array}{c} 6.8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8 \\ 78-99 \\ 8$ |
| Two         | radiodilutions of aclouding wer | e prepared by mixing non-radio abelled and ( <sup>14</sup> C)-aclonifen at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nomi        | nal statio of 1x0.83 xw/w       | Fron-radiolabelled:radiolabelled) and 1:17.3 w/w (non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| radio       |                                 | al target concentration of aclonifen in the radiodilutions were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                 | ivel After the addition of the test item, approximately 5 mL of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

HPLC grade acetone was added to ensure therough mixing Excess organic solvent was removed using nitrogen convection, and the radiodilution stored a approximately -20°C until use. The target specific radioactivity in the radiodilutions was 68,388  $\mu$  /mg.

On Day 7% f uptake the 0.105 mg/L stock solution was prepared by weighing the radiolabelled and nonradiolabelled test articles and dissolving in acetone. This solution was used to prepare the stock solution for the following 24-House exposure period.

On each day of the exposure hase and duing the pre-test) two 18 L volumes of each stock solution were prepared. Alignots of the radiodilation were weighed and added to the dilution water with the addition of 1.8 mC acetone as an aid to dissolution of the test item.

# Test apparation

The dilution water and prepared solvent stock solutions of the test item and solvent control stock solution were pumped into the test vessels by means of Watson Marlow peristaltic pumps. The nominal flow rates of the dilution water and the stock solutions of the test item (and solvent control) were 330 mL/min and 20 mL/min respectively.



Following the completion of the exposure phase, the fish were transferred to clean tanks, pre-filled with clean dilution water. Throughout the depuration phase the diluent pumps were adjusted to deliver an additional 20 mL/min (approximately) per test vessel.

#### 4. Test organism assignment and treatment

Forty fish were allocated to the vessel containing the solvent control test medium and 80 fish pervessel, were allocated to the test vessels containing ( $^{14}$ C)-aclonifen.

The fish were fed daily at a rate of approximately 2% wet body weight per day. Approximately two hours after feeding, the tanks were cleaned using a sippon tube to remove debris.

#### 5. Measurements and observations

The test media from all test vessels was sampled daily during the uptake and depuration phase. Fish were removed on Days 0, 1, 2, 4, 6, 7 and 8 of uptake and on Days 0, 1, 3 and 13 of depuration

#### 7. Statistics/Data evaluation

#### Uptake and depuration

The uptake rate constant  $k_1$ , was calculated using replicated data from sampled fish the sum of the depuration performed using non-linear regression and software MINSO, MicroMathInc. OSA), the depuration rate constant  $k_2$  was calculated using the same software.

Statistical analysis of the uptake data was performed using Levenes test for homogeneity, one-way clarification of analysis of variance and Student-Neyman-Reuls means comparisons.

#### Bioconcentration

The static bioconcentration factors (BCFs) were calculated by dividing the fish <sup>14</sup>C-residue concentration by the mean measured concentration in the test medium. The kinetic bioconcentration factor (BCFs) was calculated by dividing  $k_1$  by  $k_2$ .

# A. RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

The mean measured concentrations of (fC)-restrices during the eight day uptake phase of the test were 4.24 and  $37?7 \mu g/L$  for the target concentrations of 6 and 60  $\mu g/L$  respectively. Throughout depuration, the levels of radioactivity were below the limit of quantitation. The concentration of radioactivity in the control test medium was below the background determinations.

# Table: <sup>14</sup>C residues (total raduactivity) as parent equivalents in the test media during the uptake phase $\gamma$ $\gamma$ $\gamma$ $\gamma$

| Tijnře C | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Measured concentration (μg/L) |                    |           |  |  |
|----------|-----------------------------------------|-------------------------------|--------------------|-----------|--|--|
| (days) A | Nominal<br>6 μg/L                       | % of mean                     | Nominal<br>60 μg/L | % of mean |  |  |
|          | 4.61                                    | 109                           | 47.6               | 126       |  |  |
|          | 3.31                                    | 78                            | 29.9               | 79        |  |  |
| 2        | 4.51                                    | 106                           | 33.5               | 89        |  |  |
| 3        | 1.46                                    | 34                            | 43.8               | 116       |  |  |



|                             | 1    |     | ·      |                                        |
|-----------------------------|------|-----|--------|----------------------------------------|
| Standard deviation          | 1    | .16 | 5.     | 51~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Mean measured concentration | 4    | .24 | 37     | 7.7 \$ \$ 6                            |
| 8                           | 4.71 | 111 | 36     | \$47 <u></u>                           |
| 7                           | 4.80 | 113 | 39.0 🏷 | 100                                    |
| 6                           | 4.81 | 113 | 38.8   | 103                                    |
| 5                           | 4.98 | 117 | 37.3   | 99 °                                   |
| 4                           | 4.95 | 117 | 32.7   | 87                                     |

Chromatographic analysis of the water sampled from tanks at both exposure concentrations, demonstrated that the major radiolabelled component shared chromatographic properties with the test substance. Low levels of two radiolabelled components were also detected, however due to their low concentration confirmation of their identity way not prisued.

Chromatographic analysis, using HPLC, of the extractable radioactive residues in the edible and ponedible fractions from rainbow trout (uptake phase Days 1 and 8, exposure concentration 4.24 frg/L), provided very similar qualitative and grantitative merabolite profiles. Identified characterised extractable radioactive residues amounted to approximately 97% of the total radioactive residue (2.4 to 4.6 ppm) in the edible fraction and approximately 97% of the total radioactive residue (2.4 to both time points. The major radioactive residue was identified by LC-MS as being the test substance, aclonifen.

Chromatographic analysis, using HPLC, of the extractable radioactive residues in the edible and nonedible fractions from rainbox, trout, uptake phase days 4, and 8 expessure concentration 37.7  $\mu$ g/L), provided very similar qualitative and quantitative metabolite profiles. Identified/characterised extractable radioactive residues amounted to approximately 100% TRR (\$1 to 35 ppm) in the edible fraction and approximately 93% TRR (70 to 69 ppm) in the non-edible fraction at both time points. The major radioactive residue was identified by LC-MS as being the test substance, aclonifen.

Chromatographic analysis, using HPLC, of the extractable radioactive residues in the edible and nonedible fractions from rainbow trout (depuration phase Day 18, both exposure concentrations), provided very similar quadrative and mantitative metabolice profiles. Identified/characterised extractable radioactive residues and the to approximately 95% TRP (0.03 ppm) for fish sampled from the low exposure group and to% TRP (0.03 ppm) for fish sampled from the high exposure group, the remainder of the radioactivity being present as polar metabolites whose identity was not pursued further due to limited sample availability. The major identified radioactive residue was test substance, aclonifen.

## B. BIOLOGICAL DATA

Throughout the exposure and depuration phase there were no mortalities or any signs of toxicity to any fish.

## Uptake of C)-residuer

Levels of (<sup>14</sup>G) residues reached an apparent plateau after approximately 1.8 and 3.5 days for the 4.24 and 377  $\mu$ g/C exposure treatments respectively. Mean parent equivalent concentrations in test media containing 4.24  $\mu$ g/L, throughout the plateau phase, ranged from 2.837 to 4.949  $\mu$ g/g for edibles, 6.396 to 11.083  $\mu$ g/g for nonedibles and 4.196 to 7.387  $\mu$ g/g for total fish. The corresponding values for the 37.7 $\mu$ g/L exposure treatment were 28.037 to 42.813, 54.918 to 89.457 and 39.692 to 62.001  $\mu$ g/g respectively.



#### Depuration of $({}^{14}C)$ -residues

After approximately 12 hours of depuration, approximately 59%, 51% and 55% of the ( $^{14}$ C)-residues, relative to the mean equilibrium concentrations during the uptake phase, were detected in edible non-series edible and total fish tissues respectively exposed to 4.24 µg/L. The corresponding value for fish exposed to 37.7 µg/L were 62%, 55% and 59% respectively.

By the end of the 14-Day depuration period, fish exposed to 4.24  $\mu$ g/L, hat 0.5%, 0.7% and 0.6% of the (14C)-residues remaining in edible, non-edible and total shift tissues, relative to the mean equilibrium concentrations during the uptake phase. The corresponding values for fish tissues exposed to 37  $\frac{7}{4}$   $\mu$ g/L  $0^{-1}$  were all 0.5%.

The time taken for 50% of the (<sup>14</sup>C)-residues to be eliminated from fish tissues were 0.908 0.678 and 0.766 days for edible, non-edible and whole fish tissues exposed to 4.24 µg/L and the corresponding values for fish exposed to 37.7 µg/L, 0.828 0.895 and 0.888 days

| Table:     | <sup>14</sup> C-residues in    | edible and  | non-edible  | partsand    | whole fish   | during uptake and                       |
|------------|--------------------------------|-------------|-------------|-------------|--------------|-----------------------------------------|
| depuration | of ( <sup>14</sup> C)-aclonife | n at mean m | easured exp | osure conce | ntrations of | dering, uptake and<br>224 and 37.7 ag/L |

|                      | - LOV N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-residue cone                                                                                                                                                                                                                                                                                                                                                          | entrations (12)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>k</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 4.24 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                       |                                                        | ੍ល්.<br>37.7 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Edible               | Son-edible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                   | C Edible                                               | Non-ectible &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>,</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.451                | <b>0.6</b> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         | 4.311                                                  | °~~~8.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.558                | J.031 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0.77 <b>4</b>                                                                                                                                                                                                                                                                                                                                                         | ∿5.57¥⊌ຶ                                               | 9.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.860                | 1.634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 <sup>43</sup> 1.484                                                                                                                                                                                                                                                                                                                                                   | Õ <sup>×</sup> 7. <b>§</b> 99                          | 146998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(831 )                                                                                                                                                                                                                                                                                                                                                                 |                                                        | <b>3</b> 3.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | \$\$396 ~ (v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A.196 S                                                                                                                                                                                                                                                                                                                                                                 |                                                        | 49.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 32.9320 <sup>°</sup> | °≫6.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.463                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 54.918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <sup>C</sup> 3.495   | · 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.697                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 65.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | ) 6.997 🖏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b> ,304 Ö                                                                                                                                                                                                                                                                                                                                                         | <b>33</b> .692 <sub>(7)</sub>                          | 87.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.949                | @1.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>مَ</u> 1.387                                                                                                                                                                                                                                                                                                                                                         | 42.813                                                 | 89.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ase <sup>1</sup>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         | $\sim$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.978                | 5) <sup>5</sup> 4.0992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>∖ 2,860 ≪</u>                                                                                                                                                                                                                                                                                                                                                        | 200003                                                 | 40.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,692                | ້ 35488 ຄົ້                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2×302 (k)                                                                                                                                                                                                                                                                                                                                                               | <b>Å4</b> .340                                         | 42.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>39</b> .800       | A.137 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~0.9600 <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                    | 7.150                                                  | 13.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| © 0.246              | S 0.678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         | 2.275                                                  | 6.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U 0,003 (            | ) 0.032 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>0</u> 030 0                                                                                                                                                                                                                                                                                                                                                          | 0.157                                                  | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | $\begin{array}{c} 0.451 \\ 0.558 \\ 0.860 \\ 1.860 \\ 2.932 \\ 3.495 \\ 2.654 \\ 4.949 \\ ase^{l} \\ 1.978 \\ 0.245 \\ 4.949 \\ ase^{l} \\ 0.245 \\ 0.800 \\ 0.245 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.0$ | 4.24 μg/b         Edible       Kon-edible         0.451       0.610         0.558       1.031         0.860       1.624         1.860       4.382         2.932       6.766         3.495       8.886         2.654       6.297         4.949       6.1083         ase <sup>1</sup> 4.032         0.800       1.137         0.246       0.678         0.005       0.652 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | ØC-residue concentrations (agr)           4.24 µg/b         C         C         C         C         Edible         Non-edible         Total         Edible         Edible         Edible         Edible         Edible         C         Edible         Edible | MC-residue concentrations ( $\mu rg$ )         4.24 µg/ls       37.7 µg0         Edible       Xon-edible       Total       Edible       Non-edible         0.451       0.610       0.530       4.311       6.735         0.451       0.610       0.530       4.311       6.735         0.558       1.031       0.774       5.574       9.266         0.860       1.634       1.484       7.599       14098         1.860       4.382       2.831       1.0286       3.110         2.837       6.396       4.196       23.508       49.466         2.932       6.766       4.463       28.037       54.918         3.495       8.836       5.697       29.06       65.349         2.654       6.977       29.06       65.349         2.654       6.977       4.062       87.388         4.949       4.1083       7.3877       42.813       89.457         ase'       7       20003       40.724       1.692       2.860       2.0003       40.724         1.978       4.052       2.860       2.0003       40.724       1.692       3.488       2.302       4.340       42.011 </td |

1: Time refers to time after the start of depuration

residues

Bioconcentration of

Static bioconcentration factors (BCF's) for uptake periods of 1.8 to 8 days for the 4.24  $\mu$ g/L and 3.5 to 8 days for the 30.7  $\mu$ g/L treatment, averaged 841, 1914 and 1284 for edible non-edible and whole fish tissues respectively.

# Table: State bioconcentration factors for edible, non-edible tissues and total fish, exposed to (14C)-actionifer

| Time & |                                           | Mea              | Mean measured exposure concentration |        |            |       |  |  |  |
|--------|-------------------------------------------|------------------|--------------------------------------|--------|------------|-------|--|--|--|
| (Days) | re al | <b>4.24 μg/L</b> |                                      |        | 37.7 μg/L  |       |  |  |  |
| (Days) | Edible                                    | Non-edible       | Total                                | Edible | Non-edible | Total |  |  |  |
| 0.1    | 106                                       | 144              | 125                                  | 114    | 179        | 144   |  |  |  |
| 0.2    | 132                                       | 243              | 183                                  | 1148   | 246        | 186   |  |  |  |
| 0.4    | 203                                       | 385              | 279                                  | 202    | 393        | 278   |  |  |  |



| 1.0 | 439  | 1033 | 668  | 379  | 878  | 573    |
|-----|------|------|------|------|------|--------|
| 1.8 | 669  | 1508 | 990  | 624  | 1312 | 906 °  |
| 3.5 | 691  | 1596 | 1053 | 744  | 1457 | 1053   |
| 6.0 | 803  | 2084 | 1344 | 788  | 1733 | 1162 0 |
| 7.0 | 625  | 1485 | 1015 | 894  | 208  | 1992   |
| 8.0 | 1167 | 2614 | 1742 | 1136 | 2373 | ₩645 🔊 |

The kinetic bioconcentration factor (BCF<sub>k</sub>) for both exposure concentrations averaged 865, 1921 and 1301 for edible, non-edible and whole fish tissues respectively. C. VALIDITY CRITERIA

|                                                 | ~~~ '        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validity criterion                              |              | (OECD 305-I, 2012) Achieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Variation in water temperature                  |              | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ |
| Dissolved oxygen concentration (% saturation)   | - X          | 260% $260%$ $260%$ $260%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Limit in variation of measured test item concen | tration from | 20% c -65% to +26%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| the mean measured concentration                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test concentration $Q^{2}$                      | R A          | Shimit of water C S Stees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 | <u> </u>     | solubility of the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mortality or other adverse effects/disease      | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Two of the measured test mem concentrations from each test vessel were outside of the ±20% of the overall mean measured concentration for each test concentration. Therefore according to current validity criteria requirements the study is not valid

#### TOXICITY ENDPOIN D.

#### of endpoint Table:

|                                              | Tissue Non-Adible Tissue Whole Fish |
|----------------------------------------------|-------------------------------------|
| Static broconcentration actor (BCFs) &       | <b>1914</b> 1284                    |
| Kinetic bioconcentration factor (BCEk)       | 55 🖗 🖄 1921 1301                    |
| Depuration rate constant day <sup>-1</sup> ) | 0.902 1.343                         |
|                                              |                                     |

#### TII, CONCLUSION

From the observed date, a placeau of (14C) residues in fish tissues was reached within 1.8 to 3.5 days following the start of the exposure of (14C aclonition. Static bioconcentration factors (BCFs) for the 4.24 and 37.7 µg/L exposure @eatments averaged @1, 1914 and 1284 for edible, non-edible and whole fish tissues respectively. Ŵ,

The calculated kinetic bio soncentration actors (BCFk) for both exposure concentrations averaged 865, 1921 and 301 for edible, non edible and whole fish tissues respectively.

During deputation, 50% of the radioactivity present at the end of the uptake phase, was eliminated after an average of 0.868, 0.789 and 0.827 days for edible, non-edible and whole fish tissues respectively. By the end of the 14-Day depuration period an average of 0.6% of the radioactivity present at the end of the uptake phase, remained in the various fish tissues.



Assessment and conclusion by applicant:

In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for fisk assessment purposes. The study was conducted in accordance with OECD Guideline for Testing of Chemicals No. 305E (1981) and Draft OECD 305 (1992) and it was considered that all relevant validity criteria for the guidelines that were in force at the time of performing the study were satisfied.

The validity of the study has been re-evaluated against the currence test guideline, OECD 3054 (2012) and the variation in measured concentrations exceeded the current validity criterion of  $\pm 30\%$ . In addition, BCF<sub>k</sub> was not corrected for fish growth and the upid content of the fish was not determined so no lipid correction of BCF could be performed

Therefore, as this study does not meet current. GECD guideline valuatity orderia, it should be considered as supportive only and hence to summary for this study is provided.

A full assessment of the validity of this study is provided in KCAS.2.2.3-05 (No

Assessment and conclusion by RMS

| Data Point:<br>Report Author:                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:                                                                                                                                                                              |
| Report Fear: 0 1992 S and 0                                                                                                                                                                 |
| Report Title: Bio-accumulation of Aclonifer in Rainbow Trout Salmo gairdnerii Richardson                                                                                                    |
| Report No: $\mathcal{N}$ ( $\tilde{C}034783$ ) $\mathcal{N}$ $\mathcal{O}$ $\mathcal{O}$                                                                                                    |
|                                                                                                                                                                                             |
| Guideline(s) for $OeccD: 305 E(1881) $                                                                                                                                                      |
| Guideline(s) followed       OECD: 309 E (1981)       O         study:       O       O         Deviations       OECD: 305-L 2012, Ves. BCCk was not corrected for fish growth. Lipid content |
| Deviations from current OECD 305-L 2012, Ves. BCCk was not corrected for fish growth. Lipid content                                                                                         |
| test guideline: of fish not determined, no lipid correction of BCF. Variation in measured                                                                                                   |
| $\sim$ concentrations exceeded $20\%$ .                                                                                                                                                     |
| Previous evaluation No, not previously submitted                                                                                                                                            |
|                                                                                                                                                                                             |
| GLP/Officially                                                                                                                                                                              |
| recognised testing A & V                                                                                                                                                                    |
| facilities: $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$                                                                                                                                       |
| facilities:     Acceptability/Retability/Yes                                                                                                                                                |
| Acceptability Yes                                                                                                                                                                           |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |

# Executive Summary

The bioconcentration and depuration of a clonifen was determined in whole rainbow trout tissues using a flow-through test system.



The fish were continuously exposed to a clonifen at two nominal concentrations of 4.5 and 45.0  $\mu$ g/L for a period of six days. Thereafter, the fish were transferred to clean tanks containing dilution water only for a depuration period of 12 days.

None of the fish exposed to aclonifen or in the control vessels showed signs of poxicity throughout the test.

Measurements for the analysis of residue in the whole fish body (based on kg fresh weight) at defined intervals showed at first a gradual rise of the Aclonifen quantity in both test concentrations. In the low concentration the maximum concentration was measured at 48 hours (with however, a subsequently C lowered concentration in the water), and in the figh concentration at 96 hours. The daily big concentration factors on the other hand, reached their maximum in both solutions at 90 hours with 1200 in the low and 993 in the high concentration. A noticeable steady-state plateau was not visible for the low concentration, but could perhaps lie between 48 and 96 hours in the high concentration this takes place at 96 to 144 hours.

During the 12 day depuration phase without dosage of test substance, the concentration of aclonifen in the fish reduced within 30 hours to approst half of the value measured at the end of the uptake phase in the low concentration, in the high concentration to about one tord.

The uptake rate constant  $(k_1)$ , the deputation rate constant  $(k_2)$  and the steady state bioconcentration factor (BCF) for the whole fish body were exertained with the help of the approximate calculation given in Guideline OECD 305 E. For the low dest concentration this resulted in a value of 1169, for the high concentration a value of 183. The BCF of the high pencentration is as a result of this about a factor of 6 lower than the low Soncentration BCF. The theoretical BCF of the low Soncentration which was ascertained is comparable to the actual BCF at the period of the steady-state, whilst that of the high concentration is considerably less than the actual BCF value at the period of the steady-state.



- A.
- Non-radiolabolled test item; 1. Batch no.: 91.3% ث **Purity:** Late: Late: Test Organism: Age Surce: eding: m fork leng: n weig' Green/yellow powder Appearance: 29 Max, 1990 Approximately 7°C Over 2 years **∡<sup>≪</sup>Expiry date** Rambow trout (Oncorhynchus mykiss) 2. Juvenile

Proprietary food ( 's No. 4 Crumb) 6.4 cm (range 5.3 cm to 7.0 cm)

3.3 g (range 1.7 g to 4.7 g)



|       | Acclimatization:               | Acclimated to the test conditions for more than 14 days before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                | use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.    | Test water:                    | Laboratory mains supply filtered through activated charcoal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                                | activated carbon filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Hardness:                      | 50 – 250 mg/L as CaCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B.    | STUDY DESIGN AND ME            | Laboratory mains supply filtered through activated charcoal<br>activated carbon filter<br>50 – 250 mg/L as CaCO <sub>3</sub><br>CTHODS<br>22 April – 10 May 1992<br>100 L glass activation of the st<br>medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l. In | -life phase:                   | 22 April – 10 May 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2. Ex | xposure conditions             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Test vessels:                  | 100 L glass aquaria, containing approximately 90 L of test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                | medium 2 0 0 6 0 4 A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Experimental design:           | Control, solvent control (50 µL/L acefone) and nominal test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                                | concentrations of 4.5 and 45.6 µg/L > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Replicates:                    | One test vessel per group & S &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Number of test organisms:      | concentrations of 4.5 and 45.6 $\mu$ g/L is defined to the function of the funct |
|       | Temperature:                   | 149.5 - 109.7 °C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | pH:                            | ₩.7 - 8:3 <sup>10</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Dissolved oxygen:              | 70,597% & SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. A  | dministration of the test item |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Dose preparation and dosing

Tap water was oumped from a 700 & supply tank with a flow quantity of 500 mL/min/aquarium into the tank. This amounts to a water change approximately eightimes per day. The test substance was continually dosed from a 20-L standard solution aquarium with a flow quantity of 5 mL/min/aquarium in such a way that it mixed evanly with the fresh water running into the aquarium.

The standard solutions in the 20-15 aquaria were created every 48 hours with concentrations of 4.50 and 0.45 mg/L. This led to a dilution increment of 1:100. Accord was used as the carrier solvent with a concentration of 0.05 mL/L for the test aquarum with 45.0 mg test substance per litre. Since the relation of test substance to carrier substance should remain the same, the Acetone concentration in the test aquarium with 4.5 g test substance and unter to 0.005 mL/L per litre.

In addition the test contained two control groups. The fish in the water control were only subject to the test water without the addition of any substance. The carrier substance concentration in the Acetone control was the same as that of the highest lest concentration.

#### 4. Test organism assignment and treatment

Fifty fish were allocated to each test vessel.

The fish were fed daily at a rate of approximately 2% wet body weight per day.

#### 5. Measurements and observations

The test media from all test vessels was sampled .2, -1, -.075, 0, 0.25, 0.5, 1, 2, 4 and 6 days after addition of the fish to the test vessels. Fish were removed on Days 0.5, 1, 2, 4 and 6 of the uptake period.



#### 7. Statistics/Data evaluation

Bioconcentration factors were determined following the recommendations of the Test Guideline.

#### **II. RESULTS AND DISCUSSION**

#### A. ANALYTICAL VERIFICATION

The mean measured concentrations of aclonifen during the 6 day uptake phase of the test were 3.19 and 26.1  $\mu$ g/L for the target concentrations of 4.5 and 45 tg/L respectively. With the exception of a single measured concentration of 2.35  $\mu$ g/L in the high concentration at the start of the depuration period, throughout depuration the levels of aclonifen were below the stimit of quantitation of the analytical method (0.5  $\mu$ g/L).

The validated method is summarised in Document M-CA& (CA @1.2/98).

#### Table: Aclonifen concentrations in the test media during the uptake phase

|                                |                   |             |                        | $\sim$        |                             | ¥ 0                            |
|--------------------------------|-------------------|-------------|------------------------|---------------|-----------------------------|--------------------------------|
| Time                           |                   | S, M        | leasured come          | entration (µ  | vert)<br>% Nom <sup>1</sup> | õ                              |
| (hours)                        | 4\$ μg/L          |             | Deviation <sup>2</sup> | €Sµg/b        | % Nom <sup>1</sup>          | Serviation <sup>2</sup><br>(%) |
| 0                              | 3.8               | 84.6        | ₩9.3                   | 24.5          | 054.3                       | -6.5                           |
| 6                              | \$3 <u>,</u> 20 ( | 712         | ⊗ <sup>+0.4</sup> ×    | <u></u> 341.6 | 70,3                        | +21.1                          |
| 12                             | 0<0.50            | Q.5 ,       |                        | 32.3°         | ₹¥.1                        | +23.5                          |
| 24                             | 3.03              | ð67.3 ~     | <b>9</b> .1 %          | 29.9          | 66.6                        | +14.7                          |
| 48                             | <u>3</u> .12      | 69.5        | <i>2.3</i> €           | ð 3.2 A       | 51.5                        | -11.4                          |
| 96 5                           | ∭01.95°           | <u>43.4</u> | Ç <sup>™</sup> -3858   | £ 19.0        | 42.3                        | -27.2                          |
| 48 7<br>96 7<br>144 7          | 4,03              | 89.6        | +26.4                  | 22.4          | 49.8                        | -14.2                          |
| Mean measured<br>concentration | O' &              | × .3,19     |                        | L.            | 26.1                        |                                |

1: Percentage of nominal concentration

<sup>2</sup>: Perceptinge deviation from mean measured concentration

#### B. BIOLOGICAL DATA

Throughout the exposure and deputation phase there were no mortalities or any signs of toxicity to any fish.

# Table: A clonifer concentrations in whole fish at mean measured concentrations of 3.19 and 26.1 $\mu$ g/E $\Delta$ $\lambda$ $\lambda$ $\lambda$

| Time Of O        | <sup>Φ</sup> <sup>Δ</sup> Measured concentration (μg/g) |           |  |  |
|------------------|---------------------------------------------------------|-----------|--|--|
| (bears)          | Q <sup>Y</sup> 3.19 µg/L                                | 26.1 μg/L |  |  |
| Uptake phase     |                                                         |           |  |  |
|                  | 2.18                                                    | 12.01     |  |  |
|                  | 2.36                                                    | 11.48     |  |  |
|                  | 2.74                                                    | 15.17     |  |  |
| 96 °°° 96        | 2.34                                                    | 18.19     |  |  |
| <u> </u>         | 1.83                                                    | 18.24     |  |  |
| Depuration phase |                                                         |           |  |  |



#### Page 90 of 328 2020-01-17, rev. 2020-03-12 Document MCA - Section 8: Ecotoxicological studies

Aclonifen

| 174 | <0.5 | 2.35                                   |          |
|-----|------|----------------------------------------|----------|
| 216 | <0.5 | <0.5                                   | ð        |
| 288 | <0.5 | <0.5                                   | <i>S</i> |
| 360 | <0.5 | <ol> <li>&lt;0.5</li> <li>∞</li> </ol> |          |
| 432 | <0.5 | <i>∞</i> <0.5                          | ]        |

With the low test concentration there was no further accumulation of Aclonifen after 96, hours: a noticeable steady-state plateau was, however, not attained since the concentration in the fish body sank continuously in the period from 48 to 144 hours. Even so it cannot be fulled out that at the 36 h analysis a higher middle quantity of active agent in the fight would have been recorded, given a mighek concentration of Aclonifen in the water. With the high test concentration it can be said that attainment of the state of equilibrium is reached at 96 hours

| Table: | Static b | oioconcentrat                          | ion factors for whole fish, exposed to actionifer |
|--------|----------|----------------------------------------|---------------------------------------------------|
|        | Time     |                                        | Biogencentration factors of O                     |
|        | (hours)  |                                        |                                                   |
|        | 12       |                                        |                                                   |
|        | 24       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                   |
|        | 48       | là (                                   | × 5 6878 0° × 57 5 6655                           |
|        | 96       | N N                                    | \$ 1200 \$ \$ \$ \$ 993                           |
|        | 144      |                                        | 2 454 in or & in 814                              |
|        | (        |                                        |                                                   |

The kinetic bioconcentration factors ( $\overrightarrow{BCF}_k$ ) were determined to be 1169 and 183 for the nominal test concentrations of 4.5 and 45.0 µg/L respectively.

| Validity criterion                                                                             | Required<br>(OECD 305-I, 2012)         | Achieved     |
|------------------------------------------------------------------------------------------------|----------------------------------------|--------------|
| Variation in water temperature S                                                               | S <≠2°C                                | <±2.2°C      |
| Dissolved oxygen concentration (% saturation)                                                  | ≥60%                                   | ≥60%         |
| Limit in variation of measured test item concentration from<br>the mean measured concentration | ±20%                                   | -39% to +26% |
| Test concentration 25 A                                                                        | <li>limit of water<br/>solubility</li> | Yes          |
| Mortality or other adverse effects disease                                                     | <10%                                   | 0%           |

According to urrent validity criteria requirements the study is not valid due to the variation in water temperatures exceeding the allowable range, and measured concentrations being in excess of ±20% of the mean measured concentration.

Table: Summary of endpoints

| Endpoint | 4.5 μg/L | 45.0 μg/L |
|----------|----------|-----------|
|----------|----------|-----------|



(1992)

| Static bioconcentration factor (BCFs) – maximum | 1200 | 993 |
|-------------------------------------------------|------|-----|
| Kinetic bioconcentration factor (BCFk)          | 1169 | 183 |

#### **III. CONCLUSION**

Daily bioconcentration factors, reached their maximum in both solutions at 96 hours with 1200 in the low and 993 in the high concentration. A noticeable steady-state plateau was not visible for the low concentration, but could perhaps lie between 48 and 96 hours. In the high concentration this pakes place at 96 to 144 hours.

During the 12 day depuration phase without dosage of test substance, the concentration of acionifer in the fish reduced within 30 hours to almost half of the value measured at the end of the uptake phase in the low concentration, in the high concentration to about one third.

The uptake rate constant  $(k_1)$ , the depuration rate constant  $(k_2)$  and the kinetic bioconcentration factor (BCF) for the whole fish body were ascertained with the help of the approximate calculation given in Guideline OECD 305 E. For the low test concentration this resulted in a value of 1169, for the high concentration a value of 183.

Assessment and conclusion by applicant

The validity of the study has been evaluated against the current test guideline, OECD 305-I (2012). Water temperatures exceeded the allowable range of  $\pm 2^{\circ}$ C and the variation in measured concentrations exceeded the current validity criterion of  $\pm 2^{\circ}$ . In addition, BCF<sub>k</sub> was not corrected for fish growth and the lipid content of the fish was not determined so no lipid correction of BCF could be performed.

Therefore, as this study does not meet current OECD guideline validity criteria, it should be considered as supportive only and hence no summary for this study is provided.

A full assessment of the validity of this story is provided in KCA 8.2.2.3/05 (M-675783-01-1).

Assessment and conclusion by RMS



| Data Point:                | KCA 8.2.2.3/04                                                                |
|----------------------------|-------------------------------------------------------------------------------|
| Report Author:             |                                                                               |
| Report Year:               | 2019                                                                          |
| Report Title:              | Amendment no. 1 to final report - Aqueous exposure bioconcentration fish test |
|                            | and biotransformation in fish (Oncorhynchus mykiss) - Adonifen                |
| Report No:                 | BAY-025/5-21/E                                                                |
| Document No:               | M-667576-02-1                                                                 |
| Guideline(s) followed in   | OECD Test Guideline (TG) 305                                                  |
| study:                     | SANCO/11 187/2013 rev. 3 (201)                                                |
| Deviations from current    | Current Guideline: OECD 305-1, 2012                                           |
| test guideline:            | None A O A A                                                                  |
| Previous evaluation:       | No, not previously submitted                                                  |
|                            |                                                                               |
| GLP/Officially             | Yes, conducted under GLP/Officially recognised testing facilities             |
| recognised testing         |                                                                               |
| facilities:                |                                                                               |
| Acceptability/Reliability: | Yes A O Q O O O                                                               |
|                            |                                                                               |

#### **Executive Summary**

A study was performed to determine the bioaccumulative potential of the test item Aclonifen. The study was conducted under flow-through conditions according to the OECD Test Guideline 305 (2012) to determine a bioconcentration factor in fainbow troop (*Oncorhynchus mytiss*) with a nominal target concentration of 30 ug/L Actonifen The test item was applied as a blend of unlabelled and [<sup>14</sup>C-] labelled in a ratio of approximatels I:1.

An untreated divition water control was run in parallel to monitor natural mortalities and potential adverse effects of the test item. The test duration was 28 days uptake and 21 days depuration phase. Fish and water samples were collected during experimentation and analysed for Aclonifen (parent) to derive the uptake rate and depuration rate constants, as well as the bioconcentration factor in the state of equilibrium between uptake and elimination. The BCF was determined as steady-state BCF and as kinetic BCF.

Additionally, the biogramsformation in fish was investigated by the qualitative and quantitative characterization of metabolites ( $\geq 10\%$  of total radioactive residue and/or  $\geq 0.05$  mg/kg).

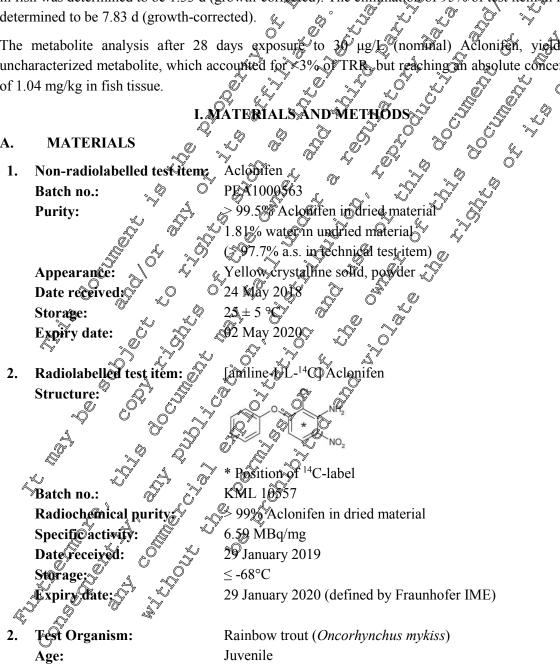
The mean water concentration was 2% µg/c parent test item and aside from Day 1, after introduction of the fish the water concentrations were within a range of  $\pm 20\%$  of the mean concentration during the whole exposure period.

The steady-state BCF (BCFs) was determined to be 1440 L/kg based on the average whole body concentrations at equilibrium phase between water and fish between Days 14 and 28. Lipid normalisation resolved in a lower lipid-normalised BCF<sub>SSL</sub> of 1364 L/kg, as the lipid content in treated fish was higher than 5% (5% is used as reference to which BCF is normalized to for inter-study and inter species comparability matters).

From the uptake rate constant of  $k_1$  of 505, and the depuration rate constant  $k_2$  of 0.376 the kinetic bioconcentration factor (BCF<sub>K</sub>) was determined to be 1343 L/kg.



As fish grew during study, the BCF<sub>K</sub> was corrected for growth-dilution effects into BCF<sub>Kg</sub> 1425 L/kg incorporating the growth rate constant of 0.0214 d<sup>-1</sup>. Lipid normalisation of BCF<sub>Kg</sub> resulted in a BCF<sub>KgL</sub> of 1349 L/kg.


The BCF<sub>KgL</sub> for the whole fish is the most relevant BCF because it incorporates a measurements during uptake and depuration and the influence of the test fish growth and lipid content. The resulting BCF SSL matches the  $BCF_{KeL}$  well, indicating a representative fitting of the fish matrix concentration data

The time to reach a 50% tissue saturation in fish matrix was calculated to occur after 0.551 a (growth corrected). The duration for further incorporation of test item to up to 95% of the steady state concentration was calculated to be reached after 9.73 d (growth-concentration). The half-life of the dest iter in fish was determined to be 1.33 d (growth-corrected). The elimination of 95% of test item in fish was determined to be 7.83 d (growth-corrected).

Aclonifen, yielded ane The metabolite analysis after 28 days exposure ingon absolute concentration uncharacterized metabolite, which accounted for of 1.04 mg/kg in fish tissue.

ſFÆĨALS

#### A. MATERIALS





#### Source:

Feeding: **Total length:** 

3. **Test water:** 

 $7.47 \pm 0.43$  cm De-chlorinated local tap water. The tap water was sourced from

Commercial fish diet Inicio Plus, 2 mm biomar, Denmarl

the Schmallenberg district water production plants, mostly fed by small springs and percolation. The purification process occured on-site at Fraunhofer IME and includes filtration with & activated charcoal, passage through a line-stone column, and aeration to the point of oxygen saturation. To avoid copper contamination Plastic Water pres are used in the test facilities.

#### B. **STUDY DESIGN AND METI**

#### 1. In-life phase:

2. Exposure conditions **Test vessels:** 

|      | 4                     | , Ô      | , Ø        | -Q                                     | , , , ,   | ⇒ (      | 0′ 🦉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ," r<br>0. |
|------|-----------------------|----------|------------|----------------------------------------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| D ME | THODS                 | N I      | × ?        | ×                                      | ♦ .Ô      | ý<br>L   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|      | Marc                  | h = 02   | May 201    | 9 Ô <sup>×</sup>                       |           |          | de la companya de la | J.         |
|      | Q V                   |          | ~~~~       | Í.                                     |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q          |
| L    |                       |          | s s        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           | Š L      | Ş 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| -Q"  | Č6                    | 6a (     |            | y 'o                                   |           | 0        | °~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| ¢.   | . 100 L g12           | rss agu  | tria fideo | d with 7                               | 5 LØf t   | est Solu | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| , Y  | 400 L ga<br>Control a | nd sing  | le test c  | mentr                                  | ation of. | 30 ug/I  | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| ×    |                       |          | <i>©</i>   |                                        |           |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| O    | Opertest<br>109 fish  | vessei p | per group  |                                        | * ~C*     | L.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| âs:  | 109 fish              | per test | group      | 1.                                     | s v       | Ş        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |

**Replicates:** Number of test organism Temperature pH:

Dissolved oxygen

Experimental design 😹

3. Administration of the test item

Dose preparation and desing

- 108% A SY 59 64 55 0' 44 0' 44 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0' 59 0 At the beginning of experimentation an adequately concentrated stock solution of the test item in solvent (acetonitrile) was prepared for the whole period of performance. For the radioactive stock solution 232.2 mg of the radio abelle frest item were disso bed in 30 mL acetonitrile. A second stock solution of 708.7 mg non-radio labelled test item was prepared by Otluting the Aclonifen in 50 mL acetonitrile. The complete radio labelled solution was mixed with 28 mL of the non-radio labelled solution and filled up to 230 mL with acetophtrile to obtain a concentration of 33.2 mg Aclonifen/L as stock solution.

An intermediate dilution was prepared for every day to enrich the flow through water with test item to the desired concentration. Therefore 5 mL of the stock was transferred into a separate 500 mL glass bottle, which was stored at \$-18 °C until use.

For the daily preparation of the 1st intermediate stock solution (ISS), the solvent was evaporated from the 500 mL boule by Aushing with nitrogen. 200 mL dilution water and 2.7 mL HCL (37%) was added and the solution was stirred with a magnetic agitator. Thereafter, the bottle was filled to approximately 500° mL with dilution water and put into an ultrasonic bath overnight with a pulse protocol of 1 h sonication and 2 h pause.



The  $2^{nd}$  ISS was prepared the next day by transferring the complete mix of the  $1^{st}$  ISS into a 10 Lbrown glass bottle with screw caps, which already contained 2 L of dilution water. The mixture was stirred all the time with a magnetic agitator. The empty 500 mL bottle was rinsed 2 times with dilution water, the wash was combined into the total volume of the  $2^{nd}$  ISS. The latter mix was filled to a total volume of 10 L with dilution water and was stirred overnight.

The next day the  $2^{nd}$  ISS (10 L) was mixed with 80 L dilution water to prepare the daily reservoir (total) volume of 90 L) for the aquarium (1:10 dilution) in a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume to prepare the daily reservoir (total) is a stainless steel basis for volume

#### Test apparatus

The test vessels were 100 L glass aquaria filled with 75 L of test solution (treatment) or dilution water (control). To achieve a 5-fold exchange per day, as recommended by OECD 305, a continuous flow of 15.6 L/h test solution (uptake phase) or water (deputation phase) was maintained throughout the test using a metering pump system. The same flow through rates of dilution water were applied in the control vessel. The metering pump system was set to combine 2.5 L/h of the daily dilution with 12.1 E/h dilution water resulting in a constantly applied test concentration of 50 µg/D in the treatment vessel during the uptake phase.

#### 4. Test organism assignment and treatment

During the uptake phase, the tish were continuously exposed to the test item. Thereafter, the remaining fish population was transferred into a new aquarium containing the test item-free dilution water for 21 days (depuration phase).

The fish were fed each day bricio Plus, 2 mm biomar, Denmark at a level of 1.5% of the body weight. Uneaten food and theces were siphoned from the vessels within one hour after feeding.

#### 5. Measurements and observations

The oxygen concentration (WTW Oximeter inot ab Ox 7310), temperature, and pH (WTW pH-Meter inoLab pH 7310) of the test solutions and control water was measured daily.

Total Organic Carbon (TOC) including organic carbon from particles and dissolved organic carbon, were measured as Non-Rurgeable Organic Carbon (IPOC) at the beginning of the test (24 and 48 h prior to test initiation of uptake phase), before introduction of the fish and at least once a week during both uptake and depuration phases.

During untake, water samples were taken at teast three times a week and directly before fish sampling to monitor the concentration of the test item in the control and test vessels. During the depuration phase, water samples were taken at Day II and three times per week thereafter, until measured concentrations of the test item during the depuration phase were below the LOQ.

Fish samples were taken on Days 1, 3, 7, 4, 21 and 28 of the exposure phase and at Days 1 (29), 2 (30), 4 (32), 7 (35), 14 (42) and 21 (49) of the depuration phase.

Each fish was analysed individually for the test item (in total five replicates per sampling date). From the control group, one replicate sampled at the beginning and end of the exposure phase as well as at the end of the depuration phase was analyzed and no background contamination was observed. Three additional fish were sampled at the end of the uptake period as well as the end of the depuration period for lipid analysis, respectively. The additional fish needed for lipid analysis at the start of the uptake period were sampled from the stock population.



#### 7. Statistics/Data evaluation

The kinetic bioconcentration parameters were calculated accordingly to the suggested mathematical operations given in the OECD TG 305 for BCF determination using Microsoft Excel 2016<sup>®</sup>, Signa Plot<sup>®</sup> and SigmaSat<sup>®</sup>.

#### **II. RESULTS AND DISCUSSION**

#### A. ANALYTICAL VERIFICATION

The mean achieved concentration of test item in treatment water was  $28.3 \pm 3.54 \mu g/L$  paront test item corresponding to  $30.1 \pm 3.51 \mu g/L$  TRR. The control water did not contain any trace of test item values all < LOQ). During uptake phase of the experiment, the first measured value was below the 20% tolerance which can be explained by the introduction of a high amount of biomass

| <b></b>                                                                  |                                                      |                                            |                                               |
|--------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Time                                                                     | Aelonifen<br>concentration by<br>QLC-MS/MS           | Aberrance<br>from mean<br>(%)              | TRR concentration<br>measure by OSC<br>(µg/L) |
| (days)                                                                   | QLC-MS/MS                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     | μg/ <b>μ</b> g/ <b>μ</b> g                    |
| -3                                                                       | Q <u>~ 26.1</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~7 <b>,</b> 9                              | 28.1                                          |
| -2                                                                       | 33.0                                                 | Q Q.9 O                                    | \$ \$ 36.0                                    |
| -1                                                                       | a \$0.6 s.                                           | × ~ ~ 8.44 ~ Q                             | 20.1                                          |
| 0 💊 🖗                                                                    | 0 × 30.6                                             | 8 75 7                                     | 31.8                                          |
| 1 4                                                                      | <u></u> 2150 0                                       | 5 <u>4</u> 25.7 <u>5</u>                   | 21.7                                          |
| 3                                                                        | 28.7                                                 | × 01.57 ×                                  | 29.7                                          |
|                                                                          | 30.1 × ×                                             | <i>©</i> 7.50<br><i>∞ 0</i> 3.6 <i>∞ 5</i> | 31.3                                          |
| $7^{\circ}$                                                              | 24.4 ×                                               | <u>2</u> 7.50<br><del>3</del> 23.6 5       | 25.5                                          |
|                                                                          | 0 \$91.9 × 5                                         | 13.0                                       | 34.9                                          |
| 12 00 ~ (                                                                | 31.7~ Å                                              | 1222                                       | 33.7                                          |
| × 14 × ×                                                                 | 33.9                                                 | 49.90                                      | 33.8                                          |
| <u>کې 18 کې کې الا کې کې الا کې </u> | 28.1 °                                               | °~~-0.61                                   | 27.7                                          |
|                                                                          | 26.4 <sup>°</sup>                                    | -6.59                                      | 29.4                                          |
|                                                                          | 274                                                  | -2.97                                      | 30.3                                          |
| @22 °O* °C                                                               |                                                      | • -7.11                                    | 30.3                                          |
| 25                                                                       | Y 23.26<br>25.8 4                                    | -17.85                                     | 26.9                                          |
|                                                                          |                                                      | -8.68                                      | 29.3                                          |
|                                                                          | a. (28.5 a)                                          | 0.94                                       | 32.5                                          |
| Mean concentration (µg, 12) 🔩                                            | 28.3                                                 |                                            | 30.1                                          |
| Standard deviation (µg/L)                                                | <b>3,54</b>                                          |                                            | 3.51                                          |
| Standard deviation (%)                                                   | × <b>12</b> .5                                       |                                            | 11.7                                          |
| Minimum concentration (gg/L)                                             | 21.0                                                 |                                            | 21.7                                          |
| Maximum conceptration (µg/L)                                             | <sup>9</sup> 33.9                                    |                                            | 36.0                                          |
|                                                                          |                                                      |                                            |                                               |

# Table: Measured aclonifen concentrations in the aqueous test media during the uptake phase

Measured concentrations in the aqueous test media declined from 5.11  $\mu$ g/L on Day 1 of the depuration phase to be so that the LOQ of the analytical method by Day 4 of depuration.

#### **B. BIOLOGICAL DATA**

Test conditions



During the test, the water temperature in the aquaria ranged between 13.0  $^{\circ}C - 15.0 ^{\circ}C$  in both test vessels and was within the range of 15 °C  $\pm$  2 °C recommended by OECD 305.

The remaining ambient parameters were also in the range of the guideline cited. The pH in the test vessels ranged between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 and the oxygen saturations in both vessels were between 6.76 and 7.87 108%.

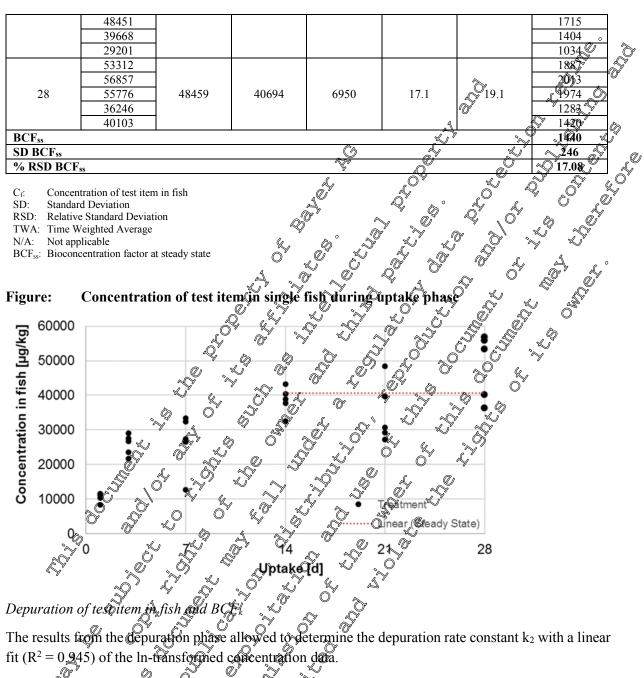
Non-purgeable organic carbon (NPOC) as a measure of total organic carbon (TOC) was only determined in the control vessel, no analysis for the treatment group was possible doe to the 14C dabelled test item. NPOC ranged between 0.135 and 1.572 mg/L (OECD(305 guideline) equirement 2.0 mg/L) with the C exception of a single value of 1.61 mg/L determined on Day 420 The maximum value was a single observation, which occurred in the holding and distion water during the depuration phase and was thus evaluated to have no effect to the test system. &

#### Fish health and behaviour

ns of see differentiation were All fish were in a vivid and healthy condition and showed no aphormal behaviour during the study Fish were immature at the start of the study, and at termination still to signs of visible. No mortality occurred during the stordy. °~

#### Uptake of test item in fish and $B_{FF}F_{SS} \ll$

By considering the mean concentration of data points of Day 14, 21, and 28, a mean steady-stateconcentration of  $40694 \pm 6950 \mu g \Omega$  was determined. Day 7 was not included in the calculation, as data at this time point displayed a stronger scatter and the walculated (growth-corrected) time to reach a 95% tissue saturation was  $403Ug = 9037 d_{\rm c}$ 

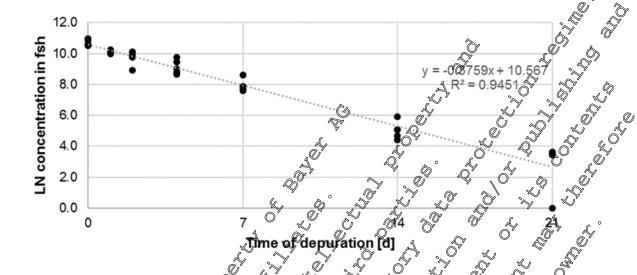

Based on the considered means of the concentration in rsh dioded by the concentration in water ( $C_{t}/C_{w}$ ), a BCFss of 1440 246 kg was calculated

| 1 | 9 | h | P.   |
|---|---|---|------|
|   | а | U | . U. |

Concentration of test item in single fish during uptake phase

| Time<br>(day)                                                                               | C <sub>f</sub><br>(µg/kĝ)      | Mean Cr                                | State                          | Steady<br>state SD % | Steady<br>state RSD<br>(µg/kg) | Deviation<br>from SS<br>(%) | C <sub>f</sub> / TWA |
|---------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------|--------------------------------|-----------------------------|----------------------|
|                                                                                             | 1,03348 4                      |                                        |                                |                      |                                |                             | 366                  |
|                                                                                             | 8410                           |                                        |                                | NXX                  |                                |                             | 298                  |
| 1                                                                                           | ©115000 <sup>♥</sup><br>©11219 | 010584 O                               | , ∭A , C                       | ° NQĂ                | N/A                            | -74                         | 407                  |
| A                                                                                           |                                | õ <sub>N</sub> y                       |                                | ð                    |                                |                             | 397                  |
| <u>Pa</u>                                                                                   | 11448                          |                                        | 4 <sup>54</sup> 6 <sup>4</sup> |                      |                                |                             | 405                  |
|                                                                                             | 23525 👸                        |                                        |                                | $\mathbb{Q}$         |                                |                             | 833                  |
|                                                                                             | 26666                          |                                        | ~~~                            | V                    |                                |                             | 944                  |
| A B                                                                                         | 2751                           | 25682                                  | ©″N/A ∽                        | N/A                  | N/A                            | -36.9                       | 974                  |
| ×                                                                                           | 21739                          |                                        |                                |                      |                                |                             | 770                  |
|                                                                                             | 28974                          | I. 0                                   |                                |                      |                                |                             | 1026                 |
|                                                                                             | ₹ 32385 \                      | 26485                                  | Q,                             |                      |                                |                             | 1146                 |
|                                                                                             | O″ 27437                       |                                        | ůN/A                           |                      |                                |                             | 971                  |
| 7                                                                                           | 33382                          | 26485                                  | ≈Q° N/A                        | N/A                  | N/A                            | -34.9                       | 1182                 |
| 7<br>59<br>59<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54 | 2660 O                         | 5 <sup>5</sup> 26485                   |                                |                      |                                |                             | 448                  |
|                                                                                             | <u>~26559</u>                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                |                      |                                |                             | 940                  |
| × 0                                                                                         | O7 388957                      |                                        |                                |                      |                                |                             | 1377                 |
| CALL OF                                                                                     | 377057                         | × *                                    |                                |                      |                                |                             | 1337                 |
| 14 S                                                                                        | 32525                          | 38566                                  | 30245                          | 7218                 | 23.9                           | -5.23                       | 1151                 |
|                                                                                             | 40483                          |                                        |                                |                      |                                |                             | 1433                 |
|                                                                                             |                                |                                        |                                |                      |                                |                             | 1528                 |
| 21                                                                                          | 27237                          | 35057                                  | 33369                          | 6215                 | 18.6                           | -13.9                       | 964                  |
|                                                                                             | 30727                          |                                        |                                |                      |                                |                             | 1088                 |






The respective depuration constant  $k_2$  of 0.5% d 10% as determined from the slope of single values. Based on  $k_2$ , the uptake rate constant  $k_1$  was determined to be 505.

A BCF<sub>K</sub> of 134 VL/kg was determined by division of uptake and depuration rate constant.



#### Figure: Ln-linear fit of the fish matrix concentrations of aclonifen during depuration phase



#### Growth correction

The slope from growth data of the treatment group was used to correct the BCF with the treatment growth rate constant of  $K_g = 0.0214$ . The latter constant was subtracted from ke to obtain the growth corrected  $k_{2g}$  of 0.354.

Based on the corrected depuration rate constant, the growth corrected  $BCF_{Kg}$  was determined to be 1425 L/kg.

#### Lipid correction

The lipid content of fish from the stock at the start of the experiment was about 5.70%. Over the experimental phase of the study, a mean kipid content of  $5.28 \pm 9.80\%$  was determined in Aclonifenexposed specimens and was comparable to the control group with a tipid content of  $5.81 \pm 26.3\%$ . For lipid normalization, the lipid content of treated animals was used

The BCF<sub>SS</sub> of 1440 f/kg results in a lipid corrected BCF<sub>SSL</sub> of 364 L/kg. For the BCF<sub>Kg</sub> of 1425 L/kg, lipid correction resulted in a BCF<sub>KgL</sub> of 349 L/kg.

## Calculation of time to Stead State for Aclorifen

The time span to reach half of the steady state concentration was calculated based on the previously determined  $C_{f,ss}$  of 40694 µg/kg of Acloniten. Half of the maximum concentration of the test item in fish matrix (t<sub>50U</sub>) was reached after 0.603 days (i.e. 14.5 h), or when also considering the correction for growth (k<sub>1</sub> and k<sub>2</sub>) 0.551 days (i.e. 13.2 h), respectively.

A 95% tissue saturation (to ) was calculated to be reached after 20.2 days (i.e. 486 h), or when correcting for growth (to ) 9.32 days (e. 225 h).

# Half-life of Aclonifen

Based on the slope and intercept of the linear function of the ln-transformed C<sub>f</sub> values, the substance specific half-life ( $t_{50D}$ ) was determined to be 1.25 days (i.e. 30.1 h). Considering also the growth rate constant, the respective elimination time ( $t_{50Dg}$ ) increases to 1.33 days (i.e. 31.9 h).

#### C. VALIDITY CRITERIA



|                                                                                                        | Required                              |                                        |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Validity criterion                                                                                     | (OECD 305-I, 2012                     | ) Achieved $\mathcal{Q}_{\mu}^{\circ}$ |
| Variation in water temperature                                                                         | <±2°C                                 | <=2°C \$                               |
| Dissolved oxygen concentration (% saturation)                                                          | ≥60%                                  | ≥60%                                   |
| Limit in variation of measured test item concentration from                                            |                                       |                                        |
| the mean measured concentration                                                                        | ±20%                                  |                                        |
|                                                                                                        | <li>limit of water</li>               |                                        |
| Test concentration                                                                                     | solubility                            | Yes Y                                  |
| Mortality or other adverse effects/disease                                                             | <16%                                  |                                        |
| *Aside from a drop of the concentration after fish introduction, @d th                                 | 0                                     | A CO C C                               |
| which was considered to be due to the introduction of a high prount                                    |                                       | incentration at 24 notify              |
|                                                                                                        |                                       |                                        |
| All validity aritaria wara satisfied and therafore this stady                                          | an be condidered                      | had a start                            |
|                                                                                                        | canole considered it                  |                                        |
| All validity criteria were satisfied and therefore this study<br>D. TOXICITY ENDPOINTS                 |                                       |                                        |
|                                                                                                        | ð A.Ô                                 |                                        |
| Summary of calculated parameters                                                                       |                                       |                                        |
| Bioconcentration Parameter                                                                             |                                       | Coatment value                         |
|                                                                                                        |                                       |                                        |
| $K_g$ (growth rate constant, day <sup>-1</sup> ) $Q$                                                   |                                       | .0214<br>SE ©0027; 95% CI              |
|                                                                                                        |                                       | .005)                                  |
| $k_1$ (uptake rate constant, L/kg day <sup>-1</sup> ) $k_1$                                            |                                       | 05                                     |
|                                                                                                        |                                       | SE 297, 95% CI 609)                    |
| $k_2$ (depuration rate constant, day $k_2$ (depuration rate constant, day $k_2$                        |                                       | .376                                   |
|                                                                                                        |                                       | SE 0.0158; 95% CI                      |
|                                                                                                        |                                       | (Ů32)                                  |
| $k_{2g}$ (growth-corrected dependation rate constant, day <sup>-1</sup> )                              |                                       | .354                                   |
| $C_{f,SS}$ (Concentration in fight at steady-state, $\mu g/kg$ )                                       | - (>> %                               | 0694                                   |
| $C_w$ (Concentration in water (DWA), uptake phase, $U$                                                 |                                       | SD 6950; RSD 17.1%)<br>8.3             |
| Cw (Concentration mowater (Ow A), uptake phase, up L)                                                  | SK 1                                  | SD 3.54; RSD 12.5%)                    |
| LN (overall lipid normalisation factor, uppless)                                                       |                                       | .0528                                  |
| BCFss (steady-state bicconcentration factor, L/kg)                                                     | · · · · · · · · · · · · · · · · · · · | 440                                    |
|                                                                                                        | <i>R U</i>                            | SD 246; RSD 17.1%)                     |
| BCFssL (lipid-normalised) steady state bioconcentration factor                                         | ; <b>(b</b> kg) 1                     | 364                                    |
| BCF <sub>K</sub> (kinetic bioconceptration Factor P/kg)                                                | S 1                                   | 343                                    |
| BCFKg (growth-corrected kinetic biosoncentration factor, L/k                                           | g) 1-                                 | 425                                    |
| BCFKgL (growth- and lipid corrected kinetic bioconcentration                                           |                                       | 349                                    |
| $t_{500}$ (time to reach 50% of $C_{f,ss}$ day) $v_{f}$                                                |                                       | .603 (14.5 h)                          |
| $t_{500g}$ (growth-corrected time to reach 50% of $(F_{f,SS}, d_{OF})$                                 |                                       | .551 (13.2 h)                          |
| tosy time to reach \$5% of \$7\$ ss, dagy" 0"                                                          |                                       | 0.2 (486 h)                            |
| $t_{950}$ (growth-corrected time to reach 95% of $C_{10}$ , day)                                       |                                       | .37 (225 h)                            |
| $t_{50D}$ (half-life, day)<br>$t_{50Dg}$ (growth corrected half-die, day)                              |                                       | .25 (30.1 h)<br>.33 (31.9 h)           |
| $t_{50Dg}$ (growth corrected nair the, day),<br>$t_{95D}$ (time required to reach 95% depuration, day) |                                       | .38 (177 h)                            |
| $t_{95Dg}$ (grawth-concected time required to reach 95% deputation                                     |                                       | .38 (177 h)<br>.83 (188 h)             |
| SE: Standard error                                                                                     | 1, uay) /                             | .05 (100 11)                           |
| SD: Standard deviation                                                                                 |                                       |                                        |
| RSD: Relative standar deviation                                                                        |                                       |                                        |
|                                                                                                        |                                       |                                        |
|                                                                                                        | ION                                   |                                        |
|                                                                                                        |                                       |                                        |

#### **III. CONCLUSION**

In fish continuously exposed to [ $^{14}$ C]-aclonifen at a mean measured concentration of 28.3 µg/L for a period of 28 days the steady-state BCF (BCFss) was determined to be 1440 L/kg based on the average



whole body concentrations at equilibrium phase between water and fish between Days 14 and 28. Lipid normalisation resulted in a lower lipid-normalised BCF<sub>SSL</sub> of 1364 L/kg.

From the uptake rate constant of  $k_1$  of 505, and the depuration rate constant  $k_2$  of 0.376 the Minetic bioconcentration factor (BCF<sub>K</sub>) was determined with 1343 L/kg.

As fish grew during study, the  $BCF_K$  was corrected for growth-dilution effects into  $BCF_K$ incorporating the growth rate constant of 0.0214 d<sup>-1</sup>. Lipid normalisation & BCF<sub>Kg</sub> resulted in BC of 1349 L/kg.

The result that the BCF<sub>Kg</sub> and the BCF<sub>SS</sub>, as well as  $BCF_{KgL}$  and BCF<sub>SSL</sub> are very similar indicates the the steady state was truly reached during the experiment and that uptake and deputation processes follow first order kinetics.

The BCF<sub>KgL</sub> for the whole fish is the most relevant BOF because it incorporates all measurements during uptake and depuration and the influence of the test of she with and lipid content.

The time to reach a 50% tissue saturation in fish matter was calculated to becur after 0.551 d (growthcorrected). The duration for further incorporation of test item to up to 95% of the steady state concentration was calculated to be reached after 9.73 d (growth corrected). The half the of the test item in fish was determined to be 1.33 d (growth-corrected). The climination of 95% Otest item in fish was determined to be 7.83 d (growth-corrected)

The metabolite analysis after 28 days exposure to 30 µg/L (nominal) Actorifen, yielded one uncharacterized metabolite, which accounted for <3% of TorR, but reaching an absolute concentration of 1.04 mg/kg in fish ossue.

Assessment and conclusion by applicant All validity criteria were satisfied and therefore this study can be considered to be valid.

The steady-state BCF (BCFs) was determined to be 1440 L/kg. Lipid normalisation resulted in a lower lipid-normalised BCF<sub>SSL</sub> of 4364 D/kg.

From the uptake rate constant of  $k_1$  of 505, and the deputation rate constant  $k_2$  of 0.376 the kinetic bioconcentration factor (BCF<sub>K</sub>) was determined with 1343 L/kg.

As fish grew during study, the BCFK was corrected for growth-dilution effects into BCFKg 1425 L/kg incorporating the growth rate constant of 0.0214rd-1. Lipid normalisation of BCFKg resulted in a BCEkgL of 1349 LARg.

The BCF<sub>KgL</sub> of 1349 L/kg for the whole fish is the most relevant BCF because it incorporates all measurements during uptake and depuration and the influence of the test fish growth and lipid This value should be used for tisk assessment purposes. content.

Assessment and conclusion by RMS:



| Data Point:                | KCA 8.2.2.3/05                                                                 |
|----------------------------|--------------------------------------------------------------------------------|
| Report Author:             |                                                                                |
| Report Year:               | 2019                                                                           |
| Report Title:              | Aclonifen: Endpoint selection for the bioconcentration of aclonifen in rainbox |
|                            | trout, Oncorhynchus mykiss                                                     |
| Report No:                 | VC/19/016/02                                                                   |
| Document No:               | M-675783-01-1                                                                  |
| Guideline(s) followed in   |                                                                                |
| study:                     |                                                                                |
| Deviations from current    |                                                                                |
| test guideline:            |                                                                                |
| Previous evaluation:       | No, not conducted under GLP/Officially recognised testing facilities           |
|                            |                                                                                |
| GLP/Officially             | No, not conducted under GLP/Officially recognised testing facilities           |
| recognised testing         |                                                                                |
| facilities:                |                                                                                |
| Acceptability/Reliability: |                                                                                |
|                            |                                                                                |
|                            |                                                                                |
|                            |                                                                                |
|                            |                                                                                |
|                            |                                                                                |
| <b>Executive Summary</b>   | A C C C C C C C C C C C C C C C C C C C                                        |
| This namer represents the  | a satisfican of the state induced to the hear a section of a longing in        |

**Executive Summary** This paper represents the selection of the selevant endpoint for the bioconcentration of aclonifen in aquatic organisms.

A total of four fish bioaccumulation tests with sclonifen have been conducted to determine the bioaccumulation potential of acloraten to rainbow trout, Oncorhynchus mykiss. In each study, the bioaccumulation test consisted of two phases; the exposure (or uptake) phase and post exposure (or depuration) phase.

(1992, M-235556-01-2) was performed according to OECD test guideline The first study ( 305E (1981) and included two test concentrations of 4.5 and 45.0 ug/L with an uptake phase of 6 days followed by a 12-Dax depuration phase. K.

Studies two and three were performed of the same tese facility according to OECD test guideline 305E (1981) and OECD draft guide the 305 (1992). The second study ( 1992, M-235029-01-1) used two test concentrations of 6.0 and 80 µg/2 with an uptake phase of 8 days followed by a 14-Day depuration phase. Based on the second study, the third study (1992, M-174910-01-1) included a single test concentration of 30 µg/L only. A 28-Day uptake phase followed by a 20 Day depuration period was employed in the third study.

2019, M-667576-02-1) was performed according to the The fourth and anal study ( current OECD Test Guideline (OECD 305, I (2012)). A single test concentration of 30 µg/L was included and the test was performed using a 28-Day uptake period followed by a 21-Day depuration period.

The data generated in each of these studies have been re-evaluated to define the relevant bioconcentration endpoint.

Deficiencies have been identified in three of the four bioconcentration studies that have been performed , 1992, M-235556-01-2; 1992, M-235029-01-1; and on aclonifen (

1992, M-174910-01-1). These studies were performed in accordance with the relevant test



guidelines at the time of performing the studies, however due to scientific advances in both the performance and evaluation of bioconcentration studies, the deficiencies identified when comparing these studies to current guideline requirements are of sufficient magnitude to raise serious concerns with respect to the validity of the reported BCF values.

The recently completed study (2019, M-667576-02-1) was performed according to the latest OECD test guideline, OECD 305-I, 2012, and satisfied all the requirements of that Quideline. It is therefore considered that the determined BCF results are an accurate and reliable estimate of the bioconcentration potential for aclonifen.

A growth-corrected, lipid normalised bioconcentration factor ( $BCF_{KgL}$ ) of 1649 L/kg is BCF for aclonifen in aquatic organisms, C

Assessment and conclusion by applicant:

The re-evaluation of the available study data is considered to be acceptable and hence the conclusions drawn are considered to be valid.

A growth-corrected, lipid normalised bioconcentration factor (BCF<sub>kgL</sub>)  $0^{1349}$  L/kg is therefore considered the most relevant BCF for acloniton in aquatic organisms.

Assessment and conclusion by RM

| CA 8.2.3 |      | Endo | crine | disrup | tin |
|----------|------|------|-------|--------|-----|
|          | (C)¥ |      |       |        | 28  |

| Data Point.                         | KCA 8.2.3 (91                                                               |
|-------------------------------------|-----------------------------------------------------------------------------|
| Report Muthor:                      |                                                                             |
| Report Year:<br>Report Title:       | $2020$ $z^{\prime}$ $z^{\prime}$ $z^{\prime}$ $z^{\prime}$                  |
| Report Title:                       | Appendix I Assessment of the endocrine disrupting properties of the active  |
|                                     | substance a clonifer in accordance with Commission Regulation (EU) 2018/605 |
| Report No: 🔊 🖒                      | ₩ <sup>2</sup> 6767 <b>3</b> %-01-1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|                                     | M-626 36-01 8 6 0                                                           |
| Guidelings' followed in             | in Accordance with Commission Regulation (EU) 2018/605                      |
| study: 🖏 🏹                          |                                                                             |
| Deviations from current             |                                                                             |
| test guideline:                     |                                                                             |
| Previous evaluation:                | To, not conducted under GLP/Officially recognised testing facilities        |
| GLP/Officiatiy                      | No, not conducted under GLP/Officially recognised testing facilities        |
| recognised testing                  |                                                                             |
| facilities                          |                                                                             |
| Acceptability Reliability:          | ζΥ                                                                          |
| Acceptability (Actinational States) |                                                                             |

**Executive Summary** 



The potential of aclonifen to interact with endocrine systems in aquatic organisms has been reviewed, to facilitate an assessment of whether aclonifen may be judged to be an endocrine disrupter (ED) within the framework of European legislation.

Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No \$28/2052 and (EC) No 1107/2009 has been published (EFSA/ECHA, JRC, 2018). This guidance document describes how to gather, evaluate and consider all relevant information for the assessment, conduct a MoA analysis, and apply a WoE approach, in order to establish whether the ED criteria are fulfilled. The guidance states that a substance shall be considered as having endocrine disruption properties if it meets all of the following criteria:

- i. It shows an adverse effect in an intact organism or its progeny, which is a change in the morphology, physiology, growth, development, reproduction, or, fife span of an organism, system, or (sub)population that results in an impairment of functional capacity an impairment of the capacity to compensate for additional stress, or an increase or susceptibility to other influences.
- ii. It has an endocrine mode of action, i.e. it alters the function(s) of the endocrine system.
- iii. The adverse effect is a consequence of the endocrine mode of action

Standard toxicology and ecotoxicology studies conducted to meet to the date requirements under Regulation (EU) 283/2013 have been submitted in this reneval dossier. A literature search was conducted to find relevant studies in the open literature conducted in the last 10 years. Further in vitro studies have been conducted to investigate EATS-mediated photogrine activity.

A summary of all relevant studies is provided in the excel spreadsheet Appendix E.

#### T-modalities

Based on the available endpoints for non-target organisms, there is no specific evidence suggestive of T-mediated and ocrine activity/adversity of activitien. However, the available evidence is not sufficient to conclude either on Temediated activity or on T-mediated adversity in non-target organisms. Further data need to be generated.

Based on scenario 2a (iii) of the ED Guidance, the endocrine activity was not sufficiently investigated for the T-modality. Therefore, according to the ED Guidance, a level-3 study should be performed. The available level-3 test guidelines are the Amphiluan Metamorphosis Assay (AMA; OECD TG 231) and the Xenoptic Eleutheroembryonic Thyroid Assay (XETA; OECD TG 248).

EFSA recently (ECHA ED Expert Meeting on December 3rd, 2019) considered that the XETA can be used for evaluating the T-modality if "Information is available that one of the mechanisms of action which the assays's able to detect can be involved:

- Metabolism by dejodinases,
- Carange hepatic metabolism,
- Thyroid receptor agonist,
- Thy foid receptor antagonist"

As indicated in the mammalian ED assessment, enhanced hepatic clearance of thyroid hormones is considered to be the most likely MoA for the changes in thyroid hormones and thyroid hypertrophy



induced by aclonifen. The XETA is therefore considered as the appropriate assay to evaluate the T-modality for aclonifen.  $Q_{\mu}^{\circ}$ 

#### **EAS-modalities**

The EAS-modalities were not sufficiently investigated in non-target organisms, and further data must be generated.

According to the ED Guidance, in case further data with con-target organisms are needed to elucidate the endocrine activity due to the EAS-modalities, level-3 studies with this according to the DECD TG 229 and TG 230 are recommended, the preferred assay being the Fish Short Term Reproduction Assay (FSTRA, OECD TG 229).

However, according to EFSA (**1990**, Abstract WE201, SETAC Europe Heeting, 26-30 May 2019, Helsinki, Finland), there might be cases where substances having anti-and ogenic properties are not detected in tests where adult fish are exposed, which is the case of the OECD TG 229 and TG 30. This is because fish are exposed after the sexual differentiation occurred.

Similarly, alteration of steroidogenesis can conceivably result in changes in steroid hormone balance, and this may affect sexual differentiation in fish. Such effects night no be captured in studies with adult fish conducted according to the OECD, G 229 and TG 230

The Fish Sexual Development Test (FSDT; OECD TG 234) is considered as an alternative solution for substance acting as androgen anagonists (1997) 2019). It is also the preferred test to assess substances acting on steroid genesis, *e.g.* aromatase-infibiting chemicals (1997) 2012, Comparative Biochemistry and Physiology, Part (155: 407-415).

For aclonifen, there is indication from the *in vitro* assays that this substance has anti-androgenic activity and affects steroid ogenesis. Although the *in vitro* endocrine activity *via* the A and S modalities are not replicated *in vivo* in mammals, the most appropriate assay to eluoidate the endocrine activity due to these two modalities in fish would be thish Sexual Development Test (FSDT; OECD TG 234).

The FSDT also allows detecting substances acting as estrogens and anti-estrogen, and it is also responsive to certain thyroid-discripting chemicals (see OECD GD 150, section C.2.9).

## Overall conclusion on the ED assessment for non-targer organisms

For aclonifen, the available data are not officient to conclude on EATS-mediated activity in non-target organisms. Further data need to be generated according to scenario 2a (iii) of the ED Guidance.

For the T-modality a study according to the OFCD TG 248 (*Xenopus* Eleutheroembryonic Thyroid Assay - XETA) is proposed. According to EFSA (December 2019), there are two possible options:

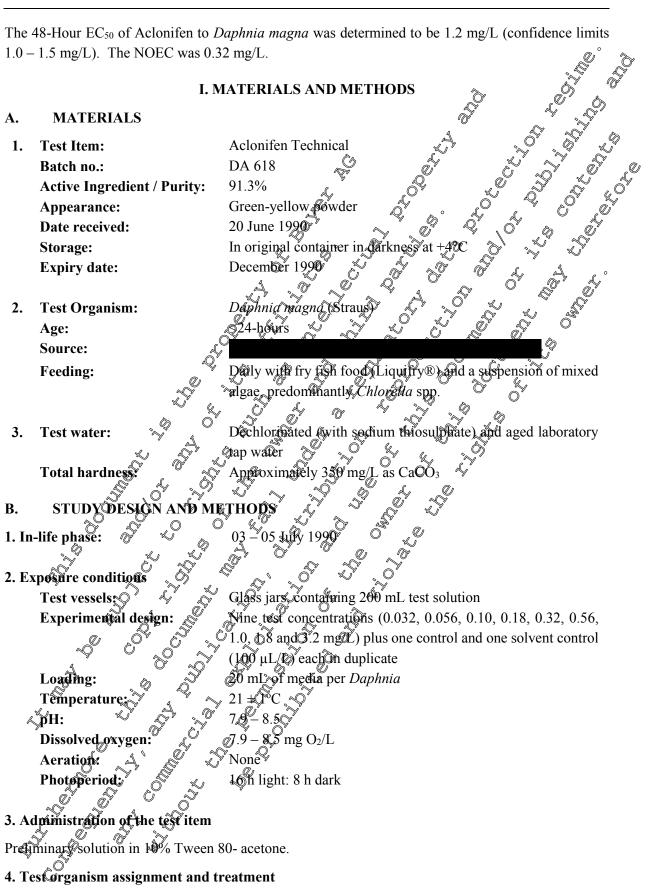
- If the XETA is negative, the PD criteria are not met for the T-modality for non-target organisms.
- If the XETA is positive, according to Figure 1 of the ED Guidance, a MoA Analysis should be performed, and turther testing might be needed. In this case, an AMA should be performed if information is available that the substance may interfere with the THs synthesis (*i.e.* inhibitor of the sodium iodide symporter, NIS), which might be considered applicable in the case of actionifen (see Table 2 and section 3.1.5).

**For the EAS-modalities**, a study according to the OECD TG 234 (Fish Sexual Development Test - FSDT) is proposed in order to address the A and S modalities more specifically than with an FSTRA.



| Assessment and conclusion by RMS:         Assessment and conclusion by RMS:         Assessment and conclusion by RMS:         CA 8.2.4         Acute toxicity to aquatic invertebrates         CA 8.2.4.1         Acute toxicity to Daphnin mugna         Data Point:         KCA 8.2.4.1         Report Author:         Image: Second Control of Control o                                                                                                                                                                                                                                                                                                    | Assessment and conclus                  | ion by applicant:                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ·····                                                                       |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ble data is considered to be acceptable and hence the conclusions drawn are |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | considered to be valid.                 |                                                                             |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                             |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                             |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assessment and conclus                  | ion by PMS:                                                                 |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assessment and conclus                  |                                                                             |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                             |
| CA 8.2.4.1       Acute toxicity to Daphnia magna         Data Point:       KCA 8.2.4.1/0/         Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                             |
| Data Point:       KCA 8.2.4.1/0/         Report Author:       Image: Constraint of the second s                                                                            | CA 8.2.4 Acute                          | e toxicity to aquatic invertebrates                                         |
| Data Point:       KCA 8.2.4.1/0/         Report Author:       Image: Constraint of the second s                                                                            |                                         |                                                                             |
| Data Point:       KCA 8.2.4.1/0         Report Author:       Image: Constraint of the second se                                                                            | CA 8.2.4.1 Acute                        | e toxicity to Daphnia magna C & & & &                                       |
| Report Author:       1991         Report Year:       1991         Report Title:       The active toxicity of Aclonifer to dapting magna         Report No:       R007049         Document No:       M274313-01-1         Guideline(s) followed in study:       OECD: 202, 1         Deviations from current test guideline:       Current Guideline: OECD 202, 2005         Water hardness was higher than recommended but was not considered to have affected study results         Previous evaluation       Yes, evaluated and accepted         GLP/Officially       Yes, conducted and er GLP/Officially resignised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                             |
| Report Author:       1991         Report Year:       1991         Report Title:       The active toxicity of Aclonifer to dapting magna         Report No:       R007049         Document No:       M274313-01-1         Guideline(s) followed in study:       OECD: 202, 1         Deviations from current test guideline:       Current Guideline: OECD 202, 2005         Water hardness was higher than recommended but was not considered to have affected study results         Previous evaluation       Yes, evaluated and accepted         GLP/Officially       Yes, conducted and er GLP/Officially resignised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data Point:                             | KCA 8.2.4.1/0 2 2 2                                                         |
| Report Title:       The active toxicity of Acclonited to daptinia magna         Report No:       R007049         Document No:       M, 174313-01-1         Guideline(s) followed in study:       OECD: 202, 1         Deviations from current test guideline:       Current Guideline: OECD 202, 200 <sup>5</sup> Water hardness was higher than recommended but was not considered to have affected study results         Previous evaluation       Yes, evaluated and accepted         GLP/Officially       Yes, conducted onder GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| Report No:       R007049       Image: Comparison of the second se                                                  | Report Year:                            |                                                                             |
| Interpret No.       Mg 194313-01-1         Guideline(s) followed in study:       OECD: 202, 1         Deviations from current test guideline:       Current Guideline: OECD 202, 200         Water hardness was higher than recommended but was not considered to have affected study results       Vest considered to have affected study results         Previous evaluation       Vest conducted and accepted       Vest conducted and accepted         GLP/Officially       Vest, conducted and er GLP/Officially resignised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Report Title:                           |                                                                             |
| Guideline(s) followed in<br>study:       OECD: 202, 1         Deviations from current<br>test guideline:       Current Guideline: OECD 202, 200         Water hardness was higher than recommended but was not considered to have<br>affected study results       Water hardness was higher than recommended but was not considered to have<br>affected study results         Previous evaluation       Yes, evaluated and accepted<br>Source: Study list relied upon, December 2011 (RMS: DE)         GLP/Officially       Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Report No:                              | R007049 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                               |
| study:       Current Guideline: OECD 202, 200F         Deviations from current       Current Guideline: OECD 202, 200F         test guideline:       Water hatchess was higher than recommended but was not considered to have affected study results         Previous evaluation       Yes, evaluated and accepted         Source: Study list relied upon, December 2011 (RVS: DE)         GLP/Officially       Yes, conducted and er GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Document No:                            |                                                                             |
| study:       Current Guideline: OECD 202, 200         Deviations from current<br>test guideline:       Current Guideline: OECD 202, 200         Water hardness was higher than recommended but was not considered to have<br>affected study results         Previous evaluation       Yes, evaluated and accepted         Source: Study list relied upon, December 2011 (RAVS: DE)         GLP/Officially       Yes, conducted onder GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guideline(s) followed in                | OECD: 202, 1 0 0 0 0 0 0                                                    |
| test guideline:       Water hardness was higher than recommended but was not considered to have affected study results         Previous evaluation       Yes, evaluated and accepted         Source:       Study list relied upon, December 2011 (RMS: DE)         GLP/Officially       Yes, conducted and are of 200 of 10 miler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                             |
| Previous evaluation       yes, evaluated and accepted       yes         Source: Study list relied upon, December 2011 (RMS: DE)         GLP/Officially       Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | Current Guideline: OECD 202, 200                                            |
| Previous evaluation       yes, evaluated and accepted       yes         Source: Study list relied upon, December 2011 (RMS: DE)         GLP/Officially       Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | test guideline:                         | Water hardness was higher, than recommended but was not considered to have  |
| GLP/Officially       Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sup>v</sup>                          |                                                                             |
| GLP/Officially Vos, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Previous evaluation                     | yes, exaluated accepted 9                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Source: Study list relied upon, December 2011 (RAVS: DE)                    |
| recognised testing '0' A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                             |
| Acceptability/Reliability/Year Year Article Ar | recognised testing "O"                  |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tacinties:                              |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acceptadinty/Reliability                |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A. ~~                                   |                                                                             |

#### Executive Summary


The acutoroxicity of aconiferrio *Daphnia magna*, was determined in a 48-hour, static exposure. Test solutions were prepared using stock solutions prepared in 10% Tween 80-acetone. Twenty *Daphnia* per test group were exposed to an untreated control solvent control and nominal Aclonifen concentrations of 0.10, 0.18, 0.32, 0.56, 1.0, 4.8, 3.22, 5.6 and 10 mg/L. The total test period was 48 hours. Samples for analytical confirmation of actual exposure concentrations were taken at the start and after 48 hours of exposure

Dissolved oxygen, pH, and temperature were measured in the controls and each test concentration at the beginning of the test and end of the test. Daily observations were made of immobilisation.

Results are based on nominal concentration since all test concentrations analysed showed measured concentrations to range from 81 to 97% of nominal with the exception of the 3.2 mg/L test sample at 48 hours which had a measured concentration of 74% of nominal. At 3.2 mg/L, settlement of undissolved material may have been the reason for the low measured value.



The 48-Hour EC<sub>50</sub> of Aclonifen to Daphnia magna was determined to be 1.2 mg/L (confidence limits 1.0 - 1.5 mg/L). The NOEC was 0.32 mg/L.



Daphnia were placed in the test solutions after addition of the test item.



#### 5. Measurements and observations

The number of immobilised daphnids was assessed after 24 and 48 hours from the beginning of the test. The criterion for the effect (immobility) was the inability to swim within 15 seconds after gentles agitation.

Dissolved oxygen concentrations and pH values were measured in all the test groups and the control and solvent control vessels at the beginning and at the end of the test. The temperature was recorded at 0, 24 and 48 hours.

Samples were taken from the solvent control and 0.032/0.10, 0.32, 10 and 3.2 mg/L test Oncentrations for analysis. The samples were collected at 0 and 48 hours (end of the test).

#### 5. Statistics/Data evaluation

The 24 and 48-hour  $EC_{50}$  and associated 95% confidence timits were careulated following the method described by (1952)? The No Observed Effect Concentration (NOEC) was determined by visual inspection of the data.

### IL RESULTS AND DISCUSSION

#### A. ANALYTICAL VERIFICATION

Measured concentrations for all exposure levels analysed (with the exception of the 3.2 mg/L level), remained within the range 81  $\cdot$  97% of nonprial throughout the study. At 3.2 mg/L, the measured concentration fell from 93% at 0 hours to 74% at 48 hours indicating that some settlement of undissolved test substance had occurred. This is not unexpected given that the water solubility value for Aclonifen is guoted as 2.5 mg/L (as advised by the Sponsor). Nominal concentrations have been retained for the calculation of EC values however, since the overwhelming evidence is that near nominal concentrations were maintained across the exposure range during the study. The measured concentration for the 3.2 mg/L level at 48 hours has not been used for the calculation of EC<sub>50</sub> values since this practice would not take into consideration the effect of hear nominal concentrations at the start of the study.

| Nominal                            | 0 VO Hears V V                      |               | 48 Hours                            |              |
|------------------------------------|-------------------------------------|---------------|-------------------------------------|--------------|
| Nominal<br>Concentration<br>(ng/L) | Measured<br>concentration<br>(mg/L) | % of irominal | Measured<br>concentration<br>(mg/L) | % of nominal |
| 🖧 Control 🕺                        | ND A                                |               | ND                                  | -            |
| 0.032                              | 0.028                               | 88 کې         | 0.026                               | 81           |
| 0.10                               | ∠` <b>6</b> 096 √                   | ≫ 96          | 0.086                               | 86           |
| 0.32 🖉 🎣                           | \$0.30g ~                           | 97            | 0.290                               | 91           |
| NO OF                              | 0.8%                                | 90            | 0.885                               | 88           |
| 3.2                                | A 2964                              | 93            | 2.363                               | 74           |

| <b>T-11</b> . | M        |              | ·       |              |                  | <i>a magna</i> to Aclonife |   |
|---------------|----------|--------------|---------|--------------|------------------|----------------------------|---|
| I able:       | Measured | concentratio | ns trom | the exposure | 01 <b>Dannia</b> | <i>i magna</i> to Acioniie | n |
|               |          |              | (~ n    |              |                  | 0                          |   |

ND None Detected (@mit of detection = 0.01 mg/L)

The validated method is summarised in Document M-CA4 (CA 4.1.2/62).

#### **B. BIOLOGICAL DATA**



The number of immobilized daphnids and the percentage of immobilization at 24 and 48 hours of exposure are presented in the following table:

| Nominal                 |                       | Cumulative immobilisation 🖉 🏑 🖉 |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                  |
|-------------------------|-----------------------|---------------------------------|--------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------|
| Concentration           |                       | 24 Hours                        |        |                             | 48 Hours and a start and a start and a start a |               |                  |                  |
| (mg/L)                  | <b>R</b> <sub>1</sub> | <b>R</b> <sub>2</sub>           | Total  | %                           | <b>R</b> <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ <b>R</b> 2  | Tota             | <u>,</u> 9% ,    |
| Control                 | 0                     | 0                               | 0      | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø 0           | ð,               |                  |
| Solvent control         | 0                     | 0                               | 0      | Q,                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × 0           |                  |                  |
| 0.032                   | 0                     | 0                               | 0      | @0                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0            | $0 0 \ll$        | 0.0              |
| 0.056                   | 0                     | 0                               | 0      | 0 0                         | $\sim 0^{\vee}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0° 0° Q°      | , Ô <sup>y</sup> |                  |
| 0.10                    | 0                     | 0                               | 0      | 0 °                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _00           |                  | L.O.S            |
| 0.18                    | 0                     | 0                               | 0 0    | ØŬ ×                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~ n        |                  | <u> </u>         |
| 0.32                    | 0                     | 0                               |        | $\mathcal{O} 0 \mathcal{O}$ | Ą,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0           | Ŭ,               | Ø 5 <del>/</del> |
| 0.56                    | 1                     | 0                               |        | 5                           | ى 2 ئ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | » <u>1</u> 0° | لي 3 ر           | 15               |
| 1.0                     | 1                     | 0                               |        | x5 ×                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×4 0          | 5.9              | 025              |
| 1.8                     | 3                     | 1 0                             |        | لې 20 🖉                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N 8 N         | <u></u>          | log 70           |
| 3.2                     | 10                    | 10Q                             | è 20 è | 100                         | ×10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _b0           | <u>ک</u> 20 کې   | 100              |
| $R_1 - R_2 = Replicate$ | es 1 to 2             |                                 | V O    | P 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>6</u>      | <del>ک</del> (۲  |                  |

Table: Percentage immobilisation from the exposure of *Daphnia magna* to Aclonifen

The single immobilised Daphnic at notional 20 mg/L was within guideline limits for background mortality and was not considered to be biologically significant.

All chemical and physical parameters in the definitive test were within expected ranges.

Based on the observed in mobilisation, the EC3 values at each observation boint were determined to be:

## Table: EC50 values from the exposure of Daplinia magna to Aclonifen

|                                  |                        | 1                            |
|----------------------------------|------------------------|------------------------------|
| Time (Hours) 🔬 🔬                 | KOC 50 (mg/L)          | 95% confidence limits (mg/L) |
| 24 0 S                           |                        | 1.8 - 2.3                    |
|                                  | \$ . O . 1.2 & 5       | 1.0 - 1.5                    |
| No Observed Effect Concentration | 48  hgurs = 0.92  mg/P |                              |

#### C. VALDITYCRITERIA

| Validity Criterion                                  | Required         | Achieved |
|-----------------------------------------------------|------------------|----------|
|                                                     | (OECD 202, 2004) | Acmeveu  |
| Montality in controls                               | <10%             | 0%       |
| Dissolved oxygen concentration where end of the est | >3 mg/L          | 8.4 mg/L |

All validity coteria were satisfied and therefore this study can be considered to be valid.

#### ENDPOINTS D.

### Table: Supernary of endpoints

| Endpoint 2                  | Nominal Concentration<br>(mg/L) |
|-----------------------------|---------------------------------|
| EC <sub>50</sub> (48 hours) | 1.2                             |
| 95% confidence limits       | 1.0 - 1.5                       |



| NOEC |  |
|------|--|

0.32

#### **III. CONCLUSION**

The 48-Hour EC<sub>50</sub> of Aclonifen technical to *Daphnia magna* was determined to be 1.2 mg/2 (95%) confidence limits 1.0 - 1.5 mg/L). The NOEC was 0.32 mg/L.

Assessment and conclusion by applicant:

All validity criteria were satisfied and therefore this dudy can be considered to be valid

The 48-Hour  $EC_{50}$  of Aclonifen technical to Daphnia magna based on nominal test concentrations was determined to be 1.2 mg/L (95% confidence limits 1.0  $\pm$  1.5 mg/L). The NOPC was 0.32 mg/L.

In addendum 1 to the draft assessment report of aclonifen dated 17 March 2008, the Rapporteur Member State recalculated the  $EC_{50}$  based on the authimetic mean measured concentrations to be 0.952 mg/L but stated: "Thus, the mean measured concentration was 2.66 mg/L, corresponding to 83% of the nominal concentration during the course of the test. The corresponding values for the four other analysed concentrations are 84% (at nominal 0.032 mg as/L), 91% (0.4 mg as/L), 94% (0.3 mg as/L), and 89% (1.0 mg as/L). Therefore, the EC<sub>50</sub> calculation based on nominal concentrations is considered to be appropriate.

EFSA's Outcome of the Pesticides PeerReview Meeting on general recurring issues in ecotoxicology (EFSA, 2015)<sup>1</sup> recommends that mean measured concentrations are calculated using the geometric mean rather than the arithmetic mean. Assumpting of the measured orithmetic mean and geometric mean measured concentrations provided in the following table:

### Table: Measured concentrations from the exposure of Daptinia magna to Aclonifen

| Γ | Nominal       | Measured Concentration |                                       |           |         |                |          |         |          |
|---|---------------|------------------------|---------------------------------------|-----------|---------|----------------|----------|---------|----------|
|   | Conceptration | H 🖏                    |                                       |           | ours ~  | Arithme        | tic Mean | Geometi | ric Mean |
|   | (mg/L)        | ung/L ∘                | 🥬 nom                                 | mg/L 。    | 炎 nom   | ng/L           | % nom    | mg/L    | % nom    |
|   | 0.032         | ~ <b>0</b> .028 ~      | 887                                   | ° @.026 ≪ | 84      | 40.027         | 84       | 0.027   | 84       |
|   | 0.1           | × 0.096                | Øð ×                                  | 0.086     | 86 (    | <b>≫</b> 0.091 | 91       | 0.091   | 91       |
|   | 0.32          | 0.209                  | \$97 0                                | 0.29      | \$91 \$ | 0.300          | 94       | 0.299   | 94       |
|   | 1             | 0,896                  | <sup>0</sup> 90                       | ~Q,885 °≈ | 88 0    | 0.891          | 89       | 0.890   | 89       |
|   | 3.2           | 2.964                  | A A A A A A A A A A A A A A A A A A A | Q2.363 Q  | ŢŶ,     | 2.664          | 83       | 2.646   | 83       |

% nom: Petcentage of nominal concentration

Given that both the arithmetic and geometric mean measured test concentrations were within the range of 83% to 94% of prominal values it was considered that recalculation of the study endpoints based on the arithmetic of geometric mean measured concentrations was not necessary. Consequently, the  $EC_{50}$  of 2 mgP is used for risk assessment.

Assessment and conclusion by RMS:

<sup>1</sup> EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.



#### CA 8.2.4.2 Acute toxicity to an additional aquatic invertebrate species

 Since the active substance does not have insecticidal properties, an acute toxicity test with an additional aquatic invertebrate species is not required.

 CA 8.2.5
 Long-term and chronic toxicity to aquatic invertebrates

 CA 8.2.5.1
 Reproductive and development toxicity to Dephnia magna

|                                                                                                                                | KCA 8.2.5.1/01                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Point:                                                                                                                    | KCA 8.2.5.1/01                                                                                                                                             |
| Report Author:                                                                                                                 |                                                                                                                                                            |
| Report Year:                                                                                                                   |                                                                                                                                                            |
| Report Title:                                                                                                                  | An assessment of the effects of aclentifen on the reproduction of Daphnia magna                                                                            |
| Report No:                                                                                                                     | R007153 A & Q Q A O Q A                                                                                                                                    |
| Document No:                                                                                                                   | M-174321-01-1                                                                                                                                              |
| Guideline(s) followed in                                                                                                       | R007153<br>M-174321-01-1<br>OECD: 202, part 2<br>Validity criterion relating to the mean number of living offspring per parent<br>animal was not satisfied |
| study:                                                                                                                         |                                                                                                                                                            |
| Deviations from current                                                                                                        | Current Quideling OECD/211, 2012                                                                                                                           |
| test guideline:                                                                                                                | validity citier full relating to the mean number of inviting offspring per-parent                                                                          |
|                                                                                                                                | animal was not satisfied S and S S                                                                                                                         |
| Previous evaluation:                                                                                                           | animal was not satisfied<br>yes evaluated and accepted<br>Source: Study list relied upon, December 2011 (RMS: DE)                                          |
|                                                                                                                                | Source: Study listrelied upon, December 2011 (RMS: DE)                                                                                                     |
| GLP/Officially                                                                                                                 | Yes, conducted under CLP/Officially recognised testing facilities                                                                                          |
| recognised testing                                                                                                             |                                                                                                                                                            |
| facilities:                                                                                                                    |                                                                                                                                                            |
| Acceptability/Reliability:                                                                                                     | Supportive only of the only                                                                                                                                |
| Previous evaluation:<br>GLP/Officially<br>recognised testing<br>facilities:<br>Acceptability/Reliability:<br>Executive Summary | Supporting only 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7                                                                                                    |
| Executive Summary                                                                                                              |                                                                                                                                                            |

#### Executive Summary

The objectives of this study were to determine the effects of Actionifen on the survival and reproduction of the water flea Dephnia magna under semi-static exposure conditions to determine the No Observed Effect Concentration (STOEC) and the lethal concentrations/effect concentrations causing 50% of inhibition (EC%).

Daphnia magna were exposed to aclosifien at nominal concentrations of 0.018, 0.056, 0.18, 0.56 and Renewal of test media was performed on Days 2, 5, 7, 9, 12, 14, 16 1.8 mg/IS for a period of 21 davs. and 19

Dissolved oxygon, pH, and temperature were measured before and after each test media renewal.

The live and Dephnic of the parental (P1) generation, observations on the general condition and size of Daphnia as compared with controls were recorded daily, as well as the number of Daphnia with eggs or young in the brood pouch. The numbers of live and dead filial (F1) Daphnia and the number of discarded unhatched eggs were determined at each test media renewal time.

Water samples from the control and each concentration were taken on Days 0 (fresh media), 2, 5, 7, 9, 12, 14, 46, 19 and 21 (old media) for analysis of aclonifen content by HPLC method.



The test item was chemically stable in water with measured concentrations consistent at approximately 86% of nominal throughout the study. The results of the study were based on the mean measured test concentrations which were calculated to be 0.016, 0.045, 0.16, 0.47 and 1.6 mg/L.

Based on measured concentrations, the EC<sub>50</sub> (immobilisation) with 95% confidence limits in Daphog magna exposed to aclonifen was calculated to be 0.10 (0.084-0.13) mg/L.

Based on the total number of live young produced, the NQEC was found to be 0.016 ng

#### I. MATERIALS AND METHO

#### A. MATERIALS

- And the state of t Aclonifen Cchnical 1. **Test Item:** apitin 2-chlorok6-nitrok8 Batch no.: DA 618 **Purity: Appearance:** en-vellow po 20 June 1990 Date received: In original container Storage: December 1990 **Expiry date:** Daphnia magna (Straus)
  - 2. **Test Organism:** Source:

Age: Feeding

fed daily with a mixture of fry fish food Cultaires and suspension of mixed algae (predominantly (Liquifry) Scenedesmus sp and Selenastrum sp).

3. Test water Dechlorinated (with sodium thiosulphate) and aged laboratory map water.

Total hardness approximately 350 mg/L as CaCO<sub>3</sub>. This value is slightly higher than the recommended range but is not considered to have had any significant effects on the results of this test.

ETHODS В. **STUDY** 1. In-life phase

Ž2 August 1990

2. Exposure conditions Test Experimental design: **Replicates:** 

Glass jars each containing 400 mL of test solution 5 test concentrations (0.018, 0.056, 0.18, 0.56 and 1.8 mg/L) plus 1 control and 1 solvent control (100  $\mu$ L/L) 4 replicates per control and treatment group, each containing 10 daphnids



| Loading:     | 40 mL test solution per organism                        |
|--------------|---------------------------------------------------------|
| Temperature: | 21 ± 1°C                                                |
| pH:          | $21 \pm 1^{\circ}C$<br>8.0 - 8.2                        |
| Aeration:    | None. The diluent only was aerated prior to test predia |
| Photoperiod: | 16 h light : 8 h dark                                   |

#### 3. Administration of the test item

The test item was prepared using a preliminary solution in 10% Tween 80-acetone

Test media renewal was performed 3 times per work (Days 2, 5)

#### 4. Test organism assignment and treatment

Daphnia were placed in the test solutions after addition of the test substance. The adult Daphnia were transferred to fresh media by wide-bore pipette before the contents of each vessel were passed through a fine mesh. Young daphnids (live and dead) and unhatched eggs collected on the mesh were counted using a stereo microscope and then discarded.

Young daphnids were considered to be dead in no sign of movement was apparent during microscopic examination. Adult *Daphnia* which were mable to swim for approximately 15 seconds after gentle agitation (i.e. immobile), were considered to be dead. An immobilisation criterion for the young daphnids was considered to be inappropriate due to the large numbers of offsoring produced in the flasks.

Each vessel received approximately 5 mL of a mixed uniceffular algal culture (*Scenedesmus* sp and *Selenastrum* sp) supplemented with try fish food (Liquifry?), daily. Feeding was at a level to maintain a green tinge in the test solutions thereby ensuring that food was available continuously. Equal amounts of food were given to each vessel?

#### 5. Measurements and observations

Temperature was reported daily for each flask Dissolved oxygen, pH and temperature were measured before and after each test media renewal

Verification of test concentrations was carried out on Days 0 (fresh media), 2, 5, 7, 9, 12, 14, 16, 19 and 21 (old media).

The live and dead *Daphnia* of the "parental" (P<sub>4</sub>) generation were counted daily and recorded together with observations on the general condition and size of the *Daphnia* as compared with the controls. The number of *Daphnia* with eggs or young in the brood pouch was also determined daily. At each test media renewal, the number of live and dead "filial" ( $F_1$ ) *Daphnia* were recorded. The number of discarded unhatched eggs was also determined at this time.

#### 6. Statistics/Data evaluation

EC<sub>50</sub> values for impobilization (mortality) of the parental *Daphnia* were calculated according to the method of the parental (1952).

 $EC_{50}$  values for the effects on reproduction were determined by fitting logistic response curves to the data.



#### **II. RESULTS AND DISCUSSION**

#### A. ANALYTICAL VERIFICATION

All calculations and estimations throughout this study are based on mean measured concentrations. Data from samples collected on Days 0, 14 and 21 have been omitted from the calculation of mean measured values, however, for the following reasons:

(a) Samples collected on Day 0 were from freshly prepared media. In order to give analysis only values for "expired" media have been considered for this exercise.

(b) Samples collected on Day 14 could not be analysed on the day of collection due to instrument failure. Although the samples were stored deep frozen ( $20^{\circ}$ C) and analysed subsequently the results were considered to be unreliable and were discarded.

(c) All samples collected on Day 21 appeared to be approximately 160% of the hominal concentration. However, there was no corresponding increase in toxic effects to support this chemical evidence and consequently, it was considered preferable to omit these data from the calculations in order to avoid raising the "mean measured" values to misleadingly high toxels.

Overall the test substance was chemically stable in water with measured concentrations consistent at approximately 86% of nominal throughout the study of a stable of the study of the stud

| Table: | Mean measured test concentra  | tion\$fromTh | e exposure of D | aphnia magna to Aclonifen |
|--------|-------------------------------|--------------|-----------------|---------------------------|
|        | in a 21-Day reproduction pest | \$ 4         |                 |                           |

| Nominal concentration | Mean measure@concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $(mg/L)_{O}$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 0.018                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v 87    |
| 0,036                 | الأن الأركب (J) | 80      |
| 0.18 5 0              | O & dg.16 O S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø 90    |
| Q 0.56                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84      |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89      |

<sup>1</sup>: Mean measured concentration based on analytical results for expired media on Days 2-19. Data from samples on Days 14 and 21 have not been included due to alficulties with the analysis

The validated method is summarised in Documen M-CA4 (CA 4.1.2/63).

#### B. BIQLOGICAL DATA

Progressive mortalities on the parental generation occurred throughout the study, particularly at 0.16 mg/L.

Effects on parental generation were statistically significant at 0.045 mg/L and above after 21 days exposure. Parental *Dophnic* in the 0.16 mg/L group (only) appeared to be smaller in size compared with the control *Daphnic* from Day 2 onwards. The adults became gravid only after 16 days with fecundity thereafter being very low.

Numbers of Conhatened and dead young were insignificant in all controls and treatment groups.

# Table: Summary of effects from the exposure of Daphnia magna to Aclonifen in a 21-Day reproduction test

| Concentration (mg/L) |  |
|----------------------|--|
|----------------------|--|



| Nominal | Measured   | % survival<br>of P1 | Number of live<br>young per female | Number of dead<br>young per<br>female | Number of<br>unhatched eggs per<br>female |
|---------|------------|---------------------|------------------------------------|---------------------------------------|-------------------------------------------|
| Co      | ontrol     | 98                  | 44                                 | 0                                     | <1 8                                      |
| Solver  | nt control | 98                  | 45                                 | 0                                     | <1                                        |
| 0.018   | 0.016      | 98                  | 43                                 | < 1                                   |                                           |
| 0.056   | 0.045      | 88                  | 29                                 | 0                                     |                                           |
| 0.18    | 0.16       | 38                  | 1 💍                                | 0                                     |                                           |
| 0.56    | 0.47       | 0                   | - 🖉                                | -2                                    |                                           |
| 1.8     | 1.6        | 0                   |                                    | S.                                    |                                           |
|         | •          | •                   | A                                  | · Qi po                               |                                           |

The 21-day EC<sub>50</sub> (immobilisation) value for the parental generation was calculated to be  $0.4^{\circ}$  mg/L<sup>2</sup> Impairment of reproduction occurred at exposure concentrations of 0.045 mg/L<sup>2</sup> and above with a 21<sup>o</sup>

day EC<sub>50</sub> (reproduction) value calculated to be 0.055 mg/L.

The NOEC is estimated to be 0.016 mg/L based on the total number of live young produced. Thus, the lowest concentration exhibiting significant adverse effects is 0.049 mg/D.

#### C. VALIDITY CRITERIO

|                        |                  | · *           |                    | <u> </u>  |
|------------------------|------------------|---------------|--------------------|-----------|
| Validity criterion     |                  |               | ر (OECD 211, 2012) | Achieved* |
| Control mortality      | *                | \$ Õ ?        |                    | 3%        |
| Mean number of livin   | ng offspring per | parent animal |                    | 45        |
| surviving at the end   | of the test 5    |               |                    | 75        |
| *Based on solvent eont | rol \ 🖌          |               | × 5° 0° 55         |           |

The study was conducted in accordance with OECD 202(1984) Part 2 and all relevant validity criteria for the guidelines that were in force at the time of performing the study were satisfied.

In terms of the current suideline, OECD 211 (2012), the control mortality satisfied the current validity criterion. However, the validity criterion relating to the mean number of living offspring per parent animal was not satisfied. Overall, as the test only fulfilled only one of the two validity criteria; with regards to the QECD (Qideline 211 (2012) the study is not valid.

### D. TOXICITY ENDPOINT

#### Table: Summary of endpoints

| 95% Confidence limits |
|-----------------------|
| 0.084 - 0.13          |
| 0.048 - 0.063         |
| -                     |
| -                     |
|                       |

#### **III. CONCLUSION**

Based  $\bigcirc$  measured concentrations, the EC<sub>50</sub> (immobilisation) with 95% confidence limits in *Daphnia* magna exposed to aclonifen was calculated to be 0.10 (0.084-0.13) mg/L.

Based on the total number of live young produced, the NOEC was found to be 0.016 mg/L.



| (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment and conclusion by applicant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for risk assessment purposes. The study was conducted in accordance with OECD 202 (1984), Part 2 and all relevant validity criteria for the guidelines that were in force at the time of performing the study were satisfied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In terms of the current guideline, OECD 211 (2012), the control phortality satisfied the current validity criterion. However, the validity criterion relating to the mean number of oving offspring per parent animal was not satisfied. The study is therefore not valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| As this study does not meet current OECD guideline validby criteria, it should be considered as supportive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Assessment and conclusion by RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Year: 2007 2007 2007 2007 2007 2007 2007 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Report Title: Amendment no 4 - Effects of actionifen tech. (BCS-AG74518) on development<br>and reproductive output of the water a Daptinia magna under continuous static-<br>renewal exposure and under peak exposure conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Report No: C EBCL0003 C A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Document No:<br>Guideline(s) followed in , EU Rijective 91/4140 EC<br>Guideline (s) followed in , EU Rijective 91/4140 EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| study: S Replation 707/2009 (Europe) USEPA QCSPP 850.1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Deviations from current Current Guideline: OECD 211, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| test guideline: S Mone S S & S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Previous evaluation. A No, not previously submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GLP/Officially C Ses, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| recognised testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Excaption S. Company of the second se |

**Executive Summary** A chronic toxically test was performed to identify possible effects of the test item on development, reproductive capacity and behaviour of *Daphnia magna* over 21 days under static-renewal exposure or peak exposure, expressed as chronic NOEC for parental health and reproductive output.

Daphnta magna were exposed to aclonifen at nominal concentrations of 0, 5.12, 12.8, 32, 80 and 200 µg a.s./L for a period of 21 days. In addition, a single peak-exposure concentration of 200 µg a.s./L



was provided two times for a duration of 24 hours, on study Days 0 and 7, alternating with recovery periods in untreated water.

As endpoints, the total living offspring per introduced parent animal, the parental age at first offspring emergence as well as the rate of parental survivors and their body-length and dry body mass with end of the study were recorded as data for NOEC/LOEC calculation. Additional body length measurements were performed on Days 0, 7 and 14.

For verification of the actual test item concentrations during exposure, water-samples from start and en of three representative exposure-intervals were analysed. For the peakexposure scenario, water sample from start and end of both exposure periods were analysed.

The accompanying chemical analysis of aclonifer in the freship prepared test solutions at start of the chosen exposure intervals revealed recoveries between 92% and 152% (mean: 116%) of the corresponding nominal concentrations. The corresponding concentrations of the aged test solutions at the end of the exposure intervals ranged between 81% and 139% (mean 06%), of nominal, The measured test concentrations partly exceeded 120% of noninal. Therefore, all peported results were based on measured time-weighted mean conventrations.

The lowest chronic NOEC for 21 days of static forewayexposite of paphnic magnet to actionifen (tech.) was 6.27 µg a.s./L based on parent body length at study Day 14 However, the observed effects at 14.2 µg/L on the body length were not statistically signicant on Day 7 or Day 20. Therefore, these effects are not considered to be biologically relevant and the overall NOEC for the study is 14.2 µg/L based on length and dry weight. The non-relevance of the effects on Ongth at Day 14 is confirmed by the  $EC_{10}$  of 38.5  $\mu$ g/L which is similar the the EC<sub>10</sub> at Day 21(37.4  $\mu$ g/L).

The lowest EC10 was 14 Sug a s. L, based on final dry body mass

The overall chronic SOEC concendrations for peak-exposure of Daphnia magna to aclonifen (tech.), provided two times for a duration of 24 hours, on study Days 0 and 2 alternating with recovery periods in untreated water was less that the tested peak exposure concentration of 221 µg a.s./L. This NOEC is based on parent body sength at study Days 4 and 21.

## MATERIALS AND METHODS Actionitien t Actionitien t AE F06830 995% w/w Yellow@owa Not provided +10 to +30° C Actonifen tech (BCS-AG74518) Test-Item: AE F068300-01-14 Batch no .: Yellow@owder Appearance:

26 November 2016

Daphnia magna

Age:

**Burity:** 

Storage

Date received

date

A.

1.

First instar, less than 24 hours old neonates



| Feeding:                                                                                                                                                | Three times per week with living cells of the green alga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feeding.                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Test water:                                                                                                                                          | Desmodesmus subspicatus in aqueous suspension<br>Elendt M7<br>ETHODS<br>28 June – 28 July 2016<br>250 mL glass beakers (DIN 2332)° filled with 400 mL of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B. STUDY DESIGN AND MI                                                                                                                                  | ETHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1. In-life phase:                                                                                                                                       | 28 June – 28 July 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Exposure conditions                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test vessels:                                                                                                                                           | 250 mL glass beakers (DIN 2332); filled with 400 mL of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                         | test solution, corresponding to a fluid level of approximately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                         | 4 cm height; duping exposure covered with transparent glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                         | plates ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Experimental design:                                                                                                                                    | 5 test concentrations (5,12, 12,8, 32.0, 80.0 and 200 pg a.s. 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                         | phils 1 control and 1 solvent control (100 for DMP/L) for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                         | Scontinuous static-refiewal exposure plus a supplemental single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Q                                                                                                                                                     | peak exposure concentration of 200 (ug a.s.) provided two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                         | times for a detation of 24 brours on study Days 0 and 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                         | alternating with recovery periods in untreated water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Replicates:                                                                                                                                             | Ten replicates per control and treatment group with one daphnid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                         | per replicate, all assigned in randomized order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Loading:                                                                                                                                                | 100 mL test solution per organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Temperature                                                                                                                                             | $203 - 21.0^{\circ}C$ $5^{\circ}$ $0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                         | $\begin{pmatrix} 1.9 - 8.0^{\prime} & 3^{\prime} & 3^{\prime} & 0^{\prime} & 3^{\prime} \\ k_{AT} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aeration                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Photoperiod:                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Replicates:                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Administration of the fat it of                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Photoperiod:<br>Light intensity:<br>3. Administration of the test item<br>Aqueous solutions of the test item w<br>start of each opposure interval, by a | 20 S - 21.0°C<br>7.9 - 8.0<br>None<br>16 h light 38 h dark<br>1000 - 1500 lux<br>500 - 1500 lux<br>500 - 1500 lux<br>600 - 1500 lux<br>500 lux |
| Aqueous solutions of the test item w                                                                                                                    | effe prepared in artificial test water (Elendt M7) immediately before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| start of each more interval, by an                                                                                                                      | dition of 200 µL of a corresponding DMF stock solution to 2 litres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

of the artificial dilution water followed by 65 180 prinutes of stirring by a magnetic stirrer.

Test media renewal was performed 3 times per work (Days 2, 5, 7, 9, 12, 14, 16 and 19).

## 4. Test organism assignment and treatment

Daphnia were placed in the test solutions within 30 minutes of addition of the test item. On Mondays, Wednesdays and Fridays, minutediately after new test solutions had been prepared, each parent animal was gently transferred to its corresponding fresh test solution inside a minimised volume of the old test solution

Each vessel eccived living cells of unicellular green alga *Desmodesmus subspicatus* (strain SAG 86/81) at a daily amount of 0.1 - 0.2 mg TOC per test vessel with 100 mL, corresponding to 1 x 10<sup>8</sup> cells/L.

#### 5. Measurements and observations



Sublethal effects on parental animals and offspring were assessed by visual comparison of untreated control animals and treated animals, including existence of aborted eggs and neonates mortality.  $\mathbb{Q}^{\circ}$ 

The parental survival was determined by counting of mobile daphnids, defined as animaly with swimming movements (slight movements of antennae were not interpreted as wimming movements) within approximately 15 seconds after gentle agitation of the test vessel.

The onset of maturity as indicated by first brood release was recorded individually for each parent female. The number of neonates per adult reproductive day was counted daily (visual envineration) from first brood release. Once counted the offspring were discarded

Parental body length was manually measured for surviving parental individuals via a stage micrometer and stereo dissecting microscope (to the nearest 0.05 mm), taken from the apex of the helmet to the base of the posterior spine. This was performed immediately after termination of exposure, as well as for all surviving parent animals after 7 and 14 days of exposure and for 0 representative 1<sup>st</sup> beonates, chosen from the used breeding stock at start of exposure.

Parental dry-body masses at study termination was manually measured as dry body-mass on a digital balance (to the nearest 0.01 mg) for surviving parental individuals, individuals, individuals, individuals after completion of lyophilisation (3 days at  $25^{\circ}$ C / 0.030 mbar).

Dissolved oxygen, pH and tenperature were measured before and after each test mediorenewal.

Verification of test concentrations was carried out on freshly prepared test media on study days 0, 7 and day 16 for static renewal exposure and on study days 0 and 7 for pulse exposure, immediately before distribution to the test essels from batch preparation for each treatment and control group. For the aged test media, sampling was performed on study days 2, S and 19 for static renewal exposure, and on days 2 and 9 for pulse exposure, immediately after termination of exposure as composite from all replicates of a treatment and control group.

#### 6. Statistics/Data evaluation

As the study covered pure water, control and an additional solvent control, adequate analysis for detection of statistically significant differences between controls was performed (Shapiro-Wilk's Test on Normal Distribution, STUDENT piest for Homogeneous Variances on a 5% level of significance [two-sided probability]). Wherever such pre-testing on homogeneity of controls revealed no significant differences all treatments were related to pooled controls. Otherwise, all treatments were compared with both controls separately.

If applicable, at least the  $EC_{10}$  ocluding the associated 95 percent confidence limits for parental immobilisation and total uving offspring was calculated by Probit analysis (for linear regression), or 3-parameters normal CFD (for on-linear regression). A dose response relationship curve (displayed as sigmoid, shaped over the logarithm of the concentration) was modelled. Wherever possible, computation of 95% confidence limits was included.

For the determination of NOEC and LOEC values, all grouped data were analysed on variance homogeneity (e.g. Levene's Test) and normal distribution (e.g. Shapiro-Wilks Test) followed by parameters or non-parametric procedures.

All statistical analysis was performed using ToxRat-Professional<sup>©</sup>, Vers.3.2.1 (ToxRat Solutions GmbH, Germany).



#### **II. RESULTS AND DISCUSSION**

#### A. ANALYTICAL VERIFICATION

Chemical analysis of aclonifen in the freshly prepared test solutions at start of the chosen opposure intervals revealed recoveries between 92% and 152% (mean: 116%) of the corresponding nominal concentrations.

The corresponding concentrations of the aged test solutions at the end of the exposure intervals ranged between 81% and 139% (mean 106%) of nominal.

All measured values for the untreated control groups were found to be below. We lowest an entreated standard concentration during analysis of the test, samples  $(0.501 \, \mu g/L)_{entreated}^{2}$ 

The measured test concentrations partly exceeded 120% of noninal. Therefore all ported results were based on measured time-weighted mean concentrations.

Table:Measured test concentrations from the exposure of Daphnid magna to Aclonifer in a21-Day reproduction testImage: Image: Image:

| v                               |                          | Q              |                                                  |                                        | Š (Š            |                 | Y. S                                  |
|---------------------------------|--------------------------|----------------|--------------------------------------------------|----------------------------------------|-----------------|-----------------|---------------------------------------|
| Naminal                         |                          | Me             | asurød concen                                    | tration (jug a.s                       | 49 S            |                 | TWA mean                              |
| Nominal<br>concentration        | Day 0                    | Day            | 🖒 Day 🏷                                          | Day 9 🔊                                | Dav16           | Dav 🗘           | °∕ymeasured                           |
| (µg a.s./L)                     | Fresh<br>media           | Aged **        | Fresh<br>agedia                                  | Aged<br>media                          | Oresh<br>Omedia | Arged media C   | <pre>concentration</pre>              |
| Control <sup>1</sup>            | <0.501                   | <0.501         | \$0.501                                          | < 60501                                | × <0.501        | ×~~<0.50¢       | -                                     |
| Solvent<br>control <sup>1</sup> | <0.501                   | 50.501         | <0.501                                           | €<br>€<br>0.501<br>€                   | <0.501          | ~ <b>6</b> \$01 | -                                     |
| Scenario A (cont                | inuous 🕅 days            | static-renevia | l exposure)                                      |                                        | 0' %            | Ĩ,              |                                       |
| 5.12                            | £36 A                    | 5.20°          | ~~ 7.78 ~~                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6.56            | 4.91            | 6.27                                  |
| 12.8                            | £ <sup>1</sup> 3.2       | A.8            | W.7                                              | 7.13 V<br>7.13 V<br>16.05              | Ø14.7 🔊         | 10.7            | 14.2                                  |
| 32.0                            | Q 322                    | . 37.3         | & <b>4</b> 2.9 K                                 | 3759                                   | 37.1            | 26.1            | 34.8                                  |
| 80.0                            | <b>99</b> .1             | 7563           | <u>a</u> 82,2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6.8                                    | 73,3            | 71.7            | 78.1                                  |
| 200                             | 200.9                    | J92.8          | 210.8                                            | 243.5                                  | ∽n.s.           | n.s.            | 212                                   |
| Scenarie B (dout                | ble 24 hø <b>ur</b> s pe | ak exposure)   |                                                  |                                        | 0               |                 |                                       |
| Nominal concentration           | Day 0                    | Day J          | ODay 7                                           | Day 8 A                                | 2               |                 | TWA mean<br>measured<br>concentration |
| (µg a.s./L)                     | media                    | , media        | media                                            | media                                  |                 |                 | (μg a.s./L)                           |
| 200 ~ 🏈                         | 204.6                    | 0 196.5        | 252.9°                                           | 234.0                                  |                 | _               | 221                                   |

<sup>1</sup>: Aclonifen was not detected in the control amples for a conceptration where than 0.501 µg/L, which was used as the lowest standard concentration during this study multiplied with the dilution factor).

The validated method is summarised in Document M-CA4 (CA 4.1.2/89).

#### B. BIOLOGICAL DATA

While one animat (10%) of the introduced parent animals of the pure water control group died prematurely, ab parent animals from solvent control group survived unaffected. Statistical pre-testing on homogeneous variances (Shapiro-Wilk's Test on Normal Distribution and STUDENT-t test for Homogeneous Variances) revealed no significant differences between control groups. Therefore, biological results were related to pooled-control groups.

For water quality monitoring, temperatures, pH values and dissolved oxygen concentrations of the exposure solutions, as well as conductivity, hardness and alkalinity of the used test media, were regularly



controlled throughout the study as recommended by the underlying guidelines. As measurements show, the physical / chemical properties corresponded to the required values. Thus, the study conditions and breeding quality met the required quality criteria.

| Table:     | Summary of effects from the exposure of Daphnia magna | to Aclonifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in | 21-Dây |
|------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|
| reproducti | on test                                               | 1 Contraction of the second se | ~~ |        |

| T                |                                   |         |             |              |                |                                          |                     |                           |                                     |                                | <del>. (</del> | わ |
|------------------|-----------------------------------|---------|-------------|--------------|----------------|------------------------------------------|---------------------|---------------------------|-------------------------------------|--------------------------------|----------------|---|
| Nominal<br>conc. | tment<br>TWA-<br>mean<br>measured |         | ·           | length<br>m) | <u>'arenta</u> | l endpoir<br>Dry<br>body<br>mass<br>(mg) | nts<br>Survival     | Total<br>offspring<br>per | Parent<br>age at first<br>offspring | ctiveendpo<br>Offspr<br>behavi | ing,           |   |
| μg a.s./L        | conc.<br>μg a.s./L                | d0      | d7          | d14          | d21            | (mg)<br>d21                              | d21                 | parent<br>animal<br>(n)   | emergence<br>(days)                 | Affected                       | Dead           | / |
| Coi              | ntrol                             | 0.91    | 2.95        | 3.64         | 4.00           | 0.64                                     | <u>。90</u>          | ₹ 69.6%                   | @ 9.5 %                             | none                           | none           |   |
| Solvent          | t control                         | -       | 3.14        | 3.69         | 4.03           | ≫0.64 <sub>@</sub>                       | \$ 100 <sup>∞</sup> | \$5.9                     | 9.4.                                | none                           | none           |   |
| Pooled           | controls                          | -       | 3.04        | 3.66         | 4.01           | 0.64                                     |                     | 277.8                     | 9.4                                 | 🗸 none 🛁                       | none           |   |
| Scenario A       | (continuous .                     | 21 days | static-r    | enewal       | exposur        | e)~                                      |                     | × .1                      | Ż                                   |                                | Ŵ.             |   |
| 5.12             | 6.27                              | -       | 3.05        | 3.51         | 3.92           | ∕∿9.61                                   | ∕×100 ℃             | 7302                      | ∞010.2 🖉                            | 2 eggs                         | pone           |   |
| 12.8             | 14.2                              | -       | 2.83        | 3.35         | 3.7 kg         | ≫0.55 <sub>€</sub>                       | 100                 | <b>9</b> .3               | V 105                               |                                | none           |   |
| 32.0             | 34.8                              | -       | 2.68        | 3.01%        | 3.65/          | 0,48,9                                   | 160                 | @64.7                     | , S                                 | none                           | none           |   |
| 80.0             | 78.1                              | -       | 1.77        | A296         | 2.95           | 0.26                                     | ¥0 ×                | 7 1.70                    | Ê20.0 S                             | none                           | none           |   |
| 200              | 212                               | -       | 1.32        | ×            | ĝ - <i>j</i>   | Q -                                      | <u>0</u> 0 5        | Q.9                       | <u> </u>                            | none                           | none           |   |
| Scenario B       | (double 24 h                      | ours pe | ak-expo     | sure)        |                | o<br>O                                   | y' Q'               | Q                         |                                     | S I                            |                |   |
| 200              | 221                               | -       | <b>29</b> 5 | <i>3.47</i>  | 3,87           | 0,61                                     | 80                  | 66.6                      | 9.9                                 | <sup>©</sup> none              | none           |   |

## VALIDITY CRITERIA C.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>V</b>     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Validity criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Achieved*    |
| Control mortality $\mathcal{O} = \mathcal{O} + O$ | 5%           |
| Mean number of living offspiring per parent animaly $260 \text{ e}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.8         |
| *Based ar pooled control<br>All validity criteria were satisfied and therefore this study can be considered to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to be valid. |
| D. TOXICITY ENDPOINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Table: Summary of endpoints 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |

|                                                                    | Time weigh      | ited mean measu | red concentration | n (µg a.s./L)               |
|--------------------------------------------------------------------|-----------------|-----------------|-------------------|-----------------------------|
| Endpoint 25 5                                                      | Q NOEC          | LOEC            | EC <sub>10</sub>  | 95%<br>confidence<br>limits |
| Scenario A (continuous 21 dage static                              | enewalexposure) |                 |                   |                             |
| Total number of living offspring<br>produced per introduced parent | <i>№</i> 34.8   | 78.1            | 32.9              | 24.5 - 44.2                 |
| Immobilization of the parent animals                               | 34.8            | 78.1            | 60.6              | n.d.                        |
| Parchtal age at firstoffspring<br>emergence                        | 34.8            | 78.1            | n/a               | -                           |
| Parent body length at study Day 7                                  | 14.2            | 34.8            | 19.3              | 12.2 - 30.5                 |
| Parent body length at study Day 14                                 | 6.27            | 14.2            | 38.5              | 29.3 - 50.7                 |
| Parent body length at study Day 21                                 | 14.2            | 34.8            | 37.4              | 25.6 - 54.6                 |



| Final dry body mass of surviving parental animals                            | 14.2    | 34.8  | 14.5        | 5.3 - 39.4 |
|------------------------------------------------------------------------------|---------|-------|-------------|------------|
| Scenario B (double 24 hours peak-expo                                        | osure)  |       |             |            |
| Total number of living offspring<br>produced per introduced parent<br>animal | ≥ 221   | -     | - 0         |            |
| Immobilization of the parent animals                                         | n/a     | -     | <u> </u>    | \$ - \$    |
| Parental age at first offspring<br>emergence                                 | ≥ 221   | - S   |             |            |
| Parent body length at study Day 7                                            | ≥ 221   | · -   | Q - , Ŭ     | 3-20       |
| Parent body length at study Day 14                                           | < 221 a | j - 4 | - 0         |            |
| Parent body length at study Day 21                                           | < 221   | - 👋   | <u>-</u> Q. | - ~        |
| Final dry body mass of surviving parental animals                            | ≥ 22,1  |       |             | × - 5      |
| n/a: calculation not applicable                                              | 0       |       |             | al. All o  |

n.d.: not determined either due to mathematical reasons or value is boond the ested concentrations by nore that factor 1000

### MII. CONCLASION

The lowest chronic NOEC for 21 days of static renewal exposure of *Dapluia magna* to cool on the lowest chronic NOEC for 21 days of static renewal exposure of *Dapluia magna* to cool on the lowest of the observed effects at 14.2 µg/L on the body length were not statistically significant on Day 1 or Day 21. Therefore, these effects are not considered to be biologically relevant and the overall NOEC for the study is 142 µg/L based on length and dry weight. The non relevance of the offects on length at Day 14 is confirmed by the EC<sub>10</sub> of 38.5 µg/L which is similar the the EC<sub>10</sub> at Day 21 (374 µg/L).

The lowest EC10 was 14.5 µga.s./L based on finatory body mass.

The overall chronic NOFC concentrations for peak exposure of *Duphnic magna* to aclonifen (tech.), provided two times for a duration of 24 hours, on study Days 0 and 7, alternating with recovery periods in untreated water was less than the tested peak exposure concentration of 221  $\mu$ g a.s./L. This NOEC is based on patient body length at study Days 14 and 21.

(2017)

Assessment and conclusion by applicant:

All validity of teria were satisfied and therefore this study can be considered to be valid.

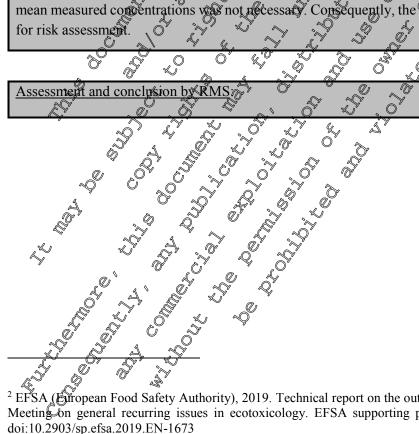
The overall chronic NOEC for 21 days of static renewal exposure of *Daphnia magna* to aclonifen (tech.) is 14.2  $\mu$ g a.s. L. This NOEC is based on parent body length and dry weight at study Day 21. The corresponding LOEC is 34.8  $\mu$ g a S/L.

The lowest EQ, was 14.5 µg a.s./I ased on final dry body mass.

The overall chronic NOEC concentrations for peak-exposure of *Daphnia magna* to aclonifen (tech.), provided two times for a duration of 24 hours, on study Days 0 and 7, alternating with recovery period in untreated water was less than the tested peak exposure concentration of 221 µg a.s./L. This NOEC is based on parent body length at study Days 14 and 21.

Ĉ




EFSA's Outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology (EFSA, 2019)<sup>2</sup> recommends that the lowest of the EC<sub>10</sub> and NOEC values be used for risk assessment purposes. In this study, as the NOEC was lower than the  $EC_{10}$ , the NOEC of 14.2 µg a.s./L should be used for risk assessment.

EFSA's Outcome of the Pesticides Peer Review Meeting on general recurring ssues ecotoxicology (EFSA, 2015)<sup>3</sup> recommends that measured concentrations are calculated using th geometric mean. A summary of the TWA and geometric mean measured concentrations is provided in the following table:

| Nominal              |                         | Measured concentration (µg a.s. P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| concentration        | Time-weighted           | % Nominal & Geometric Mean % Nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (µg a.s./L)          | average                 | 10 Ivonimar O Geometri Svican C Agivoninarai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Scenario A (continue | ous 21 days static-reng | widt exposure) 🔨 👌 🦂 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.12                 | 6.27                    | ¥ 122 v 4 06.31 × 23 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12.8                 | 14.2 Q                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32                   | 34.8                    | 1100 - 1100 - 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80                   | 78.1 Q "                | 98 m 2 3 3 8 0 2 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200                  | 212, 3                  | @ 106 @ 211.2 @ (106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Scenario B (double 2 | 24 hours peak-exposur   | rel of the of th |
| 200                  | 221 🐇                   | $0^{\circ}$ $4/1$ $0^{\circ}$ $230$ $0$ $110$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table: Measured concentrations from the exposure of Daphnia magna to Acloriten

Given that the geometric mean measured test concentrations were within 1% of the TWA measured test concentrations it was considered that recalculation of the study endpoints based on the geometric mean measured concentrations was not recessary. Consequently, the NOEC of 14.2 µg a.s./L is used



<sup>2</sup> EFSA (European Food Safety Authority), 2019. Technical report on the outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2019:EN-1673. 117 pp. doi:10.2903/sp.efsa.2019.EN-1673

<sup>3</sup> EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.



| Data Point:                | KCA 8.2.5.1/03                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                             |
| Report Year:               | 2019                                                                                                        |
| Report Title:              | Aclonifen: Toxicity to the water flea Daphnia magna straus under laboratory                                 |
|                            | conditions (21 d reproduction test - Pulsed exposure-scenario)                                              |
| Report No:                 | EBCL0211                                                                                                    |
| Document No:               | M-670399-01-1                                                                                               |
| Guideline(s) followed in   | OECD -GUIDELINES FOR THE TESTING OF CHEMICALS NO 211; 2                                                     |
| study:                     | Daphnia magna<br>Reproduction Test, Adopted by the Council at 2nd October 2012 and SOSPP                    |
|                            | NUMBER 850.1300, U.S. ENVIRONMENT OF PROTECTION AGENCY                                                      |
|                            | 2016. SERIES<br>850 - ECOLOGICAL EFFECTS TEST GUIDELONES: DAPHNOD CHRONIC                                   |
|                            |                                                                                                             |
|                            | TOXICITY & S S S S S S S S S                                                                                |
| Deviations from current    | Current Guideline: OECD 294, 2015<br>Some environmental parameters oried by more than the allowe Drange The |
| test guideline:            | Some environmental parameters caried by more than the allowe Drange The                                     |
|                            | impact of these deviations is considered to be minor with no impact on the study                            |
|                            | outcome. a c c c c c c                                                                                      |
| Previous evaluation:       | No, not presedually submitted                                                                               |
| GLP/Officially             | Yes, conducted under GLP/Officially recognized testing facilities                                           |
| recognised testing         |                                                                                                             |
| facilities:                |                                                                                                             |
| Acceptability/Reliability: | Yes & O' & o & o & o                                                                                        |

#### Executive Summa

A chronic toxicity test was performed to retentify possible effects of the aclonifen on development, reproductive capacity and behaviour of *Daphnia magne* over 29 days under a pulsed exposure scenario was conducted.

Daphnia magna were exposed to the solutions containing nonitral concentrations of aclonifen at 237, 356, 533, 800 and 1200 µg a.s./L ogether with a control and a solvent control twice for 48 hours within the 21 day test duration. The first pulse was set between day 0 and day 2 and the second pulse was set between day 0 and day 2 and the second pulse was set between day 0 and day 9. Between pulses daphnia were kept in untreated test medium with semistatically renewal of test medium. The nortality, the time of the first production of offspring, the number of offspring and body length were compared with the corresponding parameters in the controls. Assessments on other effects (mapility of parental daphnia, appearance of aclonifen solution) were performed each day

As endpoints, the total living affspring per introduced parent animal, the total living offspring per adult surviving to day 21 (test end) as well as body length of parental survivors at the end of the study were recorded as data for NOEC/LOEC calculation. Additional body length measurements were performed on day 9 (end of pulsed exposure).

The measured content of a clonifen was between 78 and 112% of nominal in the fresh samples with a mean recovery of 100% of nominal in these initial samples. In the aged samples the measured content was between 74 and 112% of nominal with a mean measured recovery of 96% of nominal. The toxicological endpoints were evaluated using nominal active substance concentrations and the actual



concentrations (based on the geometric mean of active substance of each measured concentration), since some values are found to be below 80% of nominal.  $\mathbb{Q}_{\mathbb{P}}^{\circ}$ 

Results are expressed based on geometric mean measured concentrations. The NOEC for mortality was calculated as 807  $\mu$ g a.s./L. The day 21 LC<sub>10</sub> was determined to be 573  $\mu$ g a.s./L and the C<sub>50</sub> was 1076  $\mu$ g a.s./L.

The number of alive offspring produced by adults alive from test start showed a statistically significant decrease of reproduction in the test item (active substance) concentration of 213  $\mu$ ga.s./L. and above. Therefore, the NOEC was determined as <213  $\mu$ g a.s./L. The EC<sub>10</sub> and EC<sub>20</sub> could not be determined of statistically as inhibition was >20% for all concentration levels.

The number of alive offspring produced by adults alive at day 24 (test end) showed statistically significant decrease of reproduction in the test item factive substance) concentration of 213 µg a.s./L and above. The NOEC was determined as  $213 \mu g$  a.s./L. The EC<sub>10</sub> and EC<sub>20</sub> could not be determined statistically as inhibition was >20% at this time point for all concentration levels.

The NOEC for body length was <213 ug a, %L at day 21 (test end) and the LOEC was 213 µg a.s./L. No value for EC<sub>10</sub> could be determined statistically, as inhibition was between 11.7 and 29.4% at this time point for all concentration levels. The EC<sub>20</sub> was determined to be 529.0g a.s. U.

The overall NOEC was <213 bg a.s./P, including all parameters (mortality of adults, @production and body length).

HODS TERIÂI A. MATERI Äclonifen OPTOF00132 1. Test item 🔊 Batch no. **Purity:** 99.9% w/v Fellow solid Appearance: Co Calify Størage: Ambient + Expiry date Test Organism, Daphnia magna. Straus, Clone V 2. Source: n and a start of the start of t GIN A CONTRACT OF CONTRACT. First instaty less than 24 hours old neonates Age: Three tones per week with living cells of the green alga <sup>%</sup>Feeding: Desnodesmus subspicatus in aqueous suspension. Also fed with suspension of Tetra Min Baby® at every media renewal Elendt M4 3. STUDY DESIGN AND METHODS B. 1. In-life phase: 27 March to 26 April 2019



| Exposure conditions  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test vessels:        | 100 mL glass beakers, filled with 50 mL of the test solution,"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | during exposure covered with transparent glass plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Experimental design: | 5 test concentrations (237, 356, 533, 800 and 1200 µg 3./L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | plus 1 control and 1 solvent control (100 µL DMF/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | 10 replicates per test treatment, each containing 1 dephnic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Replicates:</b>   | Ten replicates per control and treatment group with one daphord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | per replicate, all assigned in randomised order $Q^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Loading:             | Ten replicates per control and treatment group with one daphold<br>per replicate, all assigned in randomised order<br>50 mL test solution per organism<br>18.7 - 21.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Temperature:         | 18.7 - 21.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pH:                  | $7.46 - 9.41 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dissolved oxygen     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aeration:            | Note to the second seco |
| Photoperiod:         | Note<br>Note<br>16 h light . 8 h clark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Light intensity:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 3. Administration of the test iten

The necessary amount of actorifen for preparing the stock solution \$1 was prepared by dissolving 120 mg of the actorifen in 5.00 mL DMF (dimensifermanide). The solution was homogenised by shaking. Lower test solutions were prepared by dilution of the appropriate solution with DMF. 50  $\mu$ L of each dilution solution was applied into one litre Flendt M4. All solutions were prepared freshly on each day of application. The concentration of the solvent DMF was 50  $\mu$ L/L in the actorifen treatment and in the solvent control. The preparation procedure was done or test start (first pulse) and repeated at day 7 (second pulse). Decreasing vellow discolution of solutions was observed with decreasing concentration on each application day. No precipitation was observed. Between pulses daphnia were kept in untreated test medium with renewal of est solutions every Monday, Wednesday and Friday.

#### 4. Test organism assignment and treatment

Daphnia were placed in the test colutions within 30 minutes of addition of the aclonifen. On Mondays, Wednesdays and Fridays, impediately after new test solutions had been prepared, each parent animal was gently transferred to its corresponding fresh test solution inside a minimised volume of the old test solution.

Each vessel received iving cells of unicellular green alga *Desmodesmus subspicatus* (strain SAG 86/81) at a daily amount of 0.1 - 0.2 mg FOC per test vessel with 100 mL, corresponding to 1 x 10<sup>8</sup> cells/L.

#### 5. Measurements and observations

All dead animals were considered and removed daily. The presence of eggs in the brood pouch, males or winter eggs were recorded. Similarly, if there were obvious differences in condition and size of the parental generation between the test concentrations and the controls, these differences were reported.

Additionally, mobility opparental daphnia was observed daily. Immobile parental daphnia were not discarded but checked for recovery the next day.

A determination of the body length of 5 representative alive parental daphnia was performed for control, solvent control and each treatment group at test start, and at the end of each peak (days 2 and 9) for



modelling purposes only. At test end determination of the body length of all daphnids alive was performed.  $\mathbb{Q}_{\mathbb{A}}^{\circ}$ 

Dissolved oxygen, pH, total hardness and temperature were measured on day 0, at each test medium?

Verification of test concentrations and stability of aclonifen was carried out on analytical samples taken, from all aclonifen concentrations and controls at test start and 7 days from fresh solutions from bulk solutions and after 2 days and 9 days from aged solutions from pooled replicates to cover beginning and end of both peaks. A retained sample was also taken. Stability control samples were taken from day 0 to day (peak 1), the other from day 7 to day 9 (peak 2) corresponding to the pulsed exposure scenario. All samples were stored deep frozen until they were transferred to the analytical aboratory. Sample analysis was performed by direct injection of test medium samples after divition and quantification by HPLC-MS/MS detection.

#### 6. Statistics/Data evaluation

LOEC is the lowest aclonifen concentration rested showing a statistically significant difference from the control(s) for all endpoints. NOEC is the highest aclonifen concentration tested below the LOEC for the respective endpoint.  $LC_{40}$ ,  $_{20}$ ,  $_{50}$ ,  $EC_{10}$ ,  $_{20}$ ,  $_{50}$  is the adonifen concentration causing 10, 20, 50% variation in the respective endpoint of the rest organism population (estimated by probit and Weibull analysis).

Controls were pooled for statistical evaluation of all parameters, since no statistically significant difference was found between control and solvent control. For the calculation of NOEC, LOEC and  $EC_{10, 20, 50}/LC_{10, 20}$ ,  $5_{0}$  To Rat Professional 3.3% was used.

Mortality of doult Daphnia O

A test for normality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple compatison method (Step-down Cochran Armitage Test Procedure;  $p \le 0.05$ ). As LOEC the lowest statistically significant concentration was defined. The LC<sub>10</sub>, <sub>20</sub>, <sub>50</sub>-values were determined by Weibub analysis using linear max. Exclusion for the data was performed according to the statistical by weibub analysis using linear max.

## Reproductive output per porent mimal from test start

A test for normality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple comparison method (Wilhams Multiple Sequential t-test Procedure;  $p \le 0.05$ ). As LOEC the lowest statistically significant concentration was defined. No value for EC<sub>10</sub>, <sub>20</sub> could be determined statistically, as inhibition wa above 20% at this time point for all concentration levels. The EC<sub>50</sub>-value was determined by weibull analysis using linear max. likelihood regression.

### Reproductive Sutput per parent animal from test end

A test for formality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple comparison method (Multiple Welch's t-test with Bonferroni-Holm adjustment; left-sided, p<0.05). As LOEC the lowest statistically significant concentration was defined. No value for



 $EC_{10, 20}$  could be determined statistically, as inhibition was above 20% at this time point for all concentration levels. The  $EC_{50}$ -value was determined by Weibull analysis using linear max. likelihood regression.

#### Body length at test end

A test for normality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple comparison method (Williams Multiple Sequential test Procedure;  $p \leq 0.05$ ). As LOEC the lowest statistically significant concentration was defined. No value for EC  $5_{50}$  could be determined statistically, as inhibition was between 1k, and 29.4% at this time point for all concentration levels. The EC<sub>20</sub>-value was determined by probinanalysis using linear max. likelihood regression.

#### II. RESULTS AND DISCUSSIO

#### A. ANALYTICAL VERIFICATION

The measured content of aclonifen was between 78 and 112% of nominal in the tresh samples with a mean recovery of 100% of nominal in these initial samples. In the aged samples the measured content was between 74 and 112% of nominal with a mean measured recovery of 96% of nominal. The toxicological endpoints were evaluated using nominal active substance concentrations and the actual concentrations (based on the geometric mean of active substance deach measured concentration), since some values are found to be below 80% of nominal.

The validated method is summarised in Document NCCA40CA 4.1.2/96).

 Table:
 Measured test concentrations from the exposure of Duphnia magna to Aclonifen in a 21-Day reproduction test.

| Nominal co<br>(µg a<br>As test<br>itent | <u> </u>        | Day 0<br>Fresh<br>ordia | Metorured<br>Day 2<br>Aged<br>media       | Fresh<br>media | Day 9 | Geometric<br>mean<br>measured<br>(µg a.s./L) | Geometric<br>mean<br>(%) |
|-----------------------------------------|-----------------|-------------------------|-------------------------------------------|----------------|-------|----------------------------------------------|--------------------------|
| Control                                 | Ş.              | n.d.                    | ° n.d.                                    | Jør.d.         | n.d.  | -                                            | -                        |
| Solvent control                         |                 | 40. J                   | r nd                                      | r.d            | n.d.  | -                                            | -                        |
| 237 *                                   | Q 23 <i>7</i> Û | 258                     | <u>~</u> 249 ~                            | A185           | 176   | 213                                          | 90                       |
| 356 🕰                                   | 356             | ° 380                   | <i>4</i> € <sup>™</sup> 3940 <sup>™</sup> | <b>2</b> 308   | 272   | 335                                          | 94                       |
| 533                                     | 532 🔊           | \$\$75 Š                | × S                                       | <b>¥</b> 485   | 450   | 516                                          | 97                       |
| 800                                     | 799             | A 881                   | 829                                       | 791            | 728   | 807                                          | 101                      |
| 1200                                    | 1200            | 1340                    | 134€                                      | 1210           | 1100  | 1248                                         | 104                      |

n.d. = not detectable; LQQ = 23 /7 µg.a. /L Actonifen; LOD = 7.11 µg a.i./L

#### B. BIOCOGICAL DATA

Mortality of adult Daphnia

In the controls and up to and including the aclonifen concentration level of 800  $\mu$ g/L no mortality above the allowed control mortality of 20% was observed. Significant mortality (70%) was observed in the highest aclonifen concentration of 1200  $\mu$ g/L.

Reproductive output



In the solvent control 1444 alive and 0 dead offspring were counted during the test duration in all replicates. In the control 1231 alive and 0 dead offspring were counted during the test duration in all replicates. In the highest aclonifen concentration 72 alive and 6 dead offspring were counted. The mean sum of total offspring (dead and alive) per alive adult at the end of the test ranged from 26.0 (1260  $\mu$ g/L) to 151.6 (solvent control). The CV of the mean of living offspring was found to be 22.5% in the solvent control and 25.6% in the control.

The first offspring in the solvent control and control was observed on day 8. The first offspring at the concentration level 237  $\mu$ g/L was observed on day 9, at 356  $\mu$ g/L on day 10, at 533  $\mu$ g/L op day 14, at 800  $\mu$ g/L on day 15 and at 1200  $\mu$ g/L on day 17.

#### Reproductive output per parent animal from test

The mean number of alive offspring at test end per adult from test start was 44.440 the solvent control, 123.1 in the control and 7.2 in the highest aclonifer concentration. Statistically significant phibitory effects were determined for this parameter at all aclonifer concentrations. The inhibition in the highest aclonifer concentrations. The inhibition in the highest aclonifer concentration of 1200 µg/L was 94.6% compared to the pooled controls.

#### Reproductive output per parent animal alige at test end

The mean number of alive offspring at test end per adult alive attest end was 151.60 the solvent control, 123.1 in the control and 24.0 in the highest aclonifen concentration. Statistically significant inhibitory effects were determined for this parameter at all test item concentrations. The inhibition in the highest item concentration of 1200  $\mu$ g/L was 82.4% compared to the pooled controls.

#### Body length at test stan

At test start the body length of five representative daphnids from the apec (without anal spine) to the helmet was measured. The measurement of body length was done for modelling purposes only and no statistical evaluation was performed.

## Body length at day 2 (end of first pulse) and day 9 (end of second pulse)

At the end of the first pulse the body length of the same five representative daphnids chosen at test start from the apex (without anal spine) to the helmed was measured. At the end of the second pulse the body length of the same five representative daphneds chosen at jest start from the apex (without anal spine) to the helmet was measured. The measurement of body length was done for modelling purposes only and no statistical evaluation was performed.

#### Body length at test end

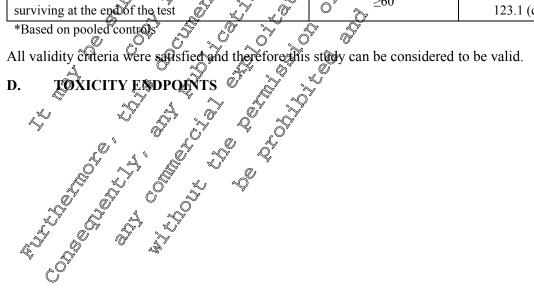
At the end of the test the body length of each sorviving adult daphnid from the apex (without anal spine) to the helmet was measured. Statistically significant inhibitory effects were determined for body length at all aclonifed concentrations compared to the pooled controls.

#### Behaviour and oppearance of adult Daphnids

Adult daphnic in the test concentration levels 237, 356 and 533  $\mu$ g/L appeared to be smaller compared to the controls throughout the test. They were additionally found to be paler compared to the controls between day 8 and 11 at 237  $\mu$ g/L, between day 8 and 13 at 356  $\mu$ g/L and from day 8 until test end at 533  $\mu$ g/L.



Adult daphnids in the test concentration level 800 µg/L appeared to be smaller and weak compared to the controls from day 2 until day 7 and were smaller and paler compared to the controls from day 8 until test end. Adult daphnids in the test concentration level 1200 µg/L appeared to be smaller and weak compared to the controls between day 2 and 7, as well as between day 12 and 13. Between day 8 and 11 they were additionally estimated to be paler compared to the controls and overed with algae, from day 18 until test end they were smaller and paler compared to the controls.


|                                                      | repro               | oductio  | n test        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *<br>                   | <u> </u>                                            | )<br>/          | V 3                                                      |            |
|------------------------------------------------------|---------------------|----------|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|-----------------|----------------------------------------------------------|------------|
| Geometric<br>mean<br>measured<br>conc<br>(µg a.s./L) | Body length<br>(mm) |          |               |                | Adult<br>survival<br>at day<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total<br>offspring      | Mean<br>offspring<br>per<br>parent at<br>test start |                 | Mean<br>offsøring<br>Øer<br>parent<br>alive åt<br>day 21 | 0%         |
|                                                      | d0                  | d7       | d9            | d21            | (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $   \vec{v} = \vec{v} $ | (H)                                                 | $\mathcal{O}$   | A A                                                      |            |
| Control                                              | 1.010               | 1.839    | 3.190         | 4.258 😒        | J 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123/1                   | 123.1                                               | - A             | 123.1 4                                                  |            |
| Solvent control                                      | 1.038               | 1.859    | 3.529         | 4.44           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A444.                   | 1440                                                |                 | 151 5<br>56.6 v                                          |            |
| Pooled control                                       | 1.024               | 1.849    | -             | A 346          | O' 'N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 33.8 ℃                                              |                 |                                                          | <b>?</b> - |
| 213                                                  | 1.011               | 1.260    | 2.615         | 3.837          | h de la companya de la | <b>9</b> 14             | 91.4                                                | ≫.¶.7 _ (       | 91,4* 7                                                  | 33.1       |
| 335                                                  | 1.045               | 1.276    | 2.42          | 3.748*         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 734 L                 |                                                     | <u>45.1</u> ℃   | 81 *                                                     | 40.6       |
| 516                                                  | 1.045               | 1.314    | 2.251         | <b>∂</b> .482* | یک 10 <del>ک</del> ر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 721                     | \$\$2.1* ×≈                                         | 46 <i>0</i> 5   | 72.1*                                                    | 47.2       |
| 807                                                  | 1.097               | 1.242    | <i>@</i> .016 | <b>O</b> .153* | 7 8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 721<br>430              | 43.0*                                               | 67.9            | \$52.3*                                                  | 61.7       |
| 1248                                                 | 1.040               | 1.279    | 1.544         | 3.067*         | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J72 S                   | 7.2*                                                | <b>≪9</b> 4.6 ≪ | > 24.0*                                                  | 82.4       |
| * C                                                  | tatistically        | vsimilie | ant from      | nool           | trole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sim$ $\sim$           |                                                     | , , (0)         |                                                          |            |

#### Summary of effects from the exposure of Daphnia magna to Aclonifien in a 21 Table: reproduction test

Statistically significant from pooled controls 

#### VALIDIT& CRIXERIA C.

| Validity criterion                                       | Achieved*               |
|----------------------------------------------------------|-------------------------|
| Control portality                                        | 10% (solvent control)   |
|                                                          | 0% (control)            |
| Mean number of living offspring per parent animal 4, 560 | 151.6 (solvent control) |
| surviving at the end of the test                         | 123.1 (control)         |
| *Based on pooled controls 5 2 2 2 2                      |                         |





#### Table: Summary of endpoints

| Endnoint                                    | Geometric mean measured concentration of aclonifen<br>(µg a.s./L) |        |                                    |                                         |                                               |  |  |  |
|---------------------------------------------|-------------------------------------------------------------------|--------|------------------------------------|-----------------------------------------|-----------------------------------------------|--|--|--|
| Endpoint                                    | NOEC                                                              | LOEC   | EC/LC <sub>10</sub><br>(95% CI)    | EC/LC <sub>20</sub><br>(95% CI)         | EC/LCs)<br>(95% EI)                           |  |  |  |
| Mortality of adult Daphnia                  | 807 <sup>a</sup>                                                  | 1248 ª | 573 <sup>b</sup><br>(217 –<br>754) | 7ĝ6́ <sup>b</sup><br>(404 - 917         | 1076 <sup>b</sup><br>(85 <sup>b</sup> - 1495) |  |  |  |
| Alive offspring per adult<br>(day 0)        | <213 °                                                            | 213 °  | n.d. <sup>d</sup>                  | n.d. d                                  | 407 €<br>(2057 663)<br>Q489 <sup>b</sup><br>C |  |  |  |
| Alive offspring per alive adult<br>(day 21) | <213 <sup>f</sup>                                                 | 21     | n.d.¢                              | n.d. d                                  | Q489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    |  |  |  |
| Body length (day 21)                        | <213 °                                                            | ©213°  | Anyd. d. C                         | 529% <sup>8</sup><br>(0783 – )<br>(670) |                                               |  |  |  |

Controls were pooled, since no statistically significant difference was found between control and softwent control

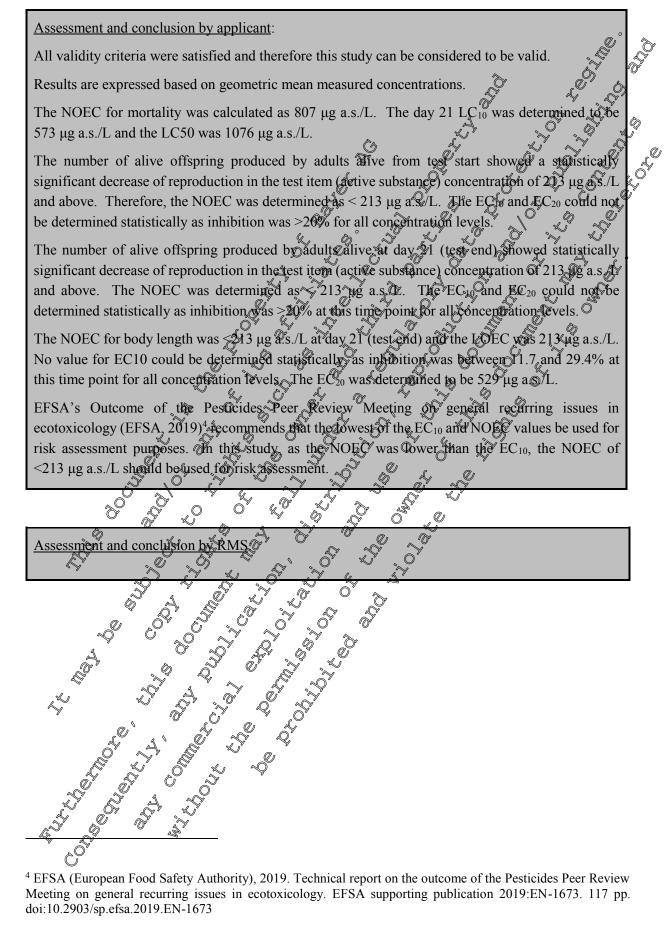
Following Step-down Cochran Armitage test descending order, p<0.05 а

- Calculated by Weibull analyst using Inear max. likelihood regression b
- Following Williams Multiple Sequential test Prosedure (0.05) с
- No value for EC<sub>10</sub>, EC could be determined statistically a inhibition was d 0‰åt this
- time point for all concentration devels
- Calculated by Weibul analysis using linear max. likelihood egression e f
- Following Multiple Welch's t-test with Bonferroni-Holm adjustment (left-sided, P<0.05) Calculated by probit analysis using linear max. Akelihood regression g
- n.d. Not determined

Results are expressed based on geometric mean measured concentrations.

The NOEC for mortality was calculated as \$7 µgas. Land the DEC was 1248 µg a.s./L. The day 21  $LC_{10}$  was determined to be 573 µg a.s./L, the  $LC_{20}$  was 536 µg a.s./L and the  $LC_{50}$  was 1076 µg a.s./L. The number of alive offspring produced by adults alive from test start showed a statistically significant

decrease of reproduction in the test item (active substance) concentration of 213 µg a.s./L and above. Therefore, the NQDC was determined  $as < 210 \mu g a.s./L$  and the LOEC was 213  $\mu g a.s./L$ . The EC<sub>10</sub> and EC<sub>20</sub> could not be determined statistically, as inflibition was >20% for all concentration levels.


The number of alive offspring produced by adults arive at day 21 (test end) showed statistically significant decrease of reproduction in the test itent (active substance) concentration of 213 µg a.s./L and above. The NOEO was determined as 213 og a.s./L and the LOEC was 213 µg a.s./L. The EC10 and  $\mathcal{EC}_{20}$  could not be determined statistically, as inhibition was >20% at this time point for all concentration levels.

The NOEC for body length was <213 µg a.s./L at day 21 (test end) and the LOEC was 213 µg a.s./L. No value for EC could De determined statistically, as inhibition was between 11.7 and 29.4% at this time point for al concentration levels. The EC20 was determined to be 529 µg a.s./L.

The overall &OEC was 23 µg a.s./L, including all parameters (mortality of adults, reproduction and body length)

(2019)





<sup>4</sup> EFSA (European Food Safety Authority), 2019. Technical report on the outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2019:EN-1673. 117 pp.



| Data Point:                | KCA 8.2.5.1/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Report Year:               | 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Report Title:              | Aclonifen: Toxicity to the water flea Daphnia magna straus under laborator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | conditions (21 d reproduction test - Pulsed exposure-scenario)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report No:                 | S19-00213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Document No:               | M-670403-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Guideline(s) followed in   | OECD -GUIDELINES FOR THE TESTING OF CHEMICALS NO 211; 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| study:                     | Daphnia magna<br>Reproduction Test, Adopted by the Council at 2nd October 2015 and September |
|                            | NUMBER 850.1300, U.S. ENVIRONMENT OF PROTECTION AGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | 2016 SERIES $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | 850 - ECOLOGICAL EFFECTS TEST GUIDELONES: DAPHNED CHRONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | TOXICITY Q A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | TEST $( \mathcal{L} ) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Deviations from current    | Current Guideline: @ECD, 291, 2012 0 0 2 0 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| test guideline:            | Some environmental parameters varied bornore than the allowe Orange The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | impact of these deviations is considered to be minor with no impact on the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            | outcome. and a star of the sta    |
| Previous evaluation:       | No, not presevusly submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GLP/Officially             | Yes, conducted under GLP/Officially recognized testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Acceptability/Reliability: | Yes & O & Y & Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Executive Summary

A chronic toxicity test was performed to identify possible effects of the aclonifen on development, reproductive capacity and behaviour of *Daphnia magna* over 21 days under a pulsed exposure scenario was conducted.

Daphnia magna were exposed to the solutions containing nominal concentrations of aclonifen at 237, 356, 533, 800 and 200 µg a.s. A together with a control and a solvent control twice for 48 hours within the 21 day test duration. The first pulse was set between day 0 and day 2 and the second pulse was set between day 4 and day 16. Between pulses daphnia were kept in untreated test medium with semi-statically renewal of test medium. The first pulse was set between of the first production of offspring, the number of offspring and body length were compared with the corresponding parameters in the controls. Assessments on other effects (mobility of parental daphnia, appearance of aclonifen solution) were performed each day.

As endpoints the total living offspring per introduced parent animal, the total living offspring per adult surviving to day  $2^{12}$  (test end) as well as body length of parental survivors at the end of the study were recorded as data for NOEC/LOEC calculation. Additional body length measurements were performed on day 0, 2 and 16 (end of pulsed exposure).

The initial measured content of aclonifen was between 101 and 120% and in the aged samples the measured content was between 97 and 112% of nominal. Therefore, the ecotoxicological endpoints were evaluated using nominal active substance.



Results are expressed based on nominal exposure concentrations. The NOEC for mortality was calculated as 799 µg a.s./L. The day 21 LC10 was determined to be 726 µg a.s./L and the LC<sub>50</sub> was 1090 µg a.s./L.

The number of alive offspring produced by adults alive from test start showed a statistically senificant decrease of reproduction in the test item (active substance) concentration of 237 µg a.s./L and above. Therefore, the NOEC was determined as <237  $\mu$ g a.s./L. The EC<sub>10</sub> and E $\Theta_{20}$  could not  $\Theta_{20}$  determined statistically as inhibition was >20% for all concentration levels.

The number of alive offspring produced by adults alive at day  $\mathfrak{D}^{\vee}$  (test end) showed statistical significant decrease of reproduction in the test item (active substance) concentration of 237 ag a.s./ and above. The NOEC was determined as <237 pca.s./L. The EC<sub>10</sub> and EC<sub>20</sub> could not be determined statistically as inhibition was >20% at this time point for all concentration levels.

HODS The NOEC for body length was <237 µg as /L at day 21 (test end) and the LOEC was 237 µg as L. No value for EC<sub>50</sub> could be determined statistically, as inhibition was 50% of the highest nominal test concentration (1200 µg a.s./L). The  $\mathcal{C}C_{10}$  was determined to be 304 µg a.s./L and the EG<sub>20</sub> was 816 µg a.s./L.

The overall NOEC was <237 µg a.s./L, including all parameter body length).

> ETHODS 6MATERIALS

#### MATERIAI A.

- 1. Test item Batch no.: ₱₽DF00 Appearance: Yellow solf Ambien Storage: Expiry date:
- Daphnia magna. Strads, Clone V 2. Test Organism Source:

First instar, less than 24 hours old neonates

Three times per week with living cells of the green alga Desmodesmus subspicatus in aqueous suspension. Also fed with suspension of Tetra Min Baby® at every media renewal

EQendt M4

- DESIGNAND METHODS
- In Mife phase: 1.
- 27 March to 25 April 2019
- 2. Exposure conditions

eeding:

3.



| Test vessels:        | 100 mL glass beakers, filled with 50 mL of the test solution,                                                                                                                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i est vesseis.       | during exposure covered with transparent glass plates $Q_{\mu}^{\circ}$                                                                                                           |
| Experimental design: | 5 test concentrations (237, 356, 533, 800 and 1200 μg as L)<br>plus 1 control and 1 solvent control (100 μL DMF/L)<br>10 replicates per test treatment, each containing 1 daphaid |
|                      |                                                                                                                                                                                   |
| Replicates:          | Ten replicates per control and treatment group with one daphnid<br>per replicate, all assigned in randomised order                                                                |
| Loading:             | 50 mL test solution per organism                                                                                                                                                  |
| Temperature:         | $18.7 - 21.1^{\circ}C^{\circ}$                                                                                                                                                    |
| pH:                  |                                                                                                                                                                                   |
| Dissolved oxygen     | $\geq 8.5 \text{ mgAL}$                                                                                                                                                           |
| Aeration:            | None & & & & & & A                                                                                                                                                                |
| Photoperiod:         | 16 ko light >\$ h dank                                                                                                                                                            |
| Light intensity:     | 16 to Tight > Sh dank<br>1452 lux                                                                                                                                                 |
|                      |                                                                                                                                                                                   |

#### 3. Administration of the test item<sup>®</sup>

The necessary amount of actionify for preparing the stock solution a was prepared by dissolving 120 mg of the aclonifen in 5.00 mL DMF (digethylformamide). The solution was homogenised by shaking. Lower test solutions were prepared by dilugion of the appropriate solution with DMF. 50 µL of each dilution solution was applied into one litre Elendt M4. All solutions were prepared freshly on each day of application. The concentration of the solvent DMF was 50  $\mu$ L/L in the aclonifen treatment and in the solvent control. The preparation procedure was none on test start (first pulse) and repeated at day 14 (second pulse). Decreasing yellow discolouration of solutions was observed with decreasing concentration on each application day. No precipitation was observed. Between pulses daphnia were kept in untreated test medium with revewal of test solutions every Monday, Wednesday and Friday.

#### 4. Test organism assignment and treatment

Daphnia were placed in the test solutions within 30 minutes of addition of the aclonifen. On Mondays, Wednesdays and Fridays, immediately after new test solutions had been prepared, each parent animal was gently transferred to its corresponding freshtest solution inside a minimised volume of the old test solution.

Each vessel received Iving cells of unicellatar green alga Desmodesmus subspicatus (strain SAG 86/81) at a daily amount of 0.1 \$2 mg TOC per test vessel with 100 mL, corresponding to 1 x 10<sup>8</sup> cells/L.

#### 5. Measurements and observations

All dead animals were conted and removed daily. The presence of eggs in the brood pouch, males or winter eses were recorded. Similarly, if there were obvious differences in condition and size of the parental generation between the test concentrations and the controls, these differences were reported.

Additionally, mobility of parental daphnia was observed daily. Immobile parental daphnia were not discarded but checked for recovery the next day.

A determination of the body length of 5 representative alive parental daphnia was performed for control, solvent control and each treatment group at test start, and at the end of each peak (days 2 and 16) for



modelling purposes only. At test end determination of the body length of all daphnids alive was performed.  $\mathbb{Q}_{\mathbb{A}}^{\circ}$ 

Dissolved oxygen, pH, total hardness and temperature were measured on day 0, at each test medium?

Verification of test concentrations and stability of aclonifen was carried out on analytical samples taken, from all aclonifen concentrations and controls at test start and 7 days from fresh solutions from bulk solutions and after 2 days and 9 days from aged solutions from pooled replicates to cover beginning and end of both peaks. A retained sample was also taken. Stability control samples were taken from day 0 to day (peak 1), the other from day 7 to day 9 (peak 2) corresponding to the pulsed exposure scenario. All samples were stored deep frozen until they were transferred to the analytical aboratory. Sample analysis was performed by direct injection of test medium samples after divition and quantification by HPLC-MS/MS detection.

#### 6. Statistics/Data evaluation

LOEC is the lowest aclonifen concentration rested showing a statistically significant difference from the control(s) for all endpoints. NOEC is the highest aclonifen concentration tested below the LOEC for the respective endpoint.  $LC_{40,20,50}$  the highest aclonifer concentration causing 10, 20, 50% variation in the respective endpoint of the test organism population (estimated by probit analysis).

Controls were pooled for statistical evaluation of all parameters, since no softistically significant difference was found between control and solvent control. For the calculation of NOEC, LOEC and  $EC_{10, 20, 50}/LC_{10, 20}$  ToxRat Protessional 3.3.0 was used.

### Mortality of adult Daphnia

A test for normality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene The NOEC and LOEC were determined by using a multiple comparison method ( $p \le 0.05$ ). As LOEC the lowest statistically significant concentration was defined The LC<sub>10, 20</sub>, a values were determined by probit analysis using linear max. likelihood regression.

## Reproductive Sutput Ber parent animal from test fart to lest end

A test for hormality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple comparison method (Williams Multiple Sequential t-test Procedure;  $p \le 0.05$ ). As LOEC the lowest statistically significant concentration was defined. No value for EC<sub>10, 20</sub> could be determined statistically, as inhibition was above 20% at this time point for all concentration levels. The EC<sub>50</sub>-value was determined by Weibull analysis using linear max. likelihood regression.

### Body length at test end

A test for normality of the data was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneous of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple comparison method (Williams Multiple Sequential t-test Procedure;  $p \le 0.05$ ). As LOEC the lowest statistically significant concentration was defined. The EC<sub>10</sub>, <sub>20</sub> values were determined by Weibull analysis using linear max. likelihood regression. No value for EC<sub>50</sub> could be



determined statistically, as inhibition was <50% at this time point for the highest concentration level. Therefore, EC<sub>50</sub>-value was determined to be greater than the highest concentration level.

#### **II. RESULTS AND DISCUSSION**

#### A. ANALYTICAL VERIFICATION

The measured content of aclonifen was between 101 and 120% of nominal in the fresh samples with a mean recovery of 112% of nominal in these initial samples. In the aged samples the measured content was between 97 and 112% of nominal with a mean measured recovery of 103% of nominal. The toxicological endpoints were evaluated using nominal active, substance concentrations since concentrations in aged solutions decreased by <20% from initial measured concentrations.

The validated method is summarised in Document M-CA4 (CA4.1.2)97).

# Table: Measured test concentrations from the exposure of Daphnia magna to Acloutten in a 21-Day reproduction test

|                 | ·                   | •                | ſ              |               |                    | d and a state of the state of t | ς Ο`         | « "              | <u>s</u>     |
|-----------------|---------------------|------------------|----------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------|
|                 | ninal               |                  | Ũ              | Measu         | red concen         | tration (µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (a.s./L)     |                  |              |
|                 | ntration<br>a.s./L) | Day 0 0 4 10 2 5 |                |               | tration (µg æs?/L) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Ş16              |              |
| As test<br>item | As<br>aclonifen     | Fresh<br>media ( | 2%<br>nominal? | Aged<br>media | mominal,           | <sup>C</sup> Fresto<br>media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iominal (    | ∂Ageđ~y<br>media | %<br>nominal |
| Control         | -                   | n.d.             | _~~            | n.d.          | ° - Ý              | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>}</u>     | Ðd.              | -            |
| Solvent control | -                   | n đ              | ð- ĝ           | n.d           |                    | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | on.d.            | -            |
| 237             | 237                 | 239              | » 10 <u>1</u>  | ð 29 🎓        | Ø 970°             | Q61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100         | 238              | 100          |
| 356             | 356                 | <b>407</b>       | ₹¥4            | ᢧ 399,ఫ్      | 102                | <sup>0</sup> 396 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140,         | 371              | 104          |
| 533             | 532                 | <b>590</b> .     | Ø111 S         | 558           | ~~105 g            | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>⊘</b> }12 | 523              | 98           |
| 800             | 790                 | 881              | 110            | \$25          | 7 103              | dati s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118 کې       | 784              | 98           |
| 1200            | <b>D2</b> 00 🔏      | ≥ 133©           | Qí             | × 1340        | 102                | 31440 <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120          | 1200             | 100          |

n.d. = not detectable; LOQ = 23.7,  $gasting a.i./LAclonition; <math>LOD = 7.11 \mu gasting LOD$ 

### B. BIOLOGICAL DAT

Mortality of adult Daphnia

In the controls and up to and including the atomic concentration level of 800  $\mu$ g/L no mortality above the allowed control mortality of 29% was observed. Significant mortality (60%) was observed in the highest actionifen concentration of 1200  $\mu$ g/L

#### Reproductive output

In the solvent control 1258 alive and 0 dead offspring were counted during the test duration in all replicates. In the control 1103 alive and 0 dead offspring were counted during the test duration in all replicates. In the highest actonifen concentration 186 alive and 0 dead offspring were counted. The mean sum of total offspring dead and alive) per alive adult at the end of the test ranged from 28.8 (1290  $\mu$ g/D) to 129.9 (solvent control). The CV of the mean of living offspring was found to be 20.7% in the solvent control and 17.8% in the control.

The first offspring in the solvent control and control were observed on day 10. The first offspring at the concentration level 237, 356, 533 and  $800 \mu g/L$  were observed on day 11 and at 1200  $\mu g/L$  on day 12.

Reproductive output per parent animal from test start



The mean number of alive offspring at test end per adult from test start was 125.8 in the solvent control, 117.3 in the control and 18.6 in the highest aclonifen concentration. Statistically significant inhibitory effects were determined for this parameter at all aclonifen concentrations. The inhibition in the highest of aclonifen concentration of 1200  $\mu$ g/L was 84.7% compared to the pooled controls.

#### Reproductive output per parent animal alive at test end

The mean number of alive offspring at test end per adult alive at test end was 129.9 in the solvent control 117.3 in the control and 28.8 in the highest aclonifen concentration. Solvent significant mhibitory effects were determined for this parameter at all test item concentrations. The inhibition in the highest  $\circ$  item concentration of 1200 µg/L was 76.6% compared to the pooled controls.

#### Body length at test start

At test start the body length of five representative daphnids from the apex (without anal spine) to the helmet was measured. The measurement of body tength was done for modelling purposes only and no statistical evaluation was performed.

# Body length at day 2 (end of first pulse) and day 14 fend of second pulse

At the end of the first pulse the body length of the same five representative dephnics chosen at test start from the apex (without anal spine) to the helmet was measured. At the end of the second pulse the body length of the same five representative daphnids chosen at test start from the apex (without anal spine) to the helmet was measured. The measurement of body length was done for modelling purposes only and no statistical evaluation was performed.

#### Body length at test end

At the end of the test the body length of each surviving adult daphned from the apex (without anal spine) to the helmet was measured. Statistically significant inhibitory effects were determined for body length at all aclonifen concentrations compared to the pooled controls.

Behavious and appear fice of adult Baphnids

Adult daphnids in the test concentration levels 237, 356 and 533  $\mu$ g/L appeared to be smaller compared to the controls throughout the test.

Adult daphnids in the test concentration level 800  $\mu$ g/L appeared to be smaller and inactive compared to the controls from test start unto day  $\mu$  and from day 19 to the end of the study were paler compared to the controls and coxered with algae.

Adult daphnids in the test concentration level  $1200 \ \mu g/L$  appeared to be smaller and inactive compared to the controls throughout the study. On day 19, they were observed to be paler compared to the controls and covered with algae.

# Table: Summary of effects from the exposure of *Daphnia magna* to Aclonifen in a 21-Day

| Geometric<br>mean<br>measured<br>conc<br>(µg a.s.W) |       | Body  | Tength<br>m) |       | Adult<br>survival<br>at day<br>21 | Total<br>offspring | Mean<br>offspring<br>per<br>parent at<br>test start | %<br>inhibition<br>to pooled<br>control | Mean<br>offspring<br>per<br>parent<br>alive at<br>day 21 | %<br>inhibition<br>to pooled<br>control |
|-----------------------------------------------------|-------|-------|--------------|-------|-----------------------------------|--------------------|-----------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------|
|                                                     | d0    | d2    | d16          | d21   | (n)                               | (n)                | (n)                                                 |                                         | (n)                                                      |                                         |
| Control                                             | 1.038 | 1.267 | 3.794        | 4.093 | 10                                | 1258               | 117.3                                               | _                                       | 117.3                                                    | _                                       |



| Solvent                                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                                                                                                                   | 1.046                                                                                                                                                                                                                                              | 1.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                  | 129.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                       |
| control                                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - ®                                                                                                     |
| Pooled                                                                                                                                            | 1.042                                                                                                                                                                                                                                              | 1.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                  | 123.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 4                                                                                                     |
| control                                                                                                                                           | 1.025                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
| 237                                                                                                                                               | 1.025                                                                                                                                                                                                                                              | 1.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87.5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.0                                                                                                                                                                               | 87.5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | @29.0                                                                                                   |
| 356                                                                                                                                               | 0.970                                                                                                                                                                                                                                              | 1.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.7                                                                                                                                                                               | 77.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.6                                                                                                    |
| 533                                                                                                                                               | 0.971                                                                                                                                                                                                                                              | 1.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72.9*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.0                                                                                                                                                                               | 72.9*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - <u>(AN) 1</u>                                                                                         |
| 800                                                                                                                                               | 0.963                                                                                                                                                                                                                                              | 1.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×64.5                                                                                                                                                                              | 49.80 <sup>°</sup><br>28.8*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$9.6 🔬                                                                                                 |
| 1200                                                                                                                                              | 0.949                                                                                                                                                                                                                                              | 1.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.6*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>&amp;</i> 84.7                                                                                                                                                                  | 28.8*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.6                                                                                                    |
| * S                                                                                                                                               | statistical                                                                                                                                                                                                                                        | ly signif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | icant fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m pooled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 w                                                                                                     |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , Ó <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,<br>````````````````````````````````````                                                                                                                                          | v â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |
| $\mathbf{C}$ . $\mathbf{V}_{\mathbf{A}}$                                                                                                          | ALIDIT                                                                                                                                                                                                                                             | Y CRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>í</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C C                                                                                                                                                                                | ) ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 59.6<br>776.6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                       |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | à la churchara an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                |
| Validity                                                                                                                                          | witanian                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                    | Achiev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |
| Validity c                                                                                                                                        | riterion                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se la construcción de la constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _©(°OE(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D 211, 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2) 🖉 🖉                                                                                                                                                                             | <sup>©</sup> Acmev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eu 🖉                                                                                                    |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    | »<br>% (sellaren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t control)                                                                                              |
| Control m                                                                                                                                         | ortality                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A . (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ð, ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤200%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>v v</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ž "N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>s</u> A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , Óř.                                                                                                                                                                              | 0% (cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d X                                                                                                     |
| Mean nur                                                                                                                                          | nber of                                                                                                                                                                                                                                            | living of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ffspring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | per pare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt animal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Ø <sup>7</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | √<br>√>60 0 <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × 128                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt control)                                                                                             |
| surviving                                                                                                                                         | at the end                                                                                                                                                                                                                                         | d of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∦ ≥000°€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | õ s                                                                                                                                                                                | 117 <b>2 (c</b> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ontrol)                                                                                                 |
| *Based or                                                                                                                                         | nooled                                                                                                                                                                                                                                             | controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , Q                                                                                                     |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N° O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>~</b>                                                                                                |
| All validit                                                                                                                                       | y criteria                                                                                                                                                                                                                                         | a were s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | satisfied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | refore thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is study ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n be consid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lered to be                                                                                                                                                                        | valid, Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Cring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a di se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    | Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
| D. TO                                                                                                                                             | OXICIT                                                                                                                                                                                                                                             | 'V FNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>DAST</b> NI'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ГС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nº C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . ( °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
|                                                                                                                                                   | UNICII                                                                                                                                                                                                                                             | I L'ILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JE OHN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cí 🛝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sup>V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S' Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    | (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O <sup>V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Sendpo</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O <sup>V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / Tr<br>J<br>Saminatro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
|                                                                                                                                                   | Sumi                                                                                                                                                                                                                                               | nary ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sup>V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ý v<br>Verninátxo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oncentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |
|                                                                                                                                                   |                                                                                                                                                                                                                                                    | nary ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Sendpo</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ints ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oncentration<br>(ug a.s./IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    | y<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C/LC <sub>50</sub>                                                                                      |
|                                                                                                                                                   | Sumi                                                                                                                                                                                                                                               | nary ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Sendpo</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O <sup>V</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OFO I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncentration<br>(ug a.s./D<br>C/LC40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EC/LC <sub>2</sub>                                                                                                                                                                 | ی<br>n<br>0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C/LC <sub>50</sub><br>5% CI)                                                                            |
| Гable:                                                                                                                                            | Sumi<br>Endp                                                                                                                                                                                                                                       | nary ở<br>ciếnt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ints of NOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oncentration<br>(µg a.s./A<br>C/LC(µ<br>(95%QI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>B</b> C/LC <sub>2</sub><br>95% CI                                                                                                                                               | ©<br>n<br>0 E(<br>1) (95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5% CI)                                                                                                  |
| Гable:                                                                                                                                            | Sumi                                                                                                                                                                                                                                               | nary ở<br>ciếnt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ints ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncentration<br>(ug a.s./D<br>C/LC40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>C/LC</b> 2<br><b>95% Cl</b><br>834 <sup>g</sup>                                                                                                                                 | © E0<br>0 E0<br>0 (95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5% CI)</b><br>1090 <sup>g</sup>                                                                      |
| <b>Fable:</b><br>Morta                                                                                                                            | Sumi<br>Endp                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ints of NOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0ncentration<br>(µg a.s./b)<br>(05% (1)<br>75% (3)<br>(3) - 881 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>C/LC</b> 2<br><b>95% CI</b><br>834 <sup>g</sup><br>(518 – 100                                                                                                                   | P         E           0         E           0)         (95)           0)         (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5% CI)</b><br>1090 <sup>g</sup><br>1 - 1680)                                                         |
| <b>Fable:</b><br>Morta                                                                                                                            | Sumi<br>Endp                                                                                                                                                                                                                                       | nary ôf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <sup>×</sup><br>ints 6<br>×<br>NOE<br>0 <sup>799 °</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oncentration<br>(µg a.s./A)<br>(µC/LC(µ)<br>(95% (21)<br>728 <sup>g</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>C/LC</b> 2<br><b>95% Cl</b><br>834 <sup>g</sup>                                                                                                                                 | Image: Constraint of the second sec | <b>5% CI)</b><br>1090 <sup>g</sup><br>1 - 1680)<br>556 <sup>e</sup>                                     |
| Table:<br>Morta                                                                                                                                   | Sumi<br>Endp<br>ality@f a<br>e@ffspri<br>(day                                                                                                                                                                                                      | nary ôf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo | 0 <sup>×</sup><br>ints 6<br>×<br>NOE<br>0 <sup>799 °</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0ncentration<br>(µg a.s./b)<br>(05% (1)<br>75% (3)<br>(3) - 881 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>EC/LC2</b><br><b>95% CI</b><br>834 <sup>g</sup><br>(518 – 100<br>n.d. <sup>d</sup>                                                                                              | Con         E0           0         E0           0)         (95           0)         (90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% CI)<br>1090 <sup>g</sup><br>1 - 1680)<br>556 <sup>e</sup><br>(n.c.)                                  |
| Morta     Aliv                                                                                                                                    | Sumi<br>Endp<br>Endp<br>ality of au<br>coffsprin<br>(day<br>offspring                                                                                                                                                                              | nary ởi<br>oint<br>duy Dap<br>ng per ac<br>0) Č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sendpo<br>S <sup>2</sup><br>S <sup>2</sup><br>hnfa<br>dult<br>c adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 <sup>×</sup><br>ints 6<br>×<br>NOE<br>0 <sup>799 °</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0ncentration<br>(µg a.s./b)<br>(05% (1)<br>75% (3)<br>(3) - 881 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>C/LC</b> 2<br><b>95% CI</b><br>834 <sup>g</sup><br>(518 – 100                                                                                                                   | (90)<br>(90)<br>(90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>5% CI)</b><br>1090 <sup>g</sup><br>1 - 1680)<br>556 <sup>e</sup><br>(n.c.)<br>586 <sup>b</sup>       |
| Table:<br>Morta<br>Aliy<br>Aliveo                                                                                                                 | Sumi<br>Endp<br>Endp<br>ality of a<br>coffsprin<br>(day<br>(day<br>(day                                                                                                                                                                            | nary ởi<br>oriat<br>dul Dap<br>ng per a<br>0) Č<br>per shive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <sup>°</sup> y 237<br>2 <sup>°</sup> y NOE<br>2 <sup>°</sup> y 237<br>2 <sup>°</sup> y 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>OEO</b><br>200 <sup>a</sup><br>237 <sup>O</sup><br>237 <sup>C</sup><br>237 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mcentration<br>(µg a.s./k)<br>(195% (21)<br>(285 °<br>(39) - 881 (2)<br>(39) - 881 (2)<br>(39) - 4<br>(39) - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>EC/LC2</b><br><b>95% CI</b><br>834 <sup>g</sup><br>(518 – 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup>                                                                         | (9)<br>0) (90)<br>0) (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5% CI)<br>1090 <sup>g</sup><br>1 - 1680)<br>556 <sup>e</sup><br>(n.c.)<br>586 <sup>b</sup><br>(n.c.)    |
| Table:<br>Morta<br>Aliy<br>Aliveo                                                                                                                 | Sumi<br>Endp<br>Endp<br>ality of au<br>coffsprin<br>(day<br>offspring                                                                                                                                                                              | nary ởi<br>oriat<br>dul Dap<br>ng per a<br>0) Č<br>per shive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <sup>×</sup><br>ints 6<br>×<br>NOE<br>0 <sup>799 °</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mcentration<br>(µg a.s./f)<br>(µg a.s./f)<br>(95% (1)<br>(25% ±<br>(3) - 881 (1)<br>(3) - 881 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>EC/LC2</b><br><b>95% CI</b><br>834 <sup>g</sup><br>(518 – 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup>                                                     | (9)<br>0) (90)<br>0) (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>5% CI)</b><br>1090 <sup>g</sup><br>1 - 1680)<br>556 <sup>e</sup><br>(n.c.)<br>586 <sup>b</sup>       |
| Table:<br>Morta<br>Aliveo<br>Bo                                                                                                                   | Sumi<br>Endp<br>ality of au<br>eoffsprin<br>(day<br>offspring<br>(day                                                                                                                                                                              | nary ôf<br>oint<br>dur Dap<br>ng per a<br>0) Č<br>per shive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo<br>Sendpo | 0 <sup>°</sup> y 237<br>200<br>0 <sup>7</sup> 99°<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>OEO</b><br>200 <sup>a</sup><br>237<br><b>OEO</b><br>237<br><b>O</b><br><b>O</b><br><b>O</b><br><b>O</b><br><b>O</b><br><b>O</b><br><b>O</b><br><b>O</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mcentration<br>(µg a.s./k)<br>(µg a.s./k)<br>(195% (21)<br>(3) - 881<br>(3) - 881                                                                                                                                                       | <b>C/LC2</b><br><b>3</b> 4 <sup>g</sup><br>(518 – 100<br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)                                                                           | ()<br>(9)<br>(9)<br>(9)<br>(90)<br>(90)<br>(90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g                           |
| Morta     Alive     Bo     Control                                                                                                                | Sumi<br>Endp<br>ality of au<br>eoffspring<br>(day<br>offspring<br>(day<br>ody lengg<br>Is we p                                                                                                                                                     | nary ôf<br>oilet<br>duk Dap<br>ng per ac<br>0) D<br>per shive<br>20<br>n (day A<br>ook a, si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <sup>°</sup> y 237<br>→ NOP<br>→ NOP<br>→ 799 °<br>→ 237<br>→ 237<br>→ 237<br>→ 237<br>→ 237<br>→ 237<br>→ 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C J<br>C L<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>OFO</b><br>200 <sup>a</sup><br>237 <sup>C</sup><br>237 <sup>C</sup><br>24 <sup>C</sup><br>2                                                                                                                                                                                                                                                                                                                                        | mcentration<br>(µg a.s./k)<br>(µg a.s./k)<br>(195% (21)<br>(3) - 881<br>(3) - 881                                                                                                                                                       | C/LC2<br>05% Cl<br>834 <sup>g</sup><br>(518 – 100<br>n.d. <sup>d</sup><br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                      | ()<br>(9)<br>(9)<br>(9)<br>(90)<br>(90)<br>(90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g                           |
| Table:<br>Morta<br>Aliv<br>Aliveo<br>Bo<br>Control                                                                                                | Sumi<br>Endp<br>ality of au<br>eoffspring<br>(day<br>offspring<br>(day<br>ody lengg<br>Is we p                                                                                                                                                     | nary ôf<br>oilet<br>duk Dap<br>ng per ac<br>0) D<br>per shive<br>20<br>n (day A<br>ook a, si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <sup>°</sup> y 237<br>→ NOP<br>→ NOP<br>→ 799 °<br>→ 237<br>→ 237<br>→ 237<br>→ 237<br>→ 237<br>→ 237<br>→ 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C J<br>C L<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A<br>C A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>OFO</b><br>200 <sup>a</sup><br>237 <sup>C</sup><br>237 <sup>C</sup><br>24 <sup>C</sup><br>2                                                                                                                                                                                                                                                                                                                                        | mcentration<br>(µg a.s./k)<br>(µg a.s./k)<br>(195% (21)<br>(3) - 881<br>(3) - 881                                                                                                                                                       | C/LC2<br>05% Cl<br>834 <sup>g</sup><br>(518 – 100<br>n.d. <sup>d</sup><br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                      | ()<br>(9)<br>(9)<br>(9)<br>(90)<br>(90)<br>(90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g                           |
| Table:<br>Morta<br>Aliv<br>Aliveo<br>Control<br>control<br>a                                                                                      | Sumi<br>Endp<br>ality of a<br>offspring<br>(day<br>ody leng<br>s wole p                                                                                                                                                                            | nary ôf<br>oint<br>dul Dap<br>ng per a<br>0) D<br>per anve<br>20<br>a (day 2<br>oolea, si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOL<br>NOL<br>V<br>NOL<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OFO<br>200 <sup>a</sup><br>237 <sup>o</sup><br>237 <sup>o</sup><br>24 <sup>o</sup><br>237 <sup>o</sup><br>24 <sup>o</sup><br>237 <sup>o</sup><br>24 <sup>o</sup><br>2 <sup>o</sup> | pncentration<br>(ug a.s./f)<br>C/LC (ug a.s./f)<br>C/LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C/LC2<br>(55% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>d between co<br>><0.05)                              | ()<br>(9)<br>(9)<br>(9)<br>(90)<br>(90)<br>(90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g                           |
| Table:<br>Morta<br>Aliv<br>Alivero<br>Bo<br>Control<br>a<br>b                                                                                     | Sumi<br>Endp<br>ality of a<br>offspring<br>(day<br>ody lengt<br>ls we p<br>Calcula                                                                                                                                                                 | nary ôf<br>oil t<br>dul Dap<br>ng per a<br>0) 0<br>n (day A<br>oole a, si<br>ing Step<br>ted by V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOE<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OFO<br>200 <sup>a</sup><br>237 <sup>o</sup><br>237 <sup>o</sup><br>247 <sup>o</sup><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pincentration<br>(ug a.s./f)<br>C/LC (ug a.s./f)<br>C/LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C/LC2<br>(518 - 100<br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>d between co<br><0.05)<br>ssion                                                                          | ()<br>(9)<br>(9)<br>(9)<br>(90)<br>(90)<br>(90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g                           |
| Table:<br>Morta<br>Aliv<br>Alivero<br>Bo<br>Control<br>a<br>b                                                                                     | Endp<br>Endp<br>ality of ac<br>e offspring<br>(day<br>ody lengt<br>ls we p<br>Follow<br>Calcula<br>Follow                                                                                                                                          | nary of<br>oint<br>dult Dap<br>ng per a<br>0) 0<br>n (day<br>a (day<br>a (day<br>a (day<br>b) 0<br>ng Step<br>ing Step<br>ing Will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hnfa<br>ult<br>cadult<br>l)<br>-down<br>Veiball a<br>iagas Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOP<br>NOP<br>799 °<br>799 °<br>799 °<br>799 °<br>799 °<br>799 °<br>799 °<br>799 °<br>799 °<br>799 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C J L<br>C J L C J L<br>C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L C J L                                                                                                                                                                                                      | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./L)<br>C/LC (us<br>95% (1)<br>2% (3)<br>1.3% - 881<br>2% n.d. $4%1.3%$ - $4%1.3%$ - $4%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%1.3%$ - $1.3%$ - $1.3%1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ - $1.3%$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | €C/LC2<br>€C/LC2<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>0.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>d between co<br><0.05)<br>ssion                      | P         E0           0         E0           0)         (99           0)         (90           0)         (90           0)         (90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent              |
| Morta         Morta         Alive         Bo         Control         a         b                                                                  | Endp<br>Endp<br>ality of au<br>eoffspring<br>(day<br>ody lengt<br>Is were p<br>Follow<br>Calcula<br>Follow<br>No val                                                                                                                               | nary of<br>oint<br>dult Dap<br>ng per ac<br>0) 0<br>(day<br>a (day<br>a (day<br>a (day<br>b Ving Vill<br>ue for 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hnfa<br>tult<br>cadult<br>dult<br>cadult<br>dult<br>cadult<br>cadult<br>dult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult<br>cadult | NOP<br>NOP<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C J L<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./f)<br>C/LC (ug a.s./f)<br>C/LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | €C/LC2<br>€C/LC2<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>0.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>d between co<br><0.05)<br>ssion                      | P         E0           0         E0           0)         (99           0)         (90           0)         (90           0)         (90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent              |
| Table:<br>Morta<br>Aliv<br>Aliveo<br>Bo<br>Control<br>control<br>a<br>c<br>c                                                                      | Sumi<br>Endp<br>ality of au<br>eoffspring<br>(day<br>ody lengt<br>s wet p<br>Follow<br>Calcula<br>Follow<br>No val<br>time po                                                                                                                      | nary of<br>oint<br>dult Dap<br>ng per a<br>0) 0<br>(day<br>a (day<br>a (day)<br>a (day<br>a (day)<br>a (day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOP<br>NOP<br>799 °<br>799 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C J L<br>C | OFO<br>200 a<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ncentration<br>(ug a.s./L)<br>(Ug a.                                                                                                                                                                                                                                                          | C/LC2<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                | P         E0           0         E0           0)         (99           0)         (90           0)         (90           0)         (90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent              |
| Fable:     Morta     Alive     Alive     Bo     Control     a     b     c     e                                                                   | Sumi<br>Endp<br>ality of a<br>e offspring<br>(day<br>offspring<br>(day<br>ody leng<br>s<br>b we p<br>Calcula<br>Follow:<br>No val<br>time po<br>Calcula                                                                                            | nary õi<br>oint<br>dul Dap<br>ng per au<br>0) D<br>per anve<br>20<br>n (day 2)<br>n (day 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sendpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOF<br>NOF<br>799 °<br>799 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mcentration<br>( $\mu g a.s./h$ )<br>( $\mu g a.s./h$ ) | C/LC2<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>ad between co<br>(n.c.)<br>ssion                                                     | P         E0           0         E0           0)         (99           0)         (90           0)         (90           0)         (90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent              |
| Fable:<br>Morta<br>Aliv<br>Alive<br>Bo<br>Control<br>control<br>a<br>c<br>c<br>e<br>f                                                             | Endp<br>Endp<br>ality of a<br>offspring<br>(day<br>offspring<br>(day<br>ody leng<br>s<br>Calcula<br>Follow:<br>No val<br>time po<br>Calcula<br>calcula                                                                                             | nary õi<br>oint<br>dul Dap<br>ng per a<br>0) Č<br>per alive<br>20<br>a (day<br>20<br>a (da)<br>20<br>a (da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>20<br>(da)<br>(da)<br>(da)<br>(da)<br>(da)<br>(da)<br>(da)<br>(da) | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>dult<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>sendpot<br>se                                                       | NOP<br>NOP<br>799<br>799<br>799<br>799<br>799<br>799<br>799<br>799<br>799<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./f)<br>(25%)<br>(39) - 881)<br>(39) - 881<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Table:<br>Morta<br>Aliv<br>Alive<br>Bo<br>Control<br>control<br>a<br>b<br>c<br>c<br>c<br>c<br>c<br>c<br>c                                         | Endp<br>Endp<br>ality a<br>eoffspring<br>(day<br>offspring<br>(day<br>ody leng<br>s<br>Follow<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>a follow<br>No val                                                                           | nary of<br>orient<br>dult Dap<br>ng per a<br>0)<br>o (day<br>a (day))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>dult<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo   | NOP<br>NOP<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C L<br>L<br>V Rignific<br>V Rig                       | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mcentration<br>( $\mu g a.s./h$ )<br>( $\mu g a.s./h$ ) | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Table:<br>Morta<br>Alive<br>Alive<br>Bo<br>Control<br>control<br>a<br>b<br>c<br>c<br>f<br>g                                                       | Sumi<br>Endp<br>ality a<br>ality a a<br>coffspring<br>(day<br>ody lengt<br>b<br>sw cop<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>follow<br>No val<br>time po<br>Calcula<br>foilow<br>No val                                          | nary of<br>oright<br>dult Dap<br>ng per a<br>0) 0<br>n (day<br>a (day)<br>a (day<br>a (day<br>a (day)<br>a (day<br>a (day)<br>a (day<br>a (day)<br>a (day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>dult<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo   | NOP<br>NOP<br>799<br>799<br>799<br>799<br>799<br>799<br>799<br>799<br>799<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C L<br>L<br>V Rignific<br>V Rig                       | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./f)<br>(25%)<br>(39) - 881)<br>(39) - 881<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Table:<br>Morta<br>Alive<br>Alive<br>Bo<br>Control<br>control<br>a<br>b<br>c<br>c<br>e<br>f                                                       | Sumi<br>Endp<br>ality of a<br>coffsprin<br>(day<br>offspring<br>(day<br>ody lengt<br>b<br>sw ce p<br>Follow<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>time po<br>Calcula<br>So val<br>time po<br>Calcula<br>So val                   | nary of<br>oright<br>dul Dap<br>ng per a<br>0)<br>ooled, si<br>ing Step<br>ing Step<br>ing Step<br>ing Vill<br>ue for 1<br>int for a<br>int for a<br>int for a<br>culable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo | NOP<br>NOP<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C L<br>L<br>V Rignific<br>V Rig                       | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./f)<br>(25%)<br>(39) - 881)<br>(39) - 881<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Table:         Morta         Alive         Alive         Bo         Control         a         b         c         d         e         f         g | Sumi<br>Endp<br>ality of a<br>coffsprin<br>(day<br>offspring<br>(day<br>ody lengt<br>b<br>sw ce p<br>Follow<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>time po<br>Calcula<br>So val<br>time po<br>Calcula<br>So val                   | nary of<br>oright<br>dul Dap<br>ng per a<br>0)<br>ooled, si<br>ing Step<br>ing Step<br>ing Step<br>ing Step<br>ing for 1<br>int for a<br>int for a<br>int for a<br>culable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo | NOP<br>NOP<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C L<br>L<br>V Rignific<br>V Rig                       | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./f)<br>(25%)<br>(39) - 881)<br>(39) - 881<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Morta     Morta     Alive     Alive     Bo     Control     a     b     c     d     e     f     g     n.c                                          | Sumi<br>Endp<br>ality of a<br>eoffspring<br>(day<br>offspring<br>(day<br>ody lenge<br>bdy lenge<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>follow<br>No val<br>time po<br>Calcula<br>follow | nary of<br>oright<br>dult Dap<br>ng per a<br>0) 0<br>n (day<br>a (day)<br>a (day<br>a (day<br>a (day)<br>a (day<br>a (day)<br>a (day<br>a (day)<br>a (day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(day)<br>(d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo | NOP<br>NOP<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C L<br>L<br>V Rignific<br>V Rig                       | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pincentration<br>(ug a.s./f)<br>(25%)<br>(39) - 881)<br>(39) - 881<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Morta     Morta     Alive     Alive     Bo     Control     a     b     c     d     e     f     g     n.c                                          | Sumi<br>Endp<br>ality of a<br>eoffspring<br>(day<br>offspring<br>(day<br>ody lenge<br>bdy lenge<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>follow<br>No val<br>time po<br>Calcula<br>follow | nary of<br>oright<br>dul Dap<br>ng per a<br>0)<br>ooled, si<br>ing Step<br>ing Step<br>ing Step<br>ing Step<br>ing for 1<br>int for a<br>int for a<br>int for a<br>culable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo | ints<br>ints<br>NOE<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>7 | C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OFO<br>200 a<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ncentration<br>(ug a.s./<br>C/LCu<br>(95% (1)<br>(3) - 881<br>(3) - 881                                                                                                                                                    | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |
| Aliver<br>Bo<br>Control<br>control<br>a<br>c<br>d<br>f<br>g                                                                                       | Sumi<br>Endp<br>ality of a<br>eoffspring<br>(day<br>offspring<br>(day<br>ody lenge<br>bdy lenge<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>Follow<br>No val<br>time po<br>Calcula<br>follow<br>No val<br>time po<br>Calcula<br>follow | nary of<br>oright<br>dul Dap<br>ng per a<br>0)<br>ooled, si<br>ing Step<br>ing Step<br>ing Step<br>ing Step<br>ing for 1<br>int for a<br>int for a<br>int for a<br>culable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo<br>sendpo | ints<br>ints<br>NOF<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>799°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>790°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>700°<br>7 | C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OFO<br>200 <sup>a</sup><br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncentration<br>(ug a.s./<br>C/LCu<br>(95% (1)<br>(3) - 881<br>(3) - 881                                                                                                                                                    | C/LC2<br>(95% Cl<br>834 <sup>g</sup><br>(518 - 100<br>n.d. <sup>d</sup><br>n.d. <sup>d</sup><br>816 <sup>b</sup><br>(n.c.)<br>wd between co<br>(n.c.)<br>inhibition<br>ssion<br>on | (9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI)<br>1090 g<br>1 - 1680)<br>556 e<br>(n.c.)<br>586 b<br>(n.c.)<br>1200 g<br>d solvent<br>% at this |

Results are expressed based on geometric mean measured concentrations.



The NOEC for mortality was calculated as 799  $\mu$ g a.s./L and the LOEC was 1200  $\mu$ g a.s./L. The day 21 LC<sub>10</sub> was determined to be 726  $\mu$ g a.s./L, the LC<sub>20</sub> was 834  $\mu$ g a.s./L and the LC<sub>50</sub> was 1090  $\mu$ g a.s./L.

The number of alive offspring produced by adults alive from test start showed a statistically significant? decrease of reproduction in the test item (active substance) concentration of 247  $\mu$ g a.s./L and above. Therefore, the NOEC was determined as <237  $\mu$ g a.s./L and the LOEC was 237  $\mu$ g a.s./L. The  $C_{10}$ and EC<sub>20</sub> could not be determined statistically, as inhibition was >20% for all concentration levels.

The number of alive offspring produced by adults alive at day 21 diest end) showed statistically significant decrease of reproduction in the test item (active substance) concentration of  $337 \ \mu g$  a.s./L  $\odot$  and above. The NOEC was determined as <237  $\mu g$  a.s./L and the OEC was 237  $\mu g$  a.s./L. The ECG and EC<sub>20</sub> could not be determined statistically as inhibition was 20% at this time point for all concentration levels.

The NOEC for body length was <237  $\mu$ g a.s./L at day 21 (lest end) and the LOEC was 237  $\mu$ g a.s./L. The EC<sub>10</sub> was determined to be 304  $\mu$ g a.s./L and the EC<sub>20</sub> was determined to be 816  $\mu$ g a.s./L. The EC<sub>50</sub> was assessed as >1200  $\mu$ g a.s./L (the highest tested concentration) as inhibition was tests than 50% at this concentration.

The overall NOEC was  $<237 \ \mu g$  a.s./L, encluding all parameters (mortality of adults, reproduction and body length).

(2019)

Assessment and conclusion by applicant:

All validity criteria were satisfied and therefore this study can be considered to be valid.

Results are expressed based on nonfinal concentrations as concentrations in aged solutions decreased by <20% from initial measured concentrations.

The NOEC for mortality was calculated as 799  $\mu$ g a.s./L. The day 21 LC<sub>10</sub> was determined to be 726  $\mu$ g a.s./L, the LC<sub>0</sub> was 834  $\mu$ g a.s./L and the LC<sub>50</sub> was 1090  $\mu$ g a.s./L.

The number of alive offspring produced by adults alive from test start showed a statistically significant decrease of reproduction in the test item (active substance) concentration of 237  $\mu$ g a.s./L and above. Therefore, the NOEC was determined as 237  $\mu$ g a.s./L. The EC<sub>10</sub> and EC<sub>20</sub> could not be determined statistically as inhibition was 20% for all concentration levels.

The number of alive offspring produced by adults alive at day 21 (test end) showed statistically significant decrease of reproduction in the test them (active substance) concentration of 237  $\mu$ g a.s./L and above. The NOEC was determined as <213  $\mu$ g a.s./L. The EC<sub>10</sub> and EC<sub>20</sub> could not be determined statistically as inhibition was >20% at this time point for all concentration levels.

The NOEC for body length was  $<237 \,\mu g$  a.s./L at day 21 (test end) and the LOEC was 237  $\mu g$  a.s./L. The EC<sub>10</sub> was determined to be 304  $\mu g$  a.s./L and the EC<sub>20</sub> was determined to be 816  $\mu g$  a.s./L. The EC<sub>50</sub> was assessed as  $>1290 \,\mu g$  a.s./L (the highest tested concentration) as inhibition was less than 50% at this concentration.

Û



EFSA's Outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology (EFSA, 2019)<sup>5</sup> recommends that the lowest of the EC<sub>10</sub> and NOEC values be used for risk assessment purposes. In this study, as the NOEC was lower than the EC<sub>10</sub>, the NOEC of 37 µg a.s./L should be used for risk assessment.

Assessment and conclusion by RMS:

# CA 8.2.5.2 Reproductive and development toxicity to an additional aquatic invertebrate species

Since the active substance does not have insecticidal properties a repoductive toxicity test with an additional aquatic invertebrate species is nor required.

#### CA 8.2.5.3 Development and emergence in Chironomus riparius

| Data Point:                           | KCA 8.2.5.3/00 2 6 6 2 6                                                                                                  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Report Author:                        |                                                                                                                           |
| Report Year:                          | 1996 (                                                                                                                    |
| Report Title:                         | Acloniten - Toxetty to the sediment dwelling chironornd larvae (chironomus                                                |
|                                       | priparius) - 28 days S S S                                                                                                |
| Report No: 🔬                          | R007434 0 0 8 0 4 0                                                                                                       |
| Document No: Guideline(s) follower in | M9174918=01-1 2 5 5 0 5 6                                                                                                 |
| Guideline(s) followed in              | BBA: Draft grideline 1995                                                                                                 |
| study:                                |                                                                                                                           |
| Deviations from current               | Current Grideline DECD 219, 2004<br>A test initiation the stock solutions were added to each vessel just above the        |
| test guideline.                       | At test initiation the stock solutions were added to each vessel just above the                                           |
| . Q                                   | water and not below as specified in the test gendeline. This deviation was not                                            |
| č č                                   | considered tohave affected study integrity and validity.                                                                  |
| Previous evaluation: 🖉                | yespevaluated and accepted $\sqrt[4]{0}$                                                                                  |
|                                       | Source: Study lost relied apon December 2011 (RMS: DE)                                                                    |
| GLP/Officially                        | Source Study lost relied apon December 2011 (RMS: DE)<br>Yes, conducted under CLP/ODicially recognised testing facilities |
| recognised testing                    |                                                                                                                           |
| facilities: $@$ $O^*$                 |                                                                                                                           |
| Acceptability Reliability:            | Qes V V V                                                                                                                 |
| 4                                     |                                                                                                                           |

#### Executive Summary

A study was performed to estimate the toxicity of aclonifen on the sediment dwelling life stage of *Chironomus ripardus* in a sediment-water system. A total of 600 organisms (25 per replicate 4 replicates



<sup>5</sup> EFSA (European Food Safety Authority), 2019. Technical report on the outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2019:EN-1673. 117 pp. doi:10.2903/sp.efsa.2019.EN-1673



per concentration) were exposed to 4 concentrations of aclonifen (12, 41. 143, and 500  $\mu$ g/L), a solvent (acetone) control and a dilution water-sediment control for an exposure period of 21 days.

One hour after test initiation analytical verification of the nominal test concentrations in the overlying dilution water showed the measured values were close to the nominal concentrations (84-105% recovery). Seven days after application of the test item the concentrations of aclonifen in the dilution water were significantly reduced with 8-15% of the initial measured values recovered at the three highest concentration levels. The recovery at the lowest nominal concentration of 12  $\mu$ g/L was below the limit of quantification of 2.5  $\mu$ g/L for the test substance. A final analytical verification at test termination of 300  $\mu$ g/L, the recoveries at the three lower test concentrations were all below the limit of quantification for the test item at this time.

The results of the test were reported in terms of the initial measured test concentrations, which were as follows; 10.8, 34.4, 150 and 472  $\mu$ g/L.

As the final emergence of adult midges was observed 14 days after test initiation it was decided to terminate the test after 21 days rathed han 28 days exposure to the test item.

Emergence of adult midges from first instate larvae was bot significantly reduced at any of the concentrations tested. There was also to significant offect on the developmental rate of adult midges at any of the concentrations tested.

The No Observed Effect Concentration (NOEC) was therefore determined to be  $472 \mu g/L$ . The Lowest Observed Effect Concentration (LOEC) was in excess of the highest test concentration of 472  $\mu g/L$ .

#### MATERIALS A. Aclonifen Test Item: 1. Batch no .: 999.@/kg **Purity:** Yellow powder Appearance Not provided Date received In the date in an air-tight container, at room temperature Storage (approximately 20°C) Pebruary 199 v date: J. sources Feeding: 5 Feeding: 5 Test water: Chironômus riparius 2. Test Organism: $\mathscr{Q}^{st}$ instar larvae (2 to 3 days old) 1 v - 20 mL of a 10 mg/mL solution of a fish flake food (Tetramin<sup>®</sup>) three to four times weekly Reconstituted water (80% DSW, 20% LC-oligo). Dilution water was prepared from municipal water (reverse-osmozed, deionized and filtered through activated charcoal and 0.22 µm

filters)



|                                         | Hardness:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $160 \pm 20$ mg/L as CaCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.                                      | Sediment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Artificial sediment (according to OECD 207) was prepared as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | follows (on the basis of dry weights):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 10% sphagnum peat (as close to pH 5.5 to 6.0 as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | possible, no visible plant remains, air drief and foely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ground)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 20% kaolini clay (kaolinite content preferatory above 30%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 70% industrial sand fine sand pretominates with more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | than 50 per cent of the particles between 50 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 migrons) i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • The pH of the infal mixture of the sediment was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | adjusted for 6.0 = 0.5 by addition of calcium Earbourte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (rehemically pure quality) i gradie in the second s |
|                                         | _0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The dry constituents were blended in the correct proportions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | and the second se | and mixed thoroughly, in a Tarbula prixer (prodet 750A) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | Ĩ.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wie hour. A small quantity of dilution water was added to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moisten the artificial sediment before it was used for the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (110 mL for 200 g of sediments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (110 mL per 200 g of sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| B.                                      | STUDY DESIGN AND ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | life phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{11005}{200} = \frac{1}{21} \frac{1}{1006}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. 111-                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 June – 11 July 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| о Б-                                    | posure conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 Lalas Anglas Way and the 12 and in diamatan and with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | Test yessels:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 L glass beakers measuring 10 -13 cm in diameter and with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | Test vessels:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est solution height of approximately 27.5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | Experimental design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control, solvent control and nominal test concentrations of 12,<br>41, 143, and 506 µg/L<br>Four teplicates per control and treatment group each containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44 143. and 506 µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | Replicates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Four teplicates per control and treatment group each containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 test organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | Temperature: O o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $213 - 2139 \circ C \odot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         | pHQ <sup>*</sup> , Q <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | Aeration: 🔗 🔬 🖓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gentre aeration provided through a glass Pasteur pipette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | situated approximately 2.5 cm above the sediment layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | situated approximately 2.5 cm above the sediment layer<br>(approximately 1 bubble/sec). When adding the larvae, the<br>aeration of the water was stopped. One day after adding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aeration of the water was stopped. One day after adding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | larvae, the aeration was provided again.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | PH<br>Aeration:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≥5.4 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | Photoperiod:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 hours light: 8 hours darkness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L.                                      | Light intensity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1037 – 1046 lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 44                                    | O<br>ministration of the test item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

3. Administration of the test item



A stock solution for the highest test item concentration (500  $\mu$ g/L) was prepared by dissolving 50 mg of test item in 5 mL of acetone. The test solution for each replicate of this concentration was prepared by adding volumes of this stock solution to the water column of each test vessel. Stock solutions for the first stock solution with acetone and subsequent addition to the overlying dilution water. The final concentration of solvent at each concentration level was 0.05 mL/L.

#### 4. Preparation of test vessels

An appropriate quantity of wet artificial sediment to obtain a depth of approximately 2 on was file into each test beaker and left to stand for 24 hour in a fume cupbond.

To avoid a separation of the ingredients in the sediment and to minimize turbidity of the overlying vater, the dilution water was then poured into each beaker very slowly, taking care not to disturb the sediment.

The test vessels were prepared 1 week before test initiation and were acclimatized under the set conditions. The test vessels contained 200 g of sectiment and 2,51 of durition vater (depth approximately 20.0 cm). The exact volume of water added was recorded and the level marked outside on the test vessel.

The test vessels were positioned in a remperature controlled water bath in order to minimize any temperature variations.

The test vessels were covered will perspex sheets to minimize evaporation and with a nylon mesh to prevent escape of emerged midges. Water levels were not topped up during the study.

### 5. Test organism assignment and reatment

Egg masses were removed from the culture aquaria six days before test initiation (Day 0-6) and deposited in gass tubes each containing culture medium. Haten was observed three days later. First instar larvae then (2<sup>23</sup> days old) were introduced into the test vessels two days later (one day before test initiation) if wenty five farvae were allocated to each test vessel using a blunt Pasteur pipette.

One day after adding the latvae, the appropriate volume (0.125 mL) of each stock solution was added to the water column of the test extens. The additions were made just above the water surface using a pipette, the water column was then gently stimed to shoure promogeneous distribution without disturbing the sediment. Test initiation corresponded to the time of addition of the test item.

#### 6. Measurements and observations

The endpoints of the study were the day of first omergence, the time distribution (peak) of emergence of male and female midges, and the total number of fully emerged male and female midges.

The test vessels were observed at least three times per week to make a visual assessment of any behavioural differences compared with the controls. During the period of emergence, a daily check of emerged ondges was performed. The sex and number of adults emerging was recorded at each observation time. After identification, the midges were removed from the vessels. Any egg masses deposited prior to the termination of the test were recorded and removed to prevent re-introduction of larvae into the sediment. Only the number of fully emerged male and female midges were counted. Any visible pupae which failed to emerge were counted and recorded separately.



The larvae were fed at least 3 times per week at a rate of approximately 1 mg fish food per day per larvae beginning on the day of larvae were introduced into the test vessel. A 3 mL suspension of Tetramine in dilution water (20 mg/mL) was added to each test vessel up until Day 15 of the test. The volume was then reduced to 1.5 mL per test vessel until Day 20.

Temperature, pH, conductivity and total water hardness of the dilution water were recorded at preparation of the test vessel.

The oxygen concentration, water temperature and pH were recorded in all test vessels at the start and end of the study. These parameters were subsequently recorded once week for the duration of the test.

Samples of the water column in the dilution water-sediment control, solvent control and nominal concentrations of 12, 41, 143 and 500  $\mu$ g/L were collected for analysis 1 hour, 7 days and 21 days after test initiation (application of test substance). Each sample volume was composed of a pool of the four replicate test vessels at each concentration devel

### 7. Statistics/Data evaluation

For each of the parameters emergence rate and development rate, the allution water control group was compared to the solvent control group using a stest. No significant differences were observed for either parameter therefore the control groups were pooled (pooled control group) for subsequent comparisons.

Statistical analysis was performed using the group mean for each parameter. Bartlett's test (using untransformed values) and the Kruskal-Wall's non parametric one-way analysis of variance by ranks were used to perform the analysis.

# AI. RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

One hour after test initiation analytical verification of the nominal test concentrations in the overlying dilution water showed the measured values were close to the nominal concentrations (84-105% recovery). Seven days after application of the test item the concentrations of aclonifen in the dilution water were significantly reduced with & 15% of the initial measured values recovered at the three highest concentration levels. The recovery at the lowest nominal concentration of 12 µg/L was below the limit of quantification of 2.5 µg/L for the test substance. A final analytical verification at test termination showed 3% recovery of the initial measured value at the highest nominal concentration of 500 µg/L, the recoveries at the three fower test concentrations were all below the limit of quantification for the test item at this time.

The results of the test were reported in terms of the initial measured test concentrations which were as follows; 10.854.4, 150 and 472 µg/L.

| Table: | Measured test concentrations from the exposure of <i>Chironomus riparius</i> to Aclonifen in Sediment-water system |
|--------|--------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                    |
| A      | in sediment-water system                                                                                           |
| ~      |                                                                                                                    |

| Neitrinal concentration | Me Me                                                                       | easured Concentration (µg                       | /L)                 |
|-------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Le (ug/L)               | T0 + 1 hour                                                                 | <b>T0 + 7 days</b>                              | T0 + 21 days        |
| Control                 | <loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
| Solvent control         | <loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
| 12                      | 10.8                                                                        | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |



| _ |     |        |      |                                         |   |     |
|---|-----|--------|------|-----------------------------------------|---|-----|
|   | 41  | 34.4   | 4.2  | <loq< td=""><td></td><td></td></loq<>   |   |     |
| Γ | 143 | 150    | 11.3 | <loq< td=""><td>Ŷ</td><td>ð</td></loq<> | Ŷ | ð   |
|   | 500 | 472    | 70.5 | 16.3                                    |   |     |
|   |     | 2.5 /1 |      |                                         | Ô | "U" |

LOQ: Limit of Quantitation =  $2.5 \mu g/L$ 

The validated method is summarised in Document M-CA4 (CA 4.1.2/86)

### **B. BIOLOGICAL DATA**

The first emergence of adult midges was observed in the control proups and at the each of the test, concentrations 10 days after application (test initiation).

As the final emergence of adult midges was observed 14 days after test initiation it was decided to terminate the test after 21 days rather than 28 days exposure to the test substance. This was 7 days after the final recorded emergence in any test sessel, therefore this reduction in exposition time was not thought to have influenced the test results in any way.

In the exposed groups 36 - 96% emergence was recorded from individual replicate test vessels and the per vessel development rate for larger in these groups ranged from 0.002 to 0097.

The variation in ratio of males to females between replicated was greater than between test groups and no specific tendencies were observed between the controls and the test groups except that a high percentage of males emerged fronctivo out of 4 teplicates of the dilution water-sediment control group. No specific tendencies were observed with increasing test concentrations. Therefore male and female emergence data was pooled for subsequent statistical analysis.

Statistical analysis showed no significant difference between the rate of development (DR) of first instar larvae to adult fridge in the exposed groups compared to the pooled control group. Bartlett's test indicated homogenous variance for this parameter and analysis of cariance (ANOVA) was used to perform the analysis.

# Table: Rates of emergence and development of *Chironomus riparius* following exposure Acloniten

| Initial measured concentration Mean rate<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of emergenceMean rate of developmentI degration)(standard deviation) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Control O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0         0.097           038)         (0.001)                       |
| Solvent control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 780         0.094           083)         (0.004)                     |
| $\begin{array}{c c} & & & 10.8 \\ \hline & & & & \\ \end{array} \begin{array}{c c} & & & & & \\ \end{array} \begin{array}{c c} & & & & & \\ \end{array} \begin{array}{c c} & & & & & \\ \end{array} \begin{array}{c c} & & & & & \\ \end{array} \begin{array}{c c} & & & \\ \end{array} \end{array} \begin{array}{c c} & & & \\ \end{array} \begin{array}{c c} & & & \\ \end{array} \end{array} \begin{array}{c c} & & & \\ \end{array} \begin{array}{c c} & & & \\ \end{array} \end{array} \begin{array}{c c} & & \\ \end{array} \end{array} \begin{array}{c c} & & \\ \end{array} \end{array} $ | 800         0.094           033)         (0.002)                     |
| 34.4 $(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 870 0.096<br>105) (0.001)                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 870         0.097           020)         (0.001)                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 750         0.096           268)         (0.001)                     |

C. Ĝvalidity criteria



| Validity criterion                   | Required<br>(OECD 219, 204) | Achieved*     |
|--------------------------------------|-----------------------------|---------------|
| Emergence in controls                | ≥70%                        | 87%           |
| Day of emergence                     | 12 - 23                     | N 10 - 12 0 € |
| Oxygen concentration at end of test  | ≥60% ASV                    | ≥61% A&       |
| pH of overlying water at end of test | 6 - 9                       | 7.1 - 7.7     |
| Variation in water temperature       | ±1.0 °C                     | 0,8 °C , 2    |
| *Based on dilution water control     |                             |               |

| *Based on dilution water control |                                                               |
|----------------------------------|---------------------------------------------------------------|
|                                  |                                                               |
| All validity criteria were sati  | sfied and therefore this study can be considered to be valid. |
| D. TOXICITY ENDPO                |                                                               |
| Table:Summary of en              |                                                               |
| Endpoint                         | Littial concentration (µgL)                                   |
|                                  | EC 50 KY KOEC K BOEC                                          |
| 28-day emergence                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$         |
| Development rate                 |                                                               |
|                                  |                                                               |

# HI. CONCLUSION

Emergence of adult midges from first instar larvae was not significantly reduced at any of the concentrations tested. There was also no significant effection the developmental rate of adult midges at any of the concentrations tested.

The No Observed Effect Concentration (NOEC) based on initial measured concentrations was therefore determined to e 472 ng/L, The Lowest Observer Effect Concentration (LOEC) was in excess of the highest test@oncentration of 4

(1996)

Assessment and conclusion by applicant

All validity costeria, were satisfied and therefore this study can be considered to be valid.

The No Observed Effect Concentration (NGEC) determined from the exposure of Chironomus riparius to aclonifen in a spiked water test based on initial measured concentrations was determined to be 492 µg/L. The Dowest Observed Effect Concentration (LOEC) was in excess of the highest test concentration of 42 µg/K

Due to the lack of toxic effects,  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values can all be estimated as being greater than 472 µg/L

Assessment and conclusion by RMS:

CA 8.2.5

Sediment dwelling organisms



| Data Point:                | KCA 8.2.5.4/01                                                              |
|----------------------------|-----------------------------------------------------------------------------|
| Report Author:             |                                                                             |
| Report Year:               | 2004                                                                        |
| Report Title:              | Sediment-water chironomid toxicity test using spiked sediment Aclonifen (AE |
|                            | F068300)                                                                    |
| Report No:                 | C039873                                                                     |
| Document No:               | M-227300-01-1                                                               |
| Guideline(s) followed in   | OECD: 218 (Draft, 12/2002)                                                  |
| study:                     |                                                                             |
| Deviations from current    | Current Guideline: OECD 218, 2004                                           |
| test guideline:            | None L O <sup>V</sup> L O <sup>V</sup> L                                    |
| Previous evaluation:       | yes, evaluated and accepted $2$                                             |
|                            | Source: Study list relied upon, December 2011 (RMIS: DQ)                    |
| GLP/Officially             | Yes, conducted under GIP/Officially recognised testing facilities           |
| recognised testing         |                                                                             |
| facilities:                |                                                                             |
| Acceptability/Reliability: | Yes A O Q A O O Q                                                           |
|                            |                                                                             |

Executive Summary A study was performed to estimate the toxicity of aclonifen of the sediment dwelling life stage of Chironomus riparius in a sediment-water system A total of 560 organisms (29 per replicate 4 replicates per concentration) were exposed to 5 concentrations of aclosifen (10, 32, 200, 320 and 1000 mg/kg), a solvent (acetone) control and a dilution water-sediment control for an exposure period of 28 days. Dosing of the test system was via spiked sediment.

Analysis for the test material was performed on Days -2 (preparation of the sediment), 0 and 28. Samples on Day -2 were analysed for the concentration of the lest material in the sediment only in order to confirm correct dosing of the test system. Samples were taken for analysis of the sediment, overlying water and interstitial water on Days Qand 28.

Analysis of the sediment on Day -2, the day the sediment was prepared showed the measured concentrations togrange from 1 10% to 1/19% of nominal. Analysis of sediment on Day 0 and 28 showed the measured concentrations to range from 86% to 99% and from 83% to 99% respectively. Given that the measured concentrations were in excess of \$0% of nominal throughout the test it was considered justifiable to calculate the results based on naminal test concentrations only.

The 28-Day EC50 (reduction in emergence) based on nominal test concentrations was 110 mg/kg with 95% confidence limits of 66 -199 mg/kg. The No Observed Effect Concentration was 32 mg/kg. The EC<sub>50</sub> (development rate) based on normal test concentrations was greater than 100 mg/kg.

### I. MATTERIALS AND METHODS

A Baten no .: Purity: **Appearance:** Date received:

Aclonifen (AE F 068300) OP2150250 98.6% w/w Yellow powder 29 April 2003



Room temperature in the dark Storage: 07 April 2005 **Expiry date:** 2. **Test Organism:** Chironomus riparius 1<sup>st</sup> instar larvae (2 to 3 days old) Age: Source: Tetramin<sup>®</sup> flake food at approximately 250 mg per @ssel p Feeding: day. The Tetraphin<sup>®</sup> flake food was prepared as a suspension in water and an appropriate volume added to the overlying w Reconstituted water ( 3. **Test water:** with the foll defined formulated 4. Sediment: sedimer @mposition: Industrial guartz 20% Kaolinite clav phagnum moss per 4% eat was air dried and homogenised to give a particle size than 1 mm. The organic carbon content of the final lèss. Colcium carbonate was added to bring the urewas STUDY B. ТНОР 1. In-life phase: 13 Ma 2. Exposure condition 600 mL glass beakers approximately 8 cm in diameter Test vessels: Control olvenocontrol and nominal test concentrations of 10, Experimental des 100, 320 and 1000 mg/kg Four replicates per control and treatment group each containing **Replicates:** Temperatur рH: 87 Gentle aration provided via narrow bore glass tubes situated ∀Aeration: approximately 2 - 3 cm above the sediment layer (approximately 1 bubble/sec). When adding the larvae, the aeration of the water was stopped. One day after adding the larvae, the aeration was provided again. issolved oxygen  $\geq$ 3.7 mg O<sub>2</sub>/L Photoperiod: 16 hours light: 8 hours darkness with 20 minute dawn and dusk transition periods 479 - 534 lux Light intensity:



### 3. Administration of the test item

Approximately 2 days prior to the start of the test, the test item was prepared by a preliminary solution in acetone.

Amounts of test item (1.60 and 5.00 g) were each separately dissolved in acetone with the aid of ultrasonication and the volume adjusted to 50 mL to give solvent stock solutions of 1.60 and 5.00 g/50 mL. Serial dilutions were made from these to give further solvent stock solutions of 9.0, 0.16 and 0.050 g/50 mL. An aliquot (25 mL) of each of the 0.050, 0.16, 0.50, 1.6 and 5.00 g/50 mL solvent stock solutions was separately added to the surface of approximatel 0.00 g of artificial sediment. The acetone was then allowed to evaporate off from each of the preparations prior to being incorporated into a final dry weight of 2.50 kg of artificial sediment to give test concentrations of 10.32, 100, 320 and 1000 mg/kg (dry weight). Each concentration had 950 mL of geionized reverse osmosis water added to give a nominal moisture content of 40% and the pH of the prepared sediment adjusted to pH 6.97 to 7.09 by the addition of calcium carbonate

### 4. Preparation of test vessels

The prepared sediment was dispensed to gass beakers to give a 2 cm tayer and was then covered with a 8 cm depth of reconstituted water (sediment: water ratio, 1:4). Four replicates were prepared for each of the control, solvent control, 10, 32, 100, 320 and 2000 mg/kg test concentrations, plus an additional two replicates of each for sacrificing on Day 10 of the exposure period and two for analysis on Days 0 and 28. A plastic disc was placed over the sediment and the reconstituted water poured gently onto the surface of the disc in order to avoid disturbance of the sediment. The disc was reproved after addition of the water. The test vessels were then aerated (approximately 1 bubble second) and the vessels left for 2 days prior to addition of the sediment and water phases.

### 5. Test organism assignment and treatment

After the 2 day equilibration period the aeration was stopped and 20 larvae were placed in each test and control vessel and maintained in a temperature controlled room at approximately 21°C with a photoperiod of 16 bours light and 8 hours darkness with 20 minute dawn and dusk transition periods. The aeration was switched back on after approximately 24 hours having allowed the larvae to settle in the sediment.

### 6. Measurements and observations

The measured end-point for the study was the number of live, emerged adult midges. The number of emerged adult midges was recorded date until termination of the study after 28 days. The sex of the individual midges was also determined after emergence. Any egg masses produced prior to termination were also recorded and repoved from the test vessels to prevent re-introduction of larvae into the sediment. The number of visible pupae that failed to emerge were counted separately. Any abnormal behaviour was also recorded of

On Day 10 of the prospective period, two of the extra replicates prepared for the control and each test concentration were sacrificed for the determination of larval survival and weight. The sediment was sieved and live and dead larvae counted. The dry weight of the surviving larvae per test vessel was determined and the mean individual dry weight per vessel calculated.



Room temperature and light intensity were recorded daily throughout the test. Dissolved oxygen concentrations, water temperature and pH were recorded daily hi each test vessel throughout the test. The water hardness was determined in one vessel from the solvent control and 1000 mg/kg on Days 0 and 28 and the ammonia concentration on Day 28.

The concentration and stability of the test material in the whole sediment, for water and overlying water were verified by chemical analysis on Days 0 and 28. Analysis for the concentration of the test material in the sediment was also performed on Day -2 (the day of sediment preparation) to confirm correct dosing of the test system.

### 7. Statistics/Data evaluation

The 28-Day EC<sub>50</sub> (reduction in emergence) value and associated confidence limits were calculated by the maximum-likelihood probit method (1975) using the Tox Calc computer software package (1999).

Probit analysis is used where two or more partial responses to exposure are shown

Statistical analysis of the emergence data was performed using a Dunnetts multiple comparison procedure for comparing several treatments with a control (1998). All statistical analyses were performed using the SAS computer software package (SAS 999 - 2001).

An  $EC_{50}$  (development rate) was estimated by inspection of the data.

🖓 🔄 II. RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

Analysis of the sediment on Day -2, the day the sediment was prepared showed the measured concentrations to range from 110% to 119% of nominal. Analysis of sediment on Days 0 and 28 showed the measured concentrations to range from 86% to 99% and from 83% to 99% respectively. Given that the measured concentrations were in excess to 80% of nominal throughout the test it was considered justifiable to calculate the results based on nominal test concentrations only.

Analysis of the overlying and interstitial water on Days 0 and 28 indicated that some test item leached from the sediment into the water phase over the duration of the test. Comparison of the Day 0 and Day 28 values showed a general trend for lower measured concentrations after 28 Days which was in line with published data that the test tem was unstable in water to non-sterile systems (The Pesticide Manual, ed. CDS (1997)).

# Table: Measured test concentrations from the exposure of *Chironomus riparius* to Aclonifen in a sediment-water system

|                          | Ø " «           | , O                                      |                                                                                                                                                                                     |      | leasured o                                                                                                                                    | oncentra | tion                                                                                                    |                                                                             |                                                 |                     |
|--------------------------|-----------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Nominal                  |                 | la l | ≪ Sedij                                                                                                                                                                             | ment |                                                                                                                                               |          | Overlyi                                                                                                 | ng water                                                                    | Interstit                                       | ial water           |
| Concentration<br>(mg/kg) | ≪ <i>J</i> ″Day | y 🖧 🔹                                    | l Da                                                                                                                                                                                |      | Day                                                                                                                                           | 28       | Day 0                                                                                                   | Day 28                                                                      | Day 0                                           | Day 28              |
| (mg/kg/                  | nng/kg          | 0% 2                                     | ٌ mg/kg                                                                                                                                                                             | %    | mg/kg                                                                                                                                         | %        | mg/L                                                                                                    | mg/L                                                                        | mg/L                                            | mg/L                |
| Solvent control          | LOQ             |                                          | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | -    | <loq< td=""><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | -        | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
| Ó ML                     | 11,0            | . KUŠ                                    | 9.32                                                                                                                                                                                | 93   | 8.58                                                                                                                                          | 86       | 0.0470                                                                                                  | 0.00212                                                                     | 0.0731                                          | 0.0203              |
| 32                       | 3508            | ×12                                      | 31.8                                                                                                                                                                                | 99   | 26.7                                                                                                                                          | 83       | 0.110                                                                                                   | 0.0125                                                                      | 0.146                                           | 0.0969              |
| × 100 ×                  | 119             | 119                                      | 89.2                                                                                                                                                                                | 89   | 97.1                                                                                                                                          | 97       | 0.638                                                                                                   | 0.0632                                                                      | 1.18                                            | 0.588               |
| 3,20                     | 364             | 114                                      | 275                                                                                                                                                                                 | 86   | 298                                                                                                                                           | 93       | 0.779                                                                                                   | 0.143                                                                       | 3.27                                            | 1.177               |
| 1000                     | 1180            | 118                                      | 927                                                                                                                                                                                 | 93   | 989                                                                                                                                           | 99       | 1.02                                                                                                    | 0.333                                                                       | 2.39                                            | 2.222               |

LOQ = Limit of Quantitation 0.238 mg/kg for sediment 0.00076 mg/L for overlying water



0.0951 mg/L for interstitial water

The validated method is summarised in Document M-CA4 (CA 4.1.2/65).

### **B. BIOLOGICAL DATA**

Inspection of the Day 10 larval survival and growth data showed no significant differences in farval survival and growth, in terms of mean larval dry weight, between the solvent control and the 10 and 32 mg/kg test groups. However, significant differences in tarval survival but not growth were observed between the solvent control and 100 mg/kg test group. Also, significant differences in larval survival of and weight was observed between the solvent control and the 320 and 1000 mg/kg test groups.

The 28-day  $EC_{50}$  (reduction in emergence) based on nominal test concentration was 10 mg/kg sediment. The  $EC_{50}$  (development rate) based on nominal test concentrations was greater than 100 mg/kg. Although the development rates for the 320 and 1000 mg/kg groups were similar to the solvent control and other test group values, it was considered inappropriate to use the data for comparison due to the low numbers of adult midges that emerged at these concentrations. Statistical analysis of the emergence ratio data showed to significant differences between the 10 and 32 mg/kg test groups compared to solvent control. There were significant differences between the solvent control and the 100 mg/kg test group.

Statistical analysis of the numbers of mate and temale adult hindges emerged showed no biological significance between the numbers of mates and temales.

| Nominal concentration | Mean emergence                                  | Mean rate of development<br>(standard deviation) |
|-----------------------|-------------------------------------------------|--------------------------------------------------|
| (mg)kg) V             |                                                 | رstandard deviation) (standard deviation)        |
| Control               | × 10 × 1 × 89 ~ 5                               | -                                                |
|                       | A 67 86 0 0                                     | 0.0695                                           |
| Solvent control       |                                                 | (0.00117)                                        |
|                       |                                                 | 0.0692                                           |
|                       |                                                 | (0.00207)                                        |
|                       | N N N N                                         | 0.0711                                           |
|                       |                                                 | (0.00176)                                        |
| 0100 0 5 5 . C        | 0 <sup>7</sup> 0 <sup>7</sup> 53 0 <sup>7</sup> | 0.0669                                           |
|                       |                                                 | (0.00183)                                        |
| <u>320</u> ↔ ↔        |                                                 | 0.069                                            |
|                       |                                                 | (0)                                              |
|                       |                                                 | 0.0679                                           |
|                       |                                                 | (0.00156)                                        |
|                       |                                                 | •                                                |

Table: Emergence and development of Chiconomus riparius following exposure Aclonifen

The No Observed Effect Concentration was 32 mg/kg on the basis that no biologically significant reduction in emergence was observed after 28 days and additionally no sub-lethal effects were observed at 32 mg/kg.

# C. A VALEDITY CRITERIA

| ValiditOrriterion                  | Required<br>(OECD 218, 204) | Achieved |
|------------------------------------|-----------------------------|----------|
| Emergence in controls <sup>*</sup> | ≥70%                        | 86%      |
| Day of emergence*                  | 12 - 23                     | 13 - 19  |



| Oxygen concentration at end of test  | ≥60% ASV | ≥71% A | ASV     |
|--------------------------------------|----------|--------|---------|
| pH of overlying water at end of test | 6 - 9    | 8.3 -  | 8.6 🖉 🖗 |
| Variation in water temperature       | ±1.0 °C  | ±0.85  | °C 🔊    |
| *Based on solvent control            |          | ~      | 6       |

| All validity criteria were satis            | fied and therefore this study can be considered to be valid. |
|---------------------------------------------|--------------------------------------------------------------|
| D. TOXICITY ENDPO                           | DINTS                                                        |
| Table:Summary of end                        | dpoints                                                      |
| Endpoint                                    | Nominal concentration (mg/gg)                                |
|                                             |                                                              |
| 28-day emergence<br>[95% confidence limits] | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$        |
| Development rate                            | >100 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                     |
|                                             |                                                              |

**IR. CONCLUSION** The toxicity of aclonifen to the sediment dwelling large of *Opironopus riparius* has been investigated and gave a 28-Day EC<sub>50</sub> (emergence) of 110 mg/kg with 95% confidence limits of 66 90 mg/kg. The No Observed Effect Concentration was 32 mg/kg. The  $\mathcal{C}C_{50}$  (development rate) based on nominal test concentrations was greater than 100 mg/kg.

| Data Point: 0 0 KCA 8.2 54/02 0 2 6                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Point:     O     KCA 8.2 54/02 / 0       Report Authol?     O     Q                                                                                    |
| Report Year $(2019_{4})^{\prime} \rightarrow 0^{\prime} 0^{\prime} = 0^{\prime}$                                                                            |
| Report Title: Actorifen (SE F068300): Sediment-water Chironomid toxicity test using spiked sediment - Statistical re-analysis of 2004 (M-227300-01-1) study |
| segment - Statistical re-analysis of 2004 (M-227300-01-1) study                                                                                             |
| Report No: $\sqrt[4]{VC/19}$                                                                                                                                |
| Document No: A M-67905-04-1 C                                                                                                                               |
| Guideline(s) followed in Notapplicable. Report is a re-evaluation of previously generated study data                                                        |
| study:                                                                                                                                                      |
| Deviations, from current Not applicable                                                                                                                     |
|                                                                                                                                                             |
| Previous evaluation: No, not previously submitted                                                                                                           |
|                                                                                                                                                             |
| GLP/Officially No, not conducted under GLP/Officially recognised testing facilities                                                                         |
| recognised testing $\  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                 |
|                                                                                                                                                             |
| Acceptability Reliability: Ses                                                                                                                              |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |

### Executive Summary

The report for the sediment-water toxicity test using spiked sediment of Aclonifen to Chironomus riparius (M-227300-01-1, 2004) only provided  $EC_{50}$  values for the test item. Data from the study has been re-analysed in order to provide EC<sub>10</sub>, EC<sub>20</sub> and EC<sub>50</sub> values along with the LOEC and NOEC.



Statistical analyses of the available data resulted in the calculation of the following EC<sub>x</sub>, LOEC and NOEC values: 

| Demonster     |                  | Cumulati | ve emergence     | (0 – 28 d) |          |
|---------------|------------------|----------|------------------|------------|----------|
| Parameter     | EC <sub>10</sub> | EC20     | EC <sub>50</sub> | LOEC       | NOF      |
| Value (mg/kg) | 35.832           | 53.859   | 117.451          | 100        | Ŕ        |
| Lower 95%-cl  | 5.915            | 14.094   | 58.150           | -          | <u> </u> |
| Upper 95%-cl  | 68.851           | 97.036   | 238.686          | 3 <b>-</b> | Ç -      |

Solutions Omb .0 (Tox Rat All computations were carried out in ToxRat Professional versig 2018).

Assessment and conclusion by applicant: All validity criteria were satisfied and therefore this study can be considered to be valid. The original study report only provided EC of values for the test it on. Data from the study has been re-analysed in order to provide EC R EC and EC 50 values along with the EDEC and NOEC for emergence. The 28-Day EC10, EC20 and EC00 (reduction in emergence) based on nombal test concentrations was 36, 54 and 117 mg/kg respectively. The No Observed Effect Concentration was 32 mg/kg. EFSA's Outcome of the Pesticides Peer Review Meeting on general recorring issues in ecotoxicology (EFSA, 2019)<sup>6</sup> recommends that the lowest of the EC<sub>10</sub> and NOEC values be used for risk assessment purposes. In this study, as the NOEC was fower than the EC10, the NOEC of 32 mg/kg should be used for risk assessment

Assessment and conclusion by R

a a

<sup>6</sup> EFSA (European Food Safety Authority), 2019. Technical report on the outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2019:EN-1673. 117 pp. doi:10.2903/sp.efsa.2019.EN-1673



| Data Point:                             | KCA 8.2.6.1/01                                                                                                                                             |        |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Report Author:                          |                                                                                                                                                            | ~      |
| Report Year:                            | 1990                                                                                                                                                       | Ô.     |
| Report Title:                           | The algistatic activity of Aclonifen CME127                                                                                                                | 1      |
| Report No:                              | R007145                                                                                                                                                    |        |
| Document No:                            | M-174303-01-1                                                                                                                                              |        |
| Guideline(s) followed in study:         | EU (=EEC): Official Journal L133; OECD: 201                                                                                                                |        |
| Deviations from current test guideline: | Current Guideline: OECD 201, 2001<br>Initial cell density higher than recommended concentration of 205 x 105<br>cells/mL. Validity criteria not satisfied. | ¢<br>} |
| Previous evaluation:                    | yes, evaluated and accepted Source: Study list relied upon, December 2011 (BSMS: DD)                                                                       |        |
| GLP/Officially                          | Yes, conducted under GEP/Officially recognised testing facilities                                                                                          |        |
| recognised testing facilities:          |                                                                                                                                                            |        |
| Acceptability/Reliability:              | Supportive only A & O & O                                                                                                                                  |        |
|                                         |                                                                                                                                                            |        |

Executive Summary A study was performed to assess the inhibitory effect of Aclosed en CME 127 on the growth of the unicellular freshwater green alga Scenedesmus Subspicatus. The test was run with a control, solvent control and nominal test concentrations of 0.00125 0.0025 0.0050, 0.000 and 0.020 mg/L, each in triplicate. Observations of cell growth were recorded dails (0, 24, 48, 72, and 96 hours) to determine the potential effect on growth rate and biomass (area under the curve) relative to the control.

Verification of test concentrations showed that the measured test concentrations when viewed as an overall mean results from 0 and 96 hours) were within the desired limits (ie >80% of nominal values) and therefore, the nominal test concentrations were used for the calculation of EC values.

The 96 Hour  $E_bC_{50}$  was calculated to be 0.0067 mg/L and the  $E_a O_{50}(0-24 \text{ h})$  was 0.0069 mg/L. The NOEC was 0.0025 mg/L, based on nominal test concentrations.

# ERIALS AND METHODS

A.

Appearance: Storage: Exprry date: Connection Appearance: Storage: Stor 1. **A**Purity: hodark glass jar at +4° C Scenedesmus subspicatus Strain: CCAP 276/20 Source:



| Pre-culture:                      | Sterile nutrient medium was inoculated from a master culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tre-culture.                      | and incubated under continuous illumination (approximately)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | 7000 lux) and aeration at 24 °C to give an algal suspension in $\mathcal{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | log phase growth characterised by an absorbance of 0.067 (@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | 665 nm). The suspension was diluted to an absorbance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   | 0.021 prior to use. This suspension had a mean cell density of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | 0.021 prior to use. This suspension had a mean cell density of<br>6.47 x 10 <sup>4</sup> cells/mL<br>Nutrient medium/as per guideline<br><b>THODS</b><br>16 – 20 July 1990<br>July conical flasks containing, 100 mL test solution and<br>prosedu storwared to reduce evanoration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3. Test water:                    | Nutrient medium as per guidefine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B. STUDY DESIGN AND ME            | THODS to the second sec |
| 1. In-life phase:                 | 16 – 20 July 1990 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Exposure conditions            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test vessels:                     | 250 mL conical flasks containing 100 mL test solution and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e <sup>(</sup>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental design:              | 5 test concentrations @0012\$ 0.0025, 0.0050, 0.010 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q .                               | Q.020 mg/L) plus 1 control and Esolvent control (100 µL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   | acetone/litre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Replicates: 🧑 💍                   | Three reprize vessels were prepared for each control and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| × A                               | Three repricate vessels were prepared for each control and treatment group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Initial cell density:             | $5.47 \times 10^4 \text{ cells/mf} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Temperature 🖉 🔬 👸                 | $240^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Temperature<br>pH:                | 79-89 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                   | None Gaseous exchange and suspension of algal cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | maintained by orbital shaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Photoperiod:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Light intensity                   | Approximately 8000 lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Photoperiod:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Administration of the test dem |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

1.0 g test item was dissolved in auxiliary solvent (acetone) and the volume made up to 10 mL. This stock solution was then further diffuted to give 0.02, 0.02, 0.02 and 0.02 mL stock solution from which serial dilutions were made. 10  $\mu$ L aligneds of the appropriate concentrations were dispensed to each 100 mL of algal suspension to give the required test series

# 4. Measurements and observations

Samples were aken at 0, 24, 48, 72 and 96 hours and the absorbance measured at 665 nm using a Jenway 6100 spectrophotometer. The cell densities of the control cultures, at initiation and at termination, were determined by effect counting with the aid of a haemocytometer.

# 5. Statistics Data Valuation

Percentage inhibition of growth at each test concentration was calculated by comparing the area under the test curve with that under the solvent control curve, and the average maximum growth rate for each test concentration with that for the solvent control. Inhibition values were plotted against test



concentration, a line fitted by eye and the EC<sub>50</sub> values with respect to the area under the growth curve,  $E_bC_{50}$  (96 h), and growth rate,  $E_rC_{50}$  (0 – 24 h) read from the graph.

The No Observed Effect Concentration (NOEC) was estimated by visual comparison of the measured of and calculated growth curves of the treated algal suspensions with those of the control.

### **II. RESULTS AND DISCUSSION**

### A. ANALYTICAL VERIFICATION

Verification of test concentrations showed that the measured test concentrations, when viewed as an  $\mathcal{O}$  overall mean (results from 0 and 96 hours) were within the desired limits (i.e. >80% of nominal values) and therefore, the nominal test concentrations were used for the calculation of  $\mathcal{O}_{50}$  values.

| Table: | Measured test | concentrations fro | m the | exposure | of Seen | edesmus | subspicati | us to |
|--------|---------------|--------------------|-------|----------|---------|---------|------------|-------|
|        | Aclonifen     | O`.                | L.    | ð ð      | , D     | Ø.      |            | °     |

|             | n n                                                                      |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measured co | oncentration                                                             |                                                                                                                                                                                                   | Mean m                                                                                                                                                                                                                                                                         | easured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ours of s   | 72 N                                                                     |                                                                                                                                                                                                   | Concen                                                                                                                                                                                                                                                                         | tration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| % nominal   | warg/L                                                                   | % nominal                                                                                                                                                                                         | Smg/L                                                                                                                                                                                                                                                                          | 🧳 nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q - Q       | \$ <lq\$< td=""><td></td><td></td><td>∼ -</td></lq\$<>                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                | ∼ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 0.0100126 🎣                                                              | 100.8                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                | 111.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ¥24.0       | 0.002270                                                                 | <sup>74</sup> 90.8                                                                                                                                                                                | 0.00269                                                                                                                                                                                                                                                                        | 107.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 104.2       | § 0.00 <b>49</b> 9                                                       | \$ 99.8                                                                                                                                                                                           | 0.00510                                                                                                                                                                                                                                                                        | 102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 97.3        | Q9109 `~                                                                 | ₫09.0 🌾                                                                                                                                                                                           | °%.0103                                                                                                                                                                                                                                                                        | 103.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5107.60     | ~0.021z                                                                  | @ 107.0                                                                                                                                                                                           | 0.0214                                                                                                                                                                                                                                                                         | 107.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | ours<br>% nominal<br>122.4<br>122.4<br>104.2<br>97.3<br>\$107.6<br>107.6 | % nominal         surg/L           - 0         < <loq< td="">           122.4         0.00126           424.0         0.002270           104.2         0.00499           97.3         9109</loq<> | ours     72 Bours       % nominal     39 g/L       % nominal     39 g/L       9 - 0        122.4     0.00126       122.4     0.00126       122.4     0.00126       122.4     0.00126       104.2     0.00299       99.8       99.8       99.8       90.9       90.0       90.0 | ours         72 Hours         Concein           % nominal         mg/L         % nominal         mg/L           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |

LOQ = Limit of Qrantitation = 0.00001 mg/L

The validated method is summarised in Document M-6A4 (CA 4.12/64).

# B. BIOLOGIÇAL DATA

All test and control cultures were inspected microscopically at 96 hours. There were no abnormalities detected in any of the control or test cultures except at the highest test concentration of 0.020 mg/L where the cell were observed to be clumped and colourless.

The measured pH in the test curpares increased slightly over the test period form pH 7.9 at initation to pH 8.0 - 9 at termination.

| Table: | Summary | of effects fr | omthe | exposure | of <i>Scenedesmus</i> | subspicatus to A | Aclonifen |
|--------|---------|---------------|-------|----------|-----------------------|------------------|-----------|
| \$V-   |         |               | · 🗐 – | AV       |                       | 4                |           |

| Nominal Concentration | Area under curve | Gowth inhibition<br>(%) | Growth rate<br>(0 – 24 h) | Reduction in<br>growth rate<br>(%) |
|-----------------------|------------------|-------------------------|---------------------------|------------------------------------|
| Control 🖓             | උ 15.506         | -                       | 0.0451                    | -                                  |
| Solvent control       | 1 45-648         | -                       | 0.0458                    | -                                  |
| ~0.00120 °            | 15.556           | 1                       | 0.0453                    | 1                                  |
| <i>6</i> 0.0625       | 15.084           | 4                       | 0.0418                    | 9                                  |
| 0,0050                | 11.152           | 29                      | 0.0348                    | 24                                 |
| 0.010                 | 4.332            | 72                      | 0.0149                    | 68                                 |
| 0.020                 | 1.168            | 93                      | 0.0078                    | 83                                 |



### C. VALIDITY CRITERIA

|                                                      |                              |             | X X               |
|------------------------------------------------------|------------------------------|-------------|-------------------|
|                                                      | <b>Required</b> <sup>1</sup> | Achi        | eved <sup>2</sup> |
| Validity criterion                                   | (OECD 201, 2011)             | Control     | Solvent S         |
| Increase in control biomass                          | رهم 16                       | د <u>56</u> | 59 0              |
| Mean coefficient of variation for section-by-section | <u>∞</u> ≤35%                | 54% 0       | 9550/ K           |
| specific growth rates in the control cultures        |                              | 34%         |                   |
| Coefficient of variation of average specific growth  | < 7% <sup>Q</sup>            | ° 107 4     |                   |
| rates in replicate control cultures                  |                              | ¢ °Ç° \0    |                   |
| <sup>1</sup> : After 72 hours                        | o s v                        |             |                   |
| <sup>2</sup> : After 96 hours                        |                              | , a a       | ý A co            |

The study was conducted in accordance with QECD Gurdeline for Testing of Chemicals No. 201 Alga, Growth Inhibition Test" (1984) and a Prelevant validity criteria for the guideline's that were in force at the time of performing the study were satisfied.

In terms of the current version of QECD 200 (2015), the control growth rate and the coefficient of variation of average specific growth rates in control cultures satisfied current validity criteria. However, the coefficient of variation of sectional growth rates in control cultures was greater than 35% and hence did not meet the current validity criterion. Overall, as the testfulfilled only two of three validity criteria; with regards to the OECD Grodeline 201 (2011) the study is not valid.

### D. TOXICITS ENDPOINT

Table:

# le: Summar Oof endpoints

| O*             |               |     | <u> </u> | Ş Ö          | Q             |  |
|----------------|---------------|-----|----------|--------------|---------------|--|
| Response v     | ·0            | A S | NOT NOT  | inal Concent | ¥ation (mg/L) |  |
|                |               |     | EC       | × ×          | NOEC          |  |
| Growth Rate    | (0 ÷ 4 h) *   |     | 0:0069   |              | 0.0025        |  |
| Area Under Cur | vê (0 – 96 h) |     | \$.0067° |              | 0.0025        |  |
| (              | n A           |     |          |              |               |  |

# Į IP. CONČLUSION

Exposure of *Scenedesmuscubspicatus* to Aclongten resulted in an  $E_rC_{50}$  (0 – 24 h) value of 0.0069 mg/L and an  $E_rC_{50}$  (0 – 96 h) value of 0.0067 mg/L based on nominal test concentrations. The No Observed Effect Concentration (NOEC) after 96 hours was 0.0025 mg/L.

|     | anon ano L      |     | 3 was 9.0023 mg/L. |
|-----|-----------------|-----|--------------------|
|     |                 |     |                    |
| ~~~ | $\sim$          |     |                    |
|     |                 |     |                    |
| /   |                 |     | $\bigcirc^{\circ}$ |
|     | ~ U             |     |                    |
|     | a. <sup>V</sup> | L U |                    |
|     |                 |     |                    |
|     |                 |     |                    |

# Assessment and conclusion by applicant;

In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for risk assessment purposes. The study was conducted in accordance with OECD Guideline for Testing of Chebricals No. 200 "Alga, Growth Inhibition Test" (1984) and all relevant validity criteria for the guidelines that were in force at the time of performing the study were satisfied.

In terms of the current version of OECD 201 (2011), the control growth rate and the coefficient of variation of average specific growth rates in control cultures satisfied current validity criteria.



| · · · · · · · · · · · · · · · · · · · | t of variation of sectional growth rates in control cultures was greater than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | meet the current validity criterion. Overall, as the test fulfilled only two of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| three validity criteria; w            | ith regards to the OECD Guideline 201 (2011) the study is not valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| As this study does not                | meet current OECD guideline validity criteria, it should be considered as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| supportive only.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| supportive only.                      | <u>A. 57 57 9</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Assessment and conclus                | ion by RMS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Point:                           | KCA 8.2.6.1/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Author:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title:                         | Aclonifen Peshwater algal growth inhibition study in a sediment water system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dement Mar                            | (Scenedomus subspicatus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report No:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Document No:                          | M-201114-01-1 0 4 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Guideline(s) followed in study:       | EO (= EKC): 92/09; C3; 0 ECD: 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Deviations from current               | Current Guidenne: QSCD 2014, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test guideline:                       | Initial cell tensity higher than recommended concentration of 2 – 5 x 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | cells/mL validity criteria/not satisfied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Previous evaluation                   | fixes, evaluated and accepted a grad of the grad of th |
|                                       | Source: Study list relied upon, December 2011 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLP/Officially                        | Yes, conducted under GLP Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability             | Supportive only of the second se                                                                                                                                                                                                                                             |
| Ky <u>"</u>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| × *                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A 13                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~~ <sub>6</sub> 0 -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Executive Summary of a set of Aclonifen on the growth of the unicellular freshwater green alga Scenedesmus subspicatus in a static sediment-water system during an exposure period of 96 hours. The test was run with a control (6 replicates), solvent control (3 replicates) and nominal test concentrations of \$.5, 9,4, 15.9, 27.0 and 46.0 µg/L (3 replicates). Observations of cell growth were recorded daily 24, 48 72 and 6 hours) to determine the potential effect on growth rate and biomass area under the curve) relative to the control.

The nominal concentrations of a clonifen in the overlying dilution water of an extra replicate of each test group was verified by chemical analysis shortly after test initiation (T0 + 30 min) and from pooled samples of each test level at the end of the 96-hour exposure period. The analytical recoveries from the test solutions showed the initial measured concentrations of aclonifen were all close to the nominal values (85 -114 % recovery). At termination of the 96-hour exposure period, recoveries from the overlying dilution water in the four highest test concentrations were significantly lower than the initial



measured values (5 - 8 % recovery). The recovery at the lowest nominal concentration of 5.5  $\mu$ g/L was below the limit of quantification (0.5  $\mu$ g/L) for this study. The results of this test are presented in terms of the nominal test concentrations.

Following 96 hours exposure to the test substance, the cell culture densities observed were used of calculate the percentage inhibitions, IA based on the area under the growth curve and Iu based on rate.

The percentage inhibition values I<sub>A</sub> were used to calculate the 96-hour  $\mathcal{F}_bC_{50}$  value at 21 linear regression. Based on the inhibition of growth rate  $I_{\mu}$  the 96-hoor  $E_rC_{50}$  was empirically to be in excess of the highest nominal tested concentration of 46.0 g/L.

Based on the cell culture densities observed following 96 hours exposure and on the percentage inhibitions  $I_A$  and  $I_{\mu}$ , the 96-hour NOEC of the test substance to scenedesmus appspicatus under the trg/L of acloniten. conditions of this test was empirically estimated to be 5.5

A. MATERIALS 1. **Test Item:** Aclonifen 7013/09 Batch no.: Medium cellow fine powder 25 **Purity: Appearance:** Date received: in an airtight container at room temperature **Storage:** the dark (approximately 20 Expiry date 20 September 2002 Test Ørganisn 2. Scenedesmus subspicatu 3. Test water:
4. Sediment:
An artificial sediment (OECD 207, 1984, adapted) was prepared as follows (on the basis of dry weights):
5% sphagnum peat (as close to pH 5.5 + possible, no visible plant remaining round)
2001 6.81 SĂG more than 50% of the particles between 50 and 200 microns)



|                                   | • pH of the final mixture of the sediment is adjusted to                                                                                                       |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | $6.0 \pm 0.5$ by addition of calcium carbonate (chemically)                                                                                                    |
|                                   | pure quality).                                                                                                                                                 |
|                                   | The dry constituents were blended in the correct propertions                                                                                                   |
|                                   |                                                                                                                                                                |
|                                   | for one hour.                                                                                                                                                  |
|                                   |                                                                                                                                                                |
| B. STUDY DESIGN AND ME            | THODS TO A LOT                                                                                                             |
| 1. In-life phase:                 | and mixed thoroughly, in a TURBULAs mixer (moder 150As)<br>for one hour.<br>THODS<br>21 - 29 June 2004                                                         |
|                                   |                                                                                                                                                                |
| 2. Exposure conditions            | 300 mL Erlenmeyer flæsks fitted witk stainless steel caps which                                                                                                |
| Test vessels:                     | 300 mL & rlennever flasks fitted with stainless steel caps which                                                                                               |
|                                   | permitted gas exchange. Each test ressel contained 200 mL of                                                                                                   |
|                                   | test solution ~ ~ ~ ~ ~ ~                                                                                                                                      |
| Experimental design:              | 50 est concentrations (5/5, 9.4015.9, 27.0 arg 46.0 prg/L) fis 1                                                                                               |
| ſ                                 | control and 1 colvent control (100 frL dimethylf Gmamide/litre)                                                                                                |
| Replicates:                       | Three replicate vessels were prepared for the solvent control                                                                                                  |
|                                   | and each treatment group. Six replicate vessels were prepared                                                                                                  |
|                                   | for the dilution water control<br>Approximately 2 $\times$ 10 <sup>4</sup> cells/mL<br>$23 \pm 2$ $\times$<br>$7.28 - 7.63$ $\times$<br>$7.28 - 7.63$ $\times$ |
| Initial cell density: 👸 💍         | Approximately 2 $\times$ 10 <sup>4</sup> cells/mb $\sim$                                                                                                       |
| Temperature: 🚿 🔔                  |                                                                                                                                                                |
| pH:                               | 7.28 - 7.63 $7.63$ $7.63$ $7.63$                                                                                                                               |
| Aeration:                         | None. Gaseous exchange and suspension of algal cells                                                                                                           |
| Photoperiod:                      | maintained by orbital shaker at 85 € 10 rpm                                                                                                                    |
|                                   | Continuous                                                                                                                                                     |
| Light intensity:                  | Approximately \$000 lux                                                                                                                                        |
|                                   | Continuous<br>Approximately \$900 lux                                                                                                                          |
| 3. Administration of the tespitem |                                                                                                                                                                |

A primary stock solution of 0.46 mg/ml was prepared for the highest test substance concentration by Š dissolution of 9.2 mg of test substance in 20 mL of the solvent (DMF). Stock solutions for the four lower concentration levels were prepared by serial dilution of the first stock solution in the solvent. The nominal concentrations of these stock splutions were 0.270, 0.158, 0.093 and 0.054 mg/mL.

Each stock solution was manually agitated and sobmitted to magnetic agitation. Test solutions were prepared by adding known volumes (0.02 ml) of the appropriate stock solution to each test vessel which already contained appropriate quantities/volumes of sediment, dilution water and algal inoculum.

# 4. Test organism assignment and treatment

Approximately of g otdry artificial sediment was filled into each test vessel and humidified with approximately mL of dilution water. A volume of 190 mL of dilution water was added to each test vessel. The preparation was then left to stand at 4°C for a period of a minimum 2 to 3 days.

24 hour prior to test initiation, the test vessels were placed on the agitation table. Agitation was provided at a rate of approximately 85 rpm. This advance was to allow the sediment to settle and therefore minimize turbidity in the water column at test initiation.



Approximately one hour prior to test initiation, the appropriate volume of algal inoculum was added to each test vessel. This brought the total volume of overlying water per test vessel to 200 mL.  $\mathbb{Q}^{\circ}$ 

The exposure phase was initiated by addition of the test substance to the test vessels. Agitation of the test vessels was not stopped during introduction of the test substance. The duration of exposure phase was 96 hours.

### 5. Measurements and observations

Measurements of culture density were made after 24, 48,72 and 96 hours of exposure to the treatment levels.

Cell counts were performed using a Malassez hae procytometer and a microscope. The culture density measurements were used to calculate the percentages of inhibition I to based on growth curve area and  $I_{\mu}$  (based on the growth rate).

### 6. Statistics/Data evaluation

Percentage inhibition of growth at each test concentration was calculated by comparing the area under the test curve with that under the solvent control curve, and the average maximum growth rate for each test concentration with that for the solvent control.

Statistical tests were performed using SAS package (Version 6.120)

# 9 H. RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

The nominal concentrations of according in the overlying dilution water of  $\mathfrak{A}$  extra replicate of each test group was verified by chemical analysis shortly after test initiation ( $\mathbf{F0}$  + 30 min) and from pooled samples of each test level at the end of the 96-hour exposure period. The analytical recoveries from the test solutions showed the initial measured concentrations of acloration were all close to the nominal values ( $\mathfrak{F}$  - 114 % recovery). At termination of the 96-hour exposure period, recoveries from the overlying dilution water in the four highest test concentrations were significantly lower than the initial measured values ( $\mathfrak{F}$  - 8 % recovery). The recovery at the lowest nominal concentration of 5.5 µg/L was below the limit of quantification (0.5 µg/L) for this study. The results of this test are presented in terms of the nominal test concentrations.

| Table: | A Measured, t | est concentratio | ons, from the | exposure of | Scenedesmus | <i>subspicatus</i> | to |
|--------|---------------|------------------|---------------|-------------|-------------|--------------------|----|
|        |               |                  |               | •           |             |                    |    |
| 6      | Aclonifen in  | a sediment wat   | er svstem     |             |             |                    |    |
|        |               |                  |               |             |             |                    |    |

| Nominal            |                  | Neasuced co                            | ncentration                   |           |
|--------------------|------------------|----------------------------------------|-------------------------------|-----------|
| concentration      |                  | ours &                                 | 96 H                          | lours     |
| (μg/L)             | 0 H              | %nominal                               | μg/L                          | % nominal |
| Control            | ~LQQ             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <loq< td=""><td>-</td></loq<> | -         |
| Solvent<br>Control |                  | -                                      | <loq< td=""><td>-</td></loq<> | -         |
| 5.5 Q              | <sup>6</sup> 4.7 | 85                                     | <loq< td=""><td>-</td></loq<> | -         |
| 2. <b>D</b>        | 10.7             | 114                                    | 0.8                           | 9         |
| 15.9               | 15.8             | 99                                     | 1.2                           | 8         |
| 27.0               | 24.3             | 90                                     | 1.3                           | 5         |



| 46.0             | 44.6 | 97 | 2.7 | 6 |
|------------------|------|----|-----|---|
| 100 1: : : : : : |      | 1  |     |   |

 $LOQ = Limit of Quantitation = 0.5 \ \mu g/L$ 

The validated method is summarised in Document M-CA4 (CA 4.1.2/84).

### **B. BIOLOGICAL DATA**

The cell culture densities recorded at each observation time during the exposure period were used to calculate the percentage inhibition of growth  $I_A$  (based on the area under the growth curve) and  $I_{\mu}$  (based on growth rate) after 24, 48, 72 and 96 of exposure compared to the dilution water control group

Based on percentage inhibition  $I_A$  (inhibition of cell culture density) and  $I_{\mu}$  (inhibition of growth rate), the majority of the inhibition of algal growth in this study was already observed following 24 hours exposure to the test substance. From T-48h onwards, some recovery of algal growth was observed at all of the nominal concentrations of the test substance. By test termination, no significant inhibition of algal growth rate (reflected by  $I_{\mu}$ ) was observed up to the nominal concentration of 15.9 µe/L of aclonifen.

 Table:
 Summary of effects from the exposure of Scenedesmos subspicatus to Actonifen after 96 hours in a water sediment system

|                         |                     | ✓ '0'       |       | Ĵ V  | O° |
|-------------------------|---------------------|-------------|-------|------|----|
| Nominal                 | 🛷 kahi              | ibition (%) |       |      | Ô. |
| concentration<br>(µg/L) | Area under eurv     | Growth      | ate   |      |    |
| 5.5                     | x co                |             | ~_~~" | × «. |    |
| 9.4                     | 6 <sup>9</sup> 11.3 | \$ 50       |       | O V  | \$ |
| 15.9                    | 39.0                | × × 8.7~    | ý g   |      |    |
| 27.0                    | 68.6 &              |             |       |      |    |
| 46.0 0                  | \$ <u>9</u> 1.4     | ۵.I 🖓 🕺     |       |      |    |
| ₹.<br>?~                |                     | A D         | o' o  | , Ø  |    |

The percentage inhibition values  $I_A$  were used to calculate the 90-hour  $E_bC_{50}$  value at 21.5  $\mu$ g/L using linear regression.

Based on the inhibition of growth rate  $\mu$ , the 96-hour E<sub>r</sub>C<sub>5</sub> was empirically estimated to be in excess of the highest nominal rested concentration of 46.0  $\mu$ g/L.

Based on the cell culture densities observed following 96 hours exposure and on the percentage inhibitions  $I_A$  and  $I_{\mu}$ , the NOEC of the test substance to *Scenedesmus subspicatus* under the conditions of this test was empirically estimated to be 5.5 up/L of aclonifen.

# C. VALIDITY CRITERIA

| Validity & torios                                                                                  | <b>Required</b> * | Achieved |                    |  |
|----------------------------------------------------------------------------------------------------|-------------------|----------|--------------------|--|
|                                                                                                    | (OECD 201, 2011)  | Control  | Solvent<br>Control |  |
| Incréase in Control Bomass                                                                         | 16                | 18       | 17                 |  |
| Mean coefficient of variation for section-by-section specific growth rates in the control cultures | ≤ 35%             | 59%      | 58%                |  |
| Coefficient of variation of average specific growth rates in replicate control cultures            | $\leq 7\%$        | 1%       | 1%                 |  |



\* Based on 0 - 72 hours

The study was conducted in accordance with OECD Guideline for Testing of Chemicals No. 201 Alga Growth Inhibition Test" (1984) and all relevant validity criteria for the guidelines that were inforcerat the time of performing the study were satisfied.

In terms of the current version of OECD 201 (2011), the control growth rate and the coefficient of variation of average specific growth rates in control cultures satisfied current validity enteria. However, the coefficient of variation of sectional growth rates in control cultures was greater than 35% and hence C did not meet the current validity criterion. Overall, as the test fulfilled only two of three validity criterie with regards to the OECD Guideline 201 (2011) the study is not valid.

### Table: Summary of endpoints

| v 1                           |                                          |
|-------------------------------|------------------------------------------|
| Dosponso voriable             | Nominal Concentration (µg/L)             |
| <b>Response variable</b>      | OF STECSO STORES OF STORES               |
| Growth Rate $(0 - 96 h)$      | 2 $2$ $46.0$ $3$ $3$ $0$ $0$ $0$ $3$ $3$ |
| Area Under Curve $(0 - 96 h)$ | 21.5 5 W & S.5 W                         |
|                               |                                          |
|                               |                                          |

# ÂII. CÔNCLUSION

Exposure of Scenedes in subspicatus to Aclonifer in a water soliment system resulted in an ErC50 (0 – 96 h) value of greater than 46.0  $\delta g/L$  and an  $E_b E_{50}$  ( $0 \approx 96$  h) value of 21.5  $\mu g/L$  based on nominal test concentrations. The No Observed Effect Concentration (NOEC) after 96 bours was 5.5 µg/L.

| <sup>6</sup> 6 | - A- | Ś | Ö<br>Ş | 40°<br> |   | Ö     | N.  | • | (2001) |
|----------------|------|---|--------|---------|---|-------|-----|---|--------|
| . 4            | S/   | h | 53 //  |         | 0 | // // | 400 |   |        |

Assessment and conclusion by applicant: In the previous submission (DAR, 2006); this study was evaluated and accepted as valid for risk assessment purposes. The study was conducted in accordance with OECD Guideline for Testing of Chemicals No. 201 "Arga, Growth Inhibition Test" (1984) and all relevant validity criteria for the guidelines that were of force at the time of performing the study were satisfied.

In terms of the current version of OECO 201 2011, the control growth rate and the coefficient of variation of average specific growth rates in control cultures satisfied current validity criteria. However, the coefficient of variation of sectional growth rates in control cultures was greater than 35% and hence did not meet the ourrent alidity criterion.

Therefore, as this study does not meet current OECD guideline validity criteria, it should be considered as supportive on w

Ŷ

sment and conclusion by RMS:



| Data Point:                | KCA 8.2.6.1/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | Amendment no. 1 - Desmodesmus subspicatus growth inhibition test with 🔊 👘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | aclonifen tech. (BCS-AG74518)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Report No:                 | EBCL0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Document No:               | M-574872-02-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   | EU Directive 91/414/EEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| study:                     | Regulation (EC) No. 1107/2009 👸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | EU Directive 91/414/EEC<br>Regulation (EC) No. 1107/2009<br>U.S. EPA Pesticide Assessment Guidelines, Subdivision J, §122-2, 123<br>OCSPP Guideline 850.4500 (January 2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | OCSPP Guideline 850.4500 (January 2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deviations from current    | Current Guideline: OECD 2007, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| test guideline:            | None v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Previous evaluation:       | No, not previously submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GLP/Officially             | Yes, conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Yes a way of the second |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Executive Summary A study was performed to assess the influence of the test item on exponentially growing populations of Desmodesmus subspicatus expressed as NOEC, LOPC and ECx for growth rate and further endpoints of algal biomass (cells per volume). The sest was run with a control, olvent control and nominal test concentrations of @0894 0.286 0.916 2.93, 9.38 and 30.0 If a sx/L over a test period of 96 hours. Observations of cell growth were recorded daily (0, 24, 48, 72 and 96 hours) to determine the potential effect on grown rate and biomass relative to the control , L 0

The analytical findings caclonitien tees. (BCSAG74518) in the treatment levels found on Day 0 were 90.0% to 104% of nominal (overage 98.1%). After 72 hours analytical findings of 84.8% to 93.7% of nominal (average 20.2%) were found and after 96 hours analytical findings of 67.9% to 87.3% of nominal (average) 4.9% were bund Results after 72 hours are based on nominal test concentrations and after 96 hours on mean preasured test concentration.

The  $E_r C_{50}$  (0 - 72h) was calculated to be 24.6  $\mu$  a.s./based on nominal test concentrations, the NOEC after 72 hours was 9.38 ag a.s. After 96 hours exposure, the  $E_rC_{50}$  (0 – 96 h) was 20.3 µg a.s./L with a NOEC of 0.0811 pg a.s./L, based on mean measured test concentrations.

# I. MATERIALS AND METHODS

| A MAREPIANS                              | Q)                            |
|------------------------------------------|-------------------------------|
| A. MASTERIALS                            | ~9                            |
| 1. Test Iten                             | Aclonifen tech. (BCS-AG74518) |
| Batch no.: 5                             | AE F068300-01-14              |
| E <sup>nde</sup> Purito: <sup>10</sup> È | 99.5% w/w                     |
| Appearance:                              | Yellow powder                 |
| Date received:                           | Not provided                  |
| Storage:                                 | +10 to +30° C                 |
|                                          |                               |



|            | Expiry date:                   | 29 November 2016                                                                                                                                                                                                                                                                                                                   |
|------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.         | Test Organism:                 | Desmodesmus subspicatus formerly named Scenedesmus subspicatus,                                                                                                                                                                                                                                                                    |
|            | Strain:                        | SAG 86.81 ESP                                                                                                                                                                                                                                                                                                                      |
|            | Source:                        |                                                                                                                                                                                                                                                                                                                                    |
|            | Pre-culture:                   | Pre cultures were prepared from stock cultures 3 days before<br>the start of the test using OECD medium?<br>OECD medium as per guideline<br>THODS<br>06 June – 12 July 2010<br>300 mL conical flasks containing 150 mC test solution sealed<br>with cellulose plugs<br>6 Jest concentrations (0.0894, 0.286, 0.916, 2.93, 9.38 and |
| 3.         | Test water:                    | OECD medium as per guideline                                                                                                                                                                                                                                                                                                       |
| B.         | STUDY DESIGN AND ME            |                                                                                                                                                                                                                                                                                                                                    |
|            | STODI DESIGN AND ME            |                                                                                                                                                                                                                                                                                                                                    |
| 1. In      | -life phase:                   | 06 June - 12 July 2016                                                                                                                                                                                                                                                                                                             |
| <b>4</b> E |                                |                                                                                                                                                                                                                                                                                                                                    |
| 2. Ex      | xposure conditions             | To and Grant Alash Grant Anna 100 and Anat Abortion and ad                                                                                                                                                                                                                                                                         |
|            | Test vessels:                  | with allulde pluge                                                                                                                                                                                                                                                                                                                 |
|            | Experimental design:           |                                                                                                                                                                                                                                                                                                                                    |
|            | Replicates:                    | 30.0 μg a.s./S plus control and solvent control (100 μL<br>DME/litre)<br>Four replicate Sessels were prepared for each control and<br>treatment group                                                                                                                                                                              |
|            | Initial cell density:          | $1 \times 10^4 \text{ cells/mL}$                                                                                                                                                                                                                                                                                                   |
|            | Temperature:                   | $22\sqrt{4} - 26\sqrt{3} \circ C \circ \sqrt{2} = \sqrt{2}$                                                                                                                                                                                                                                                                        |
|            | phy i i i                      | \$7.8 - 8,1 \$\$ \$\$ \$                                                                                                                                                                                                                                                                                                           |
|            | Aeration:                      | None. Gaseous exchange and suspension of algal cells                                                                                                                                                                                                                                                                               |
|            | SA S                           | maintained by Obital shaker at 100 rpm                                                                                                                                                                                                                                                                                             |
|            | Photoperiod:                   | Continuous of a                                                                                                                                                                                                                                                                                                                    |
|            | Initial cell dervity:          | 4.62 - 4.89 klux                                                                                                                                                                                                                                                                                                                   |
| <b>.</b> . | Iministration of the test item |                                                                                                                                                                                                                                                                                                                                    |
| 3. A(      | Immistration of the test item  |                                                                                                                                                                                                                                                                                                                                    |

Priot to the test the stock solution was prepared by dissolving 30.6 mg of the test item in 100 mL dimethylformanide (DMF) by intense stirring for 5 minutes. An adequate amount of the stock solution was transferred to a dilution series to obtain the concentration levels used in the study.

# 4. Test organism assignment and treatment

The test item was applied in the test medium on Day 0.

# 5. Measurements and observations

Morphological examination of cells using a microscope were made after 0, 24, 48 72 and 96 hours.

Cell numbers per volume (as a surrogate for biomass per volume) were estimated photometrically. For this purpose, small samples of treated, inoculated test medium were placed in 5 cm cuvettes after 24,



48,72 and 96 hours of the exposure period (without replacing after measurement). The extinctions were determined at a wave length of 578 nm using a single-beamphotometer. The photometer was calibrated using untreated and treated culture medium of each concentration level without algae. Cell numbers were computed from extinction values using the conversion formula (Statistical Software PoxRat Professional", version 3.2.1):

 $\log 10$  (cell no.) = 6.433 + 1.089 x log10 (extinction)

To detect possible alterations in algae cells that might influence extraction measurements, such as unusual cell size, pooled samples of all test concentrations and control were exampled under a microscope at a magnification of 400 times. Cell numbers were estimated photometrically only at alterations that might influence extinction were nordetected.

The pH was measured at the start of the study and additionally after 72 and after 96 hours in all test levels and the controls by an electronic pH meter.

Samples were analysed for the actual concentration of aclonifen tech. (BCS-AG74518) present in the test medium of all treatment levels anothe control after 0, 72 and 26 hours.

### 6. Statistics/Data evaluation

 $EC_x$  values (e.g. x = 50) and coefficience intervals were calculated for the stated sposule period.

The LOEC and NOEC determinations from the appropriate parameter (inhibition) were done, using the ANOVA procedure (p = 0.05, one sided) and properly selected multiple t-tosts.

All calculations were carried out using Microsoft Excel® spreacheets and shown are rounded values. All further statistical evaluations over done using the commercial program ToxRat Professional.

# "IL RESURTS AND DESCUSSION

# A. ANALYTICAL VERHEICATION

The test concentrations measured after 0 and 72 h ranged between 80 and 120% of nominal therefore all statistical evaluations for the time period  $0 \frac{1}{6}$  /2 h were based on nominal test concentrations.

The test concentration measured after 96 by were found to be below 80% of nominal therefore all statistical evaluations for the time period 0 – 96 by were based on mean measured test concentrations.

Table: Measured test concentrations from the exposure of *Desmodesmus subspicatus* to Aclonifer

|                |                   |        |                                                                                                           | ¥.         |                                                                                       |                                                           |                               |                    |
|----------------|-------------------|--------|-----------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|--------------------|
| Nominal        |                   |        | <u> </u>                                                                                                  | leasured C | oncentratio                                                                           | n                                                         |                               |                    |
| concentration  |                   | ours   | ₽ \$2́Н                                                                                                   | ours       | 96 H                                                                                  | ours                                                      | 0 - 96 1                      | Hours <sup>1</sup> |
| (µg a.s./L) 🗸  | μg <b>a.s</b> ./L | N nom  | μg a.s./L                                                                                                 | % nom      | μg a.s./L                                                                             | % nom                                                     | μg a.s./L                     | % nom              |
| Contro         | KLOQ Ô            |        | ~ĢLOQ                                                                                                     | -          | <loq< td=""><td><loq< td=""><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td>-</td></loq<></td></loq<> | <loq< td=""><td>-</td></loq<> | -                  |
|                | <br>LQQ           | 20-22- | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<> | -          | <loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<>                   | -                                                         | <loq< td=""><td>-</td></loq<> | -                  |
| Ø 0894 @       | 0,0929 🛸          |        | 0.0838                                                                                                    | 93.7       | 0.0667                                                                                | 74.6                                                      | 0.0811                        | 90.7               |
| 0.286<br>0.286 | 0.289             | 101    | 0.263                                                                                                     | 92.0       | 0.207                                                                                 | 72.4                                                      | 0.253                         | 88.5               |
| 00%            | 0.914             | 99.8   | 0.828                                                                                                     | 90.4       | 0.655                                                                                 | 71.5                                                      | 0.800                         | 87.3               |
| 2.93           | 2.96              | 101    | 2.62                                                                                                      | 89.4       | 1.99                                                                                  | 67.9                                                      | 2.52                          | 86.0               |
| 9.38           | 8.44              | 90.0   | 7.95                                                                                                      | 84.8       | 7.07                                                                                  | 75.4                                                      | 7.82                          | 83.4               |



|   | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.8           | 92.7               | 27.2          | 90.7                | 26.2             | 87.3         | 27.1        | 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|---------------|---------------------|------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| - | <sup>1</sup> : Mean measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | n of Day 0, D      | ay 3 and Day  | / 4                 |                  |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~             |
|   | Nom: Nominal concentration<br>LOQ: Limit of Quantitation = 0.0150 μg a.s./L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                    |               |                     |                  |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | LOQ: Limit of Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitation = 0 | 0.0150 μg a.s.     | ./L           |                     |                  | ~            |             | <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O <sup>y</sup> |
|   | 30.0       27.8       92.7       27.2       90.7       26.2       87.3       27.1       90.3 <sup>1</sup> : Mean measured concentration of Day 0, Day 3 and Day 4<br>Nom: Nominal concentration<br>LOQ: Limit of Quantitation = 0.0150 µg a.s./L       Nom: Nominal concentration = 0.0150 µg a.s./L       Image: Concentration = 0.0150 µg a.s./L         The validated method is summarised in Document M-CA4 (CA 4.1.2/90).       Image: Concentration = 0.0150 µg a.s./L       Image: Concentration = 0.0150 µg a.s./L         B.       BIOLOGICAL DATA       Image: Concentration = 0.0150 µg a.s./L       Image: Concentration = 0.0150 µg a.s./L         The validated method is summarised in Document M-CA4 (CA 4.1.2/90).       Image: Concentration = 0.0150 µg a.s./L       Image: Concentration = 0.0150 µg a.s./L         B.       BIOLOGICAL DATA       Image: Concentration = 0.0150 µg a.s./L       Image: Concentration = 0.0150 µg a.s./L         There was no significant change in measured pH values in the control and test cultures over the test period.       Image: Concentration = 0.0150 µg a.s./L |                |                    |               |                     |                  |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ~ | The validated m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nethod is su   | immarised          | in Docume     | nt M-CA4            | (CA 4 1 2)       | 90) 🔊        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | The validated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ammanisea          |               |                     | (011 1.1.2/      | , o).        | Å.          | 2 Contraction of the second se | ò              |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                    |               | Å                   |                  | Ś            | .~          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J              |
| 1 | B. BIOLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GICAL D        | AIA                |               | C                   | 7                | ay           |             | S' 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , O            |
| 1 | No morphologic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cal change     | in algae wa        | as observed   | in any test         | concentra        | lon          | ,0 Š        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Å              |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -              | -                  |               | ~~                  | ſ                |              | õ Q         | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5              |
|   | There was no speriod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignificant o   | change in r        | neasured p    | H values in         | n the contr      | oland test   | cultures or | ver the test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l              |
| 1 | period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                    |               | RO .                | $\searrow$       | o" q         | \O`(        | ¢, Q <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                    | 4             | , h                 |                  | í "Ö         | ð` ×        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | <b>Fable:</b> Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mmary of       | effects from       | m the expo    | sure of Sc          | enedesmus        | subspicat    | us to Acloi | nifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Г | Nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                    | 2             | w 0                 |                  | <br>         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | concentratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n              | rowth rate         |               | bition (%)          |                  | th rate      | الله الم    | ion (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|   | (μg a.s./L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . (            | (0 – 72 h)         |               |                     | .4 &             | - 96 h)      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Ī | Pooled contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1.137              |               |                     | × ~ 1            | 166          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| - | 0.0894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 1.126              |               |                     |                  | 750 Å        | Ø. <i>K</i> | <u>6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                    |               |                     |                  | 126          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| _ | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 1.120              | <u>v</u> o    | 1.54                |                  | .1210°       | ¥ X.        | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|   | 0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 1,122              |               | 1.3                 |                  | . 1238       | © 3.        | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|   | 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | a <sup>1.141</sup> |               | <del>@</del> 0.4 °° | , A              | A27 🔊        | <b>3</b> .  | 3 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|   | 9.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | °~             | 1.065              |               | 6.3 <sup>1</sup>    | s <sup>v</sup> i | .127 🦂       | <b>3</b> .  | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|   | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L.             | 0.428              | )<br>N O      | 6203 <sup>r</sup> > |                  | \$39         | 70          | .9 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (A) (I         | - // //            | <u> </u>      |                     |                  |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | <sup>1</sup> : significantly red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | luced ased     | on Williams r      | nultiple sequ | ential t-test pr    | ocedure (α=0     | 05, one-side | d smaller)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

### VALIDETY GENTERIA & TO TO TO TO TO C.

| Validity emperion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Achieved* |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Increase m control biomass of the state of t | 30.3      |
| Mean coefficient of variation for section-by section $5 \le 35\%$<br>specific growth rates in the control cultures $35\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.1%     |
| Coefficient of variation of average specific growth $7\%$ $\leq 7\%$ rates in replicate control cultures $7\%$ $7\%$ $7\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.8%      |
| *Pased on realist antrols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |

\*Based on pholed controls All validity criteria were satisfied and therefore this study can be considered to be valid. D. TOXICITY ENDPOINTS Table: Spinmary of endpoints

a,

### Summary of endpoints Table:

| Bananaka         |                       | ~\$                     | μg a.s./L             |      |      |
|------------------|-----------------------|-------------------------|-----------------------|------|------|
| Parameter        | EC <sub>50</sub>      | <b>EC</b> <sub>20</sub> | EC <sub>10</sub>      | LOEC | NOEC |
| 72-hour test aur | ation 🔍 🗸             |                         |                       |      |      |
| Growth rate (r)  | 246<br>[23.5 - 257]   | 14.5<br>[13.1 – 15.7]   | 11.0<br>[9.59 – 12.2] | 9.38 | 2.93 |
| Yield (y)        | 14.7<br>[12.8 – 17.3] | 9.37<br>[7.74 – 10.8]   | 7.41<br>[5.75 – 8.78] | 9.38 | 2.93 |
| 96-hour test dur | ration <sup>2</sup>   |                         |                       |      |      |



*°*0°

| Growth rate (r) | 20.3<br>[19.9 – 20.8] | 13.1<br>[12.5 – 13.7] | 10.4<br>[9.77 – 11.0] | 0.253 | 0.0811 |
|-----------------|-----------------------|-----------------------|-----------------------|-------|--------|
| Yield (y)       | 10.7<br>[9.93 – 11.7] | 4.06<br>[3.67 – 4.45] | 2.44<br>[2.14 – 2.76] | 0.253 | 0.0811 |

<sup>1</sup>: Results based on nominal test concentrations

<sup>2</sup>: Results based on mean measured test concentrations

[95% confidence limits]

### III. CONCLUSION

| Exposure of Desmodesmus subspicatus to            |                  |                 |               |                                       |
|---------------------------------------------------|------------------|-----------------|---------------|---------------------------------------|
| 24.6 µg a.s./L based on nominal test concent      | trations, the NO | DEC after 72 ho | ours was 3.38 | µga.s./IQ After                       |
| 96 hours exposure, the $E_rC_{50}$ (0 – 96 h) was | 20.3 maa.s./L    | with a NOE      | of 0.0811 µg  | ,<br>a.s./L, based on                 |
| mean measured test concentrations.                |                  |                 | . v v         |                                       |
|                                                   |                  |                 |               | · · · · · · · · · · · · · · · · · · · |

Assessment and conclusion by applicant All validity criteria were satisfied and therefore this study can be considered to be Exposure of Desmodesmus subspicatus to Actonifen resulted in an EC30 (0, 72h) value of 24.6 µg a.s./L based on nominal test concentrations, the NPEC after 72 hours was 9,38 µg a.s./L. After 96 hours exposure, the  $E_rC_{50}$  ( $\theta - 96$  h) was 20.3 µg a.s./ $\mathbb{D}$  with a NOEC of 0.0811 µg a.s./L, based on mean measured test concentrations.

The 96-hour results were based on the arthmetic mean measured test concentrations. EFSA's Outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology (EFSA, 2015)<sup>7</sup> recommends that mean measured concentrations are calculated using the geometric mean rather than the arithmetic mean. The geometric mean measured concentrations calculated from the 0, 72 and 96 Hour apalysis@esults@vere @ 0804 0.251 @.791 2.49, 7,80 and 27.1 μg a.s./L. Given that the geometric mean measured concernsations differed from the arithmetic mean measured concentrations only active second decimal place or was considered that recalculation of the study endpoints based on the geometric mean measured concentrations was not necessary.

|   | t s |  | 0<br> |       |
|---|-----|--|-------|-------|
| Ŷ |     |  | S,    | <br>6 |

CA 8.2.6.2

<sup>7</sup> EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.



| Data Point:                | KCA 8.2.6.2/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | ACLONIFEN - Toxicity to the freshwater diatom, Navicula pelliculosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Report No:                 | R005692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document No:               | M-171422-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   | EU (=EEC): L383A-C.3.; OECD: 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current    | Current Guideline: OECD 201, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test guideline:            | Validity criteria not satisfied 🚿 🖉 🦧 🏹 🖧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Previous evaluation:       | yes, evaluated and accepted $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | Source: Study list relied uport December 2671 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLP/Officially             | Yes, conducted under GLOOfficially recognised resting acilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Supportive only Supportive only Supportive only Supportive only Support Suppor |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **Executive Summary**

A study was performed to assess the inhibitory effect of scioniton on the growth of the freshwater diatom, Navicula pelliculosa during an exposure period of 72 hours. The test was run with a control, solvent control and nominal test concentrations of 0.063, 0,13, 0,25, 0, 20, 1.0 and 2.0 mg a.s./L. Observations of cell growth were recorded daily (24@48 and 72 hours) to determine the potential effect on growth rate and biomass (grea under the curve) relative to the control.

Measured concentrations for the lest solutions at test initiation and termination were generally similar and established the desired concentration gradient. Mean measured test concentrations ranged from 92 to 110% of the nominal concentrations and defined the treatment level@tested as 0.068, 0.12, 0.23, 0.47, 1.0 and 1.9 mg a.i./L. All results were based or the mean measured test concentrations.

Exposure of Navicul Coefficient to Acloniten tesulted in an  $E_{50}$  (0 – 72 h) value of 1.2 mg a.s./L (95% confidence limits: 0.1/2 to 2.1 mg a.s./L) and an  $E_bC_{50}$  (0 – 72 h) value of 0.47 mg a.s./L (95% confidence limits 0.31 to 0.72 mg as /L) based on the mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 72 Pours based on growth rate was 0.23 mg a.s./L, and 0.068 mg a s./L based on cell biomass

# MATERIALS AND METHODS

| A. A MATERIALS                                 |                                     |
|------------------------------------------------|-------------------------------------|
| 1. Test Iten                                   | Aclomfen                            |
| Batch to .: A final way<br>Purify: A final way | <sup>°</sup> 97013 <sup>°</sup> /03 |
|                                                | 994 g/kg                            |
| Appearance:                                    | Yellow powder                       |
| Date received State                            | 29 May 1998                         |
| É Storage:                                     | Room temperature in the dark        |
| Espiry date:                                   | 18 April 1999                       |

**Test Organism:** 2.

Navicula pelliculosa



|        | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Strain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 3045, Class Bacillariophyceae                                                                                                                                                                                                                                                                              |
|        | Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |
|        | Pre-culture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The inoculum used to initiate the toxicity est was taken from a                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stock culture that had been transferree to fresh medium for                                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | days before testing                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |
| 3.     | Test water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AAP medium V Q Q Q X X                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |
| B.     | STUDY DESIGN AND ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THODS                                                                                                                                                                                                                                                                                                         |
| 1. In- | life phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 - 26 June 1998                                                                                                                                                                                                                                                                                             |
|        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                               |
| 2. Ex  | posure conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                               |
|        | Test vessels:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stock culture that had been transferred to fresh medium four<br>days before testing<br>AAP medium<br>THODS<br>23 - 26 pane 1998<br>250 mL Erlenneyer tlasks fitted with staintess steel caps which<br>permitted gas exchange. Each test vessel contained 100 mL of                                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | permitted gas exchange. Each texpresses contained 100 mL of                                                                                                                                                                                                                                                   |
|        | Q <sup>Y</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | test solution 's s o o o o s                                                                                                                                                                                                                                                                                  |
|        | Experimental design:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 test Conceptrations (0.063, 0.93, 0.23, 0.50, 1.0 and                                                                                                                                                                                                                                                       |
|        | L'and the second s | 2.0 pg a.s./L) plus I control and 1 solvent control (100 µL                                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 test concentrations (0.063, 0.93, 0.93, 0.50, 1.0 and<br>2.0 mg a.s./L) plus I control and I solvent control (100 $\mu$ L<br>dimethyltomamide/litre)<br>Three replicate vessels were prepared for the control, solvent<br>control and each treatment group<br>Approximately to x 100 cells/mL<br>$24 \pm 1$ |
|        | Replicates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Three replicate vessels were prepared for the control, solvent                                                                                                                                                                                                                                                |
|        | Replicates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | control and each treatmenOgroup                                                                                                                                                                                                                                                                               |
|        | Initial cell density:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approximately of x 100 cells/mL                                                                                                                                                                                                                                                                               |
|        | Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $24 \pm 10^{\circ}$ $3^{\circ}$ $3^{\circ}$ $3^{\circ}$                                                                                                                                                                                                                                                       |
|        | рН: ~ ~ ~ 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.36 - 8.9 × 2 2                                                                                                                                                                                                                                                                                              |
|        | Aeration:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None. Gaseous exchange and suspension of algal cells                                                                                                                                                                                                                                                          |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | maintained by orbital shaker at $100 \pm 10$ rpm                                                                                                                                                                                                                                                              |
|        | Photoperiod:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Continuous                                                                                                                                                                                                                                                                                                    |
|        | Light intensity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3200 - 5400 lux                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ý z s S                                                                                                                                                                                                                                                                                                       |
| 3. Ad  | ministration of the test item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3200 - 5400 lux<br>3200 - 5400 lux<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                                                                                                                                                                                           |
| A 20   | pH:<br>Aeration:<br>Photoperiod:<br>Light intensity:<br>ministration of the test item<br>mg a A/mL stock solution was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | propared by dissolving 0.5031 g (0.5001 g as active substance) of                                                                                                                                                                                                                                             |

A 20 mg a A/mL stock solution was prepared by displying 0.5031 g (0.5001 g as active substance) of Aclonifer in 25 mL of dimeth formamide Test solutions were prepared from dilutions of this primary stock solution. Replicate flasks per treatment level and the controls were conditioned prior to use by rinsing with the

Replicate flasks per treatment level and the controls were conditioned prior to use by rinsing with the appropriate exposure solution. One hundred milliliters of the appropriate exposure solution were then placed in each replicate flask. The control and solvent control flasks were prepared and maintained under the same conditions as the treatment vessels but contained no Aclonifen.

# 4. Test organism assignment and treatment

Approximately 30 minutes after the test solutions were prepared and added to the test flasks, 1.46 mL of an inoculum of *Navicula pelliculosa* cells, at a density of  $68 \times 10^4$  cells/mL, was aseptically introduced into each flask containing 100 mL of test solution. This inoculum provided the required cell density of approximately 1.0 x  $10^4$  cells/mL.



### 5. Measurements and observations

At each daily interval, cell counts were conducted on each replicate vessel using a hemacytoneter (Neubauer Improved) and a compound microscope. One sample was taken from each flask for conting Observations of the health of the cells were made and recorded at each daily interval.

Temperature was measured continuously with a minimum/maximum thermometer located in a flack of water adjacent to the test flasks in the environmental chamber. Minimum and maximum temperatures and the shaking rate of the orbital shakers were recorded daily. The light intensity of the test area was measured at 0 hour and at each daily interval of the exposure period. Water quality parameters (pt and of conductivity) were measured at test initiation and termination of the 72-hour exposure period.

At test initiation (0 hour) and test termination (72 hours), one sample from each exposure solution and the controls was analyzed for Aclonifen conceptration?

### 6. Statistics/Data evaluation

A t-Test (**1981**) was used to compare the 72-hour control and solvent control provent and solvent control and solvent control at a vere not significantly different ( $p \le 0.05$ ), these data were pooled for use in statistical evaluation of the data for treatment effects. If the data were found to be significantly different, the colvent control data was used to determine treatment effects.

Based on the results of statistical analysis, the NotObserved-Effect Concentration (NOEC), the highest test concentration which domonstrates no statistically adverse effect ( $p \le 0.05$ ) when compared to the pooled control data, was determined. The data were first checked for normality using Shapiro-Wilks' Test (**1989**) and for homogeneity of variatice using Bardett's Test (**1989**). If the data sets passed the lest for homogeneity and normality, the Williams' Test (**1989**).

1971, 1972) was used to determine the NOEC. If the data did not pass the tests for homogeneity and normality, then Kruskal-Wallis' Test was used to determine the NOEC. All statistical determinations were made at the 95% level of certainty except in the case of Shapiro-Wilks' and Bartlett's Tests, where the 99% tovel of certainty was applied.

The  $E_bC_{50}$  and  $E_rC_0$  values, the theoretical concentration of test substance which would cause a 50% reduction in biomass and growth rate, respectively, and the 95% confidence limits, were determined by linear regression of response percent reduction of biomass or growth rate as compared with the pooled control) versus mean measured test concentration. The EC values were calculated using four linear regression curves based on (a) untransformed data, (b) untransformed response versus logarithm-transformed concentration, (c) probit-transformed data, (b) untransformed concentration, and (d) probit-transformed response versus logarithm transformed concentration, and (d) probit-transformed response versus logarithm transformed data was selected based on the highest coefficient of determination T. This regression equation was then applied to calculate each EC value and its 95% confidence binits, using the method of inverse prediction (**1981**). A computer program was used to assist in these computations.

### **II. RESULTS AND DISCUSSION**

# A. A ANALYTICAL VERIFICATION

Measured concentrations for the test solutions at test initiation and termination were generally similar and established the desired concentration gradient. Mean measured test concentrations ranged from 92



to 110% of the nominal concentrations and defined the treatment levels tested as 0.068, 0.12, 0.23, 0.47, 1.0 and 1.9 mg a.s./L. All results were based on the mean measured test concentrations.

| Nominal            |                                                                                             | Measured co | 🧷 Mean m                                              | easured                   |                  |           |  |
|--------------------|---------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------|---------------------------|------------------|-----------|--|
| concentration      | 0 H                                                                                         | ours        | 72 H                                                  | ours                      | concetoration    |           |  |
| (mg a.s./L)        | mg a.s./L                                                                                   | % nominal   | mg a.s./L                                             | % nominal                 | mg a.s./E        | % nominal |  |
| Control            | <loq< td=""><td>-</td><td><loq< td=""><td>- 04</td><td>× 4</td><td></td></loq<></td></loq<> | -           | <loq< td=""><td>- 04</td><td>× 4</td><td></td></loq<> | - 04                      | × 4              |           |  |
| Solvent<br>Control | <loq< td=""><td>-</td><td>&lt; EQQ</td><td></td><td></td><td></td></loq<>                   | -           | < EQQ                                                 |                           |                  |           |  |
| 0.063              | 0.075                                                                                       | 119         | 0.061 •                                               | \$7, <sup>*</sup>         | 0.068            | × 108     |  |
| 0.13               | 0.13                                                                                        | 100         |                                                       | × * ~                     | γ <b>β</b> γ12 χ | <u>92</u> |  |
| 0.25               | 0.24                                                                                        | 96          | °~ <b>℃</b> .22 ~                                     | ~ <sup>988</sup> <u>1</u> | \$0.23 O         | § 92      |  |
| 0.50               | 0.49                                                                                        | 98          | 0.4                                                   | ~~ 88 <sup>~</sup> ~      |                  |           |  |
| 1.0                | 1.1                                                                                         | 670 %       | ×                                                     |                           | A.0 0            | 101       |  |
| 2.0                | 2.0                                                                                         | Q100        | 1.8                                                   | S 90 0                    | C 1.9            | 95        |  |

Table: Measured test concentrations from the exposure of Navicula pelliculosa to Astonifen

The validated method is summarised in Document

### BIOLOGICAL DATA B.

The pH of the test and control solutions anged from 75 to 75 at test initiation and from 7.8 to 8.9 at test termination. The increase in pH observed between test initiation and test termination is common in static algal cultures and is due to photosynthesis by the algae.

At test termination, the 1.9 mg @s./L freatment lever was observed to contain cell fragments. Cells exposed to the remaining treatment levels (0.068 to 0.0 mg a.s./L) and the controls were observed to be normal<sup>®</sup>. Á

Statistical analysis demonstrated ho significant difference in the biomass or 0-72 h average growth rate at test termination (72 bours) between the control and solvent control, therefore, pooled control data was used for further statistical analysis to determine treatment level effects.

| Table: | Ĩ | <sup>®</sup> Summary⁄@f | effects fr | om the exposu | e of Navicula | pelliculosa to Aclonifen |
|--------|---|-------------------------|------------|---------------|---------------|--------------------------|
|--------|---|-------------------------|------------|---------------|---------------|--------------------------|

| Nominal<br>Concentration<br>(mg a.s./L) | Aren under Eurve          | Growth inhibition | Growth rate<br>(0 – 72 h) | Reduction in<br>growth rate<br>(%) |
|-----------------------------------------|---------------------------|-------------------|---------------------------|------------------------------------|
| Control                                 | 3⊉x 104                   | ~ -               | 1.28                      | -                                  |
| Solvent control 🔬                       | \$5 x 10 <sup>4</sup>     | U _               | 1.29                      | -                                  |
| Mean@ontrol                             | ℃ 36 x 10 <sup>4</sup>    | -                 | 1.28                      | -                                  |
| Q.068                                   | ∠ 3\$\$x 10 <sup>4</sup>  | 1.9               | 1.29                      | -0.23                              |
| \$ 0.12° 6                              | x 3y3 x 10 <sup>4 1</sup> | 7.2               | 1.26                      | 1.7                                |
| ~~ 0.Q3                                 | $27 \times 10^{4}$        | 24                | 1.25                      | 2.8                                |
| ۵.47                                    | 18 x 10 <sup>4 1</sup>    | 50                | 1.031                     | 20                                 |
| 1.0                                     | 9.0 x 10 <sup>4</sup>     | 75                | $0.700^{1}$               | 45                                 |
| 1.9                                     | 4.0 x 10 <sup>4</sup>     | 89                | 0.4621                    | 64                                 |



<sup>1</sup>: Significantly reduced as compared to the pooled control based on Williams' Test

Based on Williams' Test, the 0-72 hour No-Observed-Effect Concentration (NOEC) for biomass was determined to be 0.068 mg a.s./L. The 72-hour EbC50 value (95% confidence limits) for cellibromass was calculated to be 0.47 mg a.s./L (0.31 to 0.72 mg a.s./L).

0.23 mg a.s./L. The 72-hour E<sub>r</sub>C<sub>50</sub> value (95% confidence limits) was calculated to be 1.2 mg a.s./L (0.72 to 2.1 mg a.s./L). C. VALIDITY CRITERIA

| Validity criterion       Control       Softent         Increase in control biomass       Increase in control cutures       Increase in control cutu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |              |          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|----------|---------------|
| Mean coefficient of variation for section by-section<br>specific growth rates in the control cultures of 235% of 24% of 27%<br>Coefficient of variation of average specific growtho<br>rates in replicate control cultures of 22% of 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Validity criterion                         |              |          | ontrol Ol 🖓 👋 |
| specific growth rates in the control cultures of the specific growth of variation of average specific growth of the specific growth of th | Increase in control biomass                | 07 ,°~ .0    | × . 40 6 | 46 & 465      |
| Coefficient of variation of average specific growth rates in replicate control cultures 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | specific growth rates in the control cultu | res          | £ 35%60° | \$%           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | ficegrowth C |          | 0 V           |

The study was conducted in accordance with OFCD Guideline for Texing of Chemicals No. 201 "Alga, Growth Inhibition Test" (1984) and all relevant validity criteria for the guidelines that were in force at the time of performing the story were satisfied. O

In terms of the current version of OECD 201, (2011), the control growth rate and the coefficient of variation of average specific growth rates in control cultures satisfied current validity criteria. However, the coefficient of variation of sectional growth rates in control culture was greater than 35% and hence did not meet the current validity criterian. Overall, as the test fulfilled only two of three validity criteria; with regards to the OECD Gudeline 201 (2011) the study is not Calid.

### D. TOXICI ĔŊŊŴŎĬ

Table: Summary of endpoints

| Mean Measured Concer                                            | ntration (mg a.s./L) |
|-----------------------------------------------------------------|----------------------|
| Response variable                                               | NOEC                 |
| Growth Rate $(0, 72 h)$ $(0, 72 h)$ $(0, 72 h)$ $(0, 72 h)$     | 0.23                 |
| Area Under Corve $(0 - 72 h)$ $(0.47)$ $(0.47)$ $(0.31 - 0.72]$ | 0.068                |
|                                                                 |                      |

### III. CONCLUSION

Exposure of Navicula pellicitosa to Aclonifen resulted in an  $E_rC_{50}$  (0 – 72 h) value of 1.2 mg a.s./L (95% confidence limits: 0.72 to 2.1 mg a.s./L), and an E<sub>b</sub>C<sub>50</sub> (0 - 72 h) value of 0.47 mg a.s./L (95% confidence fimits: 0.31 to 0.72 mg a.s./L) based on the mean measured test concentrations. The No Observe Effect Concentration (NOEC) after 72 hours based on growth rate was 0.23 mg a.s./L, and 0.068 mg a.s./L based on cell biomass.



A Charles Ch

A CLARCE

Assessment and conclusion by applicant:

In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for the assessment purposes. The study was conducted in accordance with OECD Guideline for Testing of Chemicals No. 201 "Alga, Growth Inhibition Test" (1984) and all relevant validity criteria for the guidelines that were in force at the time of performing the study were satisfied.

In terms of the current version of OECD 201 (2011), the control growth rate and the coefficient of variation of average specific growth rates in control cultures satisfied current validity criteria. However, the coefficient of variation of sectional growth rates in control cultures was greater than 35% and hence did not meet the current validity criterion. Overall, as the test fulfilled only two of three validity criteria; with regards to the OECD Guideline 201 (2011) the study is not valid.

Therefore, as this study does not meet corrent OECD guideline validity officia, it should be considered as supportive only.

Assessment and conclusion by R

| Data Point: KCA 8.2.62/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report Author:       2019         Report Year:       2019         Report Title:       Amendment no. 1: Abga, growth inhibition test (OFCD 201), static exposure -<br>Effect of actionifers (AE F068300) on the growth of 6 algal species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Report Title: Amendment no. 1: Alga, growth inhibition test (OFCD 201), static exposure -<br>Effect of aslonifer, AE F068300) on the growth 616 algal species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Effect of actonifen AE F068300) on the growth of 6 algal species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Report No: $\mathcal{O}$ $\mathcal{S}$ BAY-0254-30 $\mathcal{S}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document $\mathcal{B}_{0}$ : $M-2/82/8-023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Guideline (x) followed in OECD Guideline for Testing of Chemicals Sect. 2: Effects on Biotic Systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Study:<br>Stu |
| (1981) surder $(1981)$ $(1981)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| čonsigeration of O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dratterised guideline 201, "Freshwater alga and cyanobacteria, Growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Distribution Vest", October 2004. "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deviations from current Courtern Guideline: OEC D 20152011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| test guideune: Validay criteria for some species not satisfied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Previous evaluation: Vesto evaluated and accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CL D'Affinially V Study Installed upon, December 2011 (KIVIS, DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| recording testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Accentability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| consideration of       Consideration of         Dract revises guideline 201 "Freshwater alga and cyanobacteria, Growth         Infibition Pest", October 2004.         Deviations from current         test guideline:         Validation Vest", October 2004.         Previous valuation:         yes evaluated and accepted         Source: Study list relied upon, December 2011 (RMS: DE)         GLP/Officially         recognised testing         facilities:         Acceptability/Reliabinty:         Xes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### Executive Summary

A stud was performed to determine the toxicity of the test item aclonifen (AE F068300) on six algal species of several taxonomic groups. The algae were exposed to various concentrations of the test item



over several generations under static conditions over a period of 72 hours or over a period to obtain at least a 16-fold growth in the control cultures.

Recovery of algal growth was investigated for a sensitive algal species to determine if the algestation effect noted in the definite growth inhibition test is reversible.

Stock solutions of the test item were prepared in acetone. The exposure concentrations were

| Chlorella vulgaris         | 0, |
|----------------------------|----|
| Chlamydomonas reinhardtii  | 0, |
| Xanthonema debile          | 0, |
| Closterium cornu           | 0, |
| Synechococcus leopoliensis | 0, |
| Nannochloropsis limnetica  | 0, |

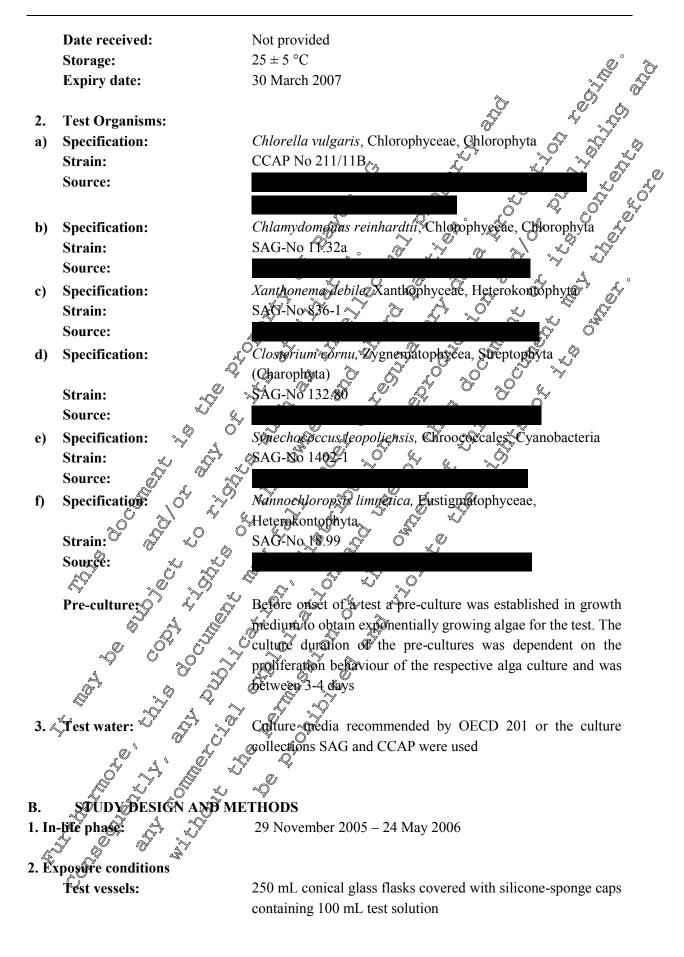
Stock solutions of the test item were prepared in acetone. The exposure concentrations were as sessed<br/>by chemical analysis. The nominal test concentrations were as follows:Chlorella vulgaris0, 62.5, 125, 250, 500, 1000 µg a.s./LChlamydomonas reinhardtii0, 3.0, 10.0, 30.0, 100, 300 µg a.s./LChlorende debile0, 5.0, 15.8, 50.0, 158, 500 µg a.s./LClosterium cornu0, 25.6, 64.0, 160, 400, 1000 µg a.s./LSynechococcus leopoliensis0, 25.6, 64.0, 160, 400, 1000 µg a.s./LNannochloropsis limnetica0, 125, 250, 500, 1000, 2000 µg a.s./LFor each concentration plot three replicates and for controls (test medium only) and acetone control six<br/>replicates each were exposed.

replicates each were exposed.

20% of initial concentration). The measured test concentrations deviated more than 20% from the nominal concentrations in several test concentrations. Therefore, the effect values were calculated based on the mean measured concentrations (anthmetic mean).

Concentration-effect relationships were observed for all algal species and were statistically analyzed to The effect concentrations regarding inhibition of growth rate are obtain effect concentrations. summarized as follows:

| Growth Rate                | EC50<br>Lice a.s./L                         | EC10<br>(pg/a.s./L) | NOEC<br>(µg a.s./L) |
|----------------------------|---------------------------------------------|---------------------|---------------------|
| Synechocoecus leopoliensis | 74.9                                        | 34.4                | 19.3                |
| Chlanstomonas reinhardtii  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~      | 5.1                 | 3.42                |
| Closterium cornu 🌮 😽 🖧 💡   | <sup>0</sup> ≪112 ×                         | 47.8                | 111                 |
| Xanthonema debila          | × 319                                       | ° 108               | 45.6                |
| Chlorella vulg@ris 🖉 🖉 👡   | 0 <sup>7</sup> ,4 <b>5</b> 0 0 <sup>7</sup> | 129                 | 85.0                |
| Nannochloropsis limnetica  | ST3 ℃                                       | 389                 | 263                 |
|                            |                                             | -                   |                     |


It could be shown that the algreidal properties of actonifen were reversible. There were no statistically significant differences in the growth rates of Chlamydomonas reinhardtii pre-exposed to 99.4 and 260  $\mu$ g a.s./L (inhibition of growth rate > 60%) or control medium after 48 h and 96 h after transfer to untreated growth medium.

# الله المعالمة على المعالمة على المعالمة معالمة معالمة معالم

estAte Batch no.: Purity: **Appearance:** 

Aclonifen, technical OP2150250 98.6% Yellow powder







**Experimental design:** 5 test concentrations plus 1 control and 1 solvent control (100 µL dimethylformamide/litre) per test species Six replicate vessels were prepared for the control and solvent **Replicates:** control and three replicate vessels for each treatment group. 10,000 cells/mL for Chlorella vulgaris, Chlamydomonas Initial cell density: reinhardtii and Xanthonema debiles. The cell sizes of these species are in the same range as the sizes of the standard species Pseudokirchneriella subcapitata and *Despodesmy* subspicatus and the initial cell density recommended in the OECD guide the was used. For Closterfum cornu 2000 cells mL were used, due to the large size of the algae For the picoplankton species Syntchococcus leopoliensis and Namoch Bropsic limnetica 1 4/ 105 coll/mk ° were used, due to the small size of the algae as recommended in the proposal for updating OPC 3/1 5 \ 22 **Temperature:** 7.80<sup>°©°</sup> 9.67 pH: souspension None. Gaseous exchange algal cells Aeration: maintained by orbital shaker at 100 rpr Continuous **Photoperiod:** 7365 - 🖗 62

# Light intensity:

### 3. Administration of the test item

Concentrated stock solutions were prepared by diluting the test iten in agerone and diluted with acetone to application solutions. Actone Concentrations in the test sultures was 100 µL/L. The acetonic application solutions were added to the growth media to obtain the required test concentrations and the test media were treated with ultra sound (ultrasonic water bath) for 5 minutes. The test item concentrations in the water phase were chemically analyzed after separation of the algae by centrifugation at low g-force

### 4. Test organism assignment and treatment

All work for the test preparation was performed under sterile conditions. The test vessels were filled with 100 pril test solution.

The cell density of the inoculum culture was determined and an adequate aliquot of the inoculum culture was added into the test conture to obtain the required cell density. Prior to the addition of the inoculum culture, the respective volume was removed from the 100 mL test solution. The initial cell density was exemplary checked by microscopical counting in one vessel at test start.

For the flamenous Xanthonenia debile individual test vessels were prepared for each sampling point (9 replicates for test concentration, 18 replicates for controls). To break the filaments into shorter chains or single cells as far as possible, the whole test vessel was sonicated in an ultrasonic water bath for 8 minutes

### 5. Measurements and observations

Cell density was determined in aliquots of every test vessel after 24, 48 and 72 or 96 hours.



The pH values were measured in an additionally prepared replicate at test start and directly in the test vessels at the end of the test. During the exposure the incubation temperature was measured once a day in an additionally prepared control vessel, which was continuously incubated.

The freshly prepared solutions at test start and the aged solutions after 72 h were analysed for the test item concentrations by HPLC measurement with an UV-detection of the analyte at 391 nm.

The algistatic property of the test item was determined using the algal species showing the highest sensitivity to aclonifen regarding biomass integral, *Chlamydomonas refibrardtii*.

### 6. Statistics/Data evaluation

- The evaluation of the concentration-effect relationships and the calculations of effect concentrations were based on the arithmetic mean of the measured concentrations. The  $\sqrt{2}$  measured concentrations varies by < 20% from the initial pleasured.
- The mean value of the cell counts for each concentration plot was used for plotting growth curves.
- Calculation of the percent inhubition of growth rate [1] and biomass (B) was performed according to the guideline
- The percent inhibition values were plotted as a function of the test tem concentration.
- Where the test results from an inhibition with levels around 50% they were statistically analyzed to determine ECG and EC<sub>50</sub> values together with 95% confidence intervals, if possible, using Probit-analysis assuming log-hormal distribution of the values by using the computer programme PoxRaf
- The NOEC and LOEC were determined using the Williams t-test or the Welch t-test.

# IL RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

The concentrations of aclonic were generally stable during the test (deviations of concentrations at test end from concentrations at test start 20%). The measured test concentrations of aclonic were between 47 and 140% of the normal levels variable in the different tests:

Since the deviations of the measured concentrations from the nominal concentrations of aclonifen were mostly higher than 20% and the test item was stable over the test period, the effect values were calculated based on measured concentrations (anthmetric mean).

### Table: Measured test concentrations from the exposure of six algal species to Aclonifen

| Nominal 🇳       |                            | ~         |           | oncentration |           |           |
|-----------------|----------------------------|-----------|-----------|--------------|-----------|-----------|
| concentration   |                            | Hours ~   |           | 72 Hours     |           | ean       |
| (µg a.so)L)     | ο <sup>γ</sup> μg a.s./L ( | % nominal | μg a.s./L | % initial    | μg a.s./L | % initial |
| Chlorella vulga |                            | ,         |           |              |           |           |
| Control         |                            | -         | 0         | -            | 0         | -         |
| 625             | 45.0                       | 72.0      | 30.0      | 66.7         | 37.5      | 83.3      |
| 125             | 96.0                       | 76.8      | 74.0      | 77.1         | 85.0      | 88.5      |
| 250             | 215                        | 86.0      | 173       | 80.6         | 194       | 90.3      |
| 500             | 296                        | 59.2      | 310       | 105          | 303       | 102       |



|  | Ac  |
|--|-----|
|  | 110 |

| 1000              | 611                 | 61.1                                   | 608                   | 99.5                                       | 610                  | 99.8              |
|-------------------|---------------------|----------------------------------------|-----------------------|--------------------------------------------|----------------------|-------------------|
| Chlamydomona      | s reinhardtii       |                                        |                       |                                            |                      | <u> </u>          |
| Control           | 0                   | -                                      | 0                     | -                                          | 0                    | -2                |
| 3                 | 3.14                | 105                                    | 3.70                  | 118                                        | 3@42                 | 199               |
| 10                | 13.1                | 131                                    | 12.6                  | 95.8                                       | Å2.8                 | <b>\$9</b> 7.9 \$ |
| 30                | 34.2                | 114                                    | 28.0                  | 81.9                                       | 31.1                 | \$ 91             |
| 100               | 103                 | 103                                    | 95.4                  | 92.3                                       | 99.4 🎾               | 96,2              |
| 300               | 274                 | 91.3                                   | 246 💎                 | 89.8                                       | 260 🖒                | 94.9 V            |
| Xanthonema de     | bile                |                                        | Å                     | 10,4                                       | k)                   | 2 5               |
| Control           | 0                   | -                                      | <u>A</u>              | Q in                                       | · · ·                |                   |
| 5.0               | 6.99                | 140                                    | Q6.20                 | <b>№</b> 8.7                               | <b>8</b> .6 <b>0</b> | Ø94.1 Ø           |
| 15.8              | 16.0                | 102                                    | ≰ 15.4 <sub>6</sub> ° | <i>ي</i> ي 96.3√                           | J 15.2               | °∼y 98.®          |
| 50                | 48.9                | 97.8                                   | 0 42.9 (              | 865 ~                                      | 0° 450° ,            | 93,2              |
| 158               | 137                 | 86.7                                   | • <b>√</b> 940 ~      | × 102 ×                                    | A39                  | £101 Ø            |
| 500               | 431                 | 86.2                                   | × 430                 | <sup>0</sup> 99.8% کې                      | م<br>م 430 م         | × 99 ×            |
| Closterium corr   | ıu                  | R 4                                    |                       |                                            |                      | Şa V              |
| Control           | 0                   | L- 0                                   | ×0 ×                  | 2-8                                        |                      |                   |
| 25.6              | 17.5                | 68.4                                   | Q 15 Q                | 6 85.Z                                     | 0 16.30              | ≫ 92.9            |
| 64                | 49.0 🛸              | × 76.6                                 | 4 <i>50</i> 5 A       | 2 9 <b>7</b> 9                             | 40.3                 | 96.4              |
| 160               | 124                 | ່ ຊຽ7.5 ຼີບໍ                           | Å97 or                | A78.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <u></u>              | 89.1              |
| 400               | 304                 | 76.06                                  | 255 <u>c</u>          | 83.9                                       | ~~~ 28¢~             | 92.0              |
| 1000              | 7.42                | ₹ 7462 0                               |                       | 95,8                                       | <u>_</u>             | 97.9              |
| Synechococcus     | leopotiensis 🖉      |                                        | 27<br>27              |                                            | 4                    |                   |
| Control           |                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ Q.~Q                | 6 - 4                                      | 0                    | -                 |
| 25.6              | Č 17,5              | 68,4                                   | × 21 , 1              | y he a                                     | 19.3                 | 110               |
| 64 🔊              | 42.0 O              | <b>6</b> 5.6 📡                         | A1.7                  | ° <sup>99.2</sup> .€                       | 41.8                 | 99.6              |
| 160 Ø             | 96.0                | <i>€</i> 60.0                          | 8 111 B               | 116                                        | 104                  | 108               |
| 400               | 230                 | S 575                                  | 263                   |                                            | 248                  | 108               |
| 1000              | 26 <del>2</del> 5 ~ | <u>∢</u> 62.5 Å                        | °∼758 (               | ×121                                       | 691                  | 110               |
| Nannochlorops     | is limnetiça        |                                        | NO O                  | ~                                          |                      |                   |
| Control           |                     |                                        |                       | -                                          | 0                    | -                 |
| 125               | Ø3.0 O              | 2°94.4 ~                               | \$68.3                | 73.5                                       | 80.7                 | 86.7              |
| 250               | 212                 | 84.8                                   | \$ <sup>3</sup> 1520  | 71.5                                       | 182                  | 85.8              |
| 5000              | 2 <i>5</i> 2        | 50.4                                   | 273                   | 108                                        | 263                  | 104               |
| 1000              | ~\$ <b>46</b> 8 A   | <b>46.8</b>                            | °~~644                | 138                                        | 556                  | 119               |
| <sup>5</sup> 2000 | 1401                | × 70.1~                                | 1236                  | 88.2                                       | 1319                 | 94                |

The validated method is summarised in Document M-CA4 (CA 4.1.2/67).

### BIOLOGICAL DATA B.

Deviations of the point values in the different control cultures were between 0.24 and 1.47.

A concentration dependent inhibition of algal growth could be observed in all six algae tests. Microscopic observation revealed normal appearances of the algae despite an increase in cell debris in the cultures with increasing growth inhibition.



,V

The test results showed a clear dose response relationship. They were statistically analyzed to determine 72 hour EC<sub>50</sub>-values together with 95% confidence intervals and an EC<sub>10</sub>-value using Probit-analysis assuming log-normal distribution of the values. The NOEC and LOEC were determined using the the acetone control. For the evaluation the acetone controls were used.

|                                |                                     | Crony the                              | oarameter 🖉                                  |                        |
|--------------------------------|-------------------------------------|----------------------------------------|----------------------------------------------|------------------------|
| Mean measured                  | Mean specific                       |                                        | Q.                                           |                        |
| concentration                  | growth rate                         | % Inhibition                           | Biomass                                      |                        |
| (µg a.s./L)                    | (0 - 72h)                           |                                        | (a72h) (                                     | % Rehibition           |
| Chlorella vulgaris             | (0 721)                             |                                        |                                              |                        |
| Solvent Control                | 2.217                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 465 J                                        | $\nabla \sim \sqrt{4}$ |
| 37.5                           | 2.102                               | 0 <sup>4</sup> 5.20 <sup>4</sup> ×     | \$ 3040                                      | 247                    |
| 85.0                           | 2.102                               |                                        | 279°                                         |                        |
| 194                            | 1.933                               | × + + × 0                              | A66                                          | 64.4                   |
| 303                            | 1.302                               | 4130                                   | 31.9.2                                       | \$ \$93.1 \$           |
| 610                            | 0.889                               | 599                                    | ∞ 6.92                                       | \$ 98.5 °              |
| Chlamydomonas rhu              | <u> </u>                            |                                        |                                              |                        |
| Pooled Control                 | 1.385 Q                             |                                        | \$ 69.5                                      |                        |
| 3.42                           | 1.380                               | 0°0.4°S 0                              | 65.30                                        | Q ( -9.9               |
| 12.8                           | 1,121                               | 19.9                                   | 09.5<br>65.3<br>23.9<br>23.9<br>29.8<br>29.8 | © 59.9                 |
| 31.1                           | 0.867                               | Q \$7.4 0                              | × 24.8 . Q                                   | 63.4                   |
| 99.4                           | 0.553 O                             | 60.0 g                                 | 8.33                                         | K <sup>3</sup> 86.0    |
| 260                            | 0 421                               | 66.0                                   | 7.12 ×                                       | 88.0                   |
| Xanthonema debilei             |                                     |                                        |                                              | 20.0                   |
|                                | 1.233 V                             | 9 <del>5</del> 5                       | 28.23                                        | _                      |
| 6.6                            |                                     | ~ -1.8° (i                             | \$\_29.25\@                                  | -3.6                   |
| 15.7 _0                        |                                     | <u>~ 5.0 ~ ~</u>                       | 22.23                                        | 21.2                   |
| 45.6                           | D183 O                              | K 24.0 D                               | 22.83                                        | 19.1                   |
| 139                            | 9 × 1.040                           | مَحْمَ 15.6                            | <sup>©</sup> <sub>≪</sub> ,1.61              | 58.9                   |
| 430                            | × 0.443                             | ° 64.1 ° 🦉                             | 0 1.04                                       | 96.3                   |
| Closterium cornu               |                                     |                                        | 、O <sup>7</sup>                              |                        |
| Solvent Control                | ♦ 1.042 €                           | 6 <sup>3</sup> , <sup>3</sup> 7- 4,    | <u>م</u> لك 42.58                            | -                      |
| 16.3                           | 0.995                               | <u>4.5</u>                             | 37.17                                        | 12.7                   |
| 47.3 🖗                         | 0.889                               | <u>, 17,6</u>                          | 28.17                                        | 33.9                   |
| 111                            | 0 <sup>5</sup> 0 <sup>5</sup> 996 0 | 0 <sup>×</sup> 40.7 °                  | 14.67                                        | 65.6                   |
| 280                            | OI.177                              | 213.0                                  | -0.83                                        | 102.0                  |
| 726                            | <u> </u>                            | \$\$\$213, <b>\$</b> \$                | -1.50                                        | 103.5                  |
| Synechecoccus leop             | oliensis Q                          |                                        | 1                                            |                        |
| 0                              | 1.852                               | × ×                                    | 1.85                                         | -                      |
| <u>م 19.3</u>                  | <u>1.802</u>                        | 2.7                                    | 1.80                                         | 2.7                    |
| 41.8                           |                                     | 17.0                                   | 1.54                                         | 17.0                   |
| 104                            | 0559<br>0.012                       | Q 69.8                                 | 0.56                                         | 69.8                   |
| 41.8<br>104<br>248<br>691<br>× | ♥ Ø.012 ♥                           | 100.7                                  | -0.01                                        | 100.7                  |
| 691 <sup>6</sup> V             |                                     | 113.9                                  | -                                            | -                      |
| Nannoc Abropsis lin            | inetica                             |                                        |                                              |                        |
| Solvent Control                | A 20990                             | -                                      | 153.5                                        | -                      |
|                                |                                     | 6.1                                    | 144.3                                        | 6.0                    |
| & 18P                          | L 1.008                             | -1.8                                   | 167.5                                        | -9.1                   |
| 283                            | 1.023                               | -3.3                                   | 170.0                                        | -10.1                  |
| <sup>0</sup> 556               | 0.352                               | 64.5                                   | 41.37                                        | 73.0                   |
| 1319                           | -0.196                              | 119.8                                  | -                                            | -                      |

### Table:



### Algistatic property

The growth rate of *Chlamydomonas reinhardtii* exposed to 99.4 and 260 µg a.s./L was inhibited > 69%. After transfer into fresh medium without aclonifen, a fast recovery could be observed. There were now statistically significant differences in the growth rates after 48 h and 96 h, pre-exposed to 31.1, 99.4 and 260 µg a.s./L or control medium in the cultures with equal initial cell counts (360 cell/mI

ĈA

### C. VALIDITY CRITERIA

| Validity                                | Required    |                     |                    | Ac         | hieved 🔗     | Ű.                                     | N N C          |
|-----------------------------------------|-------------|---------------------|--------------------|------------|--------------|----------------------------------------|----------------|
| criterion                               | (OECD 201,  | Chlorella           | Chlamydomonas      | Xanthonema | Closterium   | Synechococcus                          | Nannocl@ropsis |
| criterion                               | 2011)       | vulgaris            | reinhardtii        | A debile   | Pornu 🔊      | ° leopolijensis 🔍                      | , limnetica    |
| Increase in                             | 16          | 751                 | 64                 | 0° 41      | 23~          | 260                                    |                |
| control biomass                         | 10          | 751                 | 1.                 |            | <i>s</i> ( 1 | 260                                    |                |
| Mean                                    |             |                     | Ň                  |            |              | ¢ ~~ ,                                 | 4              |
| coefficient of                          |             |                     | 4                  |            |              |                                        |                |
| variation for                           |             |                     |                    | "~~~       | × .1         | S U                                    |                |
| section-by-                             | ≤ 35%       | 43.7%               | 50.50              |            |              | 59.5×                                  |                |
| section specific                        | $\geq 33\%$ | 43./%               | J <sup>39.5%</sup> | 35.0% K    | 290%         | · y 59.5 w                             |                |
| growth rates in                         |             |                     | <b>39.5%</b>       |            |              | 59.5%<br>59.5%                         |                |
| the control                             |             | ø                   |                    | v V        | $\sim$       | N. G                                   | R.             |
| cultures                                |             | R                   | Å Å                | à 6        |              |                                        |                |
| Coefficient of                          |             | ŝ                   | N O                |            | <u>A</u>     | ° <sub>2</sub> ° ≰                     |                |
| variation of                            |             | A G                 |                    | 10° K      |              | Ú Ó                                    | ¥              |
| average specific                        | < 100/      |                     |                    | 4.0%       |              |                                        | 2 10/          |
| growth rates in                         | ≤10%        | چ <sup>3.6%</sup> گ |                    | 4.9%       | 4.20         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2.1%           |
| replicate                               | %           | r s                 |                    |            | , ~~ s       |                                        |                |
| control cultures<br>All validity criter | *           | S.                  | antrols of 5       |            | × «.         |                                        |                |

Values in **bold** fail the recevant validity

With the exception of the tests performed of *C. valgaris C. reintardtii* and *S. leopoliensis*, all validity criteria were satisfied in all other ests and therefore these tests can be considered to be valid. **D. TOXICITY ENDPOINTS** 

|                     |                                             | <u>_~~~ ~ ~ ~</u>               |       |       |  |  |  |
|---------------------|---------------------------------------------|---------------------------------|-------|-------|--|--|--|
| Banamatan           | S & Mean measured concentration (ug a.s./L) |                                 |       |       |  |  |  |
| Parameter           | EC(40 (0 - 72 h)                            | $C = EC_{50}(0 - 72 \text{ h})$ | LOEC  | NOEC  |  |  |  |
| Chlorella yulgaris  |                                             |                                 |       |       |  |  |  |
| Growth cate (r)     | [/ [18.8 − <b>∠</b> Q/] /                   | 450<br>[323 – 889]              | 194   | 85.0  |  |  |  |
| Biomass (b)         |                                             | 86.8<br>02.5 – 196.5]           | <37.5 | <37.5 |  |  |  |
| Chlamydomonas reinh |                                             | Â,                              |       |       |  |  |  |
| Growth rate of      | 5.10<br>0.33 (13.4]                         | 75.3<br>[40.1 – 171]            | 12.8  | 3.42  |  |  |  |
| Growth rate (F)     | © 0,43<br>~(n.d.]                           | 15.8<br>[n.d]                   | 12.8  | 3.42  |  |  |  |
| Xanthonema debile   |                                             |                                 |       |       |  |  |  |
| Growth rate (r)     | 108<br>[54.7 – 151]                         | 319<br>[258 - 400]              | 139   | 45.6  |  |  |  |
| Biomass (b)         | 21.5<br>[0.001 - 52.6]                      | 98.7<br>[24.9 – 472]            | 15.7  | 6.60  |  |  |  |
| Closterium cornu    |                                             |                                 |       |       |  |  |  |



| Growth rate (r)         | 47.8<br>[0.82 – 76.7] | 112<br>[61.0 – 229]   | 280                                    | 111                                     |
|-------------------------|-----------------------|-----------------------|----------------------------------------|-----------------------------------------|
| Biomass (b)             | 19.5<br>[4.92 – 32.5] | 68.2<br>[46.1 – 98.3] | <16.3                                  | <16.3                                   |
| Synechococcus leopoli   | ensis                 |                       | Č,                                     | <u> </u>                                |
| Growth rate (r)         | 34.4<br>[29.3 - 38.9] | 74.9<br>[69.6 – 80.5] | 41.8                                   | 19.3                                    |
| Biomass (b)             | 20.1<br>[18.5 - 21.5] | 37.0<br>[35.8 - 38.1  | 41.8                                   |                                         |
| Nannochloropsis limn    | etica                 | , Wr                  | Q.                                     |                                         |
| Growth rate (r)         | 389<br>[n.d.]         | 512<br>[12.4.]        | 2 <sup>556</sup>                       | 263°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° |
| Biomass (b)             | 303<br>[222 – 357]    | 461<br>[402 - 524]    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                         |
| [95% confidence limits] | ·                     | N O N                 |                                        | y w                                     |

n.d.: not determined due to mathematical reasons

## HI. CONCLUSION

Concentration-effect relationships were observed for all aleal species and were statistically analyzed to obtain effect concentrations. The effect concentrations regarding inhibition of growth rate are summarized as follows:

| summarized as follows:   |         |                |                                                                                              | )<br>J                 |
|--------------------------|---------|----------------|----------------------------------------------------------------------------------------------|------------------------|
| Growth Rate              |         | ErC50          | <sup>Φ</sup> ErC <sub>10</sub><br><sup>Φ</sup> (μg <sup>°</sup> <b>a,</b> δ./L) <sup>Φ</sup> | ∭NOEC<br>∭ (μg a.s./L) |
| Synechococcus leopoliens | is Q    | × (74.9        | 34.4                                                                                         | ر» 19.3                |
| Chlamydomonas reinhara   |         | 5 75 V Ö       | د 5 <u>.</u> 1 €                                                                             | 3.42                   |
| Closterium cornu 😴       | Ø X     | 0, 192 2       | 0' 4 <del>7</del> .8 2                                                                       | 111                    |
| Xanthonema debile        |         | § 319          | Ø 108 Ø                                                                                      | 45.6                   |
| Chlorella vulgaris       | ~~~~ «. | ్త్ర 450 లో ని | 129                                                                                          | 85.0                   |
| Nannochlorops limned     |         | & 543 O        | 389                                                                                          | 263                    |

It could be shown that the algie dal properties of actonifer were reversible.

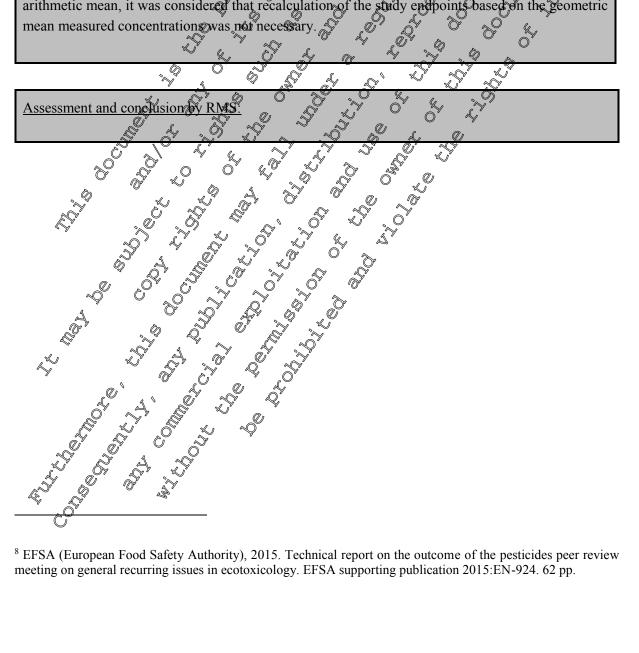
(2006)

## Assessment and concession by appleant:

With the exception of the tests performed on *C. valgaris, C. reinhardtii and S. leopoliensis,* all validity prteria were satisfied in all other tests and therefore these tests can be considered to be valid. Concentration-effect relationships were observed for all algal species and were statistically analyzed to obtain effect concentrations. The effect concentrations regarding inhibition of growth rate are summarized actollows:

S

| Growth Rate 2 5 2 ~        | © E <sub>r</sub> C <sub>50</sub><br>(μg a.s./L) | E <sub>r</sub> C <sub>10</sub><br>(μg a.s./L) | NOEC<br>(µg a.s./L) |
|----------------------------|-------------------------------------------------|-----------------------------------------------|---------------------|
| Synectococcus leopoliensis | 74.9                                            | 34.4                                          | 19.3                |
| Chlamydonghas reinhardthi  | 75.3                                            | 5.1                                           | 3.42                |
| Losterium cornu 🔊          | 112                                             | 47.8                                          | 111                 |
| Xanthonema debile          | 319                                             | 108                                           | 45.6                |
| Chlorella vulgaris         | 450                                             | 129                                           | 85.0                |
| Nannochloropsis limnetica  | 513                                             | 389                                           | 263                 |




It could be shown that the algicidal properties of aclonifen were reversible.

The results were based on the arithmetic mean measured test concentrations. EFSA's Outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxic logy (EFSA 2015 recommends that mean measured concentrations are calculated using the geometric mean rather than the arithmetic mean. The geometric mean measured concentrations are presented below.

|   |                            |                                                          | 0 |
|---|----------------------------|----------------------------------------------------------|---|
|   | Species                    | Geometric mean measured concentrations (µg as /L)        | Ç |
|   | Synechococcus leopoliensis | 19, 42, 109, 247 and 688 Q                               | ) |
|   | Chlamydomonas reinhardtii  | A 3.4, 13Q31, 99 and 260 A                               |   |
|   | Closterium cornu           | 16, 49, 110, 278 and 726                                 |   |
|   | Xanthonema debile          | ا الأي التي التي التي التي التي التي التي الت            |   |
| l | Chlorella vulgaris         | 37, 84 093, 30 and 60 4 4                                |   |
| l | Nannochloropsis limnetica  | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ |   |
|   |                            |                                                          |   |

Given that the geometric mean measured concentrations were similar to those determined from the arithmetic mean, it was considered that recalculation of the endpoints based on the geometric study **X O** mean measured concentration was not necessary



<sup>8</sup> EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.



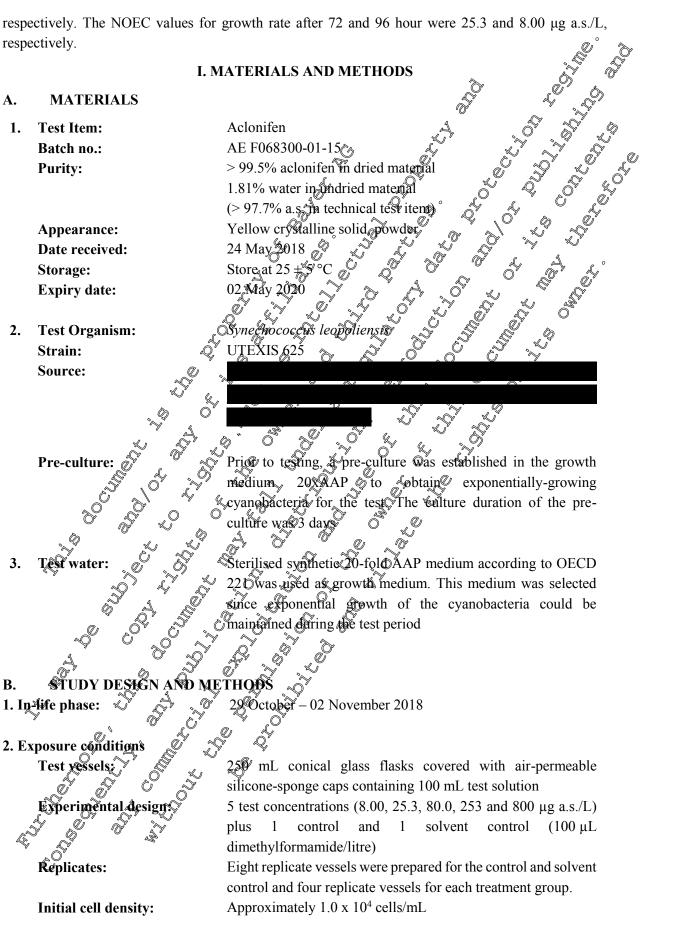
| Data Point:                | KCA 8.2.6.2/03                                                                    |
|----------------------------|-----------------------------------------------------------------------------------|
| Report Author:             |                                                                                   |
| Report Year:               | 2019                                                                              |
| Report Title:              | Freshwater alga, growth inhibition test (OECD 201) - Aclonifen: Effects on        |
|                            | Synechococcus leopoliensis in a 96 hours growth test                              |
| Report No:                 | EBCL0021                                                                          |
| Document No:               | M-649614-01-1                                                                     |
| Guideline(s) followed in   | OECD Guideline 201: "Freshwater Alga and Cyangbacteria, Growth Inhibition         |
| study:                     | Test" (March 23, 2006); Annex 5 corrected (July 28, 2011).                        |
|                            | EPA OCSPP 850.4550: Cyanobacteria (Anabaona flos-aquae) foxicity Januar<br>2012). |
|                            |                                                                                   |
|                            |                                                                                   |
|                            | registration of agricultural premicals: Notification No.12 Nousan 8147 (rev.      |
|                            |                                                                                   |
| Deviations from current    | Current Guideline: OECD 200 2011 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                    |
| test guideline:            | None                                                                              |
| Previous evaluation:       | No, not previously submitted                                                      |
|                            |                                                                                   |
| GLP/Officially             | Yes, conducted under CLP/Officially recognized testing facturies                  |
| recognised testing         |                                                                                   |
| facilities:                |                                                                                   |
| Acceptability/Reliability: | Yes Q' a a a a a a a a a a a a a a a a a a                                        |
|                            |                                                                                   |
|                            |                                                                                   |

### **Executive Summary**

A study was performed to assess the inhibitory effect of Aclonifen on the growth of the uni-cellular freshwater cyanobacteria *Synechococcus leopoliensis* during an exposure period of 96 hours. The test was run with a control solvent control and hominal test concentrations of 8.00, 25.3, 80.0, 253 and 800  $\mu$ g a.s./L. Observations of cell growth were recorded dails (24, 48, 72 and 96 hours) to determine the potential effect on growth rate relative to the control.

To quantify substance related effects, growth of the test species in the test solutions was compared to that of the controls. The concentrations causing a 10 20 and 50% inhibition of growth after 72 and 96 hours were determined and expressed as the  $E_rC_{10}$ ,  $E_rC_{10}$ , and  $E_rC_{50}$  values, respectively.

Additional response variables were yield and "area under the growth curve" (biomass), which may be needed to fulfil specific regulatory requirements in some countries. The 72 - and 96 - hour EC<sub>10</sub>, EC<sub>20</sub>, and EC<sub>5</sub> values for these parameters were also determined ( $E_yC_x$  for yield and  $E_bC_x$  for biomass).


According to the guidelines, NOEC and OEC values were additionally determined, if possible.

The concentrations of acloniten in the test media were determined by chemical analysis using LC-MS/MS at the start of the test, after 72 and after 96 hours (LOQ = 1.5  $\mu$ g a.s./L). At test start, the measured concentrations were in the range of 99.2 and 113% of the nominal values. After 72 hours the measured concentrations ranged between 81.8 and 103% of nominal. At the end of the 96-hour test, the concentrations were between 100 and 114% of nominal. Since the test concentrations did not deviate by more than 20% from the nominal concentrations, the nominal values were used for the evaluation.

There were concentration dependent effects on the growth of *Synechococcus leopoliensis* up to 32.6% inhibition at the highest test concentration of 800  $\mu$ g a.s./L after 72 hours and up to 45.3% after 96 hours. The 72- and 96-hour  $E_rC_{50}$  for growth rate were calculated to be > 800  $\mu$ g a.s./L and 644  $\mu$ g a.s./L,



respectively. The NOEC values for growth rate after 72 and 96 hour were 25.3 and 8.00 µg a.s./L, respectively.





| Temperature:     | 22.0 – 22.5 °C                                                                               |   |
|------------------|----------------------------------------------------------------------------------------------|---|
| pH:              | 7.83 – 8.63                                                                                  | ð |
| Aeration:        | None. Gaseous exchange and suspension of algal cells maintained by orbital shaker at 150 rpm | Â |
| Photoperiod:     | Continuous                                                                                   | ) |
| Light intensity: | 3216 - 3315 lux                                                                              |   |

### 3. Administration of the test item

For a stock solution of a clonifen in the solvent dimethylformamide (DMF) 40.96 mg test item (purity 97.7% a.s. in technical test item, equivalent to 400 mg pure a clonifen (a.s.)) were transferred from a teflon weighing boat using DMF to a glass flask with 5 mL DMD resulting in a yellowish, clear solution. 100  $\mu$ L of this stock solution was given to 1 L growth medium and intensively stored for 15 min using a magnetic stirrer. Subsequently, the other test concentrations were prepared by serial dilution from this stock solution. The concentration of the solvent was 0.1 millifleers per liter (nL/L) and was the same in all test treatments and the solvent control. In addition, a control with growth medium only was included in the test.

### 4. Test organism assignment and treatment

There were eight replicates at the control and solvent control and four replicates per treatment level. The test vessels were filled with 100 mL of the respective test solutions containing the test item and the controls.

The cell density of the inoculum culture (pre-culture) was determined and 257  $\mu$ L of the inoculum culture (cell density 3.888 x 10 cell/mL) were added into the individual test vessels and filled up to 100 mL test solution or untreated growth medium to obtain the required cell density of 10 000 cells/mL.

### 5. Measurements and observations

The cell concentration overe determined in the pre-culture prior to the initiation of the test and daily during the 4-day growth test.

The cell numbers were counted microscopically after 24 hours, since the cell densities were too low for measuring the phlorophyll fluorescence. Five group squares of a Fuchs-Rosenthalchamber were counted per replicate and the mean value was multiplied with 500 to obtain the cell number/mL.

The cell density was determined by measurements of chlorophyll fluorescence (Synergy MX Multi Detection Reader) on the other days of the test. The excitation wavelength was 685 nm (gain 100) and the emission wavelength was 620 nm.

The following equation for relating cell could to fluorescence was used:

 $y = 0.0013 x - 195.68 r^2 = 0.9967$  (y = fluorescence; x = cell counts/mL):

Microscopic observations were performed to verify a normal and healthy appearance of the inoculum culture and to observe any apportance of the cyanobacteria (as may be caused by the exposure to the test substance) and test media during the growth test.

Samples of freshly prepared test media were taken from all five test solutions, the control and the solvent control at the beginning of the test prior to distribution to the test vessels. After 72 hours and at test end (96 hours), analysis was performed in representative individual replicates per treatment level.



### 6. Statistics/Data evaluation

The evaluations of the concentration-effect-relationships and the calculations of effect concentrations were performed as outlined in the OECD guideline 201 and the EPA OCSPP:

- Due to the analytical recovery between 80 and 120% of the nominal concentrations, the nominal values according to OECD 23 were used for the evaluation.
- The mean value of the cell counts for each concentration plot were used for plotting growth curves.
- Mean growth rates, yield and "area under the growth curve" were calculated for the entire exposure period of 0 72 hours and 0 96 hours.
- Calculation of the percent inhibition compared to the control of growth rate [r], yield [y] and "area under the growth curve (cumulative biomass)" [B] were performed according to the guidelines.
- The percent inhibition values of the three parameters were plotted as a function of the concentrations of the test item of test item
- The test results were statistically analysed to determine as  $EC_{505}EC_{20}$  and EC (growth rate, yield, "area under the growth curve") values together with 95% confidence intervals using linear Weibull regression analysis. Individual replicate responses were used for the regression analysis. Statistically significant difference was not observed between the confol and the solvent control. The analysis was performed against the pool of controls.
- According to OECD 201 the LOEC and the DOEC were statistically determined. The computer program ToxRat® was used for statistical evaluations.

# TI. RĚSULTS AND DISCUSSION

## A. ANADYTICAL VERIFICATION

At the start of the exposite, the recoveries of the measured concentrations were in the range of 99.2 and 113% of nominal. After 72 hours, the measured concentrations ranged between 81.8 and 103% of nominal. At the enclose the 96-hourstest, the concentrations were between 100 and 114% of nominal.

The test was evaluated using the nominal concentrations according to OECD 23, since the test item concentrations were within \$0 and \$20% of the nominal values.

### Table: Measured test concentrations from the exposure of Synechococcus leopoliensis to Aclonifen

| Nominal Q Q Measured Concentration |                                                                                                                                                  |                                        |                                                                                       |       |                                                 |                     |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|-------|-------------------------------------------------|---------------------|
| concentration                      | 0 H                                                                                                                                              |                                        | 2 ¥                                                                                   | ours  | 96 H                                            | ours                |
| (µg a.s./L)                        | μg at s.7L                                                                                                                                       | ý v <b>en</b> om                       | μg a.s./L                                                                             | % nom | μg a.s./L                                       | % nom               |
| Control                            |                                                                                                                                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <loq< td=""><td>-</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | -     | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
| Solvent<br>Control                 | S <loq< td=""><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<>                   | -     | <loq< td=""><td>-</td></loq<>                   | -                   |
| 8.00                               | n <b></b>                                                                                                                                        | 99.2                                   | 6.55                                                                                  | 81.8  | 8.00                                            | 100                 |
| £ <sup>25.3</sup>                  | 27.4                                                                                                                                             | 108                                    | 25.0                                                                                  | 98.8  | 26.5                                            | 105                 |
| 80.0                               | 90.4                                                                                                                                             | 113                                    | 82.2                                                                                  | 103   | 88.2                                            | 110                 |
| 253                                | 287                                                                                                                                              | 113                                    | 250                                                                                   | 98.9  | 265                                             | 105                 |
| 800                                | 882                                                                                                                                              | 110                                    | 769                                                                                   | 96.2  | 916                                             | 114                 |



Nom: Nominal concentration LOQ: Limit of Quantitation =  $1.5 \ \mu g \ a.s./L$ 

The validated method is summarised in Document M-CA4 (CA 4.1.2/78).

### B. BIOLOGICAL DATA

The pH of the controls and solvent controls was measured to be 7.85 and 7.90 in the fresh medium, respectively, at test start. The pH of the test media was between 7.83 and 7.92 at test start. At the termination of the growth test the pH of the aged control media ranged between \$.55 and 8.61 and \$.61 and \$.61 and \$.63 for the solvent control. The pH of the test media was between 8.60 and 8.63 for the solvent control. The pH of the test media was between 8.60 and 8.64. The pH of the control medium did not increase by more than 1.5 units the pH of the test.

Table:Summary of effects from the exposure of Synethococcus leopoliensis to Actonifer for<br/>72 hours

| 12                           | nour s                          |                       | 0, %               | õ a »              | I T L                            | A          |
|------------------------------|---------------------------------|-----------------------|--------------------|--------------------|----------------------------------|------------|
| Nominal                      |                                 | 2                     | Growth             | parameter          |                                  |            |
| concentration<br>(µg a.s./L) | Mean<br>specific<br>growth rate | %<br>Inhib@ion        |                    | Inhibition         | Biomass                          | Inhibition |
| Control                      | 1.474                           | Å-                    | 82                 | - X- X             | £1519,5                          | , C.       |
| Solvent<br>Control           | 1.460                           |                       | o <sup>2</sup> 795 |                    | 0 149 x                          | · -        |
| 8.00                         | 1.474 🔏                         | <sup>ب</sup> ر 0.49 ک | × <sup>82</sup>    | ~2.08 ×            | Q1512                            | -1.16      |
| 25.3                         | 1.452                           | 01.01                 | 77                 | 4.12               | 1424                             | 4.75       |
| 80.0                         | 1.1561                          | 21,21                 | ÷ 20°.             | 6d.40              | <b>8</b> 3 <b>4</b> <sup>1</sup> | 44.23      |
| 253                          | $1 O 16^1$                      | <b>39</b> .71         | $20^2$             | Ø5.01 <sup>∞</sup> | 6881                             | 54.00      |
| 800                          | 0.989 <sup>1</sup>              | <u></u>               | 182                | @ 77.10            | 653 <sup>1</sup>                 | 56.35      |

<sup>1</sup>: Significant difference to pooled control, Williams, t-test  $\alpha = 0.05$ , one-sided graller  $\sqrt{2}$ 

<sup>2</sup>: Significant difference to pooled control, Welch to est  $\alpha = 0.05$ , one-sided shaller

Exposure of *Synechococeus leopoliensis* to Actonifen result of in E. $C_{10}$ , ErC<sub>20</sub> and ErC<sub>50</sub> (0 – 72 h) values of 35.4 48 and greater than 800 µg a.s./L respectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 72 hours based on growth rate was 25.3 µg a.s./L and the Lowest Observed Effect Concentration (LOEC) was 80 µg a.s./L.

Table: Summary of effects from the exposure of Synechococcus leopoliensis to Aclonifen for

| Nominal            |                                 |             |                   |                 |                   |                 |
|--------------------|---------------------------------|-------------|-------------------|-----------------|-------------------|-----------------|
| concentration      | Mean<br>specific<br>growth rate | Winhibition | Yield             | %<br>Inhibition | Biomass           | %<br>Inhibition |
| Control            | <u>1</u> 385                    |             | 254               | -               | 5559              | -               |
| Solvent<br>Control | ÷1.365                          | 42-<br>2-   | 237               | -               | 5265              | -               |
| 8:00               | 1,373                           | 0.28        | 242               | 1.75            | 5398              | 0.26            |
| Q5.3               | £.290, <sup>1</sup>             | 6.30        | 175 <sup>1</sup>  | 29.00           | 4445 <sup>1</sup> | 17.87           |
| £ 80.0             | 0.968                           | 34.89       | 35.1 <sup>1</sup> | 85.71           | 1629 <sup>1</sup> | 69.91           |
| 2,59°              | 0.768 <sup>1</sup>              | 44.17       | 20.6 <sup>1</sup> | 91.61           | 1177 <sup>1</sup> | 78.25           |
| 800                | 0.753 <sup>1</sup>              | 45.28       | 19.4 <sup>1</sup> | 92.12           | 1106 <sup>1</sup> | 79.56           |

<sup>1</sup>: Significant difference to pooled control, Welch-t-test  $\alpha = 0.05$ , one-sided smaller



Exposure of Synechococcus leopoliensis to Aclonifen resulted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 – 96 h) values of 13.6, 51.1 and 644 µg a.s./L respectively based on the geometric mean measured test concentrations The No Observed Effect Concentration (NOEC) after 96 hours based on growth fate was 8.00 fly a. and the Lowest Observed Effect Concentration (LOEC) was 25.3 µg a.s./L.

Ĉĥ

### C. VALIDITY CRITERIA

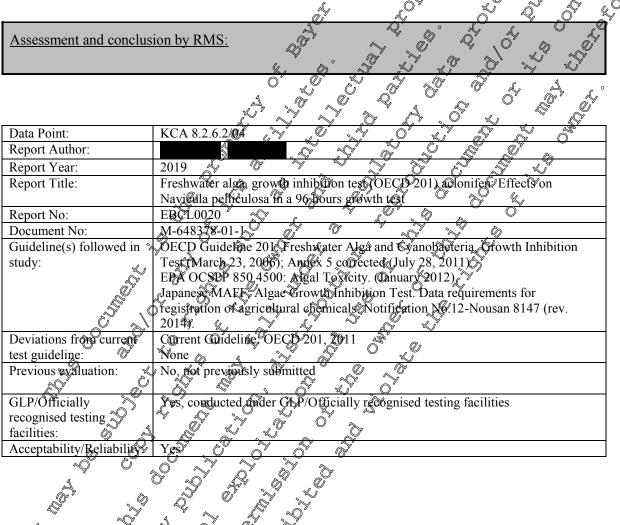
| Validity criterion                                   | % Required* (<br>(OECD 201, 2911) | Control    |
|------------------------------------------------------|-----------------------------------|------------|
| Increase in control biomass                          |                                   | 83.3       |
| Mean coefficient of variation for section-by-section | Q 235%                            | 5.1% 4 54% |
| specific growth rates in the control cultures        |                                   |            |
| Coefficient of variation of average specific growth  |                                   | ×1.3% 1.1% |
| rates in replicate control cultures                  |                                   |            |
| *: After 72 hours                                    | \$ \$\$ \$ \$                     |            |
|                                                      |                                   |            |

All validity criteria were satisfied and therefore this study can be considered to be valid. D. TOXICITY ENDPOINTS Table: Summary of endpoints

Summary of endewints

| Davamatar        | Geometric mean measured concent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ration (µg/a.s./L) |      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|
| Parameter        | EGO EC20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>LØEC</b>        | NOEC |
| 72-hour test due | ation & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sup>Y</sup>     |      |
| Growth rate (r)  | 35.4 $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ $35.4$ | 80                 | 25.3 |
| Yiekt y)         | [607 - 130] $[73.3 - 42.1]$ $[5.30 - 25.10]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                 | 25.3 |
| Biomass (b)      | $\begin{array}{c} 288^{\circ} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.3               | 8.0  |
| 96-hour test dur | ation 2 5 D & C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |
| Growth rate @    | [412 - 268] → [24, 4 - 81, 9] (0,95 - 27.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.3               | 8.0  |
| Yield            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.3               | 8.0  |
| Birtunass (b)    | 65.84<br>[47.9 - 90.3] [100 - 28 9 [4.28 - 17.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.3               | 8.0  |

[95% confidence limits


Exposure of Synchocolous legioliensis to Aclonifen resulted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 – 96 h) values of 13.6 51.1 and 644 g a.s. respectively based on the geometric mean measured test concentrations. The So Observed Offect Concentration (NOEC) after 96 hours based on growth rate was 8.0 µg a.s./L, and the Lowest Observed Effect Concentration (LOEC) was 25.3  $\mu g$  a.s./L.





All validity criteria were satisfied and therefore this study can be considered to be valid.

Exposure of *Synechococcus leopoliensis* to Aclonifen resulted in  $E_rC_{10}$ ,  $E_rC_2$  and  $E_rC_{50}$  (0, 96 h) values of 13.6, 51.1 and 644 µg a.s./L respectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 96 hours based on growth rate, was 8.0 µg a.s./L, and the Lowest Observed Effect Concentration (LOEC) was 25.3 µg a.s./L.



### Executive Summary

A study was performed to assess the inhibitory effect of Aclonifen on the growth of the uni-cellular freshwater algae *Narreula pelliculosa* during an exposure period of 96 hours. The test was run with a control, solvent control and nominal test concentrations of 17.2, 51.6, 155, 466 and 1399 µg a.s./L. Observations of cell growth were recorded daily (24, 48, 72 and 96 hours) to determine the potential effect on growth rate relative to the control.

To quantify substance-related effects, growth of the test species in the test solutions was compared to that of the controls. The concentrations causing a 10, 20 and 50% inhibition of growth after 72 and 96 hours were determined and expressed as the  $E_rC_{10}$ ,  $E_rC_{20}$ , and  $E_rC_{50}$  values, respectively.



Additional response variables were yield and "area under the growth curve" (biomass), which may be needed to fulfil specific regulatory requirements in some countries. The 72 - and 96 - hour EC<sub>10</sub>,  $E_{x_{20}}^{c}$ , and EC<sub>50</sub> values for these parameters were also determined ( $E_yC_x$  for yield and  $E_bC_x$  for biomass)

According to the guidelines, NOEC and LOEC values were additionally determined, if possible.

The concentrations of aclonifen in the test media were determined by chemical analysis using LC-MS/MS at the start of the test, after 72 and after 96 hours (LOQ = 1.5 ug a.s./L). At test start, the measured concentrations were in the range of 83.8 and 1/2% of the nominal values. After 72 hours the measured concentrations were between 71.2 and 104% and after 96 burs between 69.7 and 108% of C initial measured concentrations. Since the test concentrations deceased by more than 20% during the test, the geometric mean exposure concentrations were used for the evaluation (72 hou geometric mean: 13.4, 41.2, 134, 392 and 1505 μg a.s./L; 96 hour geometric mean 43.2, 399, 120, 385 and 1499 μg a.s./L).

There were concentration dependent effects on the growth of the Chlor da vulgaris up to 75.7% inhibition at the highest test concentration after 72 hours and up to 2.8% after 96 hours hence the 72and 96-hour ErC50 for growth rate wore 803/and 672.6 up a.s./In respectively. The NOEC values for growth rate after 72 and 96 hours were 134 and 132 µg a.s./L despectively

# MATERIALS AND

### A. MATERIALS

.cRIA Acloniten AE €068300 5 4 5 4 5 99.5% act 1.81% 299.5% acloniton in dried material 299.5% acloniton in dried material 1.81% water in undried material (> \$47.7% a.s. in technical test item) Vallowerystalline solid 24 May 2019 St-1. **Test Item:** Batch no.: % actoniton in deted material  $_{\varnothing}$ **Purity:** Ange:
 Ange:
 Expiry date
 Test Organism:
 Pre-culture:
 Pre-culture:
 Prior to testing, a pre-culture was established in standard OECD growth medium in 20-fold AAP growth medium supplemented with silicate to obtain exponentially-growing algae for "The culture duration of the pre-culture".

221 was used as growth medium. The medium was supplemented with sodium metasilicate pentahydrate (Na<sub>2</sub>SiO<sub>3</sub> x 5 H<sub>2</sub>O) to obtain a concentration of 20 mg Si/L according to



with aiopermeab

(100 µL

EPA OCSPP 850.4500. This medium was selected since exponential growth of the algae could be maintained during the° test period 

covered

solvent control>

#### B. **STUDY DESIGN AND METHODS**

### 1. In-life phase:

10 - 14 September 2018

plus

250 mL conical glass flask

K con€pol

dimethylformamide/Utre)

 $\mathcal{A}$  pproximately 1.0  $\mathcal{A}$  10<sup>4</sup>

22.0 23.5 0

2. Exposure conditions **Test vessels:** 

**Experimental design:** 

**Replicates:** 

Initial cell density: **Temperature:** 

pH: Aeration:

Z.58 - 8 . andosuspension None Gaseous exchang 6f algal cells maintained by orbital shaker at 150

silicone-sponge caps containing 100 mL test solution

and

control and four replicate vessels for each treatm

cells

5 test concentrations (17.2, 51.6, 455, 466, and 1399, 49 a.s. 4)

Eight replicate vessels were prepared for the control and solvent

Continuous **Photoperiod:** Light intensity

### 3. Administration of the test item

For a stock soution of acloufen in the source the the the source of the 97.7% a.s. in technical test item, equivalent to 9.934 g pure acloriten (a.s.)) were transferred from a teflon weighing boat using DMF to a mL glass volumence flask and filled up to 5 mL, resulting in a yellowish, clear solution. 100 µL of this stock solution was given to 1 L OECD growth medium and intensively stirred for 15 min using a magneticatirrer Subsequently, the other test concentrations were prepared by serial dilution from this stock solution. The concentration of the solvent was 0.1 milliliters per liter (mLd) and was the same in all test treatments and the solvent control. In addition a control with growth medium only was included in the pest.

### 4. Test organism assignment and treatment

There were eight replicates of the control and solvent control and four replicates per treatment level. The test vessels were filled with 100 ML of the respective test solutions containing the test item and the controls.

The cell density of the moculum culture (pre-culture) was determined and 1091 µL of the inoculum culture feell density 21664 10<sup>5</sup> cell/mL) were added into the individual test vessels and filled up to 100 tok test colution or untreated growth medium to obtain the required cell density of 10 000 cells/mL.

### 5. Measurements and observations

The cell concentrations were determined in the pre-culture prior to the initiation of the test and daily during the 4-day growth test. The cell density was determined by measurements of chlorophyll



fluorescence (Synergy MX Multi Detection Reader). The excitation wavelength was 690 nm (gain 80), the emission wavelength was 438 nm).  $Q_{\mu}^{\circ}$ 

A calibration curve for relating cell count to fluorescence was used:

y = 0.0312 x + 107.57 (y = fluorescence; x = cell counts/mL)

Microscopic observations were performed to verify a normal and healthy appearance of the insetulumes culture and to observe any abnormal appearance of the algae (as may be caused by the exposite to the test substance) and test media during the growth test.

Samples of freshly prepared test media were taken from all five test solutions, the ontrol and the solvent control at the beginning of the test prior to distribution to the test vessels. After 22 hors and at test and (96 hours), analysis was performed in representative individual replicates peotreatment level.

### 6. Statistics/Data evaluation

The evaluations of the concentration-effect-relationships and the calculations of effect concentrations were performed as outlined in the OECP guideline 201 and the EPA OCSPP:

- Due to the analytical recovery < 80% of the initial concentrations of the two lowest test concentrations after 72 h, the geometric mean measured values according to OECD 23 were used (values from 0 and 72 hoars).</li>
- Due to the analytical recoveries \$80% of the nominal concentrations after 96 h, the geometric mean measured values (time weighted mean) according to OECD 23 were used (values from 0, 72 and 96 hours).
- The mean value of the cell counts for each concentration plot were used for plotting growth curves.
- Mean growth cates, yield and "area under the growth cutve" were calculated for the entire exposure period of 9 72 hours and 0 96 hours.
- Calculation of the percent inhibition compared to the control of growth rate [r], yield [y] and area under the growth curve (cumulative Diomass)" [B] were performed according to the guidelines
- The percent inhtbition values of the three parameters were plotted as a function of the conceptration of the test item.
- The test results were statistically analysed to determine an EC<sub>50</sub>, EC<sub>20</sub> and EC<sub>10</sub> (growth rate, yield, "area under the growth curve") values together with 95% confidence intervals using linear frequencies of the regression analysis. Individual replicate responses were used for the regression analysis. Statistically significant difference was not observed between the
- control and the solvent control. The analysis was performed against the pooled controls.
  According to OECD 201 the LOEC and the NOEC were statistically determined. The computer program Tox tat was used for statistical evaluations.

### **II. RESULTS AND DISCUSSION**

A. CARALYTICAL VERIFICATION



At the start of the exposure, the recoveries of the measured concentrations were in the range of 83.8 and 112% of nominal. After 72 hours, the measured concentrations ranged between 71.2 and 104% of nominal. At the end of the 96-hour test, the concentrations were between 69.7 and 108% of nominal.

The test was evaluated using the geometric means of the measured concentrations (time, weighted means) according to OECD 23. For the 72-hour test, the mean measured values were calculated from the 0 and 72 hour concentrations (13.4, 41.2, 134, 392 and 1505 µg a.s./ For the 96 hour test, mean measured values were calculated from the 0, 72 and 96 hour concentrations (13 and 1499 µg a.s./L).

| NL                       |                                                                                                                                                                                               | Measured Conceptration |                                                                                                                                                         |              |                      |                  |                                                           |                                                            |                                     |       |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-------|--|--|
| Nominal<br>concentration | 0 H                                                                                                                                                                                           | 0 Hours                |                                                                                                                                                         | 72 Hours 🎉   |                      | 0 72 Hours1      |                                                           | ours a                                                     | 0 <sup>-96</sup> Hours <sup>2</sup> |       |  |  |
| (µg a.s./L)              | μg<br>a.s./L                                                                                                                                                                                  | %<br>nom               | μg<br>a.s./L                                                                                                                                            | %<br>Anom .  | ≪µg<br>Øa.s./L€      | ۯۜ؇۞<br>nom      | μ<br>a.s./L                                               | %<br>                                                      | <sup>ζ</sup> μg<br>Oa.s./L          | noppa |  |  |
| Control                  | <loq< td=""><td>-</td><td><loq "<="" td=""><td>Ç - N</td><td><loq<sup>®</loq<sup></td><td>Ő</td><td></td><td>O<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq></td></loq<> | -                      | <loq "<="" td=""><td>Ç - N</td><td><loq<sup>®</loq<sup></td><td>Ő</td><td></td><td>O<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq> | Ç - N        | <loq<sup>®</loq<sup> | Ő                |                                                           | O <loq< td=""><td><loq< td=""><td></td></loq<></td></loq<> | <loq< td=""><td></td></loq<>        |       |  |  |
| Solvent<br>Control       | <loq< td=""><td>-</td><td><loq< td=""><td>Ľ,</td><td>ZHOQ ~</td><td></td><td><loo< td=""><td></td><td><b>D</b>OQ</td><td>0</td></loo<></td></loq<></td></loq<>                                | -                      | <loq< td=""><td>Ľ,</td><td>ZHOQ ~</td><td></td><td><loo< td=""><td></td><td><b>D</b>OQ</td><td>0</td></loo<></td></loq<>                                | Ľ,           | ZHOQ ~               |                  | <loo< td=""><td></td><td><b>D</b>OQ</td><td>0</td></loo<> |                                                            | <b>D</b> OQ                         | 0     |  |  |
| 17.2                     | 14.4                                                                                                                                                                                          | 83.8                   | £¥.4                                                                                                                                                    | @1.9         | ≫ <sub>13.4</sub> ∾  | 72.0             | 02.9                                                      | <u>م</u> 75.3 گ                                            | § 13.20                             | 76.6  |  |  |
| 51.6                     | 46.2                                                                                                                                                                                          | 89.5                   | 36.7                                                                                                                                                    | 71,2         | 4£9°                 | 99.8             | چ36.0                                                     | 69.5                                                       | 39.9                                | 77.3  |  |  |
| 155                      | 151                                                                                                                                                                                           | 97.7 <del>,</del> Ç    | 1199                                                                                                                                                    | <u>76</u> .6 | Ø34 /                | § 86.5           | 133                                                       | 85.6                                                       | O <sup>132</sup>                    | 85.1  |  |  |
| 466                      | 468                                                                                                                                                                                           | 100                    | \$29                                                                                                                                                    | Ĵ. 0.6       | y 3927               | 84.2             | A994 «                                                    | 86.6                                                       | 385                                 | 82.6  |  |  |
| 1399                     | 1564                                                                                                                                                                                          | ×y12                   | 1448 Q                                                                                                                                                  | 104          | 1505                 | J <sup>108</sup> | ≪15155                                                    | 108                                                        | 1499                                | 107   |  |  |

Table: Measured test concentrations from the exposure of Navicula pelliculosa to Adonifen

<sup>1</sup>: Geometric mean measured concentration of day and day <sup>2</sup>: Geometric mean measured concentration of day 0, day 3 and

Nom: Nominal concentration LOQ: Limit of Quantitation

The validated method & summarised in Document

### B. **BIØLOGIČAL DATA**

The pHof the control was measured to be 2.61 in the fresh medum (solvent control: 7.56) and the pH of the test media was between 7.57 and 795 at test stark. At the termination of the growth test the pH of the aged control media ranged between 9.31 and 9.46 (for solvent control: between 9.23 and 9.47) and between 8.61 and 9.46 for the test media

The pH of the control and colven control media increased by 1.8 units during the 96-hour test, slightly higher than 1.5 units recommended for 72-hour test according to OECD 201 for metals and compounds which are hydrolytically unstable.

Since a clonifen did not hydroly & under alkaline conditions, the pH of the test media is without influence on the outcome of the test.

### umpary of effects from the exposure of Navicula pelliculosa to Aclonifen for Table: 72 hours

| Geometric<br>mean<br>measured            |                                 | Growth parameter |       |                 |         |                 |  |  |
|------------------------------------------|---------------------------------|------------------|-------|-----------------|---------|-----------------|--|--|
| measured<br>concentration<br>(µg a.s./L) | Mean<br>specific<br>growth rate | %<br>Inhibition  | Yield | %<br>Inhibition | Biomass | %<br>Inhibition |  |  |
| Control                                  | 1.543                           | -                | 102   | -               | 1743    | -               |  |  |



| Solvent<br>Control | 1.515 | -                  | 93  | -                  | 1671   | -               |
|--------------------|-------|--------------------|-----|--------------------|--------|-----------------|
| 13.4               | 1.529 | 0.04               | 97  | 0.38               | 1711   | -0.25           |
| 41.2               | 1.552 | -1.46              | 104 | -6.49              | 2006   | -17531          |
| 134                | 1.490 | 2.57               | 86  | 11.50 <sup>2</sup> | 4659   | 2.78            |
| 392                | 1.167 | 23.72 <sup>1</sup> | 32  | 66.58 <sup>2</sup> | 884    | 48.19           |
| 1505               | 0.403 | 73.67 <sup>1</sup> | 2.6 | 97.37 <sup>2</sup> | ړ 95 ي | <u>0 94.667</u> |

<sup>1</sup>: Significant difference to pooled control, Welch-t-test  $\alpha = 0.05$ , one 3ded smaller <sup>2</sup>: Significant difference to pooled control, Williams-t-test  $\alpha = 0.05$ , The sided smaller

Exposure of *Navicula pelliculosa* to Aclonifen restricted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 4.72 h) values of 227, 351 and 803 µg a.s./L respectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 72 hours based on growth rate was 134 µg a.s./L, and the Lowest Observed Effect Concentration (LOEC) was 392 µg a.g./L.

### Table: Summary of effects from the exposure of Navicula Pellieulosa to Aclonifen for 96 hours

|                                                |                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | × ~~~             | y a c                |                   | y -                                    |
|------------------------------------------------|--------------------------|-----------------------------------|-------------------|----------------------|-------------------|----------------------------------------|
| Geometric<br>mean<br>measured<br>concentration | Mean 🔍                   |                                   | Growth p          | araineter            | Biomass           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| (µg a.s./L)                                    | growth rate              |                                   |                   | Inhibition           |                   | Inhibition                             |
| Control                                        | 1.29 r                   | 7 - 2                             | 174               | <pre></pre>          | 55                | -                                      |
| Solvent<br>Control                             | 1,288                    |                                   |                   | 0 <sup>-</sup> %     | 24859             | -                                      |
| 13.2                                           | \$1.298 <sup>\$</sup>    | ~~~-0.6 <b>4</b>                  | 1790              | -3.32                | Ø 5027            | -1.39                                  |
| 39.9                                           | C 1,295                  | <sup>√</sup> -0,44 <sup>∧</sup>   | × 107 *           | <sup>™</sup> -2,32 √ | 5381              | -8.54                                  |
| 132                                            | <b>1</b> Ç <b>2</b> 87 O | Q.16 %                            | J71               | 6 <sup>90.94</sup> @ | 4756              | 4.07                                   |
| 385 @                                          | 0.9551                   | 25.96                             | 8 45 <sup>2</sup> | 73.98                | 1817 <sup>2</sup> | 63.35                                  |
| 1499                                           | 0.2221                   | S 8281                            | 1002              | × 99x07              | 145 <sup>2</sup>  | 97.07                                  |

<sup>1</sup>: Significant difference pooled control, Welch-Crest a = 0.05, one-sided smaller

<sup>2</sup>: Significant difference to pooled control, Williams-t-test  $\alpha = 0.05$ , one-sided smaller

Exposure of *Vavicula pelliculosa* to Aclosifen resulted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 – 96 h) values of 231, 333 and 672 µg a.s./L respectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 96 hours based on growth rate was 132 µg a.s./L, and the Lowest Observed Effect Concentration (LOEC) was 385 µg a.s./L.

# C. VALIDITY CRITERIA

|                                                                                                       | Required*        | Achieved |                    |  |
|-------------------------------------------------------------------------------------------------------|------------------|----------|--------------------|--|
| Validity criterion                                                                                    | (OECD 201, 2011) | Control  | Solvent<br>Control |  |
| Increase in conrol biomass                                                                            | 16               | 103      | 94.5               |  |
| Mean coefficient of variation for section-by-section<br>specific growth rates in the control cultures | ≤ <b>3</b> 5%    | 12.5%    | 14.2%              |  |
| Coefficient of variation of average specific growth rates in replicate control cultures               | ≤ 10%            | 2.7%     | 1.6%               |  |

\*: After 72 hours



#### D. TOXICITY ENDPOINTS

#### Summary of endpoints Table:

| All validity criter | ria were satisfied   | and therefore this              | s study can be con                 | nsidered to be     | valid. | ,<br>M<br>M |                  |
|---------------------|----------------------|---------------------------------|------------------------------------|--------------------|--------|-------------|------------------|
|                     | TY ENDPOINT          |                                 |                                    |                    | ~      |             | 1                |
|                     |                      |                                 | measured concen                    | tration (µg a.s./  | L) 🗞   |             | Ŷ                |
| Parameter           | EC <sub>50</sub>     | EC20                            | C10                                | LOEC               |        | ÔĔĊ Ő       | , ®              |
| 72-hour test dur    | ation                |                                 | - A                                | .0 <sup>9</sup> *  |        |             | , Ô <sup>v</sup> |
| Growth rate (r)     | 803<br>[724 – 893]   | 351<br>[296 - 403]              | 227<br>[181 – 272]                 | °392 ~             | 4      | 134         | 8                |
| Yield (y)           | 296<br>[270 - 324]   | 169 🔗<br>[142 – 19 <b>%</b> ]   | 126<br>[99 – 139]                  | × 104              |        | 41.25       |                  |
| Biomass (b)         | 412<br>[375 – 456]   | 224 O<br>[185 <u>-</u> 255] _ 7 | € 163<br>F [12@- 195₽              | ∂ <sup>392</sup> ∂ | ő      |             | -<br>-           |
| 96-hour test dur    | ation                |                                 |                                    | A O                |        |             |                  |
| Growth rate (r)     | 672<br>[614 – 736]   | @333, ~~<br>@92-@72] _ #        | 231<br>[1943 266]                  | 2385               |        | 132         |                  |
| Yield (y)           | 305<br>[296 - 315] * |                                 | 157 ~~<br>(Dr45 - 167]             | 383                |        | 132         |                  |
| Biomass (b)         | 330 Ø<br>[315 - 345] | <u>_</u> 202                    | <sup>6</sup> √ 146<br>[130 2 161]€ | 385                |        | 132         |                  |
| [95% confidence li  | mits]                |                                 | O A                                |                    | ĝ.     |             | -                |

## III. CONCLUSION

Exposure of Navicuta pelliculosa a Aclerifen desulted in  $E_{r}C_{10}$ ,  $E_{r}C_{2}$  and  $E_{r}C_{50}$  (0 – 96 h) values of 231, 333 and 672 be a.s. Drespectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 96 hours based on growth rate was 132 µg a.s./L, and the Lowest Observed Effect C oncentration (LOEC) was 385 u a.s./L

(2018) A X Assessment and conclusion by applicant

All validity criteria were satisfied and therefore this study can be considered to be valid.

Exposure of Navichia peloculosa to Actonifen zesulted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 – 96 h) values of 231, 333 and 672 µg a.s. I respectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 96 hours based on growth rate was 132 µg a.s./L and the Lowest Observed offect Concentration (LOEC) was 385 µg a.s./L.

and conclus



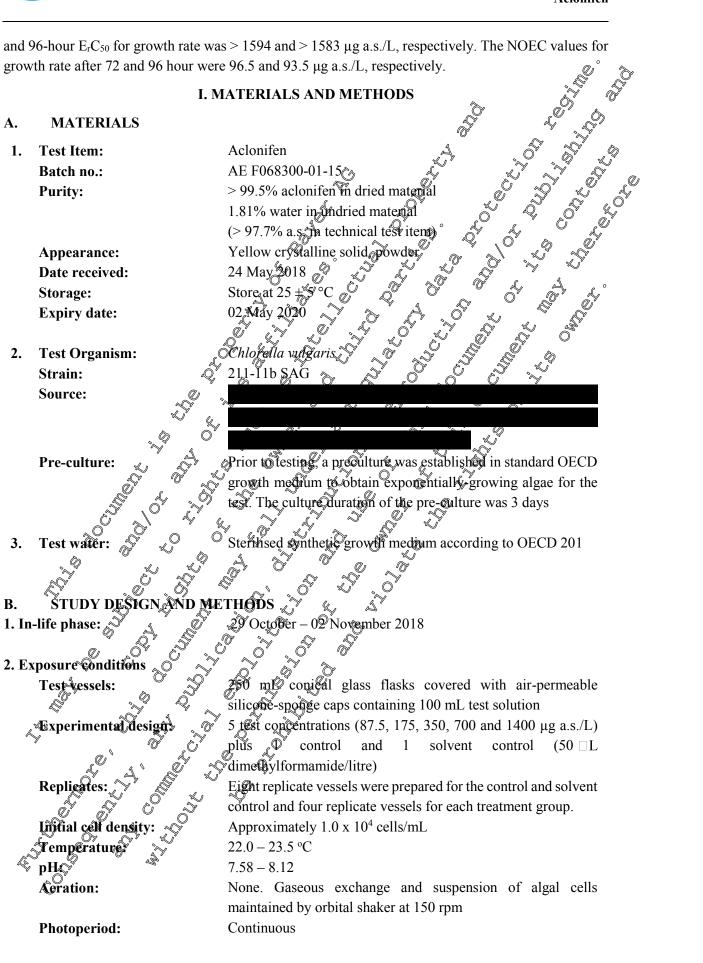
| Data Point:                | KCA 8.2.6.2/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | Freshwater alga, growth inhibition test (OECD 201) aclonifen: Effects on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            | Chlorella vulgaris in a 96 hours growth test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Report No:                 | BAY-025/4-10/J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Document No:               | M-646486-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   | OECD Guideline 201: Freshwater Alga and Cyanobacteria, Growth Philipition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| study:                     | Test (March 23, 2006); Annex 5 corrected (July 28/2011).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            | EPA OCSPP 850.4500: Algal Toxicity. (January 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | Japanese MAFF: Algae Growth Inhibition Tet Data requirements for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | registration of agricultural chemicals: Notification No.12-Nousan 8147 (rev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | [2014].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deviations from current    | Current Guideline: OECO 201, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test guideline:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Previous evaluation:       | No, not previously submitted & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GLP/Officially             | Yes, conducted under GIP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Yes & or in the state of the st |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **Executive Summary**

A study was performed to assess the inhibitory effect of Aclonden on the growth of the uni-cellular freshwater algae *Chlorella vulgaris* during an exposure period of 96 hours. The test was run with a control, solvent control and nominal test concentrations of 87.5 (75, 350, 700 and 1400 µg a.s./L. Observations of cell growth were recorded daily (24, 48, 72 and 96 hours) to determine the potential effect on growth rate relative to the control.

To quantify substance-talated effects growth of the test species in the test solutions was compared to that of the controls. The concentrations easing a 10,20 and 30% inhibition of growth after 72 and 96 hours were determined and expressed as the  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  values, respectively.

Additional response variables were yield and "area under the growth curve" (biomass), which may be needed to fulfil specific regulatory requirements in some countries. The 72 - and 96 - hour EC<sub>10</sub>, EC<sub>20</sub>, and EC<sub>50</sub> values for these parameters were also determined ( $E_yC_x$  for yield and  $E_bC_x$  for biomass).


According to the guidelines NOEC and LOEC values were additionally determined, if possible.

The concentrations of adonifed in the test media were determined by chemical analysis using LC-MS/MS at the start of the test, after 72 and after 96 hours (LOQ =  $1.5 \ \mu g \ a.s./L$ ). At test start, the measured concentrations were in the range of 118 and 137% of the nominal values. After 72 hours the measured concentrations were between 77.3 and 97.1% and after 96 hours between 77.9 and 94.6% of initial measured concentrations. Since the test concentrations decreased by more than 20% during the test, the geometric mean exposure concentrations were used for the evaluation (72 hour geometric mean: 96.5, 210,404, 830 and 1594  $\mu g \ a.s./L$ ; 96 hour geometric mean: 93.5, 205, 400, 821, 1583  $\mu g \ a.s./L$ ).

There were concentration dependent effects on the growth of the *Chlorella vulgaris* up to 42.0% inhibition at the highest test concentration after 72 hours and up to 46.3% after 96 hours, hence the 72-



and 96-hour  $E_rC_{50}$  for growth rate was > 1594 and > 1583 µg a.s./L, respectively. The NOEC values for growth rate after 72 and 96 hour were 96.5 and 93.5 µg a.s./L, respectively.





Light intensity:

4609 - 4709 lux

### **3.** Administration of the test item

For a stock solution of aclonifen in the solvent dimethylformamide (DMF) 143 91 mg test iter (purpy 97.7% a.s. in technical test item, equivalent to 140 mg pure aclonifen (a.s.)) were transferred from a teflon weighing boat using DMF to a 5 mL volumetric flask and filled the with DMF esulting in a yellowish, clear solution. 50  $\mu$ L of this stock solution was given to 1.4. OECD growth medium and intensively stirred for about 15 min using a magnetic stirrer. Subsequently, the other est concentrations were prepared by serial dilution from this stock solution. The concentration of the solvent was 0.05 milliliters per liter (mL/L) and was the same in all test treatments and the solvent control. In addition a control with growth medium only was included in the test.

### 4. Test organism assignment and treatmen

There were eight replicates of the control and solvent control and four replicates per treatment tovel. The test vessels were filled with 100 mp of the respective test solutions containing the test item and the controls.

The cell density of the inoculum culture (pre-culture) was getermined and 178 ft of the inoculum culture (cell density 5.623 x 10 cell/m) were added into the individual test vessels and filled up to 100 mL test solution or untreated growth medium to obtain the required cell density of 10 000 cells/mL.

### 5. Measurements and observations

The cell concentrations were determined in the pre-culture prior to the initiation of the test and daily during the 4-day growth test. The cell density was determined by measurements of chlorophyll fluorescence (Sybergy MX Multi Detection Reader). The mission wavelength was 440 nm and the excitation wavelength was 690 nm (gain 100).

A analysis function for relating cell count to floorescence was used?

 $\sqrt{y} = 75.366 \text{ x}/y = \text{cell counts/mL}; = fluorescence). <math>\sqrt{y}$ 

Microscopic observations were performed to verify a normal and healthy appearance of the inoculum culture and to observe any abhormal appearance of the algae (as may be caused by the exposure to the test substance) and test media during the prowth test.

Samples of freshly prepared test media were taken from all five test solutions, the control and the solvent control at the beginning of the test prior to distribution to the test vessels. After 72 hours and at test end (96 hours), analysis was performed in representative individual replicates per treatment level.

## 6. Statistics/Data evaluation

The evaluations of the concentration-effect-relationships and the calculations of effect concentrations were performed as outlined in the OECD guideline 201 and the EPA OCSPP:

• Due for the analytical recovery < 80% of the initial concentrations of the two lowest test concentrations after 72 h, the geometric mean measured values according to OECD 23 were used (values from 0 and 72 hours).



- Due to the analytical recoveries < 80% of the initial concentrations of one of the two lowest test concentrations after 72 and 96 h, the geometric mean measured values (time weighted or mean) according to OECD 23 were used (values from 0, 72 and 96 hours).</li>
- The mean value of the cell counts for each concentration plot were used for plotting growth curves.
- Mean growth rates, yield and "area under the growth curve" were calculated for the entries exposure period of 0 72 hours and 0 96 hours  $c_{0}$
- Calculation of the percent inhibition compared to the control of growth rate [y], yield [y] and "area under the growth curve (cumulative biofrass)" [B] were performed according to the guidelines.
- The percent inhibition values of the three parameters were plotted as a function of the concentrations of the test item.
- The test results were statistically analysed to determine an EC<sub>50</sub>, EC<sub>20</sub> and EC<sub>6</sub> (growth rate, vield, "area under the growth curve") values together with 95% confidence intervals using linear Probit or Weibull regression analysis. Individual replicate responses were used for the regression analysis. Statistically significant difference was observed between the control and the solvent control so the malysis was performed against the solvent control.
- According to OECD 2014 the LOEC and the SOEC were satisfically determined. The computer program Tox Rat® was used for statisfical evaluations

# A. ANALYTICAL VERIFICATION

At the start of the exposure, the recoveries of the measured concentrations were in the range of 118 and 137% of nominal. After 72 hours the measured concentrations ranged between 103 and 117% of nominal (77.3 - 97.1% of initial) At the end of the 96 hour test, the concentrations were between 91.6 and 117% of nominal (77.9 - 94.6% of initial). The test item concentrations decreased by more than 20% from the initial concentrations in the two lowest concentrations during the entire test period.

The test was evaluated using the geometric means of the measured concentrations (time weighted means) according to QQCD 29. For the 72 hour test, the mean measured values were calculated from the 0 and 72 hour concentrations (96.5  $\times$  10, 404, 830 and 1594 µg a.s./L). For the 96-hour test, the geometric mean measured values were calculated from the 0, 72 and 96 hour concentrations (93.5, 205, 400, 821 and 1583 µg a.s./L).

| News          | ¢`,                                                                                                                                                                                  |        |                                                                                                                                                                   | M        | easured C                                                                                                                   | oncentrati         | ion                                                                                   |                                                           |                               |                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|--------------------|
| concentration | etter (                                                                                                                                                                              | ours   | <sup>€</sup> √72 H                                                                                                                                                | ours     | 0- 72 I                                                                                                                     | Iours <sup>1</sup> | 96 H                                                                                  | lours                                                     | 0 - 96 1                      | Hours <sup>2</sup> |
| (μg a.s./L)   | ng<br>a.s./L                                                                                                                                                                         | Önom 🍣 | μg ~                                                                                                                                                              | %<br>nom | μg<br>a.s./L                                                                                                                | %<br>nom           | μg<br>a.s./L                                                                          | %<br>nom                                                  | μg<br>a.s./L                  | %<br>nom           |
| Control       | Ŝ≪LOQĹ                                                                                                                                                                               |        | <loq< th=""><th>-</th><th><loq< th=""><th>-</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>-</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<> | -        | <loq< th=""><th>-</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>-</th></loq<></th></loq<></th></loq<></th></loq<> | -                  | <loq< th=""><th><loq< th=""><th><loq< th=""><th>-</th></loq<></th></loq<></th></loq<> | <loq< th=""><th><loq< th=""><th>-</th></loq<></th></loq<> | <loq< th=""><th>-</th></loq<> | -                  |
| Solvent       | <l@q< td=""><td></td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<></td></loq<></td></l@q<> |        | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<></td></loq<>                   | -        | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<>                   | -                  | <loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<>                   | -                                                         | <loq< td=""><td>-</td></loq<> | -                  |
| 87.5          | 103                                                                                                                                                                                  | 118    | 90.3                                                                                                                                                              | 103      | 96.5                                                                                                                        | 110                | 80.2                                                                                  | 91.6                                                      | 93.5                          | 107                |
| 175           | 239                                                                                                                                                                                  | 137    | 185                                                                                                                                                               | 105      | 210                                                                                                                         | 120                | 196                                                                                   | 112                                                       | 205                           | 117                |
| 350           | 426                                                                                                                                                                                  | 122    | 384                                                                                                                                                               | 110      | 404                                                                                                                         | 116                | 391                                                                                   | 112                                                       | 400                           | 114                |

Table: Measured test concentrations from the exposure of *Chlorella vulgaris* to Aclonifen



| 700                          | 842                                                      | 120 | 817  | 117 | 830  | 119 | 772  | 110 | 821  | 117           |
|------------------------------|----------------------------------------------------------|-----|------|-----|------|-----|------|-----|------|---------------|
| 1400                         | 1729                                                     | 124 | 1470 | 105 | 1594 | 114 | 1636 | 117 | 1583 | 11 <b>2</b> ° |
| <sup>1</sup> : Geometric mea | Geometric mean measured concentration of day 0 and day 3 |     |      |     |      |     |      |     |      |               |

<sup>2</sup>: Geometric mean measured concentration of day 0, day 3 and day 4

Nom: Nominal concentration

LOQ: Limit of Quantitation =  $1.5 \ \mu g \ a.s./L$ 

The validated method is summarised in Document M-CA4 (CA 4.1.2/80

#### B. **BIOLOGICAL DATA**

The pH of the fresh control and solvent control media was measured to be 7.70 and 7.62 respectivel and the pH of the test media was between 7.58 and 7.65 at test start. At the termination of the growth test the pH of the aged control and solvent control media ranged between 7,94 and 8.12 and between 7.90 and 8.10 for the test media.

| Geometric<br>mean<br>measured<br>concentration<br>(µg a.s./L) | Mean<br>specific<br>growth rate | Inhibition       | Growth p             | arameter<br>S <sup>4</sup> %<br>Onhibition | Biomass                       | لم<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا<br>لا |
|---------------------------------------------------------------|---------------------------------|------------------|----------------------|--------------------------------------------|-------------------------------|----------------------------------------------------------------------------------|
| Control                                                       | 1.731                           | × \$\$           | / 180                |                                            | ,3387 O                       | -                                                                                |
| Solvent<br>Control                                            | 1.633                           |                  | 134                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     | 2308                          | -                                                                                |
| 96.50                                                         | 1.640                           | -004)2           | ) <u>b</u> 7         | <b>2</b> - <b>2</b> 75                     | . 2873                        | -21.90                                                                           |
| 210                                                           | 1370 <sup>1</sup>               | ~ <b>6</b> .09 Ø | \$60 <sup>1</sup> \$ | 54.97 0                                    | \$1399 <sup>2</sup>           | 39.39                                                                            |
| 404                                                           | \$1.2065 <sup>9</sup>           | 26.12            | <u>~ 364</u> ℃       | § 72.46                                    | Ø 1107 <sup>2</sup>           | 52.02                                                                            |
| 830                                                           | C 1.468 <sup>1</sup>            | 28,47            | y 34 <sup>y</sup> ^  | ° 7,4,47 √                                 | <sup>*</sup> 759 <sup>2</sup> | 67.08                                                                            |
| 1594                                                          |                                 | 49.96 S          | ©16 <sup>1</sup>     | 87.90                                      | 283 <sup>2</sup>              | 87.72                                                                            |

Summary of effects from the exposure of Chlorethe vulgaris to Aclonffen for 72 hours Table:

 Significant difference to solvent control, Williams α 0.05, one-sided smaller
 Significant difference to solvent control, Step-down Jonckheere-Terpstra α 05, one-sided smaller  $\bigcirc$ 

Exposure of *Chlorena vulgaris* to Aclonnen resulted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 – 72 h) values of 139, 373 and greater than 7594 by a sol respectively based on the geometric mean measured test concentrations The No Observed Effect Concentration (NOEC) after 72 hours based on growth rate was 96.5 µg a.s./L, and the Lowert Observed Effect Concentration (LOEC) was 210 µg a.s./L.

Ø Summary of effects from the exposure of Chlorella vulgaris to Aclonifen for 96 hours Table: 🖑

| Geometric<br>mean                        |                                 |            | Growth p         | arameter        |                   |                 |
|------------------------------------------|---------------------------------|------------|------------------|-----------------|-------------------|-----------------|
| measured<br>concentration<br>(µg a.s./£) | Mean<br>specific<br>growth cate | Jnhibition | Yield            | %<br>Inhibition | Biomass           | %<br>Inhibition |
| Coastinor                                | ¢ 1 1 572                       | - (        | 540              | -               | 12038             | -               |
| Solvent Solvent                          | J.504                           | -          | 410              | -               | 8845              | -               |
| · 93.3%                                  | 1.468                           | 2.40       | 356 <sup>1</sup> | 13.29           | 8740              | 1.19            |
| 105                                      | 1.250 <sup>1</sup>              | 16.90      | 151 <sup>1</sup> | 63.05           | 3944 <sup>1</sup> | 55.41           |
| 400                                      | 1.108 <sup>1</sup>              | 26.29      | 84 <sup>1</sup>  | 79.52           | 2560 <sup>1</sup> | 71.06           |
| 821                                      | 1.063 <sup>1</sup>              | 29.33      | 72 <sup>1</sup>  | 82.35           | 2040 <sup>1</sup> | 76.93           |



| 1583              | $0.808^{1}$                               | 46.29          | 251            | 93.71                                     | 787 <sup>1</sup>    | 91.09                      |
|-------------------|-------------------------------------------|----------------|----------------|-------------------------------------------|---------------------|----------------------------|
|                   | ference to solvent c                      |                |                |                                           |                     |                            |
| Exposure of Ch    | ilorella vulgaris                         | s to Aclonifen | resulted in Er | $C_{10,} E_r C_{20}$ and $E_r C_{20}$     | $E_r C_{50}$ (96 h) | values of 132,             |
| 338 and great     |                                           |                |                |                                           |                     |                            |
|                   |                                           |                |                |                                           |                     | @ growth rate?             |
| was 93.5 µg a.s   | s./L, and the Lov                         | west Observed  | l Effect Conce | ntration (LOE                             | َدُ) was 205 پرې    | a.s./                      |
| C. VALII          | DITY CRITER                               | IA             | J. T. Y        |                                           |                     |                            |
| Validity criter   | ion                                       |                | v .            | equired*                                  | Control             | eved<br>Solvent<br>Control |
| Increase in cont  | trol biomass                              | A              |                | , 16 2                                    | 182 0               | Jr35 /y                    |
|                   | nt of variation for<br>rates in the contr | *~             | tion y y       |                                           | ~19.5%              | 24.45°                     |
|                   | variation of avera                        |                | wth            | ≥ 10% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 27%                 | × 2.6%                     |
| *: After 72 hours |                                           |                |                |                                           |                     | Ý                          |

All validity criteria were satisfied and therefore this study can be considered to be valid. D. TOXICITY ENDPOINTS Table: Summary of endpoints

|                    | $\underline{\mathcal{N}}$                 |                                                              |                                               |                     |       |
|--------------------|-------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|---------------------|-------|
| Davamatar 0        |                                           | Grometric mean                                               | peasured concern                              | tration (µg a.s./L) | 1     |
| Parameter          | SEC 50                                    | O EC20 Q                                                     | ÉC10                                          | O LOEC              | NOEC  |
| 72-hour test dur   | ation 🔬 🔬                                 |                                                              | Ø Ø Ó                                         | r<br>r              |       |
| Growth Pate (r)    | © 594 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 373<br>[268 - 472]                                           | [74.1 - 204]                                  | 210                 | 96.5  |
| Yield (y)          | 25 <b>4</b> √<br>[197 <u>4</u> -320]      | \$\$5.5<br>[\$40.0 − 1,3\$]                                  | 57.2 <sup>∞</sup><br>[26.1 ⊕88.2]             | 210                 | 96.5  |
| Biomass (b)        | \$402 \$<br>\$36 - 4\$9]                  | 20 <sup>°</sup> 1459<br><sup>™</sup> [104~ 186] <sup>™</sup> | ₹ 51.6 – 119]                                 | 404                 | 210   |
| 96-hour test dur   | ation 👌 🔬                                 |                                                              | . Ø                                           |                     |       |
| Growtheate (r)     | ×1583                                     |                                                              | <sup>∞</sup> 132<br><sup>۶</sup> [74.7 – 191] | 205                 | 93.5  |
| Ageld (y)          | [154@228]                                 | 54.2 - 1 3                                                   | 56.3<br>[30.2 - 79.8]                         | ≤93.5               | <93.5 |
| Biomass (b)        | 246<br>[198 – 307]                        | @ 98.2<br>[61.3 – 131.0]                                     | 60.8<br>[31.8 - 88.7]                         | 205                 | 93.5  |
| [95% confidence li | mitel                                     | <u> </u>                                                     |                                               | •                   | •     |

### **III. CONCLUSION**

Exposure of *Chlorofla vulgaris* to Aclonifen resulted in  $E_rC_{10}$ ,  $E_rC_{20}$  and  $E_rC_{50}$  (0 – 96 h) values of 132, 338° and greater than 1583 µg a.s./L respectively based on the geometric mean measured test concentrations. The No Observed Effect Concentration (NOEC) after 96 hours based on growth rate was 93.5 µg a.s./L, and the Lowest Observed Effect Concentration (LOEC) was 205 µg a.s./L.



|                            | (2018)                                                                                                   |
|----------------------------|----------------------------------------------------------------------------------------------------------|
| Assessment and conclus     | ion by applicant:                                                                                        |
| All validity criteria were | e satisfied and therefore this study can be considered to $\frac{1}{2}$ where $\frac{1}{2}$              |
|                            | <i>rulgaris</i> to Aclonifen resulted in $E_rC_{10}$ , $E_rC_{20}$ and $E_rC_{50}$ (0 – 96 h), values of |
|                            | an 1583 $\mu$ g a.s./L respectively based on the geometric mean measured test.                           |
| concentrations. The No     | Observed Effect Concentration (POEC) after 96 hours based on growth rate                                 |
|                            | the Lowest Observed Effect Concentration (GOEC) was 209 µg co./L.                                        |
|                            |                                                                                                          |
|                            |                                                                                                          |
| Assessment and conclus     | ts on aquatic macrophytes                                                                                |
|                            |                                                                                                          |
|                            |                                                                                                          |
| CA 8.2.7 Effec             | ts on aquatic macrophytes                                                                                |
|                            |                                                                                                          |
|                            |                                                                                                          |
| Data Point:                | KCA8.2.7/01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                        |
| Report Author:             |                                                                                                          |
| Report Year:               |                                                                                                          |
| Report Title:              | ACLONIFEN Toxicity to the duckweed, Lenma gibba                                                          |
| Report No:                 | R002693                                                                                                  |
| Document No:               | M 17 1423 191-1 2 17 17 17 17 17                                                                         |
| Guideline(s) followe       | FIFRA Guideline Reference #: 522-2 and 123-2                                                             |
| study:                     |                                                                                                          |
| Deviations from current    | Current Guideline: OECD 221, 2006                                                                        |
| test guideline             | Study conducted over 14 days, instead of 7. Day 0 inoculum was 15 fronds (5                              |
|                            | plants) not 9-12 fronds, Deviations not Considered to affect study integrity.                            |
| Previous evaluation:       | yes, evaluated and accepted O O                                                                          |
|                            | Source: Study list relied upon, Depember 2011 (RMS: DE)                                                  |
| GLP/Officially             | Ves, conducted under GL /Officially recognised testing facilities                                        |
| recognised testing 2       |                                                                                                          |
| facilities:                |                                                                                                          |
| Acceptability/Reliabilit   | $Ve^{\overline{X}}$ $\overline{X}$ $\overline{X}$ $\overline{X}$                                         |
|                            |                                                                                                          |
| NY U                       |                                                                                                          |
| 1                          |                                                                                                          |

## Executive summary;

The effects of Aclonifer, on the growth and reproduction of the aquatic monocotyledonous plant, *Lemna gibba*, were investigated in an exposure to nominal concentrations of 0.00078, 0.0016, 0.0030, 0.0063, 0.015 and 0.025 ms a.s./L.

Fronds of *Lemma gibba* were exposed to Aclonifen for fourteen days in a semi-static system with test medium renewal on Days 3, 69 and 12. The effect was expressed in terms of percent inhibition in frond number and biomass relative to the blank control on day seven of the study.

The mean measured concentrations were 0.00070, 0.0012, 0.0020, 0.0049, 0.011 and 0.020 mg a.s./L. Since the determined test concentrations were below the nominal concentrations, all reported results are related to mean measured concentrations, calculated as the average over all measurements per test



concentration. Therefore, the mean measured test concentration was used to calculate the study endpoints.

The 14-Day EC<sub>50</sub> value for frond density (with corresponding 95% confidence limits) was calculated to be 0.012 (0.010 to 0.014) mg a.s./L. The 14-Day No-Observed-Effect Consentration (NGEC) was determined to be 0.0012 mg a.s./L.

The 14-Day EC<sub>50</sub> value for biomass (with corresponding 95% confidence limits) was calculated to be The 14-Day NOEC was empirically estimated 0.0060 (0.0022 to 0.017) mg a.s./L. 0.0012 mg a.s./L.

### JO m\* **I. MATERIAL** A. **MATERIALS** 1. **Test material:** Aclonifen tæhni Batch no.: 97013/03 994 g/kg **Purity:** April 2006 (rete **Expiry:** 2. **Test organism:** Lemna gibbà Strain: GA Source: Nominal test concentrations of 0.00078, 00016, 0.0030, 0.0063, 0.013 and 0.025 mg a.s./L 3. **Treatment:** 270 mL crystallising dishes with 100 mL test solution, covered with 4. Test vessels: inverted glass peter dishes Test water® Boaglands medium Environmental conditions: 5. Temperature: 24 @ 25°C 4.9- 6.64 new and age@exposite solutions) pH: Photoperiod: Sontinuous illumination, range 3260 - 5400 lux B. STUDY DE 1. In-life phase: Test organism assignment and treatment 2.

Colonies consisting of 3 fronds were transferred from the inoculum culture to each test vessel. Each test vesses contained 5 plants, a total of 15 fronds, with 3 replicates per treatment. An additional three replicates for the control and 0.00008 mg a.s./L were set up for analysis. The test vessels were placed in a random order and were positioned each day of measurement to minimize differences in light intensity, A semi-static test procedure was used and the test media were renewed on Days 3, 6, 9 and 12. Test wessels were re-positioned each working day.

### Dose preparation 3.

A 2.5 mg a.s mL primary stock solution was prepared by dissolving 0.0629 g (0.0625 g as active ingredient) of Acloritien to volume in a 25-mL volumetric flask with dimethyl formamide (DMF). The resulting stock solution was observed to be clear and amber in colour, with no visible undissolved test The nominal test solutions were prepared from dilutions of the substance (e.g., precipitate). 2.5 mg a.s./mL primary stock solution as follows:



| Stock<br>solution<br>concn<br>(mg a.s./L) | Volume of<br>stock used<br>(mL) | DMF<br>dilution<br>(mL) | Secondary<br>stock<br>(mg a.s./L) | Volume of<br>secondary<br>stock used<br>(mL) | Hoagland's<br>medium<br>dilution<br>(mL) | Nominal<br>exposure<br>concr<br>(mg a \$2L) | 4.D.O.     |
|-------------------------------------------|---------------------------------|-------------------------|-----------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------|------------|
| 2.5                                       | 2.5                             | 25                      | 0.25                              | 0.100                                        | 1000                                     | 0,025                                       |            |
| 0.25                                      | 5.2                             | 10                      | 0.13                              | 0.100                                        | 2000                                     | 1.013                                       |            |
| 0.25                                      | 2.5                             | 10                      | 0.063                             | 0.100                                        | 1000                                     | ~0.0063 <sup>%</sup>                        | <i>A</i> - |
| 0.25                                      | 1.2                             | 10                      | 0.030                             | 0.100                                        | 1000 🧹                                   | O 0.0030 🔬                                  | <i>Q</i>   |
| 0.25                                      | 0.64                            | 10                      |                                   | لم 0.100 م                                   | 1000 🔬                                   | Q0016 S                                     |            |
| 0.25                                      | 0.31                            | 10                      | 0.0078 🚿                          | 0.200                                        | 2000                                     | 000078                                      | Å          |

A solvent control solution was also prepared by diluting 0.200 mL of DMF to 2000 mL in Horgland's medium. The concentration of DMF in the solvent control solution was equal to the concentration present in each test solution (i.e., 0.100 mL/L). Additional unreated Hoagland's medium was used to culture the control population. The renewal treatment and control solutions prepared on Days 3, 6, 9 and 12 were prepared according to the procedures described above from the secondary stock solutions that had been refrigerated at  $4 \pm 1^{\circ}$ C since preparation

### 4. Measurements and observations &

Frond counts were made on Days 6, 3, 6, 9, 12 and 14. Following Day 3, 6, 9 and 12 observations, the fronds were transferred to newly prepared solutions. At test termination (Day 19) frond densities for each treatment, control and solvent control replicate vessel were determined. Fronds were counted, then removed, blotted dry and transferred to pre-weighed aluminium page. Fronds were dried for 3 days prior to dry weight determination.

Temperature was measured continuously with a minimum/maximum thermotheter located in a flask of water adjacent to the test vessels within the environmental chamber. Temperature readings were recorded daily. Light intensity was measured at test initiation and daily during the exposure period. The pH of the all exposure solutions was measured at test initiation, at each 3-Day interval, and at test termination? Test solution remaining after filling the crystallizing dishes was used for initial pH measurements. Measurements recorded at the 3-Day intervals were measured in both old and new exposure solutions. At test permination, after from from counts were completed, the three replicate vessels of the treatment levels, the control and the solvent control were combined, a portion of each composite solution was transferrence to a 100-mL beaker for pH measurement.

At the beginning and end of one renewal period (i.e., Day 0 and Day 3), one sample was removed from each treatment, control and solvent control solution to be analysed for Aclonifen concentration. Samples analysed on Day 0 were removed from the newlo prepared test solutions subsequent to division into replicate test vessels. Samples analysed at the end of the renewal period (Day 3) were removed from the individual composite solutions after the teplicate solutions of each test concentration, the control and solvent control had been respectively combined. Samples were analysed by GC using an electron capture detector (QC-ECE).

# 5. Statistics

Means and tandard deviations of frond densities were calculated for each treatment level, the control and the solvent control at each observation interval. Means and standard deviations for biomass were also calculated for each treatment level, the control and the solvent control and were based on the dry plant weight determined at test termination. A t-Test (1990) was used to compare the 14-Day control and solvent control growth rate and biomass data. If control and solvent control data



were not significantly different (p < 0.05), these data were pooled for use in statistical evaluation of the data for treatment effects. If a significant difference was determined, solvent control data was used for further statistical evaluation of treatment level effects. Additionally, percent inhibition of the 14 Day mean frond density and biomass of the treatment data were calculated relative to the pooled compol data.

The highest test concentration that caused no significant adverse effect on the Day frond density or biomass when compared to the pooled control, the No-Observed-Effect Concentration (NOEC), was determined. The data were first checked for normality using 1989) Test and for homogeneity of variance using 1985) If the data sets Tĕst ( passed the test for homogeometry and normality, the 1971 (1972) was used to Test ( determine the NOEC. If the data did not ass the tests for homogeneity and normality, then Test was used to determine the NOEC All statistica determinations were made at the 95% level of certainty, except in the case of Tests, where the 99% level of certainty was applied.»

✓ J. RESULTS AND DISCUSSION

## A. ANALYTICAL VERTFICATION

At test initiation, the measured concentrations approximated the desired nominal concentrations. Measured concentrations decreased slightly over the 3-Day renewal period. Mean measured test concentrations ranged from 66 to 90% of the nominal concentrations and defined the treatment levels tested as 0.00070, 0.0012, 0.0020, 0.0049, 0.011 and 0.020 mg a.s./L. Therefore, the mean measured test concentration was used to carculate the study endpoints.

| Noi | minal concn            | Neas     | sured concn (mg a | .s./L)  | % nominal |
|-----|------------------------|----------|-------------------|---------|-----------|
| (1  | mg <sub>æ</sub> .s./L) | L Day 🕼  | 🔏 Day 3           | Mean    |           |
|     | Control                | <0.00915 | ≶ <0.00016        | n.a.    | n.a.      |
| Sø  | vent control           | .00015   | < 0.00016         | n.a.    | n.a.      |
| , S | 0.00078                | 0,00082  | 0.00058           | 0.00070 | 90        |
|     | 0.0016                 | 0.0016   | 0.00080           | 0.0012  | 74        |
| _×Ų | ₫,0030,5               | 0.0022   | 0.0017            | 0.0020  | 66        |
|     | 0.000 🚱 🕺              | ¥ 0.0056 | 0.0043            | 0.0049  | 78        |
|     | 0.013                  | 0.012    | 0.010             | 0.011   | 84        |
| ¢,0 | 0.025                  | 0.022    | 0.019             | 0.020   | 82        |

Table: Mean measured concentrations (mg/L) of Aclonifen in the exposure solutions

n.a. = not applicable



The validated method is summarised in Document M-CA4 (CA 4.1.2/68).

### B. BIOLOGICAL DATA

### Frond numbers

Frond production (density) and observations of the fronds recorded during the 14-Day exposure to Aclonifen are presented below. At test termination, the control and solven control solutions averaged 581 and 557 fronds per replicate, respectively. Statistical analysis (t-Test) determined no significant difference between control and solvent control data, therefore, control data were pooled for further statistical analysis (569 fronds/replicate). Frond production in the 0.00070, 0.0012, 0.0020, 6.0049, 0.011 and 0.020 mg a.s./L treatment levels averaged 577, 592, 530, 466, 285 and 81 fronds per replicate, respectively. Based on the results of the requirements for normality and homogeneity of variance, therefore, for the results of the requirement related effects.

A significant reduction in frond density in treatment levels 0.0020 mg a.s./b.as compared to the pooled control was detected. Therefore, the DOEC for frond density was determined to be 0.0012 mg a.s./L. The 14-Day  $EC_{50}$  (corresponding 95% confidence limits) for frond density was calculated to be 0.012 mg a.s./L (0.010 to 0.014 mg a.s./E).

| Mean | frond | numbers | are | presen | ted in | ťhe | follo       | wing | table: | ¥ |
|------|-------|---------|-----|--------|--------|-----|-------------|------|--------|---|
|      |       |         |     | 1      | × ~    |     | () <u> </u> |      | (Cha)  |   |

|                  |            |                        | y exposure to               |                   |            |            |
|------------------|------------|------------------------|-----------------------------|-------------------|------------|------------|
| Mean<br>measured | Day 3      | Day 6                  | Day 9                       |                   | 🔊 Day 14   | %          |
| concn (mg/L)     | Mean (SD)  | (Mean SD)              | <sup>™</sup> Mean (SD) (    | Mean (SD)         | Mean (SD)  | inhibition |
| Control 🖉        | 33(3.5)    | 104 (13)               | 225 (12)                    | @19(3,8)          | 581 (12)   | -          |
| Solvent control  | 3\$(4.4)   | JØ3 (1,1%)             | × 220 (4,2)                 | 421 (4.5)         | 557 (20)   | -          |
| Pooled control   | \$ - \$    |                        |                             |                   | 569 (20)   | -          |
| 0.00070          | 36 (2,1)   | J 106€7.2) ⊘           | 210(4.0)                    | <b>A 3</b> 2 (15) | 577 (15)   | -1.5       |
| 0.0012           | 34Q(Ă.6) 🕵 | <b>2</b> (16)          | <b>\$28</b> (4,2 <b>9</b> ) | 435 (12)          | 592 (8.1)  | -4.1       |
| 0.0020           | 24 (12)    | 112 (4.0°)             | 220 (5.6)                   | × 415 (5.5)       | 530 (9.1)* | 6.8        |
| 0.0049           | ∞Q33 (1.∰) | § 91 (5 <sup>9</sup> ) | J 207 (6.7) 🎽               | ▲ 407 (4.0)       | 466 (10)*  | 18         |
| 0.011            | 31 (1.2)   | V 75(2.5) V            | 158 (11)                    | 214 (9.5)         | 285 (6.0)* | 50         |
| 0.020            | 29(3.8)    | 50 (5.8) V             | \$62 (8,0) <sup>2</sup>     | 69 (9.5)          | 81 (11)*   | 86         |

## Table: Mean frond numbers over 14-Day exposure to acloriten technical

Day 0 = 15 fronds (5 plants) per test flask, 3 replicates

SD = Standard deviation

Negative Finhibition indicates showth relative to pooled control

\* Statistically significant compared to pooled withrol (Williams' Test)

### Biomass

The 14-Day biomass (dry weight) for the control and solvent control averaged 0.1380 and 0.1685 g, respectively. Statistical analysis (t-Test) determined no significant difference between control and solvent control data, therefore, control data were pooled for further statistical analysis (0.1533 g). Frond biomass in the 0.00030, 0.0012, 0.0020, 0.0049, 0.011 and 0.020 mg a.s./L treatment levels averaged 0.1895, 0.2226, 0.1246, 0.0668, 0.0205 and 0.0158 g, respectively.

Based on the results of **Sector and Sector** Tests, this data set did not pass the requirements for homogeneity of variance, therefore, **Sector and Test** was used to determine treatment-related effects. **Sector and Test** did not detect a statistically significant reduction in frond biomass in any



treatment level as compared to the pooled control. Since the reduction at the 0.0020, 0.0049, 0.011 and 0.020 mg a.s./L concentrations represented a percent inhibition of 19, 56, 87 and 90%, respectively, as compared to the pooled control, the 14-Day NOEC for frond biomass was empirically estimated to be 0.0012 mg a.s./L. The 14-Day EC<sub>50</sub> value (corresponding 95% confidence limits) for biomass was calculated to be 0.0060 mg a.s./L (0.0022 to 0.017 mg a.s./L).

| 210111000 (110114 4                |                                | -Day exposure to ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Mean measured<br>concn (mg a.s./L) | Mean 14 -day<br>biomass<br>(g) | SD SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % inhibition \$<br>% inhibition \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ |
| Control                            | 0.1380                         | 0.023 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
| Solvent control                    | 0.1685                         | 0.056, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
| Pooled control                     | 0.1533                         | ° 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
| 0.00070                            | 0.1895                         | Q \$0.055 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ <u>24</u>                                                                                                     |
| 0.0012                             | 0.2276                         | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O* -48 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~                                                                    |
| 0.0020                             | 0.1246                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 19 57 0 <sup>4</sup>                                                                                          |
| 0.0049                             | 0.0668                         | 0,002* ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in the second second                                                                                             |
| 0.011                              | @0205 & V                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E 287 E O                                                                                                        |
| 0.020                              | Q0.0148 ~                      | v 0.0158° 🔬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
| SD = Standard deviation            | on Q a a                       | The state of the s |                                                                                                                  |

### Table: Biomass (frond dry weight) after 14-Day exposure to aclout fen technical

Negative % inhibition indicates growth relative to pooled control

\* Test did not distinguish any treatment levels to be significantly reduced as compared to the pooled control data. Therefore, this treatment was empirically estimated to be reduced as compared to the pooled control

### Shape of fronds

At test termination, flightly chlorobe to chlorotic, small frond and fronds with less root formation were observed in the 0.011 and 0.020 mg a.s./L treatment solutions. Small fronds were observed in the 0.0049 mg a.s./L treatment level. Fronds exposed to the remaining treatment levels, the control and the solvent control were observed to be normal.

# C. VALIDITY CRITERIA

| Validity criterion                                                                       |              | C Required<br>(OECD 221, 2006) | Achieved   |
|------------------------------------------------------------------------------------------|--------------|--------------------------------|------------|
| Doubling tipe of frond num<br><2.5 days (60 h), correspon<br>approximately 7-fold increa | ding for a l | 0 ″0″<br>2                     | ≤2.31 days |

The US EPA guideline followed in this study did not specify validity criteria (US EPA 122-2 and 123-2, 1982).

Validity of the study was assessed against the current version of OECD Test Guideline 221: *Lemna* sp. Growth Inhibition Test (2005) which requires a doubling time of less than 2.5 days over a test period of 7 days. In this test, from number observations were not made on Day 7 and hence the doubling time was determined using the from number data from Days 6 and 9. The doubling time using the Day 0 - 6 data was 2.16 days, and 2.31 days for the Day 0 - 9 period. The validity criterion was satisfied and therefore this study can be considered to be valid.

### D. CTOXICITY ENDPOINTS

(1998)



|                  |               | Mean measured           | l concn (mg/L)          |                |
|------------------|---------------|-------------------------|-------------------------|----------------|
| Parameter        | Frond density | 95% confidence<br>limit | Biomass<br>(dry weight) | 95% confidence |
| EC <sub>50</sub> | 0.012         | 0.010 - 0.014           | 0.0060 🔗                | 0.0022 - 0.017 |
| EC25             | 0.0065        | 0.0047 - 0.0082         | 0.0038                  | 0.001400.010   |
| NOEC             | 0.0012        | - Č                     | 0.001                   | <u> </u>       |
|                  |               |                         | Ő                       |                |

#### Table: Summary of endpoints

# III. CONCLUSION

A significant reduction in frond density (frond number) in treatment levels 20,0020 mg a.s.d compared to the pooled control was detected. Therefore, the NOEC for frond density was determined to be 0.0012 mg a.s./L. The 14-Day EC50 (corresponding 3% confidence limits) for find depisity was calculated to be 0.012 mg a.s./L (0.010 to 0.014 mg a.s./L). õ

Frond biomass (dry weight was reduced at the 0.0020, 0.0049, 0.0 kP and 0, 020 ng a.s./ Sconcentrations representing a percent inhibition of 19, 56, 87 and 90%, respectively, as compared to the pooled control. The 14-day NOEC for frond biomass was empiricall cestimated to be 0.0012 mg a.s./L. The 14-Day EC50 value (corresponding 95% confidence limits) for biomass was calculated to be (50060 mg a.s./L (0.0022 to 0.017 mg a.s./L).

# Executive summary:

The report for 'Aclonifen - Toxicity to the duckweed Lemna gibba' (study number 98-7-7411,

1998) did not provide estimates of the  $EC_{50}$  values based on growth rate. Consequently, the data generated in this study have been re-analysed in an attempt to provide these values.



The mean measured concentrations were 0.00070, 0.0012, 0.0020, 0.0049, 0.011 and 0.020 mg a.s./L, equivalent to 0.70, 1.20, 2.00, 4.90, 11.0 and 20.0 µg a.s./L. All reported results are related to these mean measured concentrations.

All computations were carried out in ToxRat Professional version 2.09 (ToxRat Solutions Gmb

| Mean measured   | Final frond no.   | Final dry weight                         |                      | ibition 2                         |
|-----------------|-------------------|------------------------------------------|----------------------|-----------------------------------|
| concn           | (replicate means, | (replicate means,                        | Averagegrowth        | Average growth                    |
| (µg a.s./L)     | day 14)           | day 14)                                  | rate for frond no.   | wate for final dry                |
|                 |                   | (mg)                                     |                      | weight v                          |
| Control         | 581               | 138.0                                    |                      |                                   |
| Solvent control | 587               | 408.5                                    |                      |                                   |
| Pooled control  | 569               | <pre></pre>                              |                      |                                   |
| 0.70            | 577               | O <sup>™</sup> 189.® <sup>™</sup>        | ~ -0.40 n            | -5.3                              |
| 1.20            | 592               | A 227.6                                  | Q -1.Y               | 0 <sup>°</sup> -1000 <sup>°</sup> |
| 2.00            | 530               | × 124.6                                  | $\rightarrow$ $A9$   | 5.0 ×                             |
| 4.90            | 466               | × _ محم 66.8℃ _ ۸                        | م <sup>2</sup> 5.5 م | × 20.2 ×                          |
| 11.0            | 285 Q             | 20 S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | × 19.0               | 50.0                              |
| 20.0            | 81                | m 15.8 W                                 | 19.0<br>~ \$\$?7 5   | 5,72                              |

|         | .0                                                           |             |
|---------|--------------------------------------------------------------|-------------|
| Table:  | Frond numbers and dry weights, average growth rates and % in | • hihitian@ |
| i abie: | Frond numbers and dry weights, average growth rates and 70 m | IIIIDILIOIK |
|         |                                                              |             |

Negative value means growth stimulation

Negative value means growth stimulation The 0-14 Day  $E_rC_{50}$  figures are usable as substitutes for 0-7 Pay  $E_rC_{50}$  values because of time-independency of such growth data. Endpoints based on OECD 221 (2004) are outlined below:

#### Summary of endpoints Table:

| Endpoints O Effect of frond no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Effect on final dry weight |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Endpoint Effect on frond no.<br>(Day 0-14) (µg a.s.(b) ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg a.s./L)                 |
| EO <sub>10</sub><br>(6.24 \$9.59]<br>(0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.65                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>∞</i> [1.14 – 4.04]     |
| $E_1C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>Q</i> 4.65              |
| $\beta = \frac{1}{2} \left[ \frac{1}{2} \frac{1}{$                                                                                                                                  | [2.68 - 6.30]              |
| $E_{r}C_{50}$ $C_{r}$ $C_{50}$ $C_{r}$ $C_{50}$ $C_{r}$ $C_{50}$ $C_{r}$ $C_{50}$ $C_{r}$ $C_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.6                       |
| $\mathbb{L}_{r}^{\mathcal{O}_{50}} = \mathbb{L}_{r}^{\mathcal{O}_{50}} = \mathbb{L}_{r}^{\mathcal{O}_{50}}$ | [10.6 - 18.8]              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.90                       |
| NOC A 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                       |
| [059/ confidence@intervalle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |

[95% confidence interv

# M CONCLUSION

The original study was conducted according to US EPA test guidelines (FIFRA 1222-2 and 123-2, 1982), consequently statistical fe-analysis of the study data was undertaken to determine ErC50 values for frond number and dry weight of plants in accordance with OECD 221 requirements.

The E<sub>r</sub>C<sub>26</sub> determined for frond number was calculated to be 19.0  $\mu$ g a.s./L (95% CI  $20/2 \ \mu g \ s./L)$ . The corresponding NOEC was determined to be 2.00  $\mu g \ a.s./L$ . 17.5 -

The  $EC_{50}$  for plant by weight was calculated to be 13.6 µg a.s./L (95% CI 10.6 – 18.8 µg a.s./L). The corresponding NOEC was determined to be 2.00 µg a.s./L.

(2005)



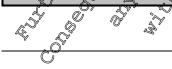
Assessment and conclusion by applicant:

For the original study, it was not possible to determine frond number doubling time over 7 days in accordance with current guideline due to frond counts not being performed on Day 7. The doubling time was therefore determined using the frond number data from Days 6 and 9 as a surrogate. The doubling time was 2.16 days and 2.31 days for the day 0 - 6 and day 0 - 9 period, respectively. It was considered that these data provided sufficient evidence that the validity criterion for doubling time over 7 days was satisfied and therefore this study can be considered to be valid.

In the original study, the 14-Day NOEC for Acclonifen technical was determined to be 0.0012 mg a.s./L, based on mean measured concentrations. The  $EC_{50}$  value for frond number density after 14 days was determined to be 0.012 mg a.s./L. The  $EC_{50}$  value for frond biomass after 14 days was determined to be 0.0060 mg a.s./L. Results were reported based on mean measured concentrations

The original study was conducted according to US EPA test guidelines (EPFRA 122-2 and 125-2, 1982), consequently statistical re-analysis of the study data was undertaken to determine  $E_rC_{50}$  (growth rate) values for frond number and dry weight of plants in accordance with OFCD 221 requirements.

The  $E_rC_{50}$  determined for frond number was calculated to be 19.0 µg a. L (95% CI 17.5 – 21.2 µg a.s./L). The corresponding NOEC was determined to be 2.00 µg a.s./L.


The  $E_rC_{50}$  for plant dry weight was calculated to be 13.6 fr g a.s./L (95% CI 166 – 18.8 µg a.s./L). The corresponding NOEC was determined to be 0.00 µg a.s./L

EFSA's Outcome of the Pesticides Peer, Review Meeting on general recurring issues in ecotoxicology (EFSA: 2015) recommends that the asured concentrations are calculated using the geometric mean. A summary of the arithmetre and geometric mean measured concentrations is provided in the following table.

| Nominal 🔊                               | <sup>Δ</sup> Δ <sup>γ</sup> Measured concentration (μg a.s./L) |           |                |           |  |
|-----------------------------------------|----------------------------------------------------------------|-----------|----------------|-----------|--|
| Nominal<br>concentration<br>(μg a.s./Ω) | Arithmetic mean                                                | Nominal S | Geometric mean | % Nominal |  |
| 0.78                                    | ~ 0.7 <b>0</b> (                                               | y 6, 90 ô | 0.69           | 88        |  |
| 1                                       | 1.20                                                           | 75        | 1.13           | 71        |  |
| <u></u>                                 | 200                                                            |           | 1.93           | 64        |  |
| 6.3                                     | 4.90                                                           | \$ \$ 18  | 4.91           | 78        |  |
| 13                                      | \$11. <b>00</b> Q                                              | 85        | 10.95          | 84        |  |
| 25                                      | 20.00                                                          | × 80      | 20.45          | 82        |  |
|                                         |                                                                |           |                |           |  |

Table: Measured concentrations from the exposure of Lemna gibba to Aclonifen

Given that the peometric mean measured test concentrations were within 0.5  $\mu$ g a.s./L of the arithmetic mean measured est concentrations it was considered that recalculation of the study



<sup>9</sup> EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.



### Page 213 of 328 2020-01-17, rev. 2020-03-12 Document MCA – Section 8: Ecotoxicological studies Aclonifen

| 1 . 1 1 .1                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| endpoints based on the geometric mean measured concentrations was not necessary. Consequently, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| the $E_rC_{50}$ for plant dry weight of 13.6 µg a.s./L is used for risk assessment.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Assessment and conclu                                                                          | ision by RMS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                | KCA 8.2.7/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Data Point:                                                                                    | KCA 8.2.7/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Report Author:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Report Year:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Report Title:                                                                                  | 1st amendment to the study report Effect of aclongen technical on the growth of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                | Ceratophyllum demersum on the presence of sediment _ O' _ O' _ O'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Report No:                                                                                     | $BAY-025/4-80/B^{*} \xrightarrow{\gamma} \xrightarrow{\gamma} \xrightarrow{\gamma} \xrightarrow{\gamma} \xrightarrow{\gamma} \xrightarrow{\gamma} \xrightarrow{\gamma} \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Document No:                                                                                   | M-408091-0221 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Guideline(s) followed in                                                                       | draft guidance document of the SECAC<br>AMRAP (Aquation Macrophyte Risk Assessment for Pesticides Sworking group 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| study:                                                                                         | AMRAP (Aquati@Macrophyte Risk Assessment) for Pesticides Working group 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Deviations from current                                                                        | Not applicable – no current applicable test guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| test guideline:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Previous evaluation:                                                                           | No, not previous submitted of a standard of |  |  |  |  |
| GLP/Officially                                                                                 | Yes conducted under GLP Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| recognised testing                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| facilities:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Acceptability/Reliability:                                                                     | $\int^{W} es \sqrt{v} \sqrt{v} \sqrt{v} \sqrt{v} \sqrt{v} \sqrt{v} \sqrt{v} \sqrt{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |

### Executive Summary

A study was performed to determine the oxicity of the test item Aclonifen technical on the growth of the rootless *Certaophylfum depiersum* under static conditions over 14 days. The test was conducted following the graft guidance document of the SETAC AMRAP (Aquatic Macrophyte Risk Assessment for Pesticides) working group 2. The macrophytes were exposed to nominal concentrations of 1.0, 3.0, 9.0, 27.0 and 81.0 µg as/L.

The test item was dissolved in growth medium (Smart & Barko medium). For the growth tests three replicates for each test concentration and six teplicates for controls (test medium only) were used with five plants per replicate. The plants were exposed to the test item in the aqueous phase of the test system in the presence of sediment.

Following parameters were neasured: shoot length, fresh weight and dry weight. Plant length was recorded at test start and after 4, 7, 11 and 14 days. At test start, fresh weight was determined of all plants and afty weight was determined using 25 additional plants. At the end of the test all plants were harvested and their wet and dry weights were recorded. During the 14 days growth test the shoot length increased more than 50%.



Effective concentrations were calculated for relative increase and growth rate of the measured parameters.

At test start the measured concentrations were between 85.9 and 96.9% of nominal. During the 14-Day growth test the test item was not stable in the test media of all treatments leading by a lower concentration at the end of the test (27.4-32.5% of nominal). The test was evaluated using the mean measured concentrations of 0.56, 1.47, 4.35, 13.2 and 41.3 µg a.s./L.

In the static growth inhibition test with the rootless macrophyte Ceratophyllum demersum exposed the test item (Aclonifen technical) over 14 days the EC<sub>50</sub> values for @crease in short length, fresh ar dry weight were 11.5, 6.94 and 17.6 µg a.s./L, respectively. The BC 50 values for growth rate of show length, fresh and dry weight were 22.6, 10.8 and areater than 413 µg as

The NOEC value for all measured parameters was 0

### A. **MATERIALS**

Jt s. onifen technical 1. **Test Item:** E F068300-01240 **Batch no.: Purity:** Yellow brown powder **Appearance:** 30 September 2010 Date received: Keep in tightly cl Storage: entilated place well 2∑Februar∖

Expiry dates

Test Organism Ceretophylum demersum Haloragaceae, Dicotyledones 2. Source:

- - predominate with more than 50 per cent of the particles between 50 and 200 µm).



Deionised water was added to obtain moisture of the final mixture of about 30%. If needed, calcium carbonate of chemically pure quality  $(CaCO_3)$  was added to adjust the pb of the final particular

of the sediment to  $7.0 \pm 0.5$ . For the batch of sediment containing nutrients instead deionised water, an aqueous nutrient medium (with 300 mg/L sediment of both animonium chloride and sodium phosphate in the appropriate amount of water) was added to obtain moisture of the final mixture of about 30 

#### B. **STUDY DESIGN AND METHODS**

### 1. In-life phase:

### 2. Exposure conditions

**Test vessels:** 

Replicates

beakers rapproximately 24 cm high and 11 cm diameter), Small plant pots (approx. 9 cm diameter, and 8 cm high and around 350 mlo volume, plastic, commercially were used as containers for the sediment. The sectiment surface coverage was about 70% of the test vessel urface the minimum overlaying water depth was 12 cm test conceptrations (1.0, 9.0, 9 \$, 27.0 and 81.0 µg a.s./L) plus

Experimental design:

a control 6 replicates for the control and 3 replicates per treatment group. replicate contained

Tempgrature рН Aeration: Photoperiod Light intensit

### 3. Administration of the test iten

A stock solution was prepared in acetone with a concentration of 16.33 mg test item/1 mL (stock solution 1). 50 µL of stock solution were dispensed into 1 L graduated glass flask and the acetone was left to evaporate. The flask was filled up to 1 L to achieve a concentration of 816.5 μg test item/L equivalent to 810 µg a.s. (stock solution 2), The stock solution 2 was stirred at room temperature for 24 hours and then the 1 litre was added to 9 L growth medium to obtain the highest test concentration of 81.0 μg a /L from which serial dilutions in growth medium were made to prepare the remainder of the test concentrations. The test media were stirred vigorously for 30 minutes at room temperature. The pHvalues of the test modia were not adjusted.

### 4. Preparation of test vessels

For the test, the sediment was filled into standard planting pots. Since the standard planting pots have wholes at the bottom, first a filter paper was put on the bottom of the vessel. Afterwards an



approximately 1 cm layer of the standard sediment was added. On top of this a 4 cm layer of sediment was added which had been supplemented with a nitrate and phosphate fertilizer (nutrient supplemented sediment). This was covered again with 1 cm of standard sediment without fertilizer (in order to provide sufficient nutrients to the plants via the sediment without enriching the water with further nutrients). A fine/very thin layer (approximately 2 mm) of coarse quartz sand was added on the top of the sediment in order to reduce suspension of sediment into the water.

### 5. Test organism assignment and treatment

After the pre-culture, the plants were removed from the pre-culture and cleaned of surplus water; plants, that were apparently not healthy were discarded at this stage. The plants were weighed and the length of the plants was recorded. The shoots were not partied into sediment since *Ceratopholum* is a rootless macrophyte.

25 plants of the pre-culture were additionally harvested at this stage (only using the most homogeneus individuals) and plant dry weight were determined to obtain the respective data for Day 0.

The pots with sediment were placed into the plass beakers. Afterwards, the test dessels were carefully filled up with 2 L of the respective amount of test medium containing the relevant amounts of the test item and the plants were placed into the medium above the sediment.

### 6. Measurements and observations

The correct application of the test item was confirmed by analytical measurements of aclonifen concentrations in the test media at test initiation and after the 14-Day exposure period.

During the 14-Day exposure period, shoof lengths were recorded at test start and on Days 7, 11, and 14.

Total plant fresh veight was determined after carefully blotping of remarking test medium of the plant. Dry weight was determined subsequently after weighing the fresh plants. The five plants per replicate were combined and the plants were dried in alumninum weighing boats at 105 °C for 24 hours.

Light intensities at the water surface were measured on Day 0 and 14. Oxygen contents and pH values of the test medium were recorded on Day 0, 9 and 14. Test media temperature was recorded using a data logger four times a day (Thermo Data Logger ELOUSE TC).

At the end of the growth test all plants were har ested. Why symptoms (such as chlorosis or necrosis) or other observations were recorded. Total plant wet weight (after carefully blotting off remaining test medium) and subsequently, total plant dry weight was determined.

## 7. Statistics/Data evaluation

Statistical calculations were made on the results obtained for individual vessels, not for individual plants. Since *Ceratophyllum* plants were not planted into the sediment individual plants could not marked. Therefore, the total length and total weight per test vessel was used for evaluation.

Data evaluation was done for shoot length increase, fresh and dry weight as well as for growth rate of the respective parameters at test termination. The relative values (in percent of test start) of the parameters were used for the evaluation.

EC<sub>50</sub> values were calculated by probit analysis modified for continuous data using the computer program ToxRat Professional (ToxRat Solutions, Alsdorf, Germany). No Observed Effect Concentrations (NOEC) were calculated, using ANOVA, followed by test.



The evaluation was performed using mean measured concentrations. The replicates of each concentration plot were used for fitting concentration-response curves of the measured parameters  $Q_{\mu}^{\circ}$ 

### **II. RESULTS AND DISCUSSION**

### A. ANALYTICAL VERIFICATION

Freshly prepared test solutions at test start and pooled samples of the test media at the end of the prowth test were analysed for the test item using HPLC UV VIS (LOQ  $0.25 \ \mu g$  a.s. 4) after sample concentration. The measured concentrations in the test media were between 85.9 and 96.9% of normal at test start and between 27.2 and 32.5% at test end. Due to deviations from the normal concentrations.

| Table: | Measured test | concentrations | Aclonife | n during | the exposure | e to <i>Ceratophyllum</i> |
|--------|---------------|----------------|----------|----------|--------------|---------------------------|
|        | demersum      | 1              | ñ, c     | , Q      |              | O' Q' A                   |

|               |                                                                                                                                               | L 1 V       | i v                                                                                            |                   |                                             |              |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------|--------------|
| Nominal       |                                                                                                                                               |             | Measured co                                                                                    | ncentration       |                                             |              |
| concentration | Da                                                                                                                                            |             | 🗸 🖉 Day                                                                                        | ,14 🔬 👌           | Geometric m                                 | ean measured |
| (µg a.s./L)   | μg a.s./L                                                                                                                                     | % Aomina    | µg≫a.s./L <sup>≪</sup>                                                                         | % prominal        | µg a.s./L                                   | % nominal    |
| Control       | <loq< td=""><td>~~ <i>Q</i></td><td>Q<loq< td=""><td><u>6</u> - L</td><td>SO <lqq∕< td=""><td>× <u>-</u></td></lqq∕<></td></loq<></td></loq<> | ~~ <i>Q</i> | Q <loq< td=""><td><u>6</u> - L</td><td>SO <lqq∕< td=""><td>× <u>-</u></td></lqq∕<></td></loq<> | <u>6</u> - L      | SO <lqq∕< td=""><td>× <u>-</u></td></lqq∕<> | × <u>-</u>   |
| 1.0           | 0.970 😞                                                                                                                                       | C 96.9      | 0.303                                                                                          | 325               | 0.9%                                        | 56.2         |
| 3.0           | 2.60                                                                                                                                          | \$\$6.7 D   | Q.830 @                                                                                        | <b>*2</b> 7.7 *** | <u>م</u> ا.47                               | 49.0         |
| 9.0           | 7.73                                                                                                                                          | 85.96       | 2.44                                                                                           | <u>∼</u> × 27.2   | 4.35                                        | 48.3         |
| 27.0          | 23.6                                                                                                                                          | ~ 863 (     |                                                                                                | \$ \$27,4         |                                             | 48.9         |
| 81.0          | \$A.2 0                                                                                                                                       | ~91.6 Q     | \$3.1                                                                                          | 28.5              | <i>4</i> 1.3                                | 51.0         |

LOQ: Limit of Quantitation =  $\frac{1}{25} \mu g + \frac{9}{2} / L$ 

The validated method is surpmarised in Document M-CA4 (CA4.1.269).

# B. BÌØLOGICAL DATA

There was a concentration dependent effect on the increase in shoot length and the fresh and dry weight of *Ceratophyllum demersum* over the  $\frac{1}{4^2}$  Day, exposure period.

Table: Percentage inhibition for plant shoet length, fresh weight and dry weight during the exposure of *Gratophyllum demetsum* to Aclonifen

| Geometric<br>mean<br>measured | measured Shoot length Fresh weight Dry weight |                  |            |                |          |                |
|-------------------------------|-----------------------------------------------|------------------|------------|----------------|----------|----------------|
| concentration<br>(μg a.s./L)  | <sup>©</sup> Increase                         | Growth<br>Agte Q | ♥ Increase | Growth<br>rate | Increase | Growth<br>rate |
| 0.56 🔊                        | 3.9                                           | 2.51             | -2.00      | -1.20          | 6.30     | 4.30           |
| 1.47                          | 33.40                                         | ≵ 27.59          | 27.4       | 22.0           | 40.8     | 30.8           |
| 4.3                           | ۵ <sup>۲</sup> 55.4 (                         | 48.6             | 44.4       | 37.3           | 51.8     | 40.3           |
| 16,2                          | <b>43</b> .0 \$                               | 36.3             | 65.4       | 58.4           | 38.5     | 28.1           |
| ¥1.3 Ø                        | 61.6                                          | 55.0             | 71.6       | 65.1           | 55.8     | 44.1           |

- Acceptive values indicate increase in the observed parameter compared to control

For the assessment of effects on fresh weight the increase in weight of each individual plant was used. For dry weight, the increase was calculated using the dry weight of a separate set of plants regarded as



representative for the test plants. Due to the possible dry weight variability of plants with the same length, a higher variability of data can be expected. Therefore, the data of fresh weight are considered more reliable.

The test results were statistically analysed to determine the 14 day EC<sub>50</sub> values together with confidence intervals for parameters showing concentration dependent effects as well as NQEC

#### VALIDITY CRITERIA С.

Specific criteria for macrophyte growth tests using Ceratophyllum have not been set performing the study, validity criteria proposed by the AMRAP working group were used to as validity of the study.

|                                               | - Ro    | ~ .0                                | Y V Q V                          |
|-----------------------------------------------|---------|-------------------------------------|----------------------------------|
| Validity criterion                            |         | Required<br>WatAP working<br>group) | Achieved<br>Achieved<br>Achieved |
| Increase in biomass (shoot length) in control |         | \$*0% \$` \x                        |                                  |
| Continuous growth throughout the test durat   | ion 🖉 🔬 | Required 📈                          | Q <sup>4</sup> Ares O            |
| Temperature                                   |         | >20±℃                               | 185−19.5©C                       |
| $\odot$                                       |         |                                     |                                  |

All validity criteria were satisfied and therefore this study can be considered to be valid. D. TOXICITY ENDPOINTS

### Table: Summary of endpoints

|              |                                 | <u> </u>                                                                       |                       |             |
|--------------|---------------------------------|--------------------------------------------------------------------------------|-----------------------|-------------|
| Endpoint     | S S S Geometric                 |                                                                                | d concentration (     | (μg a.s./L) |
| 6            |                                 | EC20                                                                           | EC50                  | NOEC        |
| Shoot length | Relative increases of not       | 0.03 ×<br>[0.02 1.50]                                                          | 11.5<br>[5.26 – 43.1] | 0.56        |
|              | Grewth rate                     | 0.84<br>0.05 \$2.29]                                                           | 22.6<br>[9.94 – 148]  | 0.56        |
| Erech weight | Relative/increase $0.33$        | 0,98<br>[0,44] – 1.67]                                                         | 6.94<br>[4.69 – 10.7] | 0.56        |
| Fresh weight | Growth rate 0.46<br>[0.14_0.92] | <ul> <li> <sup>™</sup> 1.35<br/><sup>™</sup> [0.61 – 2.24]         </li> </ul> | 10.8<br>[7.46 – 16.9] | 0.56        |
| Dry weight A | Relative increase of ga.d o     | 0.21<br>[n.d.]                                                                 | 17.6<br>[n.d.]        | 0.56        |
| Dry weight   | Growth rate                     | 0.70<br>[n.d.]                                                                 | >41.3<br>[n.d.]       | 0.56        |

[95% confidence limits] n.d.: not determined due to mathematical reasons or inappropriate data

L)

# **~**III. CONCLUSION

Q

In the static growth inhibition sest with the rootless macrophyte Ceratophyllum demersum exposed to the test item (Scionifen technical) over 14 days the EC<sub>50</sub> values for increase in shoot length, fresh and dry weight were 1975, 6, 97 and 17.6 µg a.s./L, respectively. The EC50 values for growth rate of shoot length, fresh and dry weight were 22.6, 10.8 and greater than 41.3 µg a.s./L.

The NOEC value for all measured parameters was  $0.56 \mu g/L$ .



Assessment and conclusion by applicant:

All validity criteria were satisfied and therefore this study can be considered to be valid.

The most sensitive endpoint in the 14-Day exposure of Aclonifen Technical to the rootless anatic macrophyte Ceratophyllum demersum was fresh weight growth rate. The statistical NOEC and ErCe for this endpoint were 0.56 and 10.8 µg a.s./L, respectively.

|                            | sion by RMS:                                                                                                                                                                               |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment and conclus     |                                                                                                                                                                                            |
|                            |                                                                                                                                                                                            |
| Data Point:                | KCA 8.2.7/04 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                         |
| Report Author:             |                                                                                                                                                                                            |
| Report Year:               |                                                                                                                                                                                            |
| Report Title:              | 1st amenoment to study report - Macrophytes, cowth inhibition test - Effect of<br>aclonifent technical on the growth of Fodea canadenses in the presence of<br>sediment, static conditions |
| Report No:                 | BAX-025/4-80/CS                                                                                                                                                                            |
| Document No:               | M-408 7-02-15 0 0 5 5 6                                                                                                                                                                    |
| Guideline(s) followed in % | SETAC Q AV A AV AV                                                                                                                                                                         |
| study:                     | AMRAP (Aquatic Macrophyte Rist Assessment for Pesticides) working group 2                                                                                                                  |
| Deviations from current    | Not ann Baabla an aur sant ann Baabla taat aur dalina                                                                                                                                      |
| test guideline: 🔊 🔍        |                                                                                                                                                                                            |
| Previous evaluation:       | Not applicable no current applicable rest guideline                                                                                                                                        |
| GLP/Officially             | Yes, conducted under CLP/Officially recognised testing facilities                                                                                                                          |
| recognised testing         |                                                                                                                                                                                            |
| facilities                 |                                                                                                                                                                                            |
| Acceptability/Reliability: | Yes w Stranger                                                                                                                                                                             |
|                            | No, not previously submitted<br>Yes, conducted under GLP/Orbicially recognised testing facilities<br>Yes                                                                                   |

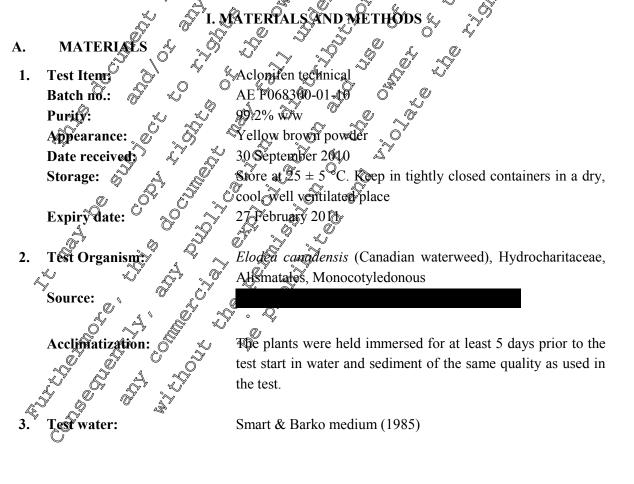
# Executive Summary

F A study was performed to determine the toxicity of the test item Aclonifen technical on the growth of Eloded canadensis under static conditions over 14 days. The test was conducted following the draft guidance document of the SEPAC AMRAP (Aquatic Macrophyte Risk Assessment for Pesticides) working group 2. The macrophytes were exposed to nominal concentrations of 5.0, 15.8, 50, 158, 500 and 1000 µg a.s./L

The test nem was dissolved in growth medium (Smart & Barko medium). For the growth tests three replicates for each test concentration and six replicates for controls (test medium only) were used with five plants per replicate. The plants were exposed to the test item in the aqueous phase of the test system in the presence of sediment.

Following parameters were measured: shoot length, fresh weight and dry weight. Plant length was recorded at test start and after 4, 7, 11 and 14 days. Prior to the onset of the test (-3 days), the fresh




weight and dry weight of the test plants were determined. At the end of the test all plants were harvested and their fresh and dry weights were recorded. During the 14 days growth test the shoot length increased more than 100%.

Effective concentrations were calculated for relative increase and growth rate of the measured parameters.

At test start the measured concentrations were between 35.6 and 41.3% of nominal. During the P4-Day growth test the test item was not stable in the test media of all treatments deading to lower concentrations at the end of the test (15.0 – 26.3% of nominal). Therefore, the test was evaluated using the geopretrie mean of the test concentrations measured in the different treatments, i.e. 4.81, 11.8, 38.3, 054 and 306  $\mu$ g a.s./L.

There was no concentration-dependent significant effect on shoot length and the mhibition was below 50% up to the highest test concentration. Therefore, the respective  $EC_{50}$  values for length increase and growth rate were higher than the highest test concentration (>306 µg a.s./Lo Accordingly, the NOEC for shoot length increase and growth rate were  $\geq$ 306 µg a.s./Lo Accordingly, the NOEC

In contrast, fresh weights and dry veights differed significantly from the controls of the two or four highest treatment groups, respectively, and the respective NOEC values were determined to be 38.3  $\mu$ g a.s./L (fresh weight increase and growth rate) and 4.81  $\mu$ g g s/L (dry weight increase and growth rate). No meaningful concentration-dependencies were observed and effect concentrations could therefore not be calculated





| 4.    | Sediment:                                          | Formulated sediment, based on the artificial soil used in OECD Guideline 219 was used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | ζ.                                                 | <ul> <li>4-5% peat (dry weight, according to 2 ± 0.5% organic carbon) as close to pH 5.5 to 60 as possible, it is important to use peat in powder form, finely ground (particle size &lt; 1 mm) and only air dried.</li> <li>20% (dry weight) kaolin clay (kaolinite content preferably above 30%).</li> <li>75-76% (dry weight) quartz sand (fine sand should predominate with more than 50 per cent of the particles between 50 and 200 μm.</li> <li>Deionised water was added to obtain moisture of the final mixture of about 30%. It needed calcium carbonate of chemically pure quarty (CaCQ) was added to adjust the pH of the final mixture of the sediment to 7.0 ± 0.5.</li> <li>For the batch of sediment containing numerics, instead of Atomic 4 water an attrace of the readiment (with 300 mg/l).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                    | . deionised water, an aqueous nutrient meeting (with 300 mg/L sediment of both ammonium chloride and sodium phosphate in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | . ¢                                                | the appropriate amount of water) was added to obtain moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                    | of the mal mixture of about 30%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B.    | STUDY DEGICN AND M                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | STUDY DESIGN AND SA                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. In | -life phase:                                       | $\int \frac{10 - 24}{5} March 2011^{\circ} = \frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | xposure conditions                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Test vessels:                                      | Z-L glass beakers approximately 24 cm high and 11 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                    | high and around 350 mL volume, plastic, commercially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                                                    | diameter), Small plant pots (approx. 9 cm diameter and 8 cm<br>high and around 350 mL volume, plastic, commercially<br>available) were used as containers for potting the plants into the<br>sectionent. The sediment surface coverage was about 70% of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                    | test vessel surface; the minimum overlaying water depth was<br>12 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Experimental design                                | $^{12}$ cm |
| A     |                                                    | plus a control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Replicates:                                        | 5 test concentrations (5.0, 15.8, 50, 158, 500 and 1000 μg a.s./L)<br>plus a control<br>of replicates for the control and 3 replicates per treatment group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                    | Each replicate contained 5 plants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Experimental design<br>Replicates:<br>Temperature: | 18 – 19.5 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                                    | 7.83 – 9.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R.    | Aeration:                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ~~~   | Vight intensity:                                   | 16 hours light : 8 hours dark<br>7897 - 8201 lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                    | 1077 - 0201 IUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



# 3. Administration of the test item

The nominal concentrations up to 500 µg a.s./L were spaced by a factor of 3.16, due to the flat concentration-effect curve observed in the pre-test. The highest nominal test concentration, however was 1000 µg a.s./L (and thus just a factor of 2 higher than the second highest Because of the limited solubility of the test item. The test media were prepared using different stock solutions. First, 100 mg of the test item were dissolved in 1 mL acetone (stock 1). Based on this stock solution Ourther stock solutions were prepared: stock 2: 100 µL stock 1 + 1 litre@est medium; stock 3: 50 µL stock 1 + 1 litre of test medium; stock 4: 15.8 µL stock 1 + 1 litre of test medium. These stock solutions were stirred for 24 hours prior to further dilution to achieve the respective test concentration. ThepH-values of the test media were not adjusted.

### 4. Preparation of test vessels

4. Preparation of test vessels For the test, the sediment was filled into standard planting pots. Since the standard planting pots have wholes at the bottom, first a filter paper was put on the bottom of the vessel. Afterwards an approximately 1 cm layer of the standard sediment was added. On Op of this a 45m layer of sediment was added which had been supplemented with a nitrate and phosphate fortilized nutrient supplemented sediment). This was covered again with 1 cm of standard sediment without fertilizer (in order to provide sufficient nutrients to the plants via the sediment without enciching the water with further nutrients). A fine/very thin layer (approximately 2 mm) of coarse quartz sand was added on the top of the sediment in order to reduce suspension of solimenom to the water."

# 5. Test organism assignment and treatment

After the pre-culture the plants were removed from the pre-culture and cleaned of sediment and surplus water; plants that were apparently not healthy were discarded at this stage. The plants were weighed (to reduce variability, the weight of the shoot ops used in the study should not differ by more than 30% from the mean). Shoots were then potted into the sediment and shoot length above sediment was measured I required, the length of the plants above sediment was adjusted to 3 cm.

25 plants of the pre-enture were additionally harvested at this stage (only using the most homogenous individuals) and plant dry weight were determined to obtain the respective data for Day 0.

For the growth inhibition test, five plants were used person and test vessel and three replicates were prepared for each of the five treatments testing one of the five

The pots with sediment and plants were placed into the glass beakers. Afterwards, the test vessels were carefully filled up with 2 L of the respective test media.

# 6. Méasurements and observations

The correct application of the test item was confirmed by analytical measurements of aclonifen concentrations in the test media at test initiation and after the 14-Day exposure period.

During the 14-bay exposure period, shoot lengths were recorded at test start and on Days 4, 7, 11, and

Total place fresh weight was determined after absorbing remaining test medium attached to the plants by means of tissue paper. Dry weight was determined subsequently after weighing the fresh plants. The five plants per replicate were combined and the plants were dried in aluminium weighing boats at 105 °C for 24 hours.



Light intensities at the water surface were measured on Day 0 and 14. Oxygen contents and pH values of the test medium were recorded on Days 0, 7 and 14. Test media temperature was recorded using a data logger four times a day (Thermo Data Logger EL-USB-TC).

At the end of the growth test, all plants were harvested. Any symptoms (such as chlorosis or frecrosis, roots) or other observations were recorded. Total plant wet weight (after careful absorption of attached test medium) was determined followed by the estimation of total plant dry weight.

# 7. Statistics/Data evaluation

Statistical calculations were made on the results obtained for individual vessels, not for individual plants. Data evaluation was done for shoot length increase, fresh and dry weight as well as for growth rate of the respective parameters at test termination. The relative values on percent of test start) of the parameters were used for the evaluation.

Growth rates were calculated for the fresh and droweight and increase in shoot length (including ode shoots) per vessel.

EC<sub>50</sub> values were calculated by probit analysis modified for continuous data using the computer program ToxRat Professional (ToxRat Solutions, Alsdorf, Germany). No Observed Effect Concentrations (NOEC) were calculated, using ANOVS, followed by test, test, test.

The evaluation was performed using mean measured concentrations. The replicates of each concentration plot were used for fitting concentration-response curves of the measured parameters, if meaningful concentration-effect relationships were abserved.

# RESULTS AND DISCUSSION

# A. ANALYTICAL VERIFICATION

Freshly prepared test solutions at test start and posted samples of the test media at the end of the growth test were analysed for the test item using MPLC/UV-VIS (LOQ 0.25  $\mu$ g a.s./L) after sample concentration. The measured concentrations in the test media were between 35.6 and 41.3% of nominal at test start and between 15.0 and 26.3% aftest end. Due to deviations from the nominal concentrations >20%, the analysis of the results is based on the geometric mean measured test concentrations.

# Table: Measured test concentrations of Actonifer during the exposure to Elodea Canadensis

| Nominal       |                        |                                                                                             | Measured co                                                             | oncentration |                               |              |
|---------------|------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|-------------------------------|--------------|
| concentration | 🔊 Da                   |                                                                                             | ې 💭 Day                                                                 | 7 <b>14</b>  | Geometric m                   | ean measured |
| (μg a.s./L)   | μg a.s./L              | 🖥 %/nominal                                                                                 | <b>,#</b> €a.s./L                                                       | % nominal    | μg a.s./L                     | % nominal    |
| Control       | LOQ                    | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | ~C~ <loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<> | -            | <loq< td=""><td>-</td></loq<> | -            |
| 15.85         | <sub>₹</sub> \$ 6.00 , | 3709                                                                                        | 3.85                                                                    | 24.3         | 4.81                          | 30.3         |
| 50.07         | 128.46                 | 6.9                                                                                         | 7.56                                                                    | 15.1         | 11.81                         | 23.6         |
| 158.22        | 61.76                  | × 39.00                                                                                     | 23.77                                                                   | 15.0         | 38.31                         | 24.2         |
| 500.0         | 206. <u>9</u> 2        | A1.3                                                                                        | 114.33                                                                  | 22.9         | 153.59                        | 30.7         |
| 1000          | ∛ <b>3€</b> 6.26 √     | 35.6                                                                                        | 263.25                                                                  | 26.3         | 306.25                        | 30.6         |

LOO: Limit of Quantitation  $= 0.25 \ \mu g \ a.s./L$ 

The validated method is summarised in Document M-CA4 (CA 4.1.2/70).

# **B. BIOLOGICAL DATA**



A significant effect on the increase of shoot length of *Elodea canadensis* after 14 days was observed only at the second highest test concentration (154  $\mu$ g a.s./L) but not at the highest. No meanineful concentration-dependency was noticeable. Effect concentrations were not calculated because there was no concentration-dependency of effects (p(F) > 0.05; i.e. slope of the relationship was not significant different from zero).

Data on effect on fresh and dry weight of *Elodea canadensis* based on weight increase and weight growth rate were quite variable. Obviously the test item whibited growth. Significant effects on fresh weight were detected at the two highest test concentrations (154 and 206  $\mu$ g a.s./Le while dry weight was already significantly affected at 11.8  $\mu$ g a.s./L. Nevertheless, no meaningful concentration dependencies were noticeable and strongest effects were observed in the second highest test concentration (154  $\mu$ g a.s./L).

 Table:
 Percentage inhibition for plant shoot rength, fresh weight and dry weight during the exposure of *Elodea canadensis* to Actonice

|                              |          | "V ·            |              | $\rightarrow$ $\rightarrow$ |                         |                               |
|------------------------------|----------|-----------------|--------------|-----------------------------|-------------------------|-------------------------------|
| Geometric                    |          |                 |              | after 14 days               |                         |                               |
| mean<br>measured             | Shoot    | length          | ۰<br>۴۲ešh   | weight 5                    | Dry w                   | veight                        |
| concentration<br>(µg a.s./L) | Increase | Growth<br>rate  | Ancrease     | Growth                      | O Increase              | <sup>™</sup> Growth<br>∦ rate |
| 4.81                         | -5.1 ĸ   | × <u>~</u> -3.9 | 13.2 a       | £ <del>.</del> 8.1          | ≈16.2                   | -11.6                         |
| 11.8                         | 40.6     | 27.1            | @41.6        | 30.5                        | <sup>م</sup> ر 82.7 ¢   | 79.7                          |
| 38.3                         | 14.8     | 11.8            | \$ 21 Øy     | 16.0° .                     | 465                     | 35.1                          |
| 154                          | 47.5 d   | 3238            | D 584,53 , ( | D° <b>39</b> .7             | <u></u> .1 <b>0</b> 8.8 | 117.7                         |
| 306                          | \$2.2 0  | 20.7 a          | A9.9 🗸       | 98.5                        | £ 68.5                  | 67.8                          |

- negative values indicate increase in the bserver parameter compared to control

For the assessment of effect on fresh and dry weights initial values at test start were determined on a different subset of plants which were regarded as representative. This procedure which is normally used only for dry weight determination at test start was necessary also for initial fresh weight determination because *Elodea* is very sensitive to blotting dry. Plants with the same length usually show variability in weight resulting in variability of the data for the assessment of weight increase during the test period.

The test results were patistically analysed to determine the 14-Day EC<sub>50</sub> values together with 95% confidence intervals for parameters showing concentration dependent effects as well as NOEC values.

Effects of the test item could be observed by no meaningful concentration-dependency was noticeable. This led to unsatisfactory fitting of the respective concentration- effect curves (p(F) > 0.05; i.e. slope of the relationship was not significant different from zero) and the resulting effect concentrations are regarded as 'not valid'.

# C. VALIDIEV CREPERIA

Specific criteria for macrophyte growth tests using *Elodea* have not been set yet. At the time of performing the study, validity criteria proposed by the AMRAP working group were used to assess the validity of the study.

| Ċ <sup>O</sup> .   | Required       |          |
|--------------------|----------------|----------|
| Validity criterion | (AMRAP working | Achieved |
|                    | group)         |          |



| Increase in biomass (shoot length) in controls        | >50%                       | 253%             |
|-------------------------------------------------------|----------------------------|------------------|
| Continuous growth throughout the test duration        | Required                   | Yes 🖉 🎓          |
| Temperature                                           | $20 \pm 2^{\circ}C$        | 18 – 19.5 °C - 5 |
| All validity criteria were satisfied and therefore th | is study can be considered | to be valid.     |
| D. TOXICITY ENDPOINTS                                 | 1                          |                  |
| Table:         Summary of endpoints                   | Ča do                      |                  |

#### Table: Summary of endpoints

| Endpoint     |                   | Geometric mean measured concentration (pg a.s. (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L            |                   | EC <sub>50</sub> C NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Shoot longth | Relative increase | 306 $306$ $306$ $306$ $306$ $306$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Shoot length | Growth rate       | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fresh weight | Relative increase |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Flesh weight | Growth rate       | $\mathcal{A}$ |
| Dry weight   | Relative increase | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dry weight   | Growth rate       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

n.d.: not determined due to mathematic@reasons or inappropriate data

# ÀTH. CONCLUSION

In a static growth inhibition test with the routed macrophyte Elonga Canadensis exposed to Aclonifen over 14 days the EC value for increase or shoppingth was above the highest test concentration. No EC50 values were salculated for fresh weight and Gry worght because there were no meaningful concentration-dependencies of the observed effects on these two parameters.

The NOEC for increase in shoot length based on the geometric mean measured test concentrations was greater than 306 µg a.s./L. For increase in fresh and dry weight NOFC values of 38.3 and 4.81 µg a.s./L respectively were determine

(2019)

# Assessment and conclusion by applicant

All validity criteria were satisfied and therefore this study can be considered to be valid.

In a static growth mhibition test with the reoted macrophyte Elodea Canadensis exposed to Aclouifen over 14 days the ECs value for increase in shoot length was above the highest test concentration. No EC<sub>50</sub> alues were calculated for fresh weight and dry weight because there were no meaningful@oncentration\_dependencies of the observed effects on these two parameters.

The NOEC for increase is shoot length based on the geometric mean measured test concentrations was greater than 306 g a.s A. For increase in fresh and dry weight NOEC values of 38.3 and 4.81 µg a.s./L. respectively wore determined.

Due to the back of concentration-dependency of effects (p(F) > 0.05; i.e. slope of the relationship was not significant different from zero), EC<sub>10</sub> and EC<sub>20</sub> values could not be calculated, however as the  $E_r C_{50}$  value is the endpoint required for aquatic risk assessment this was not considered to affect the interpretation of the study results.



### Assessment and conclusion by RMS:

| Data Point:                | KCA 8.2.7/05                                                              |
|----------------------------|---------------------------------------------------------------------------|
| Report Author:             |                                                                           |
| Report Year:               |                                                                           |
| Report Title:              | Effect of aclonifen technical on the growth of Cabomba caroliniana in the |
|                            | presence of sediment, static onditions                                    |
| Report No:                 | BAY-025/4-80/0                                                            |
| Document No:               | M-408124-01-1                                                             |
| Guideline(s) followed in   | SETAC & & X & X & X                                                       |
| study:                     | AMRAP (Aquatic Macrophyle Risk Assessment for Pesticodes) working group 2 |
|                            |                                                                           |
| Deviations from current    | Not applicable no current applicable test guideline. O &                  |
| test guideline:            |                                                                           |
| Previous evaluation:       | No, not presedually submitted                                             |
|                            |                                                                           |
| GLP/Officially             | Yes, conducted under GLP/Officially recognized testing facilities         |
| recognised testing         |                                                                           |
| facilities:                |                                                                           |
| Acceptability/Reliability: | Yes & O A O A A A                                                         |
| 2                          |                                                                           |

# Executive Summary

A study was performed to determine the toxicity of the test item Aclonifen technical on the growth of *Cabomba caroliniatta* under static conditions over 21 days. The test was conducted following the draft guidance document of the SETAC AMRAP (Aquatic Macrophyle Risk Assessment for Pesticides) working group 2. The macrophytes were exposed to nominal concentrations of 2.00, 6.33, 20.0, 63.3 and 200  $\mu$ g a.s./L.

The test item was dissolved in growth medium (Smart & Barko medium). For the growth tests three replicates for each test concentration and six replicates for controls (test medium only) were used with five plants per replicate. The plants were exposed to the test item in the aqueous phase of the test system in the presence of sediment.

Following parameters were measured: shoot tength, fresh weight and dry weight. Plant length was recorded at test start and after 4, 7, 14, 14, and 21 days. Prior to the onset of the test (-3 days), the fresh weight of the test plants were determined. Dry weight was determined using a set of representative plants. At the end of the test all plants were harvested and their fresh and dry weights were recorded. During the 21 days growth test the biomass of controls and the lowest treatment increased by  $86 \pm 36\%$  and  $10\sqrt{4} 41\%$  based on dry weight.

Effective concentrations were calculated for relative increase and growth rate of the measured parameters.

At test start the measured concentrations were between 67.4 and 74.4% of nominal. During the 21 day growth test the test item was not stable in the test media of all treatments leading to a lower concentration



at the end of the test (11.5-21.2% of nominal). Therefore, the test was evaluated using the geometric mean of the test concentrations measured in the different treatments with 0.62, 1.83, 5.56, 22.2, and 79.5 µg a.s./L.

There was no inhibition above 50% of the observed parameters (shoot length fresh weigh and the weight) and EC-values could not be calculated. EC50 values were therefore considered to be greater than 79.5  $\mu$ g a.s./L, the highest concentration tested.

the controls up to the highest test The observed parameters were not significantly different from the controls up to the concentration and the NOEC was determined to be ≥79.5 µg a.s./L. I. MATERIALS AND METHODS A. MATERIALS AND METHODS 1. Test Item: Acloniten technical Batch parts

AE/E068300

Store at 25

We/xx Yellow brown powde

30 September 2010

cool well ventilated blace

S Cabomba caroliniama, Hydrocháritaceae, Alismatales, Monocotyledonaus

Batch no.: **Purity: Appearance:** Date received: Storage:

**Expiry date:** 

Test Organism<sup>\*</sup> 2.

The plants were field immersed for at least 10 days prior to the Sest start in water and sediment of the same quality as used in

- Liswereareld immer start in væter and sedim the test. Smart & Barko medium (1985) Formulated sediment, based or Guideline 219 was used: 455% peat (dr garbon) \* imper t

Formulated sedment, based on the artificial soil used in OECD Guideline 219 was used:

- 45% peat (dry weight, according to  $2 \pm 0.5\%$  organic Garbon) as close to pH 5.5 to 6.0 as possible; it is important to use peat in powder form, finely ground (particle size < 1 mm) and only air dried.
- 20% (dry weight) kaolin clay (kaolinite content
- 75-76% (dry weight) quartz sand (fine sand should predominate with more than 50 per cent of the particles between 50 and 200 µm).
- Deionised water was added to obtain moisture of the final mixture of about 30%.



If needed, calcium carbonate of chemically pure quality (CaCO<sub>3</sub>) was added to adjust the pH of the final mixture of the sediment to  $7.0 \pm 0.5$ . For the batch of sediment containing patrients, instead of deionised water, an aqueous nutrient modium (with 300 mg/ sediment of both ammonium chloride and sodium prosphate in the appropriate amount of water) was added to obtain moisture of the final mixture of about 30%. B. **STUDY DESIGN AND METHODS** 07 – 28 January 2011 1. In-life phase: 2. Exposure conditions beakers (approximately 20 cm high and 11 cm **Test vessels:** Rametery. Small plant pots, (approx) 9 cm Riameter and 8 cm and around 350 mill volume, plastic compercially available) were used as containers for potting the plants into the sediment. The sediment surface coverage was about 70% of the Sessel surface; the minimum overlaying water depth was test concentrations 2.00, 6.33, 20.0, Experimental design 63 and 200 μg a.s./L) plus a control 6 picates for the control and 3 replicates per treatment group. **Replicates:** ate contained 5 plan Temperature: pH: 🔊 ant : 8 hours day. None Aeration: 16 hours light **Photoperiod:** Light intensity

3. Administration of the test item

The normal concentrations were spaced by a factor of 3.16, due to the flat concentration-effect curve observed in the preverse. A spock solution was prepared in acetone with a concentration of 40.32 mg test item/1 mL (stock solution 1). 50 µL of stock Solution 1 were dispensed into 1 L graduated glass flask and the acetome was left to evaporate. The flask was filled up to 1 L to achieve a concentration of 2.016 mg test item/Dequiverent to 2.00 mg a.s./L (stock solution 2). The stock solution 2 was stirred at room temperature for 24 hours and then the 1 litre was added to 9 L growth medium to obtain the highest test concentration of 200.0 rg a.s./L from which serial dilutions were made using growth medium to give the rendening test concentrations. The test media were stirred vigorously for 30 minutes at room temperature. The pH values of the test media were not adjusted.

# 4. Preparation of test vessels



For the test, the sediment was filled into standard planting pots. Since the standard planting pots have wholes at the bottom, first a filter paper was put on the bottom of the vessel. Afterwards an approximately 1 cm layer of the standard sediment was added. On top of this a 4 cm layer of sediment, was added which had been supplemented with a nitrate and phosphate fertilizer (nutrient supplemented sediment). This was covered again with 1 cm of standard sediment without fertilizer (in order to provide sufficient nutrients to the plants via the sediment without enriching the water with further nutrients). Approximately 2 mm) of coarse quartz sand was added on the top of the sediment in order to reduce suspension of sediment into the water.

# 5. Test organism assignment and treatment

After the pre-culture, the plants were removed from the pre-culture and cleaned of section and surplus water; plants that were apparently not healthy were discarded at this stage. The plants were weighed. Shoots were then potted into the sediment and shoot length above sediment was neasured. If tequired, the length of the plants above sediment was adjusted to 3 cm.

25 plants of the pre-culture were additionally harvested at this stage (only using the most homogenous individuals) and plant dry weight were determined to obtain the respective data for Day 0.

For the growth inhibition test, five planes were used per port and test vessed and three replicates were prepared for each of the five treatments testing one of the five

The pots with sediment and plants were placed into the glass beakers. Afterwards, the test vessels were carefully filled up with 2 b of the respective test media.

# 6. Measurements and observations

The correct application of the test item was confirmed by analytical measurements of aclonifen concentrations in the test media at test initiation and after the 21 Day exposure period.

During the 21-Day exposure period, shoot lengths were recorded at test start and on Days 4, 7, 11, 14, 18, and 21

Total plant fresh weight was determined after absorbing remaining test medium attached to the plants by means of tissue paper. Dry weight was determined subsequently after weighing the fresh plants. The five plants per replicate were combined and the plants were dried in aluminium weighing boats at 105 °C for 24 hours.

Light intensities at the water surface were measured on Day 0 and 14. Oxygen contents and pH values of the test medium were recorded on Days 0, 7, 10 and 21. Test media temperature was recorded using a data logger four times a day (Thermo Data Logger EL-USB-TC).

At the end of the growth test all plants were harvested. Any symptoms (such as chlorosis or necrosis, roots) or other observations were recorded. Total plant wet weight (after careful absorption of attached test medium) was determined followed by the estimation of total plant dry weight.

# 7. Statistics/Data evaluation

Statistical calculations were made on the results obtained for individual vessels, not for individual plants. Data evaluation was done for shoot length increase, fresh and dry weight as well as for growth rate of the respective parameters at test termination. The relative values (in percent of test start) of the parameters were used for the evaluation.



 $EC_{50}$  values were calculated by probit analysis modified for continuous data using the computer program ToxRat Professional (ToxRat Solutions, Alsdorf, Germany). No Observed Effect Concentrations (NOEC) were calculated, using ANOVA, followed by test,

The evaluation was performed using mean measured concentrations. The replicates each concentration plot were used for fitting concentration-response curves of the measured param meaningful concentration-effect relationships were observed.

# II. RESULTS AND DISCUSSIC

#### ANALYTICAL VERIFICATION A.

Freshly prepared test solutions at test start and pooled samples of the test media at the end of the growth test were analysed for the test item using HPEC UV-VIS (LOQ 5.25 bg a.s.). The measured concentrations in the test media were between 67.4 and 74.4% of nominal at test start and between 11.5 and 21.2% at test end. Due to deviations from the nominal concentrations >20%, the analysis of the results is based on the geometric mean measured test concentrations

| Table: | Measured test | concentratio                           | ny of Ac | lonifen d                              | pring the | exposure  | to Cabomba |
|--------|---------------|----------------------------------------|----------|----------------------------------------|-----------|-----------|------------|
|        | caroliniana   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |           | , Si , Si |            |

|               |                                                                                                                           | aQ ĭ              | · ·                                                                             | a a              |                                  | No. 1        |
|---------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|------------------|----------------------------------|--------------|
| Nominal       |                                                                                                                           |                   | Measured co                                                                     | perntration      |                                  | **           |
| concentration | Da                                                                                                                        | §0 > ~            | Da                                                                              | v21 0 m          | Geometric n                      | ean measured |
| (µg a.s./L)   | μg a.s./L                                                                                                                 | % nominal         | ug a.s./Lo                                                                      | % nominal        | ∿µg a.s./                        | % nominal    |
| Control       | <lody< td=""><td>- 9</td><td>S <loq< td=""><td>~~`-~``,</td><td>~S <lqq< td=""><td>-</td></lqq<></td></loq<></td></lody<> | - 9               | S <loq< td=""><td>~~`-~``,</td><td>~S <lqq< td=""><td>-</td></lqq<></td></loq<> | ~~`-~``,         | ~S <lqq< td=""><td>-</td></lqq<> | -            |
| 2.0           | 1,45                                                                                                                      | J\$7 (            |                                                                                 | D \$34.3 kg      | ∘ <b>0</b> 902                   | 31.1         |
| 6.33          | Ø.32                                                                                                                      | ~0 <b>6</b> 8.3 @ | \$0.78 ×                                                                        | ĭ23 ©″           | ∮1.83                            | 29.0         |
| 20.0          | 13.48                                                                                                                     | مح 67.4℃          | 2.20                                                                            | \$ 11.5y         | Ø 5.56                           | 27.8         |
| 63.3          | C 45.00                                                                                                                   | × 14,1            | 16,96                                                                           | ↓ <b>5</b> 7.3 ≪ | 22.21                            | 35.1         |
| 200.0         | £\$¥8.82√                                                                                                                 | 94.4              | \$42.46 °                                                                       | ©21.2 Ø          | 79.50                            | 39.7         |

LOQ: Limit of Quantitation = 0.25 µg a.s./L est calibration point and 100 mb work up volume) LOD: Limit of Detection =  $0.025 \mu g$ 

The validated method is summarised cument M@1 CA 4.1.2/71).

### B. BIOLOGICAND

There was no concentration dependent effe et of the inspease in shoot length or the fresh and dry weight of Cabon da caroliniana.

Percentage inhibition for plant shoot length, fresh weight and dry weight during the Table: exposure of Cabomba caroliniand to Aclonifen

| Geometric                              |                    |                | ≫<br>″% Inhibition | after 21 days  |          |                |
|----------------------------------------|--------------------|----------------|--------------------|----------------|----------|----------------|
| mean<br>measured<br>concentration      |                    | length 🔍       | Fresh              | weight         | Dry v    | veight         |
| concentration<br>(µg a.s./L)           | Inerease           | Growth<br>rate | Increase           | Growth<br>rate | Increase | Growth<br>rate |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | @-10. <b>&amp;</b> | -21.3          | -79.2              | -76.5          | -25.2    | -18.4          |
| 1.83                                   | -1.6               | -3.6           | 137.0              | 141.0          | 53.2     | 44.3           |
| 5056                                   | 16.1               | 30.9           | -92                | -88.4          | 52.3     | 45.8           |
| 22.2                                   | -29.8              | -36.9          | -23.4              | -23.5          | 40.7     | 32.5           |
| 79.50                                  | -32.0              | 14.5           | 39.2               | 41.4           | 23.8     | 18.6           |

- negative values indicate increase in the observed parameter compared to control



For the assessment of effects on fresh weight the increase in weight of each individual plant was used. For dry weight, the increase was calculated using the dry weight of a separate set of plants regarded as representative for the test plants. Plants with the same length usually show high dry weight variability. Therefore, the data of fresh weight are considered more reliable for assessing whibitory effects.

The test results were statistically analysed to determine the 21-Day Eggin values together with 9 confidence intervals for parameters showing concentration dependent effects as well as NQEC value

With shoot length, fresh weight and dry weight there was no clear concentration-effect relationshi no significant inhibition at the highest test concentration compared to the controls. Therefore, no values were calculated.

### C. VALIDITY CRITERIA

Specific criteria for macrophyte growth tests using Cabomba carolintana have not been set yet. At the time of performing the study, validity riteria proposed by the working group were ased to assess the validity of the study.

|                            | íO°.                    |                                           |  |
|----------------------------|-------------------------|-------------------------------------------|--|
| Validity criterion         |                         | Kequired<br>(AMRAP working<br>group)      |  |
| Increase in biomass in con |                         | \$50%\$\$ \$5.65%                         |  |
| Continuous growth through  | ghout the test duration | Required Ves                              |  |
| Temperature                |                         | $20 \pm 2^{\circ}C$ $19.0 - 20 ^{\circ}C$ |  |
|                            |                         |                                           |  |

All validity criteria were satisfied and therefore this study can be considered to be valid. D. TOXICITY ENDROINTS Table: Summary of endpoints

# Table: Summary of endpoints

| Endpoint       | Grometric mean measured                  | concentration (µg a.s./L) |
|----------------|------------------------------------------|---------------------------|
|                | ST A ST A OECSO                          | NOEC                      |
| Shoot length 🛷 |                                          | ≥79.5                     |
|                | Gir  | ≥79.5                     |
| Fresh weight   | Rélative increase V >79.5                | ≥79.5                     |
| riesii wergin  | Growth rate >79.5                        | ≥79.5                     |
| Dry waight     | Relative increase $\Im$ $\bigcirc$ >79.5 | ≥79.5                     |
| Dry weight     | Growth Cate S 2 >79.5                    | ≥79.5                     |
|                |                                          |                           |

# **III. CONCLUSION**

In a static growth inhibition, test with the rooted macrophyte Cabomba caroliniana exposed to Aclonifen over A days the BO<sub>50</sub> values for increase in shoot length, fresh weight and dry weight were above the highest geometric mean measured test concentration of 79.5 µg a.s./L.



The observed parameters (shoot length, fresh weight and dry weight) were not significantly different from the controls up to the highest test concentration and the hence the NOEC was determined to be  $\geq$ 79.5 µg a.s./L.

Assessment and conclusion by applicant:

All validity criteria were satisfied and therefore this study can be considered to be valid

In a static growth inhibition test with the rooted macrophyte  $C_{0}$  mba carolintana exposed to Aclonifen over 21 days the EC<sub>50</sub> values for increase in shoot length, fresh weight and dry weight were above the highest geometric mean measure test concentration of 79.5  $\mu$  a.s./F

The observed parameters (shoot length, fresh weight and dry weight) were not significantly different from the controls up to the highest test concentration and the hence the NOEC was determined to be  $\geq$ 79.5 µg a.s./L.

Due to the lack of concentration-dependency of effects (p(F) > 0.05 G.e. slope of the relationship was not significant different from zero),  $FC_{10}$  and  $EC_{20}$  values could not be calculated, however as the  $E_rC_{50}$  value is the endpoint required for a matic risk assessment this way not considered to affect the interpretation of the study results

Assessment and conclusion by RMS:

| Data Point: KCA'8.2.1406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Years 2011 Q A X Q A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report Title: Effect of aclonifen technical on the growth of Limnophila heterophylla in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| presence of sediment, state conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Report No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Document No: N/408752-01-7 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guideline(s) followed in SETAC of the second |
| Guideline(s) followed in SETAC Advance |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current Not applicable applicable test guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Previous evaluation No, not previously submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GLP/Officially Yes conducted under GLP/Officially recognised testing facilities facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| recognised testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Acceptability Reliability: SYes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability Reliability: Yes 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Extension and the second                                                                                                                                                                                                                                              |

# Executive Summary

A study was performed to determine the toxicity of the test item Aclonifen technical on the growth of *Limnophila heterophylla* under static conditions over 14 days. The test was conducted following the



draft guidance document of the SETAC AMRAP (Aquatic Macrophyte Risk Assessment for Pesticides) working group 2. The macrophytes were exposed to nominal concentrations of 5, 15.8, 50.0, 158.2 and 500 µg a.s./L.

The test item was dissolved in growth medium (Smart & Barko medium). For the growth tests three replicates for each test concentration and six replicates for controls (test medium only) were used with five plants per replicate. The plants were exposed to the test item in the aqueous phase of the test system in the presence of sediment.

Following parameters were measured: shoot length, fresh weight and dry weight. Plant length was recorded at test start and after 4, 7, 11 and 14 days. Prior to the onset of the test (-3 days), the fresh weight of the test plants were determined. Dry weight was determined using a set of representative plants. At the end of the test all plants were harvested and their fresh and dry weights were recorded. During the 14 days growth test the biomass based on dry weight increased more than 100%.

Effective concentrations were calculated for relative increase and growth rate of the measured parameters.

At test start the measured concentrations were between 23.0 and 39.0% of noninal. Buring the 14-Day growth test the test item was not stable in the test media of all treatments leading to a lower concentration at the end of the test (10.4–13.8% of nominal). Therefore, the test was evaluated using the geometric mean of the test concentrations measured in the different treatments with 101, 3,20, 9.68, 28.4 and 89.0  $\mu$ g a.s./L.

The EC<sub>50</sub> for increase in shoot length was 79 % µg as /L and for growth rate of shoot length 122 µg a.s./L. For fresh weight and dry weight no meaningful concentration/response was found and since inhibition at the highest test concentration was below 50%, Fr 50 was estimated to be greater than 89.0 µg a.s./L

NOEC values of 28.4 µg a.s./L could be calculated for increase of shoot length and both parameters of fresh weight. For dry weight and growth rate of plant shoots no meaningful concentration-effect relationship was found and there were no agnificant inhibitory effects at the highest test concentration (NOEC  $\geq$  89.0 µg as./L).

# I, MATERIALSAND METHODS

A. MATERIALS

- Acloration technical 1. Test Item: AEØF068300-01-10 Batch no.: **Purity:** Appearance: Yellow brown powder Date received 30 September 2010 Storage: Store at  $25 \pm 5$  °C. Keep in tightly closed containers in a dry, cool, well ventilated place 27 February 2011
- 2. Test Organism:

*Limnophila heterophylla (Ambulia heterophylla)*, Scrophulariaceae, Scrophulariales, Dicotyledonous



Source: The plants were held immersed for at least 5 days prior to the Acclimatization: test start in water and sediment of the same quality as wide the test. Smart & Barko medium (1985) 3. **Test water:** Formulated sediment, based on the artificial soil used in 000 4. Sediment: Guideline 219 was used 4-5% peat (dry weight, according to 2 ± 0.5% organic carbon, as close to pH 55 to 60 as possible; it is important to use peat in powder form finely groups (particle size < 7 mm) and on @ air dried. weight) kaolin clay (kaolinte content √(drv preferably above 30% 75-76% (dry weight) Quartz sand (fine sand should Bredominate With more than 50 percent of the particles between 50 and 200 µm) Deionised water was added to obtain moisture of the Tinal mixtur of about 30%. If needed calcium carbonate of chemically pure quality (CaCOO) was added to adjust the pH of the final mixture of the sediment to  $7.0 \pm 0.5$ . For the barch of sediment containing nutrients, instead of dejonised water, an aqueous putrient medium (with 300 mg/L rusphate ....ued to obtain moistu ....ued Sediment of both ammonium chloride and sodium phosphate in 1. In-life phase: 2. Exposure conditions

B.



| Replicates:      | 6 replicates for the control and 2 | 3 replicates per treatment group.      |          |
|------------------|------------------------------------|----------------------------------------|----------|
|                  | Each replicate contained 5 plan    | ts. 🖉 🕺                                | ~        |
| Temperature:     | 18.0 – 21.0 °C                     | its.                                   | <b>0</b> |
| pH:              | 7.7 - 8.94                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |
| Aeration:        | None                               |                                        |          |
| Photoperiod:     | 16 hours light : 8 hours dark      | A S S D                                |          |
| Light intensity: | 7435 - 7584 lux                    |                                        | Ļ        |

### 3. Administration of the test item

The nominal concentrations were spaced by a factor of 3.16, due to the flat concentration effect three observed in the pre-test. A stock solution was prepared in actions with a concentration of 101 mg test item/500  $\mu$ L (stock solution 1). 50  $\mu$ L of stock solution 1 were dispensed into 1 L graduated grass flask and the acetone was left to evaporate. The flask was filled up to 1 L to achieve a concentration of 10.01 mg test item/L equivalent to 10 fring as /L (stock solution 2). The stock solution 2 was stirred at room temperature for 24 hours and then 0.5 thre was added to 9.5 P growth metham to obtain the highest test concentration of 500  $\mu$ g a.s./L from which serial dilutions were prade in growth metham to give the remainder of the test concentrations. The test media were stirred vigorously for 30 minutes at room temperature. The pH values of the test media were not adjusted.

# 4. Preparation of test vessels

For the test, the sediment was filled into standard planting pots Since the standard planting pots have wholes at the bottom, first a three paper was put on the bottom of the vessel. Afterwards an approximately 1 cm layer of the standard sediment was added. On op of this a 4 cm layer of sediment was added which had been supplemented with a mitrate and phosphate fertilizer (nutrient supplemented sediment). This was covered again with 1 cm of standard sediment without fertilizer (in order to provide sufficient putrients to the plant via the sediment without enriching the water with further nutrients). A fine/very thin layer (approximately 2 mm) of coarse quartz sand was added on the top of the sediment in order to reduce suspension of sediment into the water.

# 5. Test organism assignmen Cand treatment

After the pre-culture, the plants were reported from the pre-culture and cleaned of sediment and surplus water; plants that were apparently nor healthy were discarded at this stage. The plants were weighed. Shoots were then ported into the sediment and shoot length above sediment was measured. If required, the kength of the plants above sediment was adjusted to 3 cm.

25 plants of the pre-culture were additionally harvested at this stage (only using the most homogenous individuals) and plant dry weight were determined to obtain the respective data for Day 0.

For the growth inhibition test five plants were used per pot and test vessel and three replicates were prepared for each of the five reatments.

The pots with sediment and plants were placed into the glass beakers. Afterwards, the test vessels were carefully filled up with 2 L of the respective test media.

# 6. Measurements and observations



The correct application of the test item was confirmed by analytical measurements of aclonifen concentrations in the test media at test initiation and after the 14-Day exposure period.  $Q_{\mu}^{\circ}$ 

During the 14-Day exposure period, shoot lengths were recorded at test start and on Days 4, 7, 14, and 14.

Total plant fresh weight was determined after absorbing remaining test medium attached to the plants, by means of tissue paper. Dry weight was determined subsequently after weighing the fresh plants. The five plants per replicate were combined and the plants were dried in alumanium weighing boats at 1050°C for 24 hours.

Light intensities at the water surface were measured on Days 0, and 14. Oxygen contents and pH values of the test medium were recorded on Days 0, 7, and 14. Test piedia temperature was recorded using a data logger four times a day (Thermo Data Logger EL-USB-TC).

At the end of the growth test, all plants were harvested. Any symptoms (such as chlorosis of necrosis, roots) or other observations were recorded. Total plant wer weight (after careful absorption of attached test medium) was determined followed by the estimation of rotal plant dry weight.

# 7. Statistics/Data evaluation

Statistical calculations were made on the results obtained for individual vessels, not for individual plants. Data evaluation was done for shoot length increase, fresh and dty weight as well as for growth rate of the respective parameters at test termination. The relative values (in percent of test start) of the parameters were used for the evaluation.

EC<sub>x</sub> values were calculated by profit analysis modified for continuous data using the computer program ToxRat Professional (ToxRat Solutions, Alsdorf, Germany). No Observed Effect Concentrations (NOEC) were calculated, using ANOWA, followed by **Effect using** test, **Effect using** t-test.

# A. RESULTS AND DISCUSSION

# A. ANALATICAL VERIFICATION

Freshly prepared test solutions apest start and pooled camples of the test media at the end of the growth test were analysed for the test item using HPL UV-VIS (LOQ 0.25  $\mu$ g a.s./L). The measured concentrations in the test media were between 23.0 and 39.0% of nominal at test start and between 10.4 and 13.8% at test end. Due to deviations from the nominal concentrations >20%, the analysis of the results is based on the geometric mean measured test concentrations.

# Table: Measured test concentrations of Aclonifen during the exposure to Limnophila

| Neminal                      |                                                                                                           | Measured concentration |                                                                     |             |                               |              |
|------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|-------------|-------------------------------|--------------|
| concentration<br>(µg a.s.A.) | Da Da                                                                                                     | y 0                    | Day                                                                 | v <b>14</b> | Geometric m                   | ean measured |
| (µg a.s.L)                   | μg a.s./L                                                                                                 | % nominal              | μg a.s./L                                                           | % nominal   | μg a.s./L                     | % nominal    |
| Control                      | <lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<> | -                      | <lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<> | -           | <lod< td=""><td>-</td></lod<> | -            |
| 5.0                          | 1.95                                                                                                      | 39.0                   | 0.52                                                                | 10.4        | 1.01                          | 20.1         |



| 15.8  | 5.81  | 36.8 | 1.76  | 11.1 | 3.20  | 20.2         |             |
|-------|-------|------|-------|------|-------|--------------|-------------|
| 50.0  | 15.93 | 31.9 | 5.88  | 11.8 | 9.68  | 19.4 °       | ð           |
| 158.2 | 40.31 | 25.5 | 19.98 | 12.6 | 28.38 | 19.4<br>17:2 |             |
| 500.0 | 115.0 | 23.0 | 68.86 | 13.8 | 8899  | 1.9.8        | <i>.</i> 0. |

LOD: Limit of Detection = 0.025 µg a.s./L (lowest calibration point and 100 mL work up volume)

The validated method is summarised in Document M-CA@CA 4.1

#### B. **BIOLOGICAL DATA**

There was a concentration dependent effect on shoot length of Linmophila heterophyllo, With Fesh weight and dry weight there was no meaningfor concentration effect. Ő

### Percentage inhibition for plant short length, fresh weight and dry weight during the Table: exposure of Limnophila heterophylla to Aclonifen

|                  |              |                         |                      |                | ki až j        | ° ∩      |
|------------------|--------------|-------------------------|----------------------|----------------|----------------|----------|
| Geometric        |              |                         | % Indibition         | after 104 days |                | , Q      |
| mean<br>measured | Shoot l      | $\cap$                  | ~                    | weight O       |                | veight   |
| concentration    | Increase 🦨   | 🖇 Grởwyth               | Increase             | Grøwth         | Increase O     | 🖉 Growth |
| (µg a.s./L)      | increase 🔬   | 🧴 🖉                     | merease              | shartii 🔊      |                | rate     |
| 1.01             | -17.6 🖏      | 0'-9 ~                  | 2-22.5               | -16.8          | -40.5          | -19.6    |
| 3.20             | 7.3 📎        | A 6.4                   | 8.8                  | <b>7.6</b>     | J -40°         | -1       |
| 9.68             | 34.3         | ∑ <sup>7</sup> 2,5629 ( | ) 64,3               | S & 2,5 (,     | s 19)7         | 10.7     |
| 28.4             | <b>L9</b> .6 | ¥0.4                    | Q¥.3 🟑               | <b>\$0.9</b>   | £ <b>4</b> 5.9 | 34.4     |
| 89.0             | 49.3 r       | Å <sup>4</sup> 6 9≈0°   | ≈ <sup>3</sup> 2.3 ≈ | @ 291          | 133            | 7.8      |

- negative values indivate incoase in the obser ed parameter compared to control

The test results were statistically analysed to determine the P4-Day EC50 values together with 95% confidence intervals for parameters showing concentration dependent effects as well as NOEC values. C meaningful concentration effect curves and no EC-values O With fresh weight and could be calculated

### VALIPITY C.

Specific criteria for macrophyte growth tests using Linnophila heterophylla have not been set yet. At the time of performing the study, validity crueria proposed by the AMRAP working group were used to assess the validity of the study.

| Validity criterion                             | Required<br>(AMRAP working<br>group) | Achieved       |
|------------------------------------------------|--------------------------------------|----------------|
| Increase or biomass in controls (dry weight)   | >50%                                 | 286%           |
| Continuous growth throughout the test duration | Required                             | Yes            |
| Temperature of A                               | $20 \pm 2^{\circ}C$                  | 18.0 – 21.0 °C |

All validity criteria were satisfied and therefore this study can be considered to be valid.

#### D. **TOXICITY ENDPOINTS**



### Table:Summary of endpoints

| Endpoint     |                   | Geometric mean measured concentration (µg a.s./L) |                         |                      |                     |  |
|--------------|-------------------|---------------------------------------------------|-------------------------|----------------------|---------------------|--|
|              |                   | EC10                                              | EC <sub>20</sub>        | EC50                 | NOEC O              |  |
| Shoot longth | Relative increase | 0.51<br>[0.00 – 3.29]                             | 2.88<br>[0.00 - 10.5]   | (23.0 - >89.0]       | × 28,45             |  |
| Shoot length | Growth rate       | 0.64<br>[n.d 3.93]                                | 3.87<br>[][0.00 – 13.6] | 122*<br>32.4 - >89.0 | \$9.0 to            |  |
| Fresh weight | Relative increase | n.d.                                              | n.d.                    | >89.0                | 28.4                |  |
| Fresh weight | Growth rate       | n.d. 🖉                                            | n.d 🖑                   | >800                 | Q 2 <sup>3</sup> .4 |  |
| Dry weight   | Relative increase | n do                                              | n.d.                    | \$9.0 O              | ≥89.0               |  |
| Dry weight   | Growth rate       | k n.d. &                                          | S <sup>n.d.</sup>       | <i>€</i> >89.0×      | $\approx 2890$      |  |

[95% confidence limits]

n.d.: not determined due to mathematical reasons or mappropriate data

\*extrapolated, highest test concentration was 89.0 pc 2 showing inhibition of 45.3% (p < 0.05)

IL CONCLUSION

In a static growth inhibition test with the rooted macrophyte Lingophile heterophylla exposed to Aclonifen over 14 days the ECC value for increase in short length was 79.8  $\mu$ g a.s./L and for growth rate of shoot length 122  $\mu$ g a.s./L. For fresh weight and dry weight no meaningful concentration-response was found and state infibition at the highest test concentration was below 50%, EC<sub>50</sub> was estimated to be greater than 89.9  $\mu$ g a.s./L.

NOEC values of 28  $\mu$ g a.s./L could be calculated for increase of short length and both parameters of fresh weight. For any weight and growth rate of plant shorts no meaningful concentration-effect relationship was found and there were no significant inhibitory effects at the highest test concentration (NOEC  $\geq$  89.0  $\mu$ g a.s./L).

(2011)

# Assessment and conclusion by applicant.

All validity criteria were satisfied and therefore this study can be considered to be valid.

In a static growth whibition test with the rooted macrophyte *Limnophila heterophylla* exposed to Acloniferrover 14 days the ECS value for increase in shoot length was 79.8  $\mu$ g a.s./L, and for growth rate of shoot length the ECS was 122  $\mu$ g a.s./L. For fresh weight and dry weight no meaningful concentration-response was found and space inhibition at the highest test concentration was below 50%, EC<sub>50</sub> values were estimated to be greater than 89.0  $\mu$ g a.s./L.

NOEC values of 28.4 µg a.s. 4 were determined for increase of shoot length and both parameters of fresh weight. For dry weight and growth rate of plant shoots no meaningful concentration-effect relationship was found and there were no significant inhibitory effects at the highest test concentration (NOEC 89.0 µg a.s./L).

 $EC_{10}$  and  $EC_{20}$  values were determined for shoot length growth parameters, however due to the lack of concentration-dependency of effects,  $EC_{10}$  and  $EC_{20}$  values could not be calculated for fresh or dry weight growth parameters. However as the  $E_rC_{50}$  value is the endpoint required for aquatic risk assessment this was not considered to affect the interpretation of the study results.



### Assessment and conclusion by RMS:

| Data Point:                | KCA 8.2.7/07                                                                                                                               |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                            |
| Report Year:               |                                                                                                                                            |
| Report Title:              | Effect of aclonifen technical on the growth of Deteranthera zosterifold in the                                                             |
| -                          | presence of sediment, static conditions                                                                                                    |
| Report No:                 | BAY-025/4-80/E                                                                                                                             |
| Document No:               | M-408168-01-1                                                                                                                              |
| Guideline(s) followed in   | SETAC & & X X X X                                                                                                                          |
| study:                     | AMRAP (Aquatic Macrophyle Risk Assessment for Pesticoles) working group 2                                                                  |
|                            | $(1) \qquad \qquad$ |
| Deviations from current    | Not applicable no current applicable test guideline.                                                                                       |
| test guideline:            |                                                                                                                                            |
| Previous evaluation:       | No, not presedusly submitted                                                                                                               |
|                            |                                                                                                                                            |
| GLP/Officially             | Yes, conducted under & LP/Officially recognized testing facilities                                                                         |
| recognised testing         |                                                                                                                                            |
| facilities:                | Yes y C y g y g o                                                                                                                          |
| Acceptability/Reliability: | Yes & C & O Y Y Y                                                                                                                          |
| 2                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |

# Executive Summary

A study was performed to determine the toxicity of the test item Aclonifen technical on the growth of *Heteranthera zosterifolia* under static conditions over 44 days. The test was conducted following the draft guidance document of the SETACAMRAP (Aquatic Macrophyte Risk Assessment for Pesticides) working group 2. The macrophytes were exposed to nominal concentrations of 10.0, 31.6, 100.0, 316.0 and 1000  $\mu$ g a.s./L

The test item was dissolved in growth medium (Smart & Barko medium). For the growth tests three replicates for each test concentration and six replicates for controls (test medium only) were used with five plants per replicate. The plants were exposed to the test item in the aqueous phase of the test system in the presence of sediment.

Following parameters were measured: shoot tength, fresh weight and dry weight. Plant length was recorded at test start and after 9, 7, 11 and 14 days. Prior to the onset of the test (-3 days), the fresh weight of the test plants were determined. Dry weight was determined using a set of representative plants. At the end of the test all plants were harvested and their fresh and dry weights were recorded. During the 14 day growth test the biomass based on dry weight increased by about 100% (119  $\pm$  29%) in the controls

Effective concentrations were calculated for relative increase and growth rate of the measured parameters.

At test start the measured concentrations were between 19.2 and 65.5% of nominal. During the 14-Day growth test the test item was not stable in the test media of all treatments leading to a lower concentration



at the end of the test (0.6 -13.4% of nominal). Therefore, the test was evaluated using the geometric mean of the test concentrations measured in the different treatments with 0.57, 3.46, 21.1, 93.8, 98.5  $\mu$ g a.s./L.

In a static growth inhibition test with the rooted macrophyte *Heteranthera Ssterifolia* exposed to Aclonifen over 14 days no meaningful concentration-responses and no inhibition higher than 50% were found for effects on length increase, fresh and dry weight and thus no EC<sub>50</sub> values could be calculated. The respective EC<sub>50</sub> values are assumed to be above the highest test concentration of 98.5  $\mu$ g a.s./L

Significant effects were observed on shoot length, growth rate of shoot length, and growth rate of fresh weight at the highest test concentration, the respective NOEC values were therefore determined to be 93.8  $\mu$ g a.s./L. In contrast, increase of fresh weight and increase and growth rate of dro weight were not significantly different from the controls and the respective NOECs were determined to be  $\geq$ 98.5  $\mu$ g a.s./L (geometric mean measured concentration).

ined to I. MATER A. MATERIALS 1. **Test Item:** AE F068300-01 Batch no.: 99.2‰w/w **Purity:** Yellow brown powder w br 30 Septemi Store at 25 Store at 25 Store at 25 **Appearance:** 30 September 2010 Date received: eep at tighty closed containers in a dry, Storage: coof, well ventilated place 27 February 201 Expiry date Sosterifolia, C(stargrass), Heteranthera 2. Organis Pontederiaceae, Commerinales, Monecotyledonous Source: Liscu for at least 10 days prior to the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used.
4. Sedimenter of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the same quality as used in the test of the test of the same quality as used in the test of the test of the t preferably above 30%).



- 75-76% (dry weight) quartz sand (fine sand should predominate with more than 50 per cent of the particles<sup>°</sup> between 50 and 200 μm).
- Deionised water was added to obtain moisture of the final mixture of about 30%.
- If needed, calcium carbonate of chemically our quality  $(CaCO_3)$  was added to adjust the pH of the final mixture of the sediment to 7.0 ±0.5.

For the batch of sediment containing nutrients instead of deionised water, an aqueous nutrient medium (with 300 mg/k, sediment of both ammonum chloride and sodium phosphate in the appropriate amount of water) was added to obtain moisture of the final mixture of about 30%.

### B. STUDY DESIGN AND METOODS

1. In-life phase:

2. Exposure conditions Stass beakers (approximately 24, cm high and 11 cm **Test vessels:** diameter) Small plant pots (approx. 9 cm diameter and 8 cm hiğh and around 350 mL volume, plastic, commercially vailable) were used as comainers for pathing the plants into the sediment. The sedimentourface coverage was about 70% of the test vessel surface; the minimum seril aving water depth was (10%0. test concentrations 31.6, 100.0. 316.0 and Experimental 2000 μg a.s./ b) plusa control 6 replicates for the control and 3 replicates per treatment group. Replicates Each replicate contained 5 plants. Temperatu pH: Aeration: Vone **Photoperiod:** '8 hours dark Light intensity

January

# 3. Administration of the test item

The nominal concentrations were spaced by a factor of 3.16, due to the flat concentration-effect curve observed in the pre-test. Three stock solutions were prepared in acetone by diluting 101 mg (stock 1a), 31.85 mg (stock 1b) and 10.08 mg (stock 1c) in 500  $\mu$ L acetone each. 50  $\mu$ L of these three stock solutions (stock 1a, b, 1c) were given into three 1 L graduated glass flasks and the acetone was left to evaporate. The flasks were filled up to 1 L to achieve the stock solutions 2, 3 and 4, respectively. The stock solutions were stirred at room temperature for 24 hours. Thereafter one litre of stock 2 was added to 9 litres growth medium to achieve the highest test concentration (conc. 5, nominal 1000  $\mu$ g/L). Accordingly, 1 litre of



stock 3 and stock 4 were added to 9 litres of growth medium each to achieve the test concentrations 4 (316  $\mu$ g/L) and 3 (100  $\mu$ g/L). The two lowest test concentrations were prepared by diluting the dest solutions 3 and 2. The test media were stirred vigorously for 30 minutes at room temperature. The pHvalues of the test media were not adjusted.

# 4. Preparation of test vessels

For the test, the sediment was filled into standard planting pots. Since the standard planting pots have wholes at the bottom, first a filter paper was put on the bottom of the vessel. Afterwards an approximately 1 cm layer of the standard sediment was added. On top of this a 4 cm layer of sediment C was added which had been supplemented with a nitrate and phosphate fertilizer (putrient supplemented) sediment). This was covered again with 1 cm of standard sediment without fertilizer (in order to provide sufficient nutrients to the plants via the sediment without enriching the water with durther nutrients). A fine/very thin layer (approximately 2 mm) of Coarse quarters and was added on the top of the sediment in order to reduce suspension of sediment into the water

# 5. Test organism assignment and treatment

After the pre-culture, the plants were removed from the pre-culture and leaned of section and surplus water; plants that were apparently not healthy were discarded at this stage. The plants were weighed. Shoots were then potted into the sediment and shoodength above sediment was measured. If required, the length of the plants above sediment was adjusted to 2 cm.

25 plants of the pre-culture were additionally harvested at this stage (only ) sing the most homogenous individuals) and plant dry weight were determined to obtain the respective data for Day 0.

For the growth inhibition test, five plans were used per pot and test vessel and three replicates were prepared for each of the five treatments.

The pots with sediment and plants were placed into the glass beakers. Afterwards, the test vessels were carefully filled up with 2 L of the respective test media.

### 6. Measurements and observations Ô

Ľ The correct application of the dest item was confirmed by analytical measurements of aclonifen concentrations in the test media at test initiation applafter the 14-Day exposure period.

A

During the 14-Day exposure period, shoot lengths were recorded at test start and on Days 3, 7, 11, and 14.

Total plant fresh weight was determined after absorbing remaining test medium attached to the plants by means of tissue paper Dry weight was determined subsequently after weighing the fresh plants. The five plants per replicate were combined and the plants were dried in aluminium weighing boats at 105 °C for 24 hours C

Light intensities at the water surface were measured on Days 0, 7 and 14. Oxygen contents and pH values of the test medium were recorded on Days 0, 7, and 14. Test media temperature was recorded using a data logger our times a day (Thermo Data Logger EL-USB-TC).

At the cod of the growth test, all plants were harvested. Any symptoms (such as chlorosis or necrosis, roots) or other observations were recorded. Total plant wet weight (after careful absorption of attached test medium) was determined followed by the estimation of total plant dry weight.



### 7. Statistics/Data evaluation

Statistical calculations were made on the results obtained for individual vessels, not for individual plants. Data evaluation was done for shoot length increase, fresh and dry weight as well as for growth rate of the respective parameters at test termination. The relative values (in percent of test start) of the parameters were used for the evaluation.

EC<sub>x</sub> values were calculated by probit analysis modified for continuous datausing the computer program. ToxRat Professional (ToxRat Solutions, Alsdorf, Germany). No Observed Effect Concentrations (NOEC) were calculated, using ANOVA, followed by the test of test

The evaluation was performed using mean measured concentrations. The replicates of each concentration plot were used for fitting concentration-response curves of the measured parameters, if meaningful concentration-effect relationships were observed.

# II. RESULTS AND DISCUSSIO

# A. ANALYTICAL VERIFICATION

Freshly prepared test solutions at test start and pooled samples of the test media at the ond of the growth test were analysed for the test item using HPLC OV-VIS (LOO 0.25 ug a s.L). The measured concentrations in the test media were between 19.2 and 65.5% of forminal at test start and between 0.6 and 13.4% at test end. Due to deviations from the nominal concentrations 20%, the analysis of the results is based on the geometric mean measured test concentrations.

| Table: | Measured test of | ncentrations | of Aclonifen | during the | exposure to  | Heteranthera |
|--------|------------------|--------------|--------------|------------|--------------|--------------|
|        | zosterifolia     |              | S S          |            | <i>\$</i> ," |              |

|                           |                                                                                                               | <u> </u>    |                                                                      |                | <i>a</i> ,                    |              |
|---------------------------|---------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|----------------|-------------------------------|--------------|
| Nominal                   |                                                                                                               |             | Measured co                                                          | nucentration 🗠 | Ş                             |              |
| concentration             | Da Da                                                                                                         | y 0 0 40    | , S Day                                                              | y 14 🖉 👘       | Geometric m                   | ean measured |
| (μg a.s./L) <sup>()</sup> | µg a.s./Ľ                                                                                                     | % nominal   | ∿ug a.s.Æ                                                            | %nominal       | μg a.s./L                     | % nominal    |
| Control                   | <lqq *<="" th=""><th></th><th>° <lqd< th=""><th></th><th><loq< th=""><th>-</th></loq<></th></lqd<></th></lqq> |             | ° <lqd< th=""><th></th><th><loq< th=""><th>-</th></loq<></th></lqd<> |                | <loq< th=""><th>-</th></loq<> | -            |
| 160                       | , <b>508</b> 7 , C                                                                                            | 58.7        | , <b>0</b> .06 🖉                                                     | <u>\$</u> .6   | 0.57                          | 5.7          |
| 31.60                     | <b>\$</b> 98.59 √                                                                                             | 58.8        | 0.65                                                                 | 2.0            | 3.46                          | 11.0         |
| 100.0                     | 6 58.44                                                                                                       | 584         | V 7 <u>6</u> 3                                                       | <b>0</b> 7.6   | 21.11                         | 21.1         |
| 316.0                     | 200.12                                                                                                        | <b>G</b> .5 | <b>Q</b> .49                                                         | 13.4           | 93.82                         | 29.7         |
| 1000.0                    | 192.07                                                                                                        | 19.2        | \$ 50.51                                                             | 5.1            | 98.49                         | 9.8          |

LOQ: Limit of Quantification = 0.25 vg/L

LOD: Lippet of Detection = 0.025 pass./L (lowest exhbration/point and 100 mL work up volume)

The validated method is summarised in Document M-CA4 (CA 4.1.2/73).

# B. BIOLOGICAL DATA

There was no concentration dependent effect on the increase in shoot length, fresh weight or dry weight of *Heleranthera zosferifotia*.

 Table:
 Percentage inhibition for plant shoot length, fresh weight and dry weight during the exposure of *Heteranthera zosterifolia* to Aclonifen

% Inhibition after 14 days



| Geometric Shoot                          |          | ric Shoot length Fresh weight |          | Dry weight     |          |          |
|------------------------------------------|----------|-------------------------------|----------|----------------|----------|----------|
| measured<br>concentration<br>(µg a.s./L) | Increase | Growth<br>rate                | Increase | Growth<br>rate | Increase | Growth   |
| 0.57                                     | 31.1     | 25.9                          | 4.8      | 3.3            | 23.6     | ×15.7 ~  |
| 3.46                                     | 31.2     | 25.8                          | 7.0      | 5.9            | 24.27    | ₹ 17.92× |
| 21.10                                    | 27.0     | 22.4                          | -7.7     | -4.7           | -11.62   | <u> </u> |
| 93.80                                    | 14.3     | 11.0                          | 24.8 👌   | 20.4           | -3.32 🔬  | ~2.291 ~ |
| 98.50                                    | 46.0     | 40.6                          | 30.5 🔗   | 24.4           | -20.39   | ~Q13.58  |

- negative values indicate increase in the observed parameter compared to control

The test results were statistically analysed to determine the 14-Day  $C_{50}$  values together with 35 confidence intervals for parameters showing concentration dependent effects as well as NOEC values.

concentration-effect retationship. With shoot length, fresh weight and dry weight the chear Therefore, no EC-values were calculated

### VALIDITY CRITERIA C.

Specific criteria for macrophyte growth sests using Hearanthera zoste foli@ have@ ot been set yet. At the time of performing the study, validity criteria provosed by the AMR working group were used to assess the validity of the study. K, Ô

| Validity criterion |                 |                 |        | Required ANRAP vorking | Achieved       |
|--------------------|-----------------|-----------------|--------|------------------------|----------------|
| Increase in biomas | Sin controls (d | ry weight)      | $\sim$ | \$\$\$50%{y _{         | 119%           |
| Continuous growth  | throughout th   | e test duration | 87 4 V | Required 🗸             | Yes            |
| Temperature O      |                 |                 |        | 20⊕ 2°C ∅              | 18.0 – 21.0 °C |

All validity criteria were satisfied and therefore this study can be onsidered to be valid. D. TOXICITY ENDROINTS

Ĉ

### Summary of endpoints? Table:

| Endpoint 🔊    |                   | Geometric mean measure | d concentration (µg a.s./L) |
|---------------|-------------------|------------------------|-----------------------------|
| A A           |                   | EC 50                  | NOEC                        |
| "hoot for ath | Relative increase | § . \$ >98.5           | 93.8                        |
| Shoot Kength  | Growth rate S     | >98.5                  | 93.8                        |
| Fresh weight  | Relative increase | >98.5                  | ≥98.5                       |
| Fresh weight  | Growd rate        | >98.5                  | 93.8                        |
| Dry weight    | Refative increase | >98.5                  | ≥98.5                       |
|               | Growth rate       | >98.5                  | ≥98.5                       |
|               | O' È              |                        |                             |

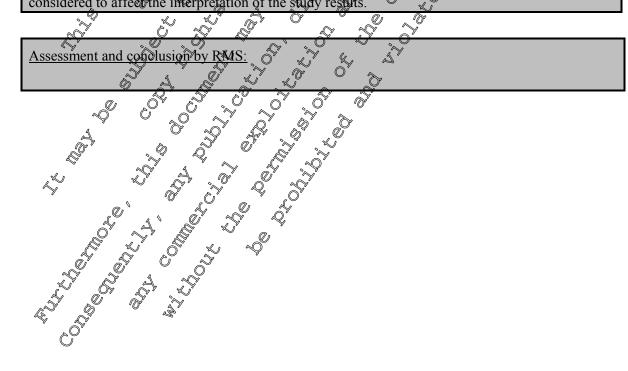
# **III. CONCLUSION**



(2**@** 

In a static growth inhibition test with the rooted macrophyte *Heteranthera zosterifolia* exposed to Aclonifen over 14 days no meaningful concentration-responses and no inhibition higher than 50% were found for effects on length increase, fresh and dry weight and thus no EC<sub>50</sub> values could be calculated. The respective EC<sub>50</sub> values are assumed to be above the highest test concentration of 98.5  $\mu$ g  $\rho$ /L.

Significant effects were observed on shoot length, growth rate of shoot length, and growth rate of thesh weight at the highest test concentration, the respective NOEC values were therefore determined to be 93.8  $\mu$ g a.s./L. In contrast, increase of fresh weight, and increase and growth rate of dry weight, were pot significantly different from the controls and the respective NOECs were determined to be  $\geq$ 98.5  $\mu$ g a.s./L (geometric mean measured concentration).


Assessment and conclusion by applicant:

All validity criteria were satisfied and therefore this study can be considered to be valid.

In a static growth inhibition test with the rooted macrophyte *Heteranthera zosterifolia* exposed to Aclonifen over 14 days no meaningful concentration-responses and no inhibition higher than 50% were found for effects on length facease, fresh and dry weight anothus no EC<sub>50</sub> values could be calculated. The respective EC<sub>50</sub> values are therefore assumed to be greater than the highest geometric mean measured test concentration of 98.5  $\mu$ g a.s./L

Significant effects were observed on short length, growth rate of shoot length, and growth rate of fresh weight at the highest test concentration, the respective NOEC alues were therefore determined to be 93.8  $\mu$ g a.s./L. In contrast, increase of fresh weight, and increase and growth rate of dry weight were not significantly different from the controls and the respective NOECs were determined to be  $\geq$ 98.5  $\mu$ g a.s./L (geometric mean measured concentration).

Due to the lack of concentration-dependent effects,  $EC_{10}$  and  $EC_{20}$  values could not be calculated, however as the  $E_r$  value is the endpoint required for advatic risk assessment this was not considered to affect the interpretation of the study results.





| Data Point:                | KCA 8.2.7/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | Effect of aclonifen technical on the growth of Egeria densa in the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | sediment, static conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report No:                 | BAY-025/4-80/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Document No:               | M-408189-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   | SETAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| study:                     | AMRAP (Aquatic Macrophyte Risk Assessment for Pesticides) working group 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current    | Not applicable – no current applicable test guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| test guideline:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Previous evaluation:       | No, not previously submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GLP/Officially             | Yes, conducted under GLP/Officially accognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Yes the transformed and th |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Executive Summary**

A study was performed to determine the toxicity of the sest item Acloudfen technical on the growth of *Egeria densa* under static conditions over 14 days. The test was conducted following the draft guidance document of the SETAC AMRAP (Aquatic Macrophyte Risk Assessment for Respecteds) working group 2. The macrophytes were exposed to nonical concentrations of 10, 316, 100, 316 and 1000  $\mu g$  a.s./L.

The test item was dissolved in growth medium (Smart & Barko medium). For the growth tests three replicates for each test concentration and six replicates for controls (test medium only) were used with five plants per replicate. The plants were exposed to the test item in the aqueous phase of the test system in the presence of sediment.

Following parameters were measured: shoot length, fresh weight and dry weight. Plant length was recorded at test start and after 4,7, 11 and 14 days. Prior to the onset of the test (-3 days), the fresh weight of the test plants were determined. Dry weight was determined using a set of representative plants. At the end of the test all plants were harvested and their fresh and dry weights were recorded. During the 14 day growth test the shoot length increased by more than 100% in the controls.

Effective concentrations were calculated for relative increase and growth rate of the measured parameters.

At test start the measured concentrations were between 33.9 and 38.2% of nominal. During the 14-Day growth test the test item was not stable in the test media of all treatments leading to a lower concentration at the end of the test (9, D-15.9% of nominal). Therefore, the test was evaluated using the geometric mean of the test concentrations measured in the different treatments with 1.88, 6.60, 23.0, 73.3, and 221 µg a.s./L

In a static growth inhibition test with the rooted macrophyte *Egeria densa* exposed to Aclonifen over 14 day, the  $EC_{50}$  values for increase in shoot length, fresh weight and dry weight were above the highest test concentration of 221 µg as/L.



ily Hosed containers in a dr

The observed parameters (shoot length, fresh weight and dry weight) were not significantly different from the controls up to the highest test concentration and the NOEC was therefore determined to Be  $\geq$ 221 µg a.s./L (geometric mean measured concentration).

**I. MATERIALS AND METHODS** 

Aclonifen technical

Yellow brown powder 30 September 2010

Egeria dense, Hydrocharitæ

Store at  $25 \pm 5$  C cool, well ventilated

Kebruaiv

AE F068300-01-10

99.2% w/w

### A. **MATERIALS**

1. **Test Item:** Batch no.: **Purity: Appearance:** Date received: Storage:

**Expiry date:** 

**Test Organism:** 2.

Source:

Acclimatization:

Monocotyledonous the plants were held immersed for at least to days prior to the test staft in water and sediment of the same quality as used in the test.

Formulated sediment, based on the artificial soil used in OECD

sarko medium ( Formulated sediment, base Guideline 219 was thed: 4,5% peat (dry weig Garbon) as close to important thouse peat (particle size < 1 mm) 20% (dry weight) ki preferably above 30%). 757/6% (dry weight) qu predominate with more between 50 and fir- $4_{\overline{2}}$  5% peat (dry weight, according to  $2 \pm 0.5$ % organic @arbonPas close to pH 5.5 to 6.0 as possible; it is important to use peat in powder form, finely ground (particle size < 1 mm) and only air dried.

20% (dry weight) kaolin clay (kaolinite content

7\$76% (dry weight) quartz sand (fine sand should Predominate with more than 50 per cent of the particles between 50 and 200 µm).

Deionised water was added to obtain moisture of the final mixture of about 30%.

If needed, calcium carbonate of chemically pure quality (CaCO<sub>3</sub>) was added to adjust the pH of the final mixture of the sediment to  $7.0 \pm 0.5$ .

For the batch of sediment containing nutrients, instead of deionised water, an aqueous nutrient medium (with 300 mg/L sediment of both ammonium chloride and sodium phosphate in



the appropriate amount of water) was added to obtain moisture of the final mixture of about 30%. 

#### В. STUDY DESIGN AND METHODS

1. In-life phase:

09 - 23 December 2010

2. Ex

| Exposure conditions  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test vessels:        | 2-L glass beakers (approximately 24 cm high and 11 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | 2-L glass beakers (approximately 24 cm high and 11 cm<br>diameter). Small plant pots (approx. 9 cm diameter and 8 cm 4<br>high and around 350 mg volume, plastic, (commercially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 2-L glass beakers (approximately 24 cm high and 11 cm<br>diameter). Small plant pots (approx. 9 cm diameter) and 8 cm (<br>high and around 350 mG volume, plastic, (commercially<br>available) were used as containers for potting the plants into the<br>sediment. The sediment surface coverage was about 70% of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | available) where used as containers for potting the plants into the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | sediment. The sediment surface coverage was about 70% of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | test vessel suctace; the minimum overlaying water depth was °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | 12  cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Experimental design: | test vessel sectace: the minimum overlaying water depth was<br>12 cm<br>5 test concentrations (40, 31 o, 100, 316 and 1000 μg as /L)<br>plus a control<br>6 replicates for the control and 3 eplicates per treatment group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ſ                    | plus acontrol of the state of t |
| Replicates:          | 6 replicates for the control and Peplicates per Treatment group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ()<br>()             | Each replicate contained 5 plants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Temperature:         | <sup>3</sup> 780 m 220 °C <sup>3</sup> √ w w 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pH:                  | $78.0 - 22.0$ °C $4$ $0^{4}$ $0^{4}$ $0^{7}$ $0^{7}$<br>$7.89 - 8.92$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$ $0^{7}$  |
| Aeration:            | None in the second seco |
| Photoperiod: 🖉 🌮 🛫   | None 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Light intensity:     | None $3$<br>A6 hours light: 8 hours dank $4$<br>7378 - 7548 lux $33333333$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

3. Administration of the test item

The nominal concentrations were spaced by a factor of 3, 98, due to the flat concentration-effect curve observed in the pre-test. A stock solution was prepared in acetone with a concentration of 101 mg test item/500 µL (stock solution 1). 56 µL of stock solution I were dispensed into a 1 L graduated glass flask and the acetone was lot to evaporate. The flask was filled up to 1 L to achieve a concentration of 10.01 mg testotem/Loquivalent to 10.0 mg a.s./L (stock solution 2). The stock solution 2 was stirred at room température for 24 hours and then the 1 ligre was added to 9 L growth medium to obtain the highest test concentration of 1090 µg Qs./L from which serial dilutions were made to give the remainder of the test solutions. The test media were shrred gorously for 30 minutes at room temperature. The pH values of the test media were not adjusted.

# 4. Preparation of test vessels

For the test, the sectiment was filled into standard planting pots. Since the standard planting pots have wholes the bottom, first a filter paper was put on the bottom of the vessel. Afterwards an approximatel a cm aver of the standard sediment was added. On top of this a 4 cm layer of sediment was added which had been supplemented with a nitrate and phosphate fertilizer (nutrient supplemented sedimen<sup>®</sup>. This was covered again with 1 cm of standard sediment without fertilizer (in order to provide sufficient nutrients to the plants via the sediment without enriching the water with further nutrients). A



fine/very thin layer (approximately 2 mm) of coarse quartz sand was added on the top of the sediment in order to reduce suspension of sediment into the water.  $Q_{\mu}^{\circ}$ 

### 5. Test organism assignment and treatment

After the pre-culture, the plants were removed from the pre-culture and cleaned of sediment and surplus water; plants that were apparently not healthy were discarded at this stage. The plants were weighed. Shoots were then potted into the sediment and shoot length above sediment was measured. If required, the length of the plants above sediment was adjusted to 2 cm.

25 plants of the pre-culture were additionally harvested at this stage (only using the most homogenous) individuals) and plant dry weight were determined to obtain the respective data for Day 0.

For the growth inhibition test, five plants were used per pot and test vesseband three replicates were prepared for each of the five treatments.

The pots with sediment and plants were placed into the plass beakers. Afterwards, the test vessels were carefully filled up with 2 L of the respective test media.

# 6. Measurements and observations

The correct application of the test item was confirmed by analytical measurements of aclonifen concentrations in the test media at test initiation and after the 14-bay exposure period

During the 14-Day exposure period, show lengths were recorded at test start and of Days 4, 7, 11, and 14.

Total plant fresh weight was determined after absorbing remaining test medium attached to the plants by means of tissue paper. Dry weight was determined subsequently after weighing the fresh plants. The five plants per replicate, were combined and the plants were dried in aluminium weighing boats at 105 °C for 24 hours.

Light intensities at the water sufface were measured on Day 0 and 4. Oxygen contents and pH values of the test medium were recorded on Days 0, 7, and 14. Fest media temperature was recorded using a data logger four times a day (Theono Day Logger EL USB-TE).

At the end of the growth test, all plants were harvested. Any symptoms (such as chlorosis or necrosis, roots) or other observations were recorded. Total plant wet weight (after careful absorption of attached test medium) was determined followed by the estimation of total plant dry weight.

# 7. Statistics/Data evaluation

Statistical calculations were made on the esult obtained for individual vessels, not for individual plants. Data evaluation was done for shoot length increase, fresh and dry weight as well as for growth rate of the respective parameters or test termination. The relative values (in percent of test start) of the parameters were used for the evaluation.

EC<sub>x</sub> values were calculated by probit analysis modified for continuous data using the computer program ToxRat Processional (ToxRat Solutions, Alsdorf, Germany). No Observed Effect Concentrations (NOEC) were calculated, using ANOVA, followed by test, test, test.



The evaluation was performed using mean measured concentrations. The replicates of each concentration plot were used for fitting concentration-response curves of the measured parameters, "if meaningful concentration-effect relationships were observed.

### **II. RESULTS AND DISCUSSION**

### A. ANALYTICAL VERIFICATION

Freshly prepared test solutions at test start and pooled samples of the test media at the end of the growth test were analysed for the test item using HPLC UVVIS (LOQ 0.25  $\mu$ g a.s./). The measured concentrations in the test media were between 34.8 and 38.2% of nominal at test start and between 9.% and 15.9% at test end. Due to deviations from the bominal concentrations >20%, the analysis of the results is based on the geometric mean measured test concentrations.

|               |                                                                                                       | Δ                                  |               |                       |                 |               |
|---------------|-------------------------------------------------------------------------------------------------------|------------------------------------|---------------|-----------------------|-----------------|---------------|
| Nominal       |                                                                                                       | L.                                 | Measured.co   | oncentration          |                 |               |
| concentration | Da                                                                                                    | y 0                                | Day           | A S                   | Seometric m     | san measured  |
| (µg a.s./L)   | μg a.s./L                                                                                             | % nominal                          | μg a.s./L ~   | 🖓 nominal 🕻           | μg.a.s./L 🖉     | * % nominal   |
| Control       | <lod< td=""><td>Å- Ø</td><td>₹LOD 🏷</td><td><u> </u></td><td>SLOD S</td><td><i>ي</i> هي -</td></lod<> | Å- Ø                               | ₹LOD 🏷        | <u> </u>              | SLOD S          | <i>ي</i> هي - |
| 10.0          | 3.64                                                                                                  | 36.4                               | 0.97          | 9.7                   |                 | 18.8          |
| 31.6          | 12.08                                                                                                 | Ç <sup>7</sup> 3822 <sub>∧</sub> ⊂ | , 3.61 🗸      | bj.4                  | 6.60            | 20.9          |
| 100.0         | 38.08                                                                                                 | \$ <b>3</b> 8.1                    | <i>3.86</i> ⊘ | 13.9 ×                | ≈ <b>2</b> 2.97 | 23.0          |
| 316.0         | 107.18                                                                                                | 33.90                              | 50.LE         | <sup>∿</sup> 15.9√° , | 73.20           | 23.2          |
| 1000          | 347.98                                                                                                | <u>34</u> 08 (                     | 146-87 .      | ) <b>(4</b> 4.1       | <u>.</u> 2₽₽.4  | 22.1          |

Table: Measured test concentrations & Acloudfen during the exposure of Egeria densa

LOD: Limit of Detection 20.025 ng a.s. (lowes@calibration point and 100 mL word up volume)

The validated method is summarised in Doorment M-CA4 (CA \$1.2/74)

# B. BIOLOGICAL DAT

There was a concentration dependent effect on the increase in shoot length of *Egeria densa* however there was no concentration dependent effect on the tresh and dry weight based on weight increase and weight growth rate.

Table: A Percentage mhibition for plant shoot, length, fresh weight and dry weight during the exposure of Egetia densa to Actonifen

| Geometric                     |                                   |                | <b>A Inhibition</b> | after 14 days  |          |                |
|-------------------------------|-----------------------------------|----------------|---------------------|----------------|----------|----------------|
| mean<br>measured              | گ <sup>م</sup> <sub>م</sub> Shoot | hength Q       | Fresh               | weight         | Dry v    | veight         |
| concentration<br>(µg a.s./Los | Increase                          | Growth<br>rate | Increase            | Growth<br>rate | Increase | Growth<br>rate |
| 1.8                           | ۍ 2.۴ (                           | 0.7            | -4                  | -3.5           | 4.9      | 3.4            |
| 660                           | <u>4</u> ,7 ,%                    | 4.4            | -42                 | -35.7          | -53.4    | -29.1          |
| 23.00 V                       | \$17.6°                           | 11.9           | -54.8               | -45.4          | -65.4    | -47.9          |
| LE 73.30                      | 21.2                              | 17.4           | -32.2               | -22.5          | 3.1      | -0.3           |
| 22100                         | 14.2                              | 9.6            | -40.5               | -33.9          | -0.6     | -6.5           |

- negative values indicate increase in the observed parameter compared to control



The test results were statistically analysed to determine the 14-Day  $EC_{50}$  values together with 95% confidence intervals for parameters showing concentration dependent effects as well as NOEC values.

### С. VALIDITY CRITERIA

Specific criteria for macrophyte growth tests using Egeria densa have not been set yet. At the time c performing the study, validity criteria proposed by the AMRAP working group were used to assess the validity of the study. R.

|                                                                    |                                         | Ľ,      | Û an      | y jo je |
|--------------------------------------------------------------------|-----------------------------------------|---------|-----------|---------|
|                                                                    |                                         | ired    | × 2       |         |
| Validity criterion                                                 | AMRAP (AMRAP)                           | working | O Achieve | de de   |
|                                                                    | grou                                    | p)      | Q, O a    |         |
| Increase in biomass in controls (shoot length)                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | % `~ (  | y 🔊 123%  | - S     |
| Continuous growth throughout the test duration $\bigcirc^{\infty}$ | Bequi                                   | red     | Yes       | 1       |
| Temperature                                                        |                                         | Sec o   | 1869-21.0 | FC S    |
| $\mathcal{A}^{\prime}$                                             |                                         | A       |           |         |

| Endpoint     | C & Geometric mean measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | concentration (µg a.s./L) |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOEC                      |
| Shoot length | Relative increase O O >2210 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≥221.0                    |
|              | Corowth rate of the second sec | ≥221.0                    |
| Fresh weight | Relative increase 221.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥221.0                    |
| Fresh weight |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≥221.0                    |
| Dry weight   | Relative increase A 221.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≥221.0                    |
| Dry weight   | Growth rate & S >22150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≥221.0                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |

IIQ. CONCLUSTON

In a static growth inhibition test with the rooted macrophyte Egeria densa exposed to Aclonifen over 14 days the EC<sub>50</sub> values for increase in shoot tength, weight and dry weight were above the highest test concentration of 221 µg as/L.

The observed parameters (shoot, length, fresh weight and dry weight) were not significantly different from the controls up to the highest dest concentration and the NOEC was therefore determined to be  $\geq$ 221 µg a.s./ $\mathcal{O}$  (geometric mean measured concentration).

(2011)

smer and conclusion by applicant:

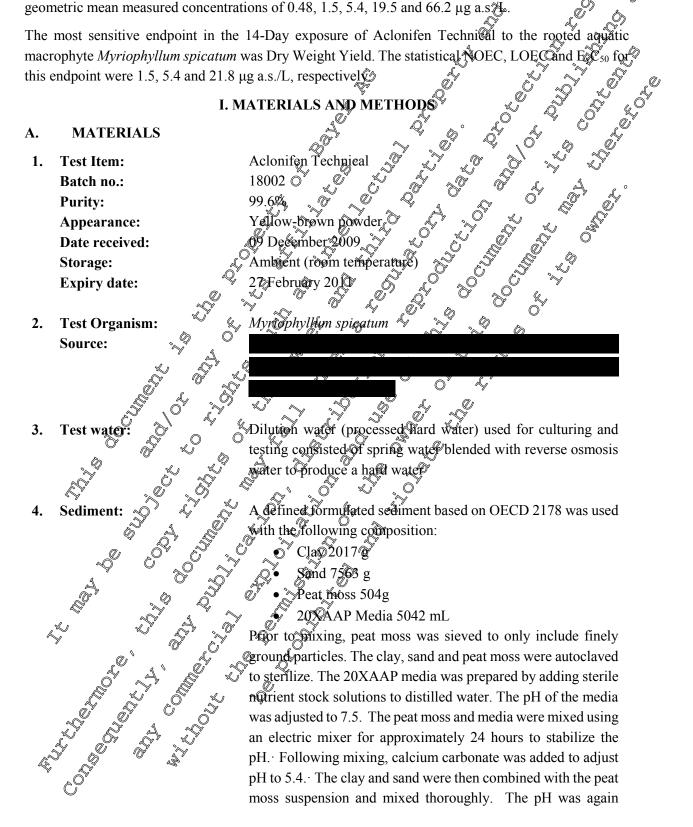
All validity criteria were satisfied and therefore this study can be considered to be valid.

In a static growth inhibition test with the rooted macrophyte *Egeria densa* exposed to Aclonifen over 14 days the  $EC_{50}$  values for increase in shoot length, fresh weight and dry weight were above the highest test concentration of 221 µg as/L.



The observed parameters (shoot length, fresh weight and dry weight) were not significantly different. from the controls up to the highest test concentration and the NOEC was therefore determined to see  $\geq$ 221 µg a.s./L (geometric mean measured concentration). Due to the lack of concentration-dependent effects,  $EC_{10}$  and  $EC_{20}$  values could not be calculated however as the ErC<sub>50</sub> value is the endpoint required for aquatic risk assessment, this considered to affect the interpretation of the study result Assessment and conclusion by RMS: Data Point: KCA 8.2.7/09& Report Author: Report Year: 2011 Õ Toxicity of aclonifen technical to the agratic macrophete, Myrophyllum Report Title: spicatum 6 Report No: EBG X019 Document No: M<sup>3</sup>98520-01-1 Guideline(s) followed in Higher fier Study base for OECD 22 study: Current Guideline: OECD 39, 2014 Deviations from current Only 4 replicate control sessels containing 3 plants each were included in the test guideline: (study rother that 6 replicates containing 3 plants each. This deviation was not considered to have affected study integrity and validity. Previous evaluation: No, not previously submitted conducted under CLP/Oricially recognised testing facilities GLP/Officially recognised testing facilities, Acceptability/Reliability

# Executive Summary


A study was performed to determine the dose-response effect of Aclonifen Technical to the rooted aquatic macrophyte, *Myrtophyllum spicatum*, over an exposure period of 14 days. Growth in the study is defined as a change (yield) in total shoot length, total plant wet weights and total plant dry weights (shoots and roots). The ECG was estimated for these growth parameters based on growth occurring between study Days 0 and 14.

The test system consisted of two to four replicate aquaria per treatment group. Each replicate contained four plants for a total of 8 to 16 plants per group. All plants within a replicate were planted into a single 125x65 mm crystallization dish containing 550 grams of artificial sediment. The rooted aquatic plants were submerged in the aquaria and following a 7-Day acclimation period, were exposed to nominal concentrations of 0.76, 2.4, 7.8, 25 and 80 µg a.s./L for 14 days. A control and solvent control group was included in the study. Following the 14-Day exposure period plants were sacrificed and measured.



Mean measured recoveries based on Day 0, Day 4, Day 7 and Day 14 sampling events and were within the range of 63 to 83% of the nominal concentrations. The initial (Day 0) measured recoveries ranged from 81 to 98% of the nominal test concentrations. The toxicity values were calculated based on the geometric mean measured concentrations of 0.48, 1.5, 5.4, 19.5 and 66.2 µg a.s A.

The most sensitive endpoint in the 14-Day exposure of Aclonifen Technical to the rooted aquatic macrophyte Myriophyllum spicatum was Dry Weight Yield. The statistical NOEC, LOECand this endpoint were 1.5, 5.4 and 21.8 µg a.s./L, respectivel





B.

checked after all ingredients had been mixed together. The final sediment pH was 6.6. **STUDY DESIGN AND METHODS** 1. In-life phase: 15 April - 06 May 2010 2. Exposure conditions 4-L glass beakers filled with 3.5 st solutior **Test vessels:** 5 test concentrations (0.76, 2, 4, 7.8, 25 and 80 µg (2./L) pus **Experimental design:** control and solvent control (DMF 100 µK/L) 3 **2**.4. 4 (Control Solvent Control, 0.76 **Replicates:** a.s./L). Each pplicate contained 25  $\mu$ g a.%/L) 4 nlants **Temperature:** pH: Aeration: **Photoperiod:** 24 hours light The planned light cycle, as dutline on the Study protocol was 16 hours light and 8 hours dark. However, due to an oversight, the light banks were not plugged into the programmed timers during the study. Conducting the study under 24-Hour a day Righting did fot appear to have any adverse effects on the plant Light intensity growth or cause any undesirable conditions such as algae growth 0700 105 lux (mean 3. Administration of the test item

A separate stock solution was prepared for each tesoconcentration. Initially an 800 mg a.s./L stock solution was prepared of doshig the fighest test concentration. This stock was serial diluted to other stock solutions at concentrations of 250, 78.1, 24 and 7.6 mg a.s./L, for dosing the test concentrations of 25, 7.8, **3**.4 and 0.76 µg a.s./D respectively All stock solutions were prepared in 100-mL volumetric flasks with DMF as the diluer Mixing was accomplished by inverting the flasks several times.

## 4. Test organism assignment and treatment

The definitive study consisted of a pre-exposure (establishment) and exposure phase. The pre-exposure phase lasted for seven days. The exposure phase lasted for 14 days.

At the staft of the pre-exposure phase, shoots were cut from healthy cultures at a length of 7 cm. The leaves were reproved from the bottom 2 cm of each shoot. Shoots were then planted 2 cm deep into 125x65 mm@lass avstallization dishes containing 550 grams of artificial sediment. The surface of the sediment was then covered with a layer (approximately 100 mL) of autoclaved crushed coral. Four shoots were planted into each crystallization dish. The dishes containing the planted macrophytes were placed into 4-L beakers (25 cm tall, 15.5 cm diameter). The four plants in the crystallization dish held



in the 4-L beakers make up a single replicate. During the seven day pre-exposure phase each replicate vessel contained 3.5-L of dilution water.  $\mathbb{Q}^{\circ}$ 

The start of the exposure period was marked by the addition of stock solution to each exposure beaker with the exception of the control beakers which received no stock solution and the solvent control vessels received DMF only. The stock was mixed into the test beakers using a disposable pipette for approximately one minute. Following 14 days of exposure, all plants were removed from the test system.

## 5. Measurements and observations

At the end of the 14-Day exposure period, length of the main shoot and all side shoots were measured, were weights were measured, and following drying of plants for at least 72 hours, dry weight measurements were collected.

Temperature was recorded hourly and daily. Temperature was measured on Days -7, 0, 7 and 14.

Samples for analytical verification of test concentrations were taken on Days 0, 4, 7 and 14.

## 6. Statistics/Data evaluation

Effects on yield for total shoot length, total plant wet weight and total plant fry weight were determined on a per plant basis, based on the growth of each plant during the 4 day growth intervals.

Raw or transformed data from reatment groups were compared to controls for normality and homogeneity of variance using the **sector of the sector of the sect** 

5 II. RESULTS AND DISCUSSION

## A. ANALYTICAL VERIFICATION

Table: Measured test concentrations of Aclonifen during the exposure to Myriophyllum spicatum

|                          |                                                                                                                                                                                                                            | <u> </u>                              | 9 A                                                                                                                                               | <u>,                                    </u> | leasured co                                                                                               | oncentration | 1                                                                   |       |                               |          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------|-------|-------------------------------|----------|
| Nominat<br>Concentration | Da                                                                                                                                                                                                                         | Ø 0                                   | <b>B</b> a                                                                                                                                        | y 4                                          | 🔊 Da                                                                                                      |              |                                                                     | y 14  | Geometr                       | ric mean |
| (μg a.s./L)              | μg<br>a.s./L                                                                                                                                                                                                               | % nom                                 | ∼ug<br>@s./L                                                                                                                                      | <b>%</b> nom                                 | ©″μg<br>∕a.s./L                                                                                           | % nom        | μg<br>a.s./L                                                        | % nom | μg<br>a.s./L                  | % nom    |
| Control                  | <loq< td=""><td></td><td>S∕∕×LOQ ≪</td><td></td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<></td></loq<>                                                  |                                       | S∕∕×LOQ ≪                                                                                                                                         |                                              | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<> | -            | <loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<> | -     | <loq< td=""><td>-</td></loq<> | -        |
| Solv. control            | <lqq< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>J<loq< td=""><td>£</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<></td></loq<></td></lqq<> | · · · · · · · · · · · · · · · · · · · | J <loq< td=""><td>£</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<></td></loq<> | £                                            | <loq< td=""><td>-</td><td><loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<></td></loq<> | -            | <loq< td=""><td>-</td><td><loq< td=""><td>-</td></loq<></td></loq<> | -     | <loq< td=""><td>-</td></loq<> | -        |
| 0.76                     | . Ø.62                                                                                                                                                                                                                     | 81                                    |                                                                                                                                                   | .Ø.8                                         | 0.43                                                                                                      | 57           | 0.38                                                                | 50    | 0.48                          | 0.1      |
| 2.4                      | 2.0 🖂                                                                                                                                                                                                                      | 820                                   | \$\$<br>\$                                                                                                                                        | <u>17</u>                                    | 1.3                                                                                                       | 54           | 1.2                                                                 | 49    | 1.5                           | 0.4      |
| 7.8                      | 7,1 🖉                                                                                                                                                                                                                      |                                       | 6.1                                                                                                                                               | 78                                           | 4.7                                                                                                       | 61           | 4.1                                                                 | 53    | 5.4                           | 1.6      |
| 2.5                      | 242                                                                                                                                                                                                                        | ×097                                  | 21.0                                                                                                                                              | 84                                           | 18.9                                                                                                      | 76           | 14.9                                                                | 60    | 19.5                          | 4.7      |
| 80                       | . ØŘ.2                                                                                                                                                                                                                     | 98 0                                  | 68.0                                                                                                                                              | 85                                           | 65.5                                                                                                      | 82           | 55.0                                                                | 69    | 66.2                          | 11.6     |
| % nom: perventage        | Mominal A                                                                                                                                                                                                                  | ncentration                           |                                                                                                                                                   |                                              |                                                                                                           |              |                                                                     |       |                               |          |

% nom: percentage of Jiominal Ancentration LOQ: Jamit of Quantization = 0.08 µg as J

The valigated method is summarised in Document M-CA4 (CA 4.1.2/75).

## **B. BIOLOGICAL DATA**



Active growth of the control plants during the 14-Day exposure period was demonstrated by a total shoot length yield of 25.6 cm (from 14.2 cm on Day 0 to an average of 39.8 cm on Day 14).

Plants in the control vessels and the three lowest test concentrations appeared normal throughout the study. Plants in the two highest test concentrations (19.5 and 66.2 µg a.s./L) appeared semi-transparent to red in colour. At study termination roots appeared normal in the controls and all treatment groups.

Shoot length yield and wet weight yield was analyzed at test termination on study Day 4. There was no dose response trend for these endpoints and the statistical analysis showed that no levels were statistically different from the pooled control group.

Dry weight yield was analyzed at test termination of study day 14. Dunnett's test showed a statistically significant difference in the three highest treatment groups. Percent inhibitions at compared to the pooled control group was -9.4, 3.4, 39.4, 52.1 and 55.8% for the 0.48, 1.5, 3.4, 125 and 66.2 µg a.s./L test groups, respectively.

| Table:     | Yield   | for  | plant | shoots, 🕺 | vet w | eights | and dry | weig | hts a | iring | the exp | osure | of |
|------------|---------|------|-------|-----------|-------|--------|---------|------|-------|-------|---------|-------|----|
| Myriophyll | um spic | atum | to Ac | lonifen   |       | - K.   |         | *    | ¢,    | Ĩ     | -S      | Õ     |    |

|                                          | ŠV &           |                                                                                                  |                     | ) <sup>*</sup>            |
|------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|---------------------|---------------------------|
| Geometric<br>mean                        | Length yiQi    | Wet weight yield                                                                                 | Dry wei             | ghtyield                  |
| measured<br>concentration<br>(µg a.s./L) | cm Lighibition | g Inhibition                                                                                     | g<br>S              | %<br>Inhibition           |
| Control                                  | 25.6 - 0       | \$1.00 <b>2</b> 4 ····                                                                           | 0.1304              | -                         |
| Solvent control                          |                | 1:0005 0 %                                                                                       | Q. <b>O9</b> 87     | -                         |
| Pooled control                           | 25.3 0 - 0     | \$0414<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Q.1395              | -                         |
| 0.48                                     |                | 0.9230 0.114                                                                                     | Ø 0.1526            | -9.4                      |
| 1.5                                      |                | 0.9941                                                                                           | <sup>♥</sup> 0.1349 | 3.4                       |
| 5.4                                      | Q4.3 0 93.9 V  | \$.8073 \$22.5                                                                                   | 0.0845              | <b>39</b> .4 <sup>1</sup> |
| 19.5 Ø                                   | 23.9 23.7      | ~~~0.769 <b>9</b> 26                                                                             | 0.0668              | 52.1 <sup>1</sup>         |
| 66.2                                     | 2402 x 40      | 0.9002                                                                                           | 0.0617              | 55.8 <sup>1</sup>         |

<sup>1</sup>: Statistically significant difference from pooled control (**Mathematically** one-tailed test;  $p \le 0.05$ )

The most sensitive endpoint was Dr Weight Yield. The statistical NOEC, LOEC and  $E_yC_{50}$  for this endpoint were 1.5, 5.4 and 01.8 µg a.s./L respectively

## C. KALIDITY CRITERIA

| Validity criterion                                | Required<br>(OECD 239, 2014)                                                                                                                                                          | Achieved*                                      |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Increase in control mean total shoot length       | Factor of 2                                                                                                                                                                           | 2.8                                            |
| Increase in control mean total shoot fresh weight | Factor of 2                                                                                                                                                                           | 2.4                                            |
| Control plants                                    | No visual symptoms of<br>chlorosis and should be<br>visibly free from<br>contamination by other<br>organisms such as algae<br>and/or bacterial films on<br>the plants, at the surface | No abnormal symptoms<br>or algal contamination |



R

|                                                        | of the sediment and in |   |        |
|--------------------------------------------------------|------------------------|---|--------|
|                                                        | the test medium.       |   |        |
| Control mean coefficient of variation for yield (based | <35%                   |   | 29.8%  |
| on shoot fresh weight) between replicates              | <u></u>                | ~ | 29.870 |
| *Based on pooled controls                              |                        | Ň |        |

ed on pooled controls

In the absence of a validated Test Guideline for assessing the effects of a chemical on the gro Myriophyllum spicatum, the study was based on OECD Test Guideline 221: Lemna S. Grow Inhibition Test (2006) and there were no specific validity criteria applicable to the study design

In terms of the current version of OECD Test Guiderine 239: Water-section ent Myrioghyllum spicather Toxicity Test (2014), all validity criteria were satisfied and therefore this study can be considered to be valid.

### D. **TOXICITY ENDPOINTS**

### Table: Summary of endpoints

| Endpoint                      | Geometric measured concentration (µga.s./L)?                                             |
|-------------------------------|------------------------------------------------------------------------------------------|
| Enupoint                      | Webinetry measured correctington (http://www.                                            |
|                               | LOEC                                                                                     |
| Total Shoot Length Yield      | $5^{\circ}$ $5^{\circ}$ $66.2$ $66^{\circ}$ $66^{\circ}$ $66^{\circ}$ $5^{\circ}$ $66.2$ |
| Total Plant Wet Weight Yield  | >66.2<br>[n.d.]                                                                          |
| I otal Plant Dry Weight Field | 21.8<br>510.4 45.8] 5 1.5 5 5.4                                                          |
| [95% confidence limits]       |                                                                                          |

n.d.: not determined

# 

The most sensitive empoint in the 14-Day exposure of Aclosuffen Technical to the rooted aquatic macrophyte Myriop Jum Spication was Dry Weight Xield. The statistical NOEC, LOEC and EyC50 for



macrophyte Myriopá Ilum spicatan was Pry Weight Sield. The this endpoint were 1.5, 54 and 1.8 µg a.s./L. respectively



| Data Point:                | KCA 8.2.7/10                                                                  |
|----------------------------|-------------------------------------------------------------------------------|
| Report Author:             |                                                                               |
| Report Year:               | 2016                                                                          |
| Report Title:              | Aclonifen (tech.): Recalculation of growth inhibition study with myriophyllum |
|                            | spicatum                                                                      |
| Report No:                 | M-543492-01-1                                                                 |
| Document No:               | M-543492-01-1                                                                 |
| Guideline(s) followed in   | not applicable                                                                |
| study:                     |                                                                               |
| Deviations from current    | Not applicable. Report is a re-evaluation of prepously generated study data   |
| test guideline:            | Not applicable. Report is a re-evaluation of preposely generated study data   |
| Previous evaluation:       | No, not previously submitted Q Q Q Q                                          |
| GLP/Officially             | No, not conducted under GLP/Officially recognised testing facilities          |
| recognised testing         |                                                                               |
| facilities:                |                                                                               |
| Acceptability/Reliability: | Yes A of Q Q A O' Q' A                                                        |
|                            |                                                                               |

## **Executive Summary**

A 14-Day static *Myriophyllum spicatum* growth inhibition study with the test item aclouifen (tech.) has been conducted (KCA 8.2.7/10, 2007) considering the recommendations of the OECD test guideline 221, 2006 (*Lemma* sp. Growth Inhibition Fest). If the report effects of yield for total shoot length, total plant we weight and total plant do weight were determined and the corresponding endpoints are consequently based on yield only.

However, processes in ecosystems are dominantly tate driven and therefore, the unit development per time (growth rate) is more suitable to measure effects in macrophytes. Also, growth rates and their inhibition can easily be compared between species, test durations and test conditions, which is not the case for field or biomass based endpoints. Following current state of science, the recently published test guidelines for *Myriophyllum* sp. tests (OFCD 238 and 239, both 2014) ask for determination of average specific growth rate as a response variable. Moreover, the EFSA Aquatic Guidance Document (AGD, 2013) lists growth rate as the preferrent endpoint to be used in the risk assessment for macrophytes.

For the abovementioned reasons assessment endpoint based on growth rate have been recalculated for the study of hand in agreement with current state of science and the relevant guidelines. This statement presents NOEC, LOEC and EC<sub>50</sub> values for growth rate of total shoot length, total plant we weight and totak plant dry weight after 14 days of exposure as calculated by ToxRat Professional, version 2.10..

The static 14 days growth inhibition test with *Myriophyllum spicatum* provided the following effects on total shoot length, total plant we weight and total plant dry weight on a per plant basis:

| Table:  | Growth        | rate for | r plant shoot | s, wet weights | s and dry | weights | during the | exposure of |
|---------|---------------|----------|---------------|----------------|-----------|---------|------------|-------------|
| Myriopl | Willum spicat | tum to A | clonifen      |                |           |         |            |             |

| Geometrie<br>mean<br>measured | Total shoot length  |                 | Total plant         | wet weight      | Total plant dry weight |                 |  |
|-------------------------------|---------------------|-----------------|---------------------|-----------------|------------------------|-----------------|--|
| concentration<br>(μg a.s./L)  | Mean<br>growth rate | %<br>Inhibition | Mean<br>growth rate | %<br>Inhibition | Mean<br>growth rate    | %<br>Inhibition |  |
| Control                       | 0.072               | -               | 0.060               | -               | 0.042                  | -               |  |



| Solvent control | 0.072 | -    | 0.063 | -    | 0.045                 | -                   |
|-----------------|-------|------|-------|------|-----------------------|---------------------|
| Pooled control  | 0.072 | -    |       | -    |                       |                     |
| 0.48            | 0.068 | 5.56 | 0.056 | 8.61 | 0.046                 | 0.00                |
| 1.5             | 0.072 | 0.00 | 0.059 | 3.83 | 02042                 | 3,84                |
| 5.4             | 0.070 | 2.32 | 0.051 | 17.3 | 0:028                 | \$4.8 <sup>1</sup>  |
| 19.5            | 0.070 | 2.81 | 0.050 | 18.9 | 0.024                 | \$ 46.Q             |
| 66.2            | 0.070 | 2.14 | 0.056 | 8.14 | 0.022 آ <sup>پا</sup> | 2 48,6 <sup>1</sup> |

<sup>1</sup>: Statistically significant difference from pooled control (

wultiple sequenti@t-test Procedure)

4]

The most sensitive measurement variable in this story was total plant dry weight resulting in a lowest  $E_rC_{50}$  of 42.01 µg a.s./L.

### Table: Summary of endpoints

| Endpoint – growth rate | Geometric mean measured concentration (µg a.s./L6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Shoot Length     | 0 <sup>∞</sup> 66.2 <sup>∞</sup> , <sup>1</sup> √, <sup>1</sup> √, <sup>2</sup> √, <sup>6</sup> 6, <sup>2</sup> / <sub>2</sub> , <sup>3</sup> √, <sup>5</sup> |
| Total Plant Wet Weight |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Plant Dry Weight | 42.00 5.4<br>[B37] 0 1.5 0 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Assessment and conclusion by applicant:

All validity criteria were satisfied and therefore this study can be considered to be valid.

The most sensitive energoint in the Q-Day exposure of Aclonifen Technical to the rooted aquatic macrophyte Myriop/Wilum picatum was dry weight growth rate. The statistical NOEC, LOEC and ErC50 for this endpoint were 1.5 3.4 and 42.0 kug a. ML, respectively.

 $EC_{10}$  and  $EC_{20}$  calues were not calculated, however as the  $E_rC_{50}$  value is the endpoint required for aquatic risk assessment this was not considered to affect the interpretation of the study results.

Ø Assessment and conclusion by RMS:



| Data Point:                | KCA 8.2.7/11                                                                     |
|----------------------------|----------------------------------------------------------------------------------|
| Report Author:             |                                                                                  |
| Report Year:               | 2006                                                                             |
| Report Title:              | Lemna gibba G3 - Growth inhibition test with Aclonifen (tech.) in a              |
|                            | water/sediment system using spiked medium (code: AE F@8300 00 1D9@0002)          |
| Report No:                 | EBCLX009                                                                         |
| Document No:               | M-263844-01-1                                                                    |
| Guideline(s) followed in   | Higher tier study, conducted under principal consideration of OECD 221, "Lorma V |
| study:                     | sp. Growth Inhibition Test" Revised Proposal for A New Guideline (October        |
|                            |                                                                                  |
| Deviations from current    | Current Guideline: OECD 221 2006                                                 |
| test guideline:            | Test system was water/sediment, rather than water only. The deviation was not    |
|                            | considered to have affected study integrity and validity.                        |
| Previous evaluation:       | No, not previously submitted                                                     |
|                            |                                                                                  |
| GLP/Officially             | Yes, conducted under GLP/Officially recognised sting facilities                  |
| recognised testing         |                                                                                  |
| facilities:                |                                                                                  |
| Acceptability/Reliability: | Yes vy vy vy vy vy                                                               |
|                            |                                                                                  |

## **Executive summary:**

The effects of Aclonifen, on the growth and geproduction of the aquatic mono otyledonous plant, *Lemna gibba*, were investigated in an exposure to nominal concentrations of 12, 24, 48, 96, 192 and 384  $\mu$ g a.s./L plus a control and a solvent control. Fronds of *Lonia gibba* were exposed to Aclonifen for seven days in a static water-sequence without test medium renewal.

Samples were analysed for the actual concentration of aclonifen present in the test medium at all freshly prepared and all aged treatment levels including controls (water-phase only). Measured test concentrations ranged from 96 to 103% of the nominal concentrations on day 0 and from less than the limit of determination (1.36) µg/L) to 7% of nominal after 7 days. The lower concentrations on Day 7correspond with the expected adsorptive to sediment properties of aclonifen. Therefore, the initial measured test concentration was used to calculate the study endpoints.

The most sensitive reponse variable was fond number resulting in an overall  $E_rC_{50}$  of 116 µg a.s./L.

The lowest NOEC (24.4  $\mu$ g a.s./O was based on visual effects and statistical data analysis for both frond number and dry weights of plants. Results reported based on initial nominal concentrations.

# A. MATERIALS 1. Test naterial: Aelonifen technical Batch nos: 97013003 Purity: 994 g/kg April 2006 (retest) 2. Test organism: Lemna gibba Strain: G3



Nominal test concentrations of 12.0, 24.0, 48.0, 96.0, 192 3. **Treatment:** 

384 µg a.s./L

- Glass dishes, diameter 10cm, total volume c@470 mL, covered 4. **Test vessels:** glass lids to permit gas exchange and illumination 20X-AAP medium, pH adjusted to 7.5 20.1 **Test water: Test sediment:** Artificial sediment (using OECD 2190 prepared 10 days start and comprising; 74% quartz, 5.0% sphagnum peat. 20% kaolin, Approx. 1% CaCO<sub>3</sub> Growth medium (450 mL/kg dry weigh Gediment Moisture content of final mix 38-50%
- B. STUDY DESIGN AND METHODS 29 July to 28 October
- 1. **In-life phase:**
- 2. **Exposure condition Temperature:** - 8.5 (Days 0 8.0 pH: Confinuous Illumuration, mean 7680, trange 6500 - 8830 lux Photoperiod.

Organic carbon content 2

### 3. Dose preparation

Each test vestor comprised @ sediment layer, approximately @ cm\_covering the base of the vessel. Growth medium (200 mL) was slowly poured into the essels, after covering the sediment with a sheet to prevent separation of sediment ingredients. The sheet was then removed, and the vessels were allowed to equilibrate in the dark and at room temperature for 10 days.

A primary stock solution was prepared by dissolving 41 mg test item in 10 mL dimethyl formamide (DMF), followed by minutes stirring. Adjuots of the resulting stock solution were transferred to a dilution series to obtain te exposure concentrations by spiking the overlying water in the test vessel. A solvent control and control exposure treatment were run along with nominal test exposure concentrations of 12.0 24.0, 48.0, 96.0, 192 and 384 µg a.s./L

Plants were transferred within 5 minutes of spinning the growth medium with test item.

### Test organism assignment and treatment 4.

Colonies used for test were from an incentum culture 7-10 days old. Each test vessel contained a total of 12 from s, with 3 reputates per treatment. The test vessels were placed in a random order and were repositioned each observation day (days 2, 5 and 7).

## Measurements and observations

Frond counts were made on Days 0, 2, 5 and 7. On Day 14 (end of test) the colonies were collected from each of the replicate test vessels, rinsed with deionised or distilled water and blotted to remove excess water. After drying for at least one day at 60°C to a constant dry weight the colonies were



weighed. In the same way the starting biomass was measured (dry weights) of a triplicate of 12 fronds (taken from the same batch used as inoculum within this study).  $\mathbb{Q}_{\mathbb{A}}^{\circ}$ 

Temperature was determined by continuous measurement in one additional incubated glass vessely filled with the same amount of de-ionised water as in the test vessels. Temperature was recorded hourly boa data logger. The pH was measured in all freshly prepared and all aged test levels and the controls. The light was measured at least once during the test.

Water phase samples were analysed for the actual concentration of aclonifen present in all freshly prepared test levels on day 0, and in all aged test levels on Day 7 of the exposure period. Aliquits for  $\bigcirc$  freshly prepared test levels for Day 0 analyses were sampled from the prepared volume of each test treatment level. For sampling of aged test media, after removing of plant material from the test vessels on Day 7 the contents of all three replicate vessels were combined, and the pH was measured. Samples were analysed by HPLC-MS/MS.

## 6. Statistics

The LOEC determinations from the appropriate parameter (inhibition) were done, using the ANOVA procedure ( $\alpha = 0.05$ , one sided) and properly selected multiple t-tests of a commercial program. Calculations were carried out using Microsoft Excel® preacheets. All further statistical evaluations were done using the commercial program ToxRat Professional, version 2.09 (2004).

W RESULTS AND DISCUSSION

## A. ANALYTICAL VEREICATION

Samples were analysed for the actual concentration of actionifen preservin the test medium at all freshly prepared and all aged dreatment levels including controls (water-phase only). Measured test concentrations ranged from 96 to 102% of the nominal concentrations of day 0 and from less than the limit of determination (1.361  $\mu$ g/L) to 7% of atominal after days. The lower concentrations on day 7correspond with the expected adsorptive to sediment properties of aclonifen. Therefore, the initial measured test concentration was used to calculate the study endpoints.

| Nominal conco               |                      | Measured con     | řcn (μg a.s./L) |           |
|-----------------------------|----------------------|------------------|-----------------|-----------|
| (µg/a.s./L)O <sup>♥</sup>   | C Day 6 C            | % wominal?       | Day 7           | % nominal |
| Control                     | , \$\$ <b>3</b> 61 0 | © n.a. O         | <1.361          | n.a.      |
| Solvent control             | ₹1.361 F             | , n <sub>a</sub> | <1.361          | n.a.      |
|                             | Q 11.9               | \$ <b>99</b>     | <1.361          | n.a.      |
|                             | 1. 24. <sup>1</sup>  | ×~103            | <1.361          | n.a.      |
| 🖌 48 👋                      | × ×47.5 Q            | <b>9</b> 9       | 2.72            | 6         |
| 26                          | <sup>0</sup> 91.8    | 96 کې            | 5.42            | 6         |
| <b>€</b> 92 .4 <sup>\</sup> | 0 1867 A             | ې 97             | 11.9            | 6         |
| © 384                       | § 369 _              | 96               | 25.8            | 7         |
| $n_{a} = not applicable$    |                      |                  |                 |           |

| Table: | Meanmeasured | concentrations | (ng/L) of aclo | onifen in the exposure solutions |
|--------|--------------|----------------|----------------|----------------------------------|
|        | AY .         |                |                | L L                              |

The validated method is summarised in Document M-CA4 (CA 4.1.2/91). **B. BOLOGICAL DATA** *Frond numbers* 

Mean frond numbers are presented in the following table:



| Nominal concn<br>(μg a.s./L) | Day 0 | Day 2     | Day 5             | Day 7              | Growth<br>rate µ | Doubling  | inh <b>O</b> ition |
|------------------------------|-------|-----------|-------------------|--------------------|------------------|-----------|--------------------|
|                              |       | Mean (    | (%CV)             |                    | 0                | (days)    |                    |
| Control                      | 12    | 25 (10.6) | 85 (11.2)         | 1600(13.4)         | 0.369            | 1.9       |                    |
| Solvent control              | 12    | 24 (6.3)  | 80 (7.1)          | (155 (4.2)         | 0.366            | J.        |                    |
| Pooled control               | 12    | 25        | 83                | 158                | 0.367            | Q 1.90    | <u>.</u>           |
| 12                           | 12    | 25 (10.6) | 89 (44.3)         | (13).5)            | 40.388 K         |           | × -5.5             |
| 24                           | 12    | 25 (6.0)  | A93 (7,00         | 176 (5.5)          | 0.379            | ST 1.8 OF | ~3.1 °             |
| 48                           | 12    | 23 (4.3)  | 59 (8.5) <u>~</u> | 101 (7.5)          | 0.304            | Ž.3 Š     | 103                |
| 96                           | 12    | 20, 2.8)  | 37 (5.6)          | 53 (7.7)           |                  | 3.5       | 42.6               |
| 192                          | 12    | 20 (7:8)  | 20 (17.3)         | 28 (16.3)          | Q0.118*          | °°6.0 ×   | 67.9               |
| 384                          | 12 0  | 2005.0)   | 5 13 O            | <sup>1</sup> 3 (0) | eQ911*           | Q 60 8    | 96.9               |

SD = Standard devia

Negative % inhibition indeates growth relative to pooled

\* Statistically semificant compared to booled control to a Student i-test for homogeneous variances with Bonferroni adjustment,  $\alpha = 6.05$ )

Biomas

Plant biomass (dry weight) along with the corresponding confidence limits are presented below:

| ľa | ble: Biomass (  | frond gry weight) a         | tter 7-day exposu | re to acloniten tech                        | inical       |
|----|-----------------|-----------------------------|-------------------|---------------------------------------------|--------------|
|    | Nominal concn   | Pinal Gy weight             |                   | Average growth<br>rate μ (0→7 d)<br>(1/day) | % inhibition |
|    | 🖉 Control 🗸     | 2108                        | 12.2              | 0.431                                       | -            |
|    | Solvent control | Q0.6 ×                      | ° 8.4             | 0.423                                       | -            |
|    | Pooled control  | 21.2                        | -                 | 0.427                                       | -            |
|    | 12 ~            | 24:3                        | 6.3               | 0.445                                       | -4.3         |
|    | 24 v            | 21.2                        | 1.5               | 0.427                                       | -0.1         |
|    | <u> </u>        | C 211.5                     | 2.1               | 0.339*                                      | 20.5         |
|    | 965             | ~~ 7.2                      | 2.2               | 0.272*                                      | 36.2         |
|    |                 | <u></u> ,≪ <sup>™</sup> 5.9 | 5.0               | 0.245*                                      | 42.6         |
|    | × 6384 0        | 4.9                         | 6.8               | 0.218*                                      | 48.8         |

ð Table 4 - - 1- -- 1 - - 1

Inocution dry weight: 1.067 mg. This value subtracted from final dry weight

Negative % inhibition indicates growth relative to pooled control

\* Statistically significant compared to pooled control (based on t-test for inhomogeneous variances with Bonferroni adjustment,  $\alpha = 0.05$ )



## Shape of fronds

Visual observations on day 2 showed new fronds were smaller and slightly chlorotic at nonunal concentrations of 48 µg a.s./L and above. By day 5 observation of chlorosis was more pronounced with plants at 192 and 384 µg a.s./L most affected. By day 7

At test termination, slightly chlorotic to chlorotic, small fronds and fronds with less root formation were observed in the 0.011 and 0.020 mg a.i./L treatment solutions. Small fronds were observed in the 0.0049 mg a.i./L treatment level. Fronds exposed to the remaining treatment levels, the control and the solvent control were observed to be normal.

### С. VALIDITY CRITERIA

| 7-fold increase in 7 days $\sqrt{7}$ $\sqrt{7}$ $\sqrt{7}$ $\sqrt{7}$                     |                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ř 🔈 . | ar      | Q . O    |        |
|-------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------|---------|----------|--------|
| <2.5 days (60 h), corresponding to approximately 7-fold increase in 7 days 9.9d 9.9d 9.9d | Validity criterion                    | ¥                                       |       | . 1/ (/ | ) (Achie | xěd "N |
|                                                                                           | <2.5 days (60 h), corresponding to ap |                                         |       |         | 9.90     |        |

within Zdays corresponding to a doubling The frond number increased in the sontrols by a factor of 13.2 The frond number increased in the controls by a factor of 15.2 where the study can be considered time (Td) of about 1.9 days, therefore the value of the study can be considered walled 

### D. TOXICITY ENDPOINTS

### Table: Summary of endpoints

| (                                        |                    |                   |                                 |                         |
|------------------------------------------|--------------------|-------------------|---------------------------------|-------------------------|
| la l |                    | Initial nominal g | soncn (µg a.s./I <sub>0</sub> ) |                         |
| Parameter                                | Frond nos          | 95% confidence    | Biomass<br>Adry weight)         | 95% confidence<br>limit |
|                                          |                    |                   |                                 |                         |
| $E_r C_{10}$                             |                    | 25/2-50           | 25.0                            | 0.91 - 57.2             |
| ĚrC20                                    | \$ ~\$6.5 Q        | 41.3 - 69.4       | <b>→</b> 59.1                   | 9.1 - 108               |
| ErC <sub>50</sub>                        | ~ 116 (            | 98-3 - 136        | 305                             | 170 - >384              |
| NOEC                                     |                    |                   | ¥ 24                            | -                       |
| LOEC                                     | \$ <sup>48</sup> 0 |                   | 48                              | -                       |
|                                          |                    | Y QY Q            |                                 |                         |

## **W** III CONCLUSION

The most sensitive response variable was frond number resulting in an overall ErC<sub>50</sub> of 116 µg a.s./L.  $\hat{\mu}g$  a.s.  $\hat{\mu}$ ) was based on visual effects and statistical data analysis for both frond The lowest NOEC (24

## Assessment and conclusion by applicant:

The validity criterion was met, therefore this study is considered to be acceptable.

The most sensitive response variable was frond number resulting in an overall  $E_r C_{50}$  of 116 µg a.s./L.



| The lowest NOEC (24.4                      | 4 µg a.s./L) was based on visual effects and statistical data analysis for both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| frond number and dry w                     | veights of plants. Results reported based on initial nominal concentrations and the second seco                                                                                                                                                                                                                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Assessment and sonaly                      | Ision by RMS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Assessment and conclu                      | ISION DY KIVIS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Point:                                | KCA 8.2.7/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Report Author:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title:                              | Lemna gibba G3 Growthinhibition test with aclonifencech. (BOS-AG4518)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | under peak exposure conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report No:                                 | EBCL0005 Q <sup>Y</sup> X <sup>Y</sup> Q <sup>Y</sup> X <sup>Y</sup> Q <sup>Y</sup> X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Document No:                               | M-612847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Guideline(s) followed in                   | EU Directive 91/014/EEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| study:                                     | Regulation (EG) Number 110 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | OEC@ Test & delin@221 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Deviations from current                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| test guideline:                            | Current Guideling? OECD 221, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test guidenne.                             | considered to have affected grudy integrity and validity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Previous evaluation:                       | No not proviously submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GLP/Officially                             | Yes, wonducted under GLP/OGricially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability:                 | Yes a straight of the straight |
| × ×                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| je di alla alla alla alla alla alla alla a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ** 5                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Executive summary

The effects of Acloraten, on the growth and reproduction of the aquatic monocotyledonous plant, Lemna gibba, were investigated by two difference xposure designs.

In **design** 1 the Lemna plants vere exposed to three 24 hours lasting peaks at Day 0, Day 3 and Day 6. Between and after the peak exposure the plants were transferred to untreated growth medium.

In design 2 the Lemna plants were exposed to two 24 hours lasting peaks on Day 0 and Day 7.

In both test designs the test duration was 14 days and after 7 days only 12 fronds per replicate were transferred to the second week to avoid nutrient and space constraints.

Frond numbers and total from area of plants are recorded for both designs after 0, 3 (prior to exposure to the second peak in design 1), 5 and 7 days (before and after thinning each replicate to 12 fronds), 10, 12 days and at the test end. Growth and growth inhibition were calculated. The concentrations which inhibited the growth of this species by 10, 20, and 50 percent ( $EC_{10}$ ,  $EC_{20}$ ,  $EC_{50}$ ) were determined.



In both designs the same peak concentrations were tested: 7.00, 21.3, 64.8, 197 and 600  $\mu$ g a.s./L. Additionally, control and solvent control for each exposure design were performed in parallel and were handled in the same way as the respective test concentrations.

Samples were analysed for the actual concentration of aclonifen present in the fest medium of freshly prepared and aged treatment levels including controls. Measured test concentrations ranged from 108 to 118% of nominal concentrations in freshly prepared solutions and from 104 to 110 in the aged solutions. Therefore, the study endpoints were calculated based on nominal test concentrations.

The exposure scenario with three 24 hours peaks on Day 0, Day 3 and Day 6 over the course of one  $\bigcirc$  week (design 1) resulted in E<sub>r</sub>C<sub>50</sub> values after 7 days of 447 and 27 µg a.s./L for frond number and frond area, respectively. After 14 days, the E<sub>r</sub>C<sub>50</sub> alues were calculated to be 104 and 117 µg a.s./L for frond number and frond area, respectively.

The exposure scenario of two 24 hours peaks of Day  $\theta$  and Bay 7 over the course of two weeks (design 2) resulted in higher  $E_rC_{50}$  values of >600 and 269 µg a.s./L for frond number and frond area after 7 days, respectively. After 14 da s, the  $E_rC_{50}$  values were calculated to be 54 and 127 µg a.s./L for frond number and frond area, respectively.

|                                         |                           | I. MATERIALS AND METHODS                                                                                                          |
|-----------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| A.                                      | MATERIALS                 | I. MATERIALS AND METHODS<br>Actoniton technical (BES-AG74518)<br>AE F068300591-14<br>PE A1000255<br>9955% w/w<br>26 November 2016 |
| 1.                                      | Test material: 🔊          | Actoniten technical (BES-AG74518)                                                                                                 |
|                                         | Batch no.: 🏻 🔊            | AE F008300 91-14 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /                                                                            |
|                                         | Origin Batch ID:          | PEA2000205 ~ . O . S                                                                                                              |
|                                         | Purity: S                 | 9953% w/w & & &                                                                                                                   |
|                                         | Expiry: 🖉 🔏               | November 2016 2016                                                                                                                |
|                                         |                           | 20 November 2016                                                                                                                  |
| 2.                                      | Testorganism:             | Lemina gibba 🗸 🛼 🖇                                                                                                                |
|                                         | Stram: 🖓 🐇                | Lemna gibba                                                                                                                       |
|                                         | Source: X                 |                                                                                                                                   |
|                                         | Test vessels:             | ×                                                                                                                                 |
|                                         |                           |                                                                                                                                   |
|                                         | \$° 4                     |                                                                                                                                   |
|                                         | Q A &                     |                                                                                                                                   |
| •                                       |                           |                                                                                                                                   |
| 3.                                      | Treatment                 | In both test designs, nominal test concentrations were tested: control,                                                           |
|                                         | A. Or a                   | In both test designs, nominal test concentrations were tested: control, olvent control, 7.00 $21.3$ , 64.8, 197 and 600 µg a.s./L |
|                                         |                           |                                                                                                                                   |
| 4.                                      | Test vessels              |                                                                                                                                   |
| A                                       | Test water:               | . grass ligs to permit gas exchange and illumination                                                                              |
|                                         | Test water: 🔊             | $20X - AAP$ medium, pH adjusted to $7.5 \pm 0.1$                                                                                  |
|                                         |                           |                                                                                                                                   |
| B.                                      | STUDY DESIGNANI           | D METHØDS                                                                                                                         |
|                                         |                           | ky ~Q                                                                                                                             |
| 1.                                      | An-life phase:            | 3 to 6 November 2016                                                                                                              |
| 2.                                      | Exposure conditions:      |                                                                                                                                   |
|                                         | Temperature:              | 24.2 – 24.7 (Days 0 – 14)                                                                                                         |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | or H:                     | 7.5 - 9.1 (Days  0 - 14)                                                                                                          |
|                                         | <sup>C</sup> Photoperiod: | Continuous illumination, mean 6600, range 6530 - 6690 lux                                                                         |
|                                         | •                         |                                                                                                                                   |
| 3.                                      | Dose preparation          |                                                                                                                                   |
|                                         |                           |                                                                                                                                   |



Prior to the start of each peak exposure the stock solution was prepared by solving 201 mg of the test substance ad 5 mL DMF intense stirring for 3 to 10 minutes. An adequate amount of the stock solution was transferred to a dilution series to obtain the concentration levels used in the study. A solvent control and control exposure treatment were run along with nominal test exposure conceptrations of 7,00, 2 64.8, 197 and 600 µg a.s./L.

The test item was applied into the freshly prepared test medium on Days 0, 3, 6 and 70 srowth medium. transferred within 5 minutes of spiking the growth medium with test iterful

### 4. Test organism assignment and treatment

Two different peak exposure designs were performed

- Design 1: 3 peaks (Day 0, 3 and 6), each lasting-24 hours
- Design 2: 2 peaks (Day 0 and 7), eaclolasting 24 hours

Between and after the peaks the plants were transferred to untreated growth medium.

Colonies used for test were from an inseulum culture 9-10 days of Each test versel contained a total of 12 fronds (3-4 fronds per plant), with 3 replicates per treatment. The test vessels were placed in a 507, 10 2 and 4). random order and were repositioned each observation day (Days 3,

To avoid nutrient depletion and space/limitations if the test vessels only 12 fronds of each replicate were transferred for both designs after  $Da\mathcal{Q}^{\dagger}$ .

### 5. Measurements and observations

Visual observations were made on Days 3, 5, 7, 19, 12 and 14, with frond counts and determination of total frond areas carried out using a Lemma Tec Scnaker machine validated for such measurements. Temperature was determined by continuous measurement in one additional incubated glass vessel filled

with the same amount of de-ionised water as in the test vessels. Temperature was recorded hourly by a data logger, The pH was measured in all freshly prepared and all aged test levels and the controls. The light was measured at least once during the test.

No remarkable observations of the test item in the test medium were recorded for the test concentrations 7.00 to 64.8 µg a.s./L. The medium of the test concentration of 197 µg a.s./L was slightly yellowish and the highest test concentration 600 ng a.s. A, was yellowish

Samples were analysed for the actual concentration of aclonifen tech. present in all freshly prepared test levels of Day 0, 3, 6 and 7 and in all ages test levels on Day 1, 4, 7 and 8 of the exposure period. Aliquists of freshly prepared test levels for Day 0, 3, 6 and 7 analyses were sampled from the prepared volume of each treatmen evel of or sampling of aged test media, after transferring the plants in vessels with freshly prepared untreated method on Day 1, Day 4, Day 7 and on Day 8, the contents of all replicate vessels were combined, and the pH was measured. Aliquots from the combined test solutions were then submitted for analysis. Additionally, samples of the untreated medium were taken in between the peak exposure periods. However, these samples were not measured since the analytical results of the peak exposure samples and the biological results were clear and no further information could be gained by measuring these samples of the untreated media. Samples were analysed by HPLC-MS/MS.

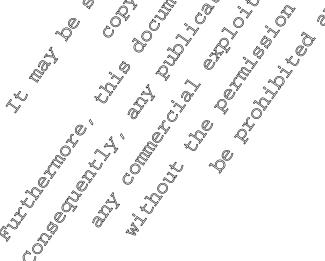
Statistics 6.



Calculations were carried out using Microsoft Excel® spreadsheets. All further statistical evaluations were done using the commercial program ToxRat Professional, version 3.2.1 (2015).

### **II. RESULTS AND DISCUSSION**

#### A. ANALYTICAL VERIFICATION


Samples were analysed for the actual concentration of aclonifen present in the test medium at all the prenared and all aged treatment levels including controls

The analytical measurements resulted in recoveries within 80 to 1202 of nominal 2n the controls no test substance was detected. The results were based on nominal values since all measurements showed a correct dosing and proved the stability of the test item within the peak exposure prepared and all aged treatment levels including controls. The analytical measurements resulted in recoveries within 80 to 120% of nominal on the controls no test substance was detected.



### Table: Measured concentrations ( $\mu$ g/L) of Aclonifen (aclonifen) in the exposure solutions – Test design 1 (three 24 hour peaks on day 0, 3 and 6) *@*"°

| Test design 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (three 24 hour j                       | •                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | n 1, 1 <sup>st</sup> peak (day (                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                   |
| Nominal concn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured con                           |                                                    | % of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | omin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al 🖉                                                                                |
| (µg a.s./L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Day 0                                  | Day 1                                              | Day 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Ç <sup>×</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al 0<br>Day 1 0<br>- |
| Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.625                                | < 0.625                                            | - "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                   |
| Solvent control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.625                                | < 0.625                                            | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0 6                                                                               |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.18                                   | 8.14 🔊                                             | 117 💭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UP N                                                                                |
| 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.8                                   | 22.9 💎                                             | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 007<br>0113<br>116<br>146                                                           |
| 64.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.6                                   | 73.0 f                                             | 1684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø <u>113</u> Ø                                                                      |
| 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                                    | 22 <b>Ø</b>                                        | ¥13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116                                                                                 |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 707                                    | 699                                                | ~~¥118 ⊘°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ő.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Design                                 | 1, 2 <sup>n</sup> peak (day 3                      | 3-24) ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measured con                           | 1, 2 <sup>n©</sup> peak (day 3<br>1cn((µg a.s./J.) | S & %m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Day 3                                  | O Dav4                                             | Day 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.625                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Solvent control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.625                                 | ×0.625,×                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <del>-</del>                                                                      |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.14                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
| 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.0                                   | 22,2                                               | 108 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , di la constante da la consta |                                                                                     |
| 64.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 750 0                                  | × × 1.1 ×                                          | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |
| 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 282                                    | © 222                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 <sup>113</sup> ~                                                                  |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | @710, %                                | © 715 .0                                           | $\int_{-\infty}^{\infty} \frac{108}{118} = \int_{-\infty}^{\infty} \frac{108}{1$ | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112                                                                                 |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | 1, 3rd peak (day)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ô.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | hcn (µg/a.s./L/)                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | minal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                            |
| 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Day 6                                  | Day 7                                              | Bay 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ďay 7                                                                               |
| Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-                                                                              |
| Solvent control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ₹9.625                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | \$ 9.025 J                                         | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                                                                                 |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | <u>0.04</u> √                                      | 6 110<br>6 412 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×¥3.8 ·∞                               |                                                    | ×12<br>×118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | A9.5                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118                                                                                 |
| <u>0197</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 220 0                                              | 114<br>114<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                                                                                 |
| 19 and a for an antificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $G_{10}$                               | <u> </u>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1011 (LeQ) = 0023                      | µg-a.s./L                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Maarukal as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncentrations (fig                      | ×/I) & A alamifar                                  | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | maguna galut                                                                        |
| e: Measured co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acentrations my                        | g/L) or Actonner                                   | A actionitien) in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ine ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | posure solut                                                                        |
| l est design 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | two 24 nour pe                         | eaks on day 0 and                                  | g /)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S & S                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × ~ ~                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N IN                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q A A                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| *, <sup>\$</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A a O                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y' Y Q                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| @.\`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L. Q.                                  | 4                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| ~ . ^ `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O S A                                  | Ş                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Č 🕺 Č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ř <u>v</u> v                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | õ                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| J & A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Control<br>Solvent control<br>7.00<br>21.5<br>64.8<br>197<br>600<br>Explit of quantification<br>Control<br>197<br>600<br>Capit of quantification<br>Control<br>197<br>600<br>Capit of quantification<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Contro | ×U<br>V                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| L C V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Ű                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |





|                 | Design       | n 2, 1 <sup>st</sup> peak (day 0      | – 1)                                                                                                            |              |             |
|-----------------|--------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|-------------|
| Nominal concn   | Measured con | ıcn (μg a.s./L)                       | % of n                                                                                                          | ominal       | <i>a</i> .° |
| (µg a.s./L)     | Day 0        | Day 1                                 | Day 0                                                                                                           | Day 1        |             |
| Control         | < 0.625      | < 0.625                               | -                                                                                                               | -            | X ô         |
| Solvent control | < 0.625      | < 0.625                               | -                                                                                                               | <u></u>      |             |
| 7.00            | 8.18         | 8.14                                  | 117 🥡                                                                                                           | S 116 🗡      |             |
| 21.3            | 23.8         | 22.9                                  | 112                                                                                                             | 107 🔊        |             |
| 64.8            | 73.6         | 73.0                                  | 114                                                                                                             | 11,20        | p" "v       |
| 197             | 222          | 229 _ 🖉                               | 113                                                                                                             | M6 ~         | Î ÂŞ        |
| 600             | 707          | 699 🚿                                 | 113<br>118                                                                                                      | P16 9        |             |
|                 | Design       | 1 2, 2 <sup>nd</sup> peak (day '      | 7 - 8)                                                                                                          | × 0          | \$ K        |
|                 | Measured con | ıcn (μg <u>a.</u> s./L)               | Q % no                                                                                                          | minal 🥻 🤇    | ĭ,¢ĭ        |
|                 | Day 7        | Dary 8                                | Day 🖓                                                                                                           | Q Day 8      |             |
| Control         | < 0.625      | ₹0.625 ₀                              | The second se | Q D@y 8<br>→ | <u>~</u> 9  |
| Solvent control | < 0.625      | × <0.623                              |                                                                                                                 | 4.Y - "      |             |
| 7.00            | 8.06         | ~ 7652 U                              | 0 <sup>-</sup> 115<br>0 <sup>-</sup> 110                                                                        |              |             |
| 21.3            | 23.3         | \$ \$2.2                              |                                                                                                                 | 104 S        | Ŭ.          |
| 64.8            | 73.1         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                 | ×112         |             |
| 197             | 215          | × 243<br>× . 670 ~ ~                  | ຶ ⊿909 ⊗໌                                                                                                       |              | Þ~          |
| 177             |              |                                       | \$ 112 \$                                                                                                       |              |             |

The validated method is summarised in Decument M-CA4 (CA4.1.2/92). **B. BIOLOGICAL DATA** Frond number Mean frond numbers from test decimant Frond number 5 from test design 1 are presented in the following table:

Table: Frond counts, growth rate and inhibition, Test design 1 (three 24 hour peaks on day 0, 3 and 6)

|                     |                 | <u> </u>         | $\sim$ $\circ$                           | <u> </u>       | )                |                 |
|---------------------|-----------------|------------------|------------------------------------------|----------------|------------------|-----------------|
| Nominal concn       | Day 0           | Day 3            |                                          | Day 7          | Growth<br>rate μ | %               |
| (μg a.s./L)         |                 | 🖉 Megan (        | (%ČV) 🔊                                  | ħ,             | (1/d)            | inhibition      |
| Control             | ¢12             | 45,5<br>(¥.5)    | <sup>○</sup> 82,0 <sup>○</sup><br>(1224) | 963<br>(17.7   | 0.371            | -               |
| Solvent control     | ,<br>A          | 39.3<br>(9.6)    | \$ <b>8</b> .3 (<br>(10.1) >>            | 168<br>(3.1)   | 0.377            | -               |
| بر<br>میں 1.00      | £ 12 5          | 45?7<br>~(8.3) Q | 923<br>(125)                             | 186<br>(12.8)  | 0.391            | -4.4-           |
| 21.3                | <sup>1</sup> ,2 | 36.3<br>(69)     | \$72.0<br>\$(15.8)                       | 115<br>(24.0)  | 0.320*           | 14.6            |
| 64.8 5 C            | 12 J            | 23.0<br>(7.5)    | 53.3<br>(22.0)                           | 73.0<br>(14.5) | 0.257*           | 31.3            |
| 297 2               | A12 2           | © 21.3<br>(5.4)  | 38.3<br>(8.0)                            | 44.7<br>(5.6)  | 0.188*           | 49.9            |
| 5 <sup>57</sup> 600 | 123 123 123 1   | 21.0<br>(20.8)   | 39.7<br>(3.9)                            | 51.3<br>(13.0) | 0.207*           | 44.7            |
| Nominal concn       | Day 7           | Day 10           | Day 12                                   | Day 14         | Growth<br>rate μ | %<br>inhibition |
| (µg a.s./L)         |                 | Mean (           | (%CV)                                    |                | (1/d)            | minution        |



| Control         | 12 | 39.3<br>(3.9)  | 76.3<br>(3.3)  | 157<br>(0.7)      | 0.367  | -       |  |
|-----------------|----|----------------|----------------|-------------------|--------|---------|--|
| Solvent control | 12 | 43.0<br>(10.7) | 86.7<br>(8.5)  | 151<br>(12.5)     | 0.361  | -       |  |
| 7.00            | 12 | 37.0<br>(11.8) | 79.7<br>(4.8)  | 156<br>(8.2)      | 0.366  | -0.7    |  |
| 21.3            | 12 | 27.3<br>(15.2) | 53.7<br>(17.7) | 95.7<br>(11.5)    | 0.296* | 18.7    |  |
| 64.8            | 12 | 13.0<br>(7.7)  | 29.0<br>(9.1)  | (M1.3)            | 0.194* | 46.6    |  |
| 197             | 12 | 15.0<br>(6.7)  | (236)          | 33.7<br>(12.0)    | 0.147* | ©9.7    |  |
| 600             | 12 | 13.3<br>(8.7)  | 15.7<br>(13.3) | 18.7 ~<br>(12.4)@ | 0.062* | × 82.0° |  |

Negative % inhibition indicates growth relative to control \* Statistically significant compared to pooled control based on test procedure \* Statistically significant compared to pooled control based of Multiple sequentiat test procedure Mean frond numbers from test design are presented in the following table:

| Table: | Frond counts, | growth | ate and | % inf | ibition, | , Test | design | 2 (two | 24 hoù | r peaks on d | ays |
|--------|---------------|--------|---------|-------|----------|--------|--------|--------|--------|--------------|-----|
|        | 0 and 7)      |        | , Ô,    | Č)    | Č,       | 5      | L,O    | 20     | Ő      |              |     |

|                              | u /)                                   |                            |                                           | Ş Ö                                    | N O              | »° «.      |
|------------------------------|----------------------------------------|----------------------------|-------------------------------------------|----------------------------------------|------------------|------------|
| Nominal concn<br>(µg a.s./L) | Day 0                                  | Day 3                      | Day 5                                     | Day 7 🗸                                | Growth           | o % O *    |
| (µg a.s./L)                  |                                        | Mean                       | %CYQ                                      |                                        | √(1/d) ~~~       |            |
| Control                      | *12<br>©                               | 40.0<br>(7.5)              | (12.0)<br>(12.0)                          | 161 (7.2) C                            | 0.271            | ,          |
| Solvent control              | 5 12 fr                                | A.0<br>~(13.6)             | 94.3<br>(1\3.0)                           | \$ 199<br>(15,3)                       | 0.400            | -          |
| 7.00                         |                                        |                            | (9.8)<br>(9.8)                            | 151<br>(26.0)                          | 0.362*           | 6.1        |
| 21.3                         |                                        | (4.3)                      | 787<br>(9.2)                              | ري<br>(ع                               | 0.360*           | 6.6        |
| 64.8                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ©) 25.3<br>(⊈.6) (         | 60.7 O <sup>♥</sup><br>(6,2) <sup>♥</sup> | للالالالالالالالالالالالالالالالالالال | 0.326*           | 15.5       |
| 197 🧳                        | 5 <sup>37</sup> 124                    | 21.0 x<br>\$ (12.60)       | 48.7<br>~(11.3)_~                         | 0 963<br>( <b>2</b> ,2)                | 0.298*           | 22.8       |
| 600 ~                        | C12                                    | 22,0<br>(79.9)             | (1,125)                                   | 65.0<br>(6.7)                          | 0.241*           | 37.4       |
| Nominalconcn                 | Dag 7                                  | Day 10                     | Day 12                                    | Day 14                                 | Growth<br>rate μ | %          |
| (μg â.s./L)                  | A Q.                                   | Mean                       | %CV)                                      |                                        | (1/d)            | inhibition |
| Control                      | 1200                                   | ×40.7<br>(5.1)             | (1.3)                                     | 164<br>(6.5)                           | 0.374            | -          |
| Solvent control              |                                        | 44.97<br>(8.5)             | \$96.7<br>(2.2)                           | 179<br>(2.3)                           | 0.386            | -          |
| 7.00                         | × 120                                  | 37.7 <sup>∞</sup><br>(4.1) | 84.7<br>(14.2)                            | 161<br>(13.9)                          | 0.370            | 2.6        |
| Z1.3                         | \$12,\$                                | 26.0<br>(11.5)             | 50.7<br>(15.1)                            | 105<br>(10.7)                          | 0.309*           | 18.6       |
| 64.8                         | 12                                     | 21.3<br>(7.2)              | 37.7<br>(23.2)                            | 78.7<br>(13.9)                         | 0.268*           | 29.6       |
| 197                          | 12                                     | 16.7<br>(13.9)             | 23.0<br>(21.7)                            | 42.3<br>(23.8)                         | 0.177*           | 53.3       |



| 6001213.7<br>(4.2)16.0<br>(12.5)20.7<br>(7.4)0.077*79.6Negative % inhibition indicates growth relative to control<br>* Statistically significant compared to pooled control (based on<br>test procedureMultiple sequentialTotal frond areaMean frond numbers from test design 1 are presented in the following table?Table:Frond counts, growth rate and % inhibition, Test design 1 (three 14 hour per<br>day 0, 3 and 6)Nominal concn<br>(µg a.s./L)Day 0Day 3Day 5Day 7Growth<br>rate µ<br>inhibitionNominal concn<br>(µg a.s./L)Day 0Day 3Day 5Day 7Growth<br>rate µ<br>inhibitionControl1245.3<br>(2.5)(12.4)<br>(12.5)(16.4)<br>(13.4)0.377Solvent control129.3<br>(45.7)16.4<br>(12.5)0.304- 4.4<br>(4.4)21.31256.3<br>(6.9)72.0<br>(12.8)0.320*4.6<br>(4.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Nominal concn<br>( $\mu g a.s./L$ )       Day 0       Day 3       Day 5       Day 7       Growth<br>rate $\mu$ $\phi$ $\phi$ Nominal concn<br>( $\mu g a.s./L$ )       Day 0       Day 3       Day 5       Day 7       Growth<br>rate $\mu$ $\phi$ </td <td>,<br/>M<br/>M</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,<br>M<br>M                           |
| Nominal concn<br>(µg a.s./L)       Day 0       Day 3       Day 5       Day 7       Growth<br>rate µ $\phi$ $\phi$ $\phi$ Control       12       45.3 $\otimes 2.0$ 163 $0.375$ $ \phi$ Solvent control       12       39.3       86.3       168 $0.377$ $ \phi$ 7.00       12       45.7 $92.3$ $186$ $0.391$ $-4.4$ 21.3       12 $96.3$ $72.0$ $115$ $0.320$ $14.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| Tronu counts, growth rate and /s minorool, rest design (unree 4 noncype, day 0, 3 and 6)         Nominal concn (µg a.s./L)       Day 0       Day 3       Day 5       Day 7       Growth rate $\frac{1}{2}$ $\frac{1}{2}$ $\frac{45.3}{(2.5)}$ $\frac{1}{2}$ $\frac{45.3}{(2.5)}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | »<br>"                                |
| Nominal concn<br>(µg a.s./L)       Day 0       Day 3       Day 5       Day 7       Growth<br>rate µ $\phi$ % $\phi$ Control       12       45.3 $\otimes$ 2.0       169       0.3 °       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| Nominal concn<br>(µg a.s./L)       Day 0       Day 3       Day 5       Day 7       Growth<br>rate µ $\phi$ 6 $\phi$ 6         Control       12       45.3 $\otimes$ 2.0       168 $\phi$ 377 $\phi$ 7 $\phi$ 7         Solvent control       12       39.3       86.3       168 $\phi$ 377 $\phi$ 7 $\phi$ 7         7.00       12       45.7 $\phi$ 2.3       186 $\phi$ 377 $\phi$ 7 $\phi$ 7         21.3       12       66.3       72.0       115 $\phi$ 320*       14.6 $\phi$ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŝ,                                    |
| Control         12         45.3<br>(2.5) $(12.4)$<br>(12.4) $(133)$<br>(12.4) $(0.3)$ Solvent control         12         39.3<br>(9.6) $(12.4)$<br>(10.1) $(168)$<br>(3.4) $(0.3)$ 7.00         12         45.7<br>(86) $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,<br>aken                             |
| Control         12         45.3<br>(2.5) $(12.4)$<br>(12.4) $(133)$<br>(12.4) $(0.3)$ Solvent control         12         39.3<br>(9.6) $(12.4)$<br>(10.1) $(168)$<br>(3.4) $(0.3)$ 7.00         12         45.7<br>(86) $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| Control         12         45.3<br>(2.5) $(12.4)$<br>(12.4) $(133)$<br>(12.4) $(0.3)$ Solvent control         12         39.3<br>(9.6) $(12.4)$<br>(10.1) $(168)$<br>(3.4) $(0.3)$ 7.00         12         45.7<br>(86) $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$ $(12.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ĭ "                                   |
| Control         12         45.3<br>(2.5) $\Im 2.0$ 189<br>(12.4) $\Im 0.3$ $\Im - 4$ Solvent control         12         39.3<br>(9.6) $86.3$ 168<br>(9.6) $97.7$ $97.7$ $97.7$ 7.00         12         45.7<br>(86) $92.3$ $186$ $9377$ $97.7$ 7.00         12         45.7<br>(86) $92.3$ $186$ $0.394$ $57.4.4$ 7.13         12 $96.3$ $72.0$ $115$ $0.320*$ $14.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| Control       12 $(2.5)$ $(12.4)$ $(7.7)$ $(7.7)$ Solvent control       12 $39.3$ $86.3$ $168$ $(9.377)$ $(9.6)$ $(12.4)$ $(9.6)$ $(12.4)$ $(3.14)$ $(9.377)$ $7.00$ 12 $45.7$ $(92.3)$ $186$ $0.394$ $5-4.4$ $(8.5)$ $(12.5)$ $(12.5)$ $(12.8)$ $0.394$ $5-4.4$ $21.3$ 12 $56.3$ $72.0$ $115$ $0.320*$ $14.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | đ,                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,<br>",                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A A A A A A A A A A A A A A A A A A A |
| 21.3 12 $36.3$ $72.0$ $115.7$ $0.320*$ $14.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 64.8 		 12 		 23.0 		 (53.3 		 73.0 		 0.257 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3 		 31.3       |                                       |
| $197 		 12^{\circ} 		 21.3 		 363 		 447 		 0.188 		 99.9 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 0.188 		 99.9 		 0.188 		 99.9 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.188 		 0.$ |                                       |
| $600 \qquad \begin{array}{c} & 2 \\ & 12 \\ & & 2 \\ & & & 39.7 \\ & & & 39.7 \\ & & & 39.7 \\ & & & & 39.7 \\ & & & & & 39.7 \\ & & & & & & & 39.7 \\ & & & & & & & & & & & \\ & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Nominal concn Day 7 Day 10 Day 12 Day 14 Growth %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| (µg a.s./L) Mean (%CV) (4/d) Innibition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Control $12$ $39.3$ $763$ $763$ $0.367$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Solvent control $(42.0)$ $(43.0)$ $(86.7.0)$ $(451.0)$ $(.361 - (10.7)$ $(40.7)$ $(8.5)$ $(.12.5)$ $(.361 - (12.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| $7.00 \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| $21.3 \bigcirc 0 12 \bigcirc 15.2 \bigcirc 15.7 \bigcirc 15.7 \bigcirc 11.5 \bigcirc 0.296* 18.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| 600 C 12 (85) C 13.3 (12.4) 0.062* 82.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |

Negative % inhibition indicates growth relative to control

\* Statistically significant Compared to pooled control (based on Multiple sequential test procedure

Total frond area from test vesign 1 are presented in the following table:

 Table:
 Image: Total frond area and % inhibition, Test design 1 (three 24 hour peaks on days 0, 3 and 6)

| Nominal concn | Day 0 | Day 2 | Day 5 | Dav 7 | Growth | %          |
|---------------|-------|-------|-------|-------|--------|------------|
| (µg a.s./L)   | Day 0 | Day 3 | Day 5 | Day 7 | rate µ | inhibition |



|                 |                           | Total frond<br>(%)   |                                                 |                        | (1/d)                                                                                              |                                        | <i>°</i> |
|-----------------|---------------------------|----------------------|-------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|----------|
| Control         | 111<br>(2.7               | 394<br>(4.5)         | 795<br>(13.4)                                   | 1449<br>(22.2)         | 0.364                                                                                              | -                                      |          |
| Solvent control | 100<br>(4.1)              | 349<br>(7.2)         | 744 (7.3)                                       | 1503<br>(5.5)          | 0.387                                                                                              | -<br>-<br>-<br>-                       |          |
| 7.00            | 114<br>(14.5)             | 389<br>(19.5)        | 828<br>(17.1)                                   | 1699<br>(15.4)         | 0.386                                                                                              | -2.8                                   |          |
| 21.3            | 109<br>(2.8)              | 327<br>(3.4)         | 635<br>(7.2)                                    | (008<br>(24.3)         | 0.304*                                                                                             | 16.2                                   |          |
| 64.8            | 112<br>(10.8)             | 208<br>(9.6)         | 324<br>(16.7) (16.7)                            | 413<br>(15.4)          | Ø.185*                                                                                             | 16.2<br>0.6                            |          |
| 197             | 115<br>(8.5)              | 193<br>(11.1)        | 252<br>(7.2)                                    | 300<br>(8.7)           | 0,138*                                                                                             | ~ <sup>Q</sup> 63.4                    |          |
| 600             | 113<br>(8.0)              | 184<br>(13.1)        | 248<br>(12.0) ~                                 | 290<br>(9.2)           | 0.1370                                                                                             | 63.4                                   |          |
| Nominal concn   | Day 7                     | Day 10               | Day 12                                          | Day 12                 | Growth                                                                                             | intribition <sup>2</sup>               |          |
| (µg a.s./L)     |                           | Mean (               | <u>%@Y)                                    </u> |                        | (1/d)                                                                                              |                                        |          |
| Control         | 121<br>(4.6)              | 35.0×<br>(62)        | 714<br>(3,9)                                    |                        | Gui                                                                                                |                                        | L.       |
| Solvent control | 124<br>(5.4)              |                      | _ (/./)                                         | 128<br>(10,0)          | 0.333                                                                                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | V        |
| 7.00            | 121<br>(8.5) Ø            | 354<br>(9.9)         | 21<br>(10.00                                    |                        | , <b>0</b> , <b>3</b> | €<br>-005<br>√                         |          |
| 21.3            | 112 <sup>5</sup><br>(M_0) | 205<br>(23,99        | 26.0)                                           | × 670×<br>(23.3)       | 0.254*                                                                                             | ¥4.4                                   |          |
| 64.8            | \$2.0<br>\$(8.8)          | <b>70</b> 0<br>(3.1) | Ø 13,5<br>(7,3) <sup>∞</sup>                    | \$<br>\$<br>(4.65      | 0.215*                                                                                             | 36.1                                   |          |
| 197             | (49.0)                    | × 81.0<br>(1909)     | 101<br>15.8                                     | 158<br>3152)           | 0.138*                                                                                             | 59.2                                   |          |
| 600 00          | ©65.3 ↔<br>(32,7)         | 0.3<br>(35.2)        | 88.0<br>(30.6)                                  | 98.0<br>(25 <b>8</b> ) | 060*                                                                                               | 82.1                                   |          |

Negative, inhibition indicates prowth celative to control Š \* Statistically significant compared to pooled control (based on Multiple sequential Ž test procedure O

Total frond area, from est design 2 are presented in the following table:

|                 | •                | <del>d</del> d    |                     | 0              |                  |            |
|-----------------|------------------|-------------------|---------------------|----------------|------------------|------------|
| Nominal concn   | Bay 0            | Day 3             | Day 5               | Day 7          | Growth<br>rate μ | %          |
| (frg a.s./L)    |                  |                   | area (mm²)<br>CV) O |                | (1/d)            | inhibition |
| Control         |                  | 357<br>(\$2)      | (9.9)               | 1383<br>(10.6) | 0.368            | -          |
| Solvent coptrol | × 114<br>v (120) | ≪393 ~<br>∞(14.5) | 818<br>(14.8)       | 1638<br>(15.4) | 0.381            | -          |
|                 | Q10.9)           | × 328<br>(10.9)   | 687<br>(13.6)       | 1306<br>(10.4) | 0.366            | 2.2        |
| 21 A S          | 107<br>(3.0)     | 328<br>(6.8)      | 676<br>(5.5)        | 1239<br>(3.4)  | 0.349*           | 6.7        |
| 64.8            | 115<br>(6.5)     | 214<br>(8.3)      | 420<br>(837)        | 758<br>(8.8)   | 0.270*           | 28.0       |

Total frond area and % inhibition, Test design 2 (two 24 hour peaks on days 0 and 7) Table:



| 197             | 109<br>(9.6)   | 185<br>(12.7)             | 320<br>(6.7)            | 552<br>(4.8)               | 0.232*           | 38.0                                    |   |
|-----------------|----------------|---------------------------|-------------------------|----------------------------|------------------|-----------------------------------------|---|
| 600             | 115<br>(10.1)  | 193<br>(6.7)              | 287<br>(5.6)            | 408<br>(3.8)               | 0.182*           | 51.4                                    |   |
| Nominal concn   | Day 7          | Day 10                    | Day 12                  | Day 14                     | Growth<br>rate µ | y<br>Sinhibition                        |   |
| (µg a.s./L)     |                | Mean (                    | (%CV)                   |                            | (1/d)            | Ommittion                               |   |
| Control         | 127<br>(3.0)   | 39.<br>(5.9)              | 795<br>(4.6)            | 1369<br>(8 <sub>3</sub> 2) | 0.340            | - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |   |
| Solvent control | 127<br>(7.4)   | 413<br>(4.2)              | 866<br>(0.9)            | (3.9)                      | 0 <sup>951</sup> |                                         |   |
| 7.00            | 114<br>(3.9)   | 352<br>(9.4)              | 756<br>(10.7)           | 1442<br>(17.1)             | Q 0.364 °        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |   |
| 21.3            | 111<br>(6.5)   | 234<br>(8.5)              | 424<br>(14,8)           | 761<br>© (9.9))            | 0,274*           | r 2000 s                                |   |
| 64.8            | 82.3<br>(17.4) | 124<br>(15.2)             | 207 ×<br>A (17.5)0°     | 382<br>(47.1)              | 0.21             | 36.4                                    | 4 |
| 197             | 76.3<br>(5.5)  | 101<br>(5.8)<br>95.0<br>7 | (13)<br>(13)<br>(13).5) | 220 °<br>(19.0)            | Ø.150*`>         | 5 <b>6</b> .6 ×                         |   |
| 600             | 77<br>(10.6)   | 95.00 ×<br>(7.6)          | \$104, \$<br>\$(7.7)\$  | (8.6)                      | 0.064*           | 5 81.4<br>5<br>5                        | Ŝ |

\* Statistically significant compared to pooled control (based on Multiple sequential test procedure

## Growth effects

Within 7 days of exposure in design sublemal effects in erms of small fronds were observed in each test concentration up to and including 21% µg as /L. Additionally, herotic fronds were observed in 64.8, 197 and 600 µg a.s. 4. The same results were observed at the end of week 2.

In design 2, within the first week, smaller fronds were observed in the concentrations from 21.3 to 600  $\mu$ g a.s./L. Additionally necroit fronds were observed in 197 and 600  $\mu$ g a.s./L. In the second week smaller fronds were recorded in the test concentrations of 21.3 to 600  $\mu$ g a.s./L. Necrotic fronds were observed at 64.8, 197 and 600  $\mu$ g a.s./L. Additionally white fronds were recorded in the highest test concentration.

# C. VALODITY CRITERIA

|                                                                                             |                                       | (// )                           |            |
|---------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|------------|
| Validit Criterion                                                                           |                                       | ≪ Required<br>♥(OECD 221, 2006) | Achieved   |
| Doubling time of frond number<br>25 days (60 h), corresponding<br>7-fold increase in 7 days | r pa the control y<br>coapproxemate y | <2.5d                           | 1.8 – 1.9d |

The frond number increased in the controls by a factor corresponding to a doubling time (Td) of about 1.9 days after 7 days in test designs 1 and 2 and by a factor corresponding to a doubling time of 1.8d after 14 days in test designs  $\bigcirc$  and 2, therefore the validity criterion was met and the study can be considered valid.

D. TOXICITY ENDPOINTS



|               |             |                     | Nominal concr     | n (μg a.s./L)            |                          |
|---------------|-------------|---------------------|-------------------|--------------------------|--------------------------|
|               |             | Test de             | sign 1            | Test d                   | lesign 2 🔊 🕅             |
|               |             | 7 days              | 14 days           | 7 days                   | 14 days                  |
| Mean frond    | $E_rC_{50}$ | 447                 | 104               | <sub>∢</sub> ≥600        | L 154                    |
| number growth | (95% CI)    | (333 - 653)         | (93.7 - 115)      | (n.d.)                   | Q134-Q78)                |
| rate          | $E_rC_{20}$ | 32.6                | گ 22.5            | 🖇 125 🛒                  | J ~32.8 ~S               |
|               | (95% CI)    | 21.2 – 45.2)        | ₹18.9 – 26.2)     | (107 – 144) <sup>O</sup> | (2506 - 40.2)            |
|               | $E_rC_{10}$ | 8.31                | 10.1 <sub>0</sub> | 31.3                     |                          |
| _             | (95% CI)    | (4.10 – 13.7)       | (7.95 – 13.4)     | (23.3 – 9.8)             | (10.3 ~ 19.3)            |
|               | LOErC       | 21.3                | 21.3              |                          | ¢ 21.3 0 ×               |
|               | NOErC       | 7,00                | 9.00 ×            | ×7.00                    | × 7.00 ×                 |
| Mean total    | $E_rC_{50}$ | D28 _ O`            | 117               | 0 46 <del>9</del>        | c. <u>1</u> 27 .         |
| frond area    | (95% CI)    | (11-149)            | @(101 -Q36)       | <sup>(418-532)</sup>     | (110-148)                |
| growth rate   | $E_rC_{20}$ | × 18.97 ~           | × 24.0 Å          | ر 🕉 3.2 🔬                | <sup>©</sup> 26.9        |
|               | (95% CI)    | @ (14.5 23.5) @     | (18,5 - 29.3)     | (40.3 - 60.4)            | ×(210–2 <sup>3</sup> .1) |
|               | $E_rC_{10}$ | <b>6</b> .93        | 10.5              | 0 17 (                   | 11.9                     |
| _             | (95% CI) 🖉  | (4,76 - 9.40)       | KX (7.27~14.1)    | (13,7) 20.7              | (8,42-15.8)              |
|               | LOErC 🖓     | 6 <sup>2</sup> 63 O | 21.3 O            | 21.3                     | مَنْ 21.3                |
|               | NOErco 🕺 🗞  | 7.00                | 7.00 <sup>°</sup> | 7.00                     | ≶∕ 7.00                  |

## Table:Summary of endpoints

Test design 1: three 24 hour peaks on Day 0, and 6.

Test design 2: two 24 hour peaks on Day (and 7 C

## F III. CONCLUSION

The exposure scenario with three 24 hours peaks on Day 0, Day 3, and Day 6 over the course of one week (design 1) resulted in  $E_rC_{50}$  values after 7 days of 447 and 277 µS a.s./L for frond number and frond area, respectively. After 14 days, the  $E_rC_{50}$  values are calculated to be 104 and 117 µg a.s./L for frond number and frond area, respectively.

The exposure scenario of two 24 hours peaks on Day  $\hat{\mathbf{D}}$  and  $\hat{\mathbf{D}}$  and  $\hat{\mathbf{D}}$  aver the course of two weeks (design 2) resulted in higher  $E_1C_5$  value of >600 and 469 µg a.s./L for frond number and frond area after 7 days, respectively. After 14 days, the  $E_1C_{50}$  values were calculated to be 154 and 127 µg a.s./L for frond number and frond area  $\hat{\mathbf{D}}$  and  $\hat{\mathbf{D}$  and  $\hat{\mathbf{D}}$  and  $\hat{\mathbf{D}$  and  $\hat{\mathbf{D}}$  and  $\hat{\mathbf{D}$  and  $\hat{\mathbf{D}}$  and  $\hat{\mathbf{D}$  and  $\hat{\mathbf{D}$  and  $\hat{\mathbf{D}$ 

(2018)

## Assessment and conclusion by applicant:

The validity criterion was met therefore this study is considered to be acceptable.

The exposure scenario with three 24 hours peaks on Day 0, Day 3 and Day 6 over the course of one week (design 1) resulted in  $E_rC_{50}$  values after 7 days of 447 and 127 µg a.s./L for frond number and frond area, respectively. After 14 days, the  $E_rC_{50}$  values were calculated to be 104 and 117 µg a.s./L for frond number and frond area, respectively.

The exposure scenario of two 24 hours peaks on Day 0 and Day 7 over the course of two weeks (design 2) resulted in higher  $E_rC_{50}$  values of >600 and 469 µg a.s./L for frond number and frond area after 7 days, respectively. After 14 days, the  $E_rC_{50}$  values were calculated to be 154 and 127 µg a.s./L for frond number and frond area, respectively.



| Assessment and conclu           | <u>Ision by RMS</u> :                                                                                                                                                         |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                               |
| Data Point:                     | KCA 8.2.7/13                                                                                                                                                                  |
| Report Author:                  |                                                                                                                                                                               |
| Report Year:                    |                                                                                                                                                                               |
| Report Title:                   | Lemna gibba G3 - Growt Ginhibition test with a conifer tech. (BOS-AG74518)                                                                                                    |
| Report No:                      | EBCL0022                                                                                                                                                                      |
| Document No:                    | M-612732-01-1                                                                                                                                                                 |
| Guideline(s) followed in study: | EU Directive 91/114/EEC<br>Regulation 1107/2009 Curropey<br>OECD Test relideling 221                                                                                          |
| Deviations from current         | Current Staideline. OECD 221, 2006 N O S S                                                                                                                                    |
| test guideline:                 | Current Gaideline. OECD 221, 2006<br>pH slightly above the recommended ph range of 7.5 0.1. This deviation was<br>not considered to have affected study integray and validity |
| Previous evaluation:            | No not previous to submitted                                                                                                                                                  |
| GLP/Officially                  | Yes, conducted under GLP/Officially recognised testing facilities                                                                                                             |
| recognised testing facilities:  | Yes, conducted under SLP/Officially recognised testing facilities                                                                                                             |
| Acceptability/Reliability:      | Yes Sy of S O                                                                                                                                                                 |
|                                 |                                                                                                                                                                               |

## Executive summary:

The effects of Acloniten, on the growth and reproduction of the aquatic monocotyledonous plant, *Lemna gibba*, were investigated under public exposure conditions. The plants were exposed to the test item under defined conditions with two 24-hour lasting peaks on Day 0 and Day 3. Between and after the exposure peaks the plants were transferred to antreated nutrient medium. The nominal concentrations of 7.00, 21 0 64.8 197 and 600 ug a.s./b in comparison to a pooled control (control and solvent control) were tested. At start of the second week (Day 7) only 12 fronds out of each replicate were transferred to the freshly prepared exposure media to avoid space limitations in the test vessels and nutrient depletion. The complete test duration was 14 days.

Frond numbers and total frond area of plants were recorded on Day 0, 3 (prior to exposure to the second peak), 5 and 7 before and after thinking each replicate to 12 fronds), 10, 12 and 14. Growth and growth inhibition were determined. The concentrations which inhibited the growth of this species by 10, 20, and 50 percent  $\mathcal{OC}_{10}$ ,  $\mathcal{EC}_{20}$ ,  $\mathcal{EO}_{50}$ ) were determined.

Samples were analysed for the actual concentration of aclonifen present in the test medium in freshly prepared and aged treatment levels including controls. Measured test concentrations ranged from 104 to 118% of nominal concentrations in freshly prepared solutions and from 104 to 117 in the aged solutions. Therefore, the study endpoints were calculated based on nominal test concentrations.



A.

1.

At the end of the first week after the two peak exposures, the  $E_rC_{50}$  was calculated to be 421 µg a.s./L for frond number and 90.1 µg a.s./L for frond area. At the end of the second week the effects were reduced resulting in  $E_rC_{50}$  values of greater than 600 µg a.s./L for both frond number and frond area.

## **I. MATERIALS AND METHODS MATERIALS** Aclonifen technical (BCS **Test material:** -AG74518 AE F068300-01-15 **Origin Batch ID:** PEA1000563 99.5% w/w 15 August 2018

Lemna gibbak

G3

2. **Test organism:** Strain: Source:

Batch no.:

**Purity: Expiry:** 

3. **Treatment:**  In both test designs, coming) test concentrations were tested: control, solvent control, 7.00, 21.5, 64.8 197 and 600 µg a.s.

ð

Class of Shes, drameter 10cm, stotal volume ca. 470 mL, covered with 4. **Test vessels:** glass lids to permit gas exphange and illumination 208 AAP medium, pH adjusted to 7.8  $\pm$  0.1 Test water

#### B. STUDY DESIGN METHODS

20 April to 19 May 204 1. In-life phase: 2. Exposure conditions: C (Days 0 - 14 **L'emperature** 9.1 (Days  $0^{-14}$ ) ontinuous ilkumination, mean 6810, range 6600 - 6970 lux Photoperiod:

### Dose preparation 3.

Ô Õ Prior to the start of each peak exposure the stock solution was prepared by solving 30.2 mg of the test substance in 5 mL dimethylformamide (DMF). In adequate amount of the stock solution was transferred to a dilution series to obtain the concentration levels used in the study. A solvent control and control exposure freatment ware run dong with nominal test exposure concentrations of 7.00, 21.3, 64.8, 197 and 600 μg a.s.

The test item was applied into the freshly prepared test medium on Day 0 and 3.

### Test organism assignment and treatment 4.

Colonies used for test were from an inoculum culture 7-10 days old. Each test vessel contained a total of 12 fronds 3-4 fronds per plant), with 3 replicates per treatment. The test vessels were placed in a random order and were repositioned each observation day (Days 3, 5, 7, 10, 12 and 14).

To avoid nutrient depletion and space limitations in the test vessels, only 12 fronds of each replicate were transferred for both designs after Day 7.



#### 5. Measurements and observations

Visual observations were made on Days 3, 5, 7, 10, 12 and 14, with frond counts and determination of total frond areas carried out using a Lemna Tec Scnalyzer machine, validated for such measurements.

Temperature was determined by continuous measurement in one additional incubated glass vessel filled with the same amount of de-ionised water as in the test vessels. Temperature was recorded hourly by a data logger. The pH was measured in all freshly prepared and all aged test devels and the controls. light was measured at least once during the test.

For the analysis of the test item concentrations, duplicate samples of the freshly prepared est media of Day 0 and 3 (start of the peak exposures) were taken from all test levels and the controls. Duplicates samples of aged test media were taken from pooled replicates of each test level and the controls on Days 1 and 4 (end of the peak exposures). All samples were stored deep trozen (at about  $\leq -18^{\circ}$ C) immediately after sampling and were kept stored inder these conditions until analysis. One of each duplicate sample were analysed for the actual concentration of aclonifen in all freshly prepared test levels of Days 0 and 3 and in all aged tear levels of Days 1 and 4 of the exposure period. The B-samples, stored as retain samples were not measured Samples were analysed by MPI

### 6. **Statistics**

Calculations were carried out sing Microsoft Excel® spreadsheets. All further statistical evaluations were done using the commercial program FoxRat Professional, version 3.2

II. RESULAS AND D SCUSSION

### ANALYTICAL VERIFICATION A.

The analytical measurements resulted in recoveries within \$6 to 120% of nominal. In the controls no test substance was deterted. Ô

The results avere based on nominal values since all measurements showed a correct dosing and proved

No remarkable observations of the test item in the test medium were recorded for the test concentrations The medium of the bighest test concentration of 600  $\mu$ g a.s./L was slightly

the maximum of the mighest the the might the might the mighest the the might the might the might the might the the might the might the might the might the might the the might the might the might the might the might the might the the might the the might the might



## Table: Measured concentrations (µg/L) of Aclonifen (aclonifen) in the exposure solutions

|                      | Expos                                    | ure Peak 1 (day 0 | -1)               | iominal                                                                                                       |
|----------------------|------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------|
| Nominal concn        | Measured con                             | ıcn (μg a.s./L)   | % of n            | iominal                                                                                                       |
| (µg a.s./L)          | Day 0                                    | Day 1             | Day 0             | 🔈 Day 1 🗳                                                                                                     |
| Control              | < 0.625                                  | < 0.625           | -                 |                                                                                                               |
| Solvent control      | < 0.625                                  | < 0.625           | - "               |                                                                                                               |
| 7.00                 | 8.18                                     | 8.20              | 117 🏹             | 1170 2 2                                                                                                      |
| 21.3                 | 23.0                                     | 23.0              | 108               | 108                                                                                                           |
| 64.8                 | 71.0                                     | 68.7 🕋            | 1090 <sup>°</sup> |                                                                                                               |
| 197                  | 208                                      | 204               | 166               |                                                                                                               |
| 600                  | 624                                      | 65 <b>0</b>       | <i>₩</i> 04       |                                                                                                               |
|                      | Expos                                    | ure Peak 2 (day 3 | -4) ~ 0°          |                                                                                                               |
|                      | Measured con                             |                   |                   | ominal 2                                                                                                      |
|                      | Day 3                                    | 炎 Day 🛃 °         | 5 Day 3           | $ \begin{array}{c} - & & & \\ 1170^{9} & & & \\ 108 & & & \\ 006 & & & & \\ & & & & \\ & & & & & \\ & & & & $ |
| Control              | < 0.625                                  | ○ <0,625 ×        | <u> </u>          |                                                                                                               |
| Solvent control      | <0.625                                   | _≪ <b>6</b> 25_ ⊘ | Q - V             |                                                                                                               |
| 7.00                 | 8.29 🛸                                   | 7.90              | ≥ 1,48 C          | × 113 × 5                                                                                                     |
| 21.3                 | 22.8                                     | 22, <b>O</b>      | 5 007 x 7         | \$ 105 S                                                                                                      |
| 64.8                 | 70.6                                     | 687 ~             | 109 0             |                                                                                                               |
| 197                  | 220 0                                    | r" ∿2"18 ≪″       |                   |                                                                                                               |
| 600                  | 64Å                                      | در <u>626 کی</u>  |                   | <sup>*</sup> 104 م                                                                                            |
| Limit of quantificat | ion $(I @ O) = \emptyset \overline{625}$ | us Ks/L 🔍 🖉       |                   | <u>~</u>                                                                                                      |

Limit of quantification ( $I_{QQ}Q$ ) =  $0.625 \ \mu g \alpha s./L$ 

The validated method is summarised in Document M-CA4 (CA 4.1,293).

## B. BIOLOGICAL D

Frond number

Mean frond numbers from test design 1 are presented in the following table:

| Table: | Frond | counts, | doubing | time : | and % | inhibition | of average | growth rates |
|--------|-------|---------|---------|--------|-------|------------|------------|--------------|
|        |       |         |         |        |       |            |            |              |

| Noming concn<br>(µg a.s./L)  | Day 0  | Day 3                  | Day 50<br>CV     | 19ay 7 .         | Growth<br>rate µ<br>(1/d) | %<br>inhibition |
|------------------------------|--------|------------------------|------------------|------------------|---------------------------|-----------------|
| Control                      |        | 33.0<br>(5. <b>D</b> ) | ×45.0<br>(10.1)  | 129.7<br>(5.2)   | 0.339                     | -               |
| Solvent control              |        | ~37.0<br>~9.7) 4       | 7657<br>(109.5)  | ) 149.7<br>(8.7) | 0.360                     | -               |
| 7.00                         |        | Q 32.3<br>(4,7)        | 65.7 × (2.3)     | 131.3<br>(6.3)   | 0.342                     | 2.2             |
| \$ 21.3                      | 12 J   | × 3.0<br>©(13.2)       | 65.7<br>(Ø.7)    | 105.0<br>(10.0)  | 0.309*                    | 11.5            |
| 64.8                         | A12 6  | 220<br>(11.1)          | Q 40.7<br>(13.5) | 59.3<br>(8.6)    | 0.228*                    | 34.8            |
| 197                          | × 120° | ≪19.3 ੴ<br>∞ (7.9)     | 30.7<br>(7.5)    | 44.3<br>(3.4)    | 0.187*                    | 46.6            |
| 500 F                        |        | × 21.7<br>(25.4)       | 31.0<br>(16.8)   | 43.7<br>(10.6)   | 0.184*                    | 47.3            |
| Nominal concn<br>(µg a.s./L) | Day 7  | Day 10                 | Day 12           | Day 14           | Growth<br>rate µ          | %<br>inhibition |
| (µg a.5./L)                  |        | Mean (                 | (%CV)            |                  | (1/d)                     | minution        |
| Control                      | 12     | 40.0<br>(2.5)          | 87.0<br>(4.1)    | 170.0<br>(9.7)   | 0.378                     | -               |



| Solvent control | 12 | 39.3<br>(6.4)  | 77.3<br>(9.5)  | 145.0<br>(13.1) | 0.355  | -            | <i>a</i> .° & |
|-----------------|----|----------------|----------------|-----------------|--------|--------------|---------------|
| 7.00            | 12 | 37.7<br>(9.3)  | 77.0<br>(8.1)  | 152.3<br>(10.0) | 0.363  | 1.1          |               |
| 21.3            | 12 | 37.7<br>(8.1)  | 70.3<br>(1.6)  | 131.7<br>(7.1)  | 0.342* | 6.7          |               |
| 64.8            | 12 | 35.3<br>(7.1)  | 70.0<br>(13.6) | 121.3<br>(18.1) | 0.329* | 10.3         |               |
| 197             | 12 | 31.7<br>(7.9)  | 60.0<br>(11.5) | (10.0)          | 0.363* | 17.40        |               |
| 600             | 12 | 22.7<br>(15.5) | 39.7<br>(8.1)  | 65.3<br>(7.2)   | 0.242* | <b>3</b> 4.0 |               |

| 000                                                              | 12                              | (15.5)               | (8.1)                   | (7.2)                | Q \$0.242 °                         | 4.0<br>4.0                  | ίΟ <sub>.</sub> |
|------------------------------------------------------------------|---------------------------------|----------------------|-------------------------|----------------------|-------------------------------------|-----------------------------|-----------------|
| Negative % inhibition                                            | on indicates gr                 | owth relative to     | o control               | (7.2)                | - O                                 | Q, 0 <sup>y</sup>           |                 |
| * Statistically sign                                             | ificant compa                   | red to pooled        | control (base           | d on                 | Multiple &                          | quential, test .            | V N             |
| * Statistically sign<br>procedure                                | -                               | -                    | N° 6                    |                      |                                     | -Q                          | ¥ , ∾           |
|                                                                  |                                 |                      |                         |                      |                                     | O L                         | à l             |
| fotal frond area                                                 |                                 |                      | A Q                     |                      |                                     | G O                         |                 |
|                                                                  |                                 | JL                   | ×                       | Ŷ., Ŏ                |                                     |                             |                 |
| Total frond area f                                               | rom test des                    | sign I are pro       | esented in th           | following            | taole:                              | a a                         |                 |
| Table: Tota                                                      | l frond are                     | a and Wini           | hibition                | hait                 | anowith m                           | Š Ø                         | Ô               |
| able. 10ta                                                       | ii ii onu are                   | a and k inl          |                         | iien averag          | e grawin i                          |                             | , K             |
|                                                                  | Day 0                           | Day 3                | Day 5 A                 | Day                  | Growth                              |                             | ×               |
| Nominal concn                                                    | Day                             |                      | 40                      |                      | Q <sup>°</sup> rate µ <sup>O°</sup> | 8% ×                        |                 |
| (µg a.s./L)                                                      | ×                               | <b>Total frond</b>   | ança (mm <sup>2</sup> ) |                      | (1,4)                               | inhibition                  |                 |
|                                                                  | Ô                               | <u> </u>             |                         | <u> </u>             |                                     |                             |                 |
| Control                                                          | 102.7                           | 248.3                | 519.3                   |                      | 0.338                               | ~Q-                         |                 |
|                                                                  | (5.7)                           | (6.5)                | ð <sup>9.9)</sup> 2     | (12)0) (             |                                     | , Ö <sup>y</sup>            |                 |
| Solvent control                                                  | 10.3                            | 288.0                | 613.0                   | 1231.0 C             | 0044                                | Č -                         |                 |
|                                                                  | Q(5.9)                          | (34.5)               | (11.2)                  | × (8.0)              |                                     | 1                           |                 |
| 7.00                                                             | а 103. <b>©</b> ″               | 3260.0 $32$          | <b>55</b> 6.7 😪         | 10980                | 0.338                               | 1.0                         |                 |
| ,                                                                | (5,0)                           | * (+.+)              | (4.5)                   | (0.0)                |                                     | 1.0                         |                 |
| 21.3                                                             | QT1.7                           | 262.3                | 🗞 496 👧                 | \$69.0 °             | 0\$75*                              | 19.4                        |                 |
| 21.5                                                             | Q(10.3)                         | <b>()</b> 7.1)       | (13.4)                  | AV (14.5)            | S. I.S                              | 17.1                        |                 |
| 640                                                              | 105                             | 170.30               | 221.7                   | 285.0                | 0.142*                              | 58.3                        |                 |
| CACE <sup>1</sup>                                                | ( <b>6</b> )                    | (8.4) <sup>3</sup>   | (13.4)                  | ((12.6)              | 0.142                               | 56.5                        |                 |
| 197                                                              | ~0109.3 <i>L</i>                | 169.7 .              | D 1993                  | & 239.0 <sup>2</sup> | 0.112*                              | 67.2                        |                 |
| 197                                                              | <sup>(4.6)</sup>                | (3.2) X              | (205)                   | O`(1 <u>48</u> ),    | 0.112                               | 07.2                        |                 |
| 600 .                                                            | 108                             |                      | °∼J85.3 🖓               | 2 <b>2</b> 7.0       | 0.104*                              | 69.5                        |                 |
| 000                                                              | (Q0.5) (                        | (41,9                | O(13.4)                 | (92.0)               | 0.104                               | 09.3                        |                 |
| Nominal atnon                                                    | Day Ô                           | Day 10               | Day 12                  | Day 14               | Growth                              | %                           |                 |
| Nominal concn<br>(µg a.æ/L)                                      |                                 | Jay 10               |                         |                      | rate µ                              | <sup>70</sup><br>inhibition |                 |
|                                                                  |                                 | Q Mean (             |                         | r                    | (1/d)                               | minorition                  |                 |
| Control                                                          | ~QM1.3 A                        | 374.3                | 783.0                   | 1465.0               | 0.368                               | _                           |                 |
| - Sondon                                                         | <sup>*</sup> (8.5) <sup>*</sup> | s (9.5) Q            | (2(8))                  | (9.6)                | 0.500                               |                             |                 |
| Solvent control <i>Q</i>                                         |                                 | C 346.3              | 687.0                   | 1216.7               | 0.344                               | _                           |                 |
| Solvent control 0                                                | (6,9)                           |                      | Q(11.9)                 | (13.6)               | 0.511                               |                             |                 |
| 7.00                                                             | ~105.3                          | 331.7                | 682.7                   | 1259.7               | 0.354                               | 0.5                         |                 |
| ,                                                                | (8.5)                           | <u>⊀((</u> 13.9)~Q   | (13.4)                  | (11.1)               | 0.334                               | 0.5                         |                 |
| ang Ö                                                            | 107.7                           | o <sup>2</sup> 300.7 | 578.7                   | 1042.0               | 0.324*                              | 9.0                         |                 |
|                                                                  | 10 <i>7</i> .7<br>49.5) ~       | (7.9)                | (8.1)                   | (11.5)               | 0.324                               | 7.0                         |                 |
| 7.00 5<br>25<br>3<br>5<br>64.8<br>5<br>7<br>64.8<br>5<br>7<br>97 | 68.0°<br>(4.4)                  | 205.7                | 405.7                   | 762.7                | 0.244*                              | 2.2                         |                 |
| 64.80                                                            | (4.4)                           | (9.2)                | (11.2)                  | (16.1)               | 0.344*                              | 3.3                         |                 |
| <u> </u>                                                         | 68.3                            | 182.7                | 345.7                   | 618.3                | 0.01-1                              |                             |                 |
| (1997                                                            | (5.9)                           | (8.2)                | (6.4)                   | (6.8)                | 0.315*                              | 11.6                        |                 |
|                                                                  | 66.7                            | 140.7                | 260.7                   | 450                  |                                     |                             |                 |
| 600                                                              | (7.1)                           | (11.1)               | (8.9)                   | (7.8)                | 0.273*                              | 23.4                        |                 |
|                                                                  | (7.1)                           | (11.1)               | (0.7)                   | (7.0)                |                                     |                             |                 |



Negative % inhibition indicates growth relative to control

\* Statistically significant compared to pooled control (based on Multiple sequential test procedure

### Growth effects

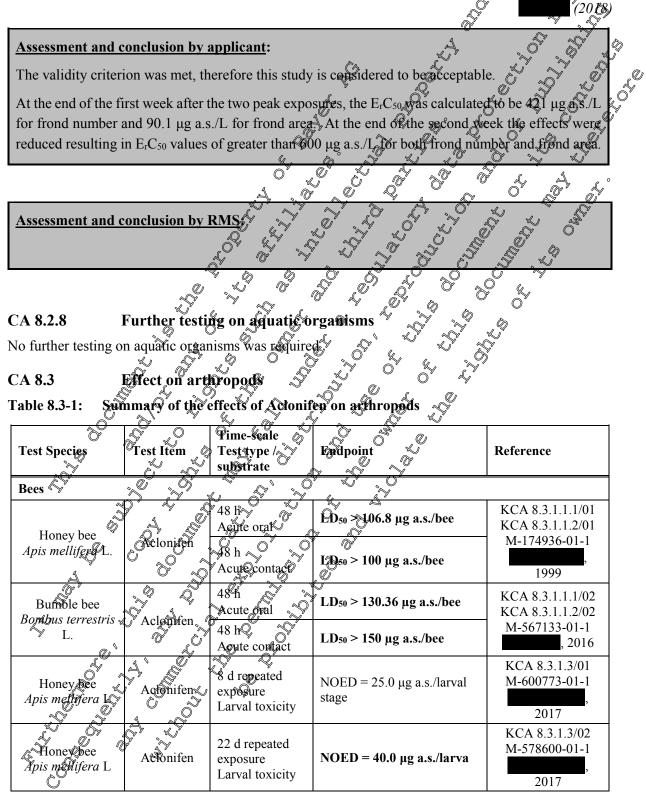
By Day 3 sublethal effects (smaller fronds and detached fronds) were observed at 64.8 µg above. Within 7 days of exposure sublethal effects in terms of small, necrotic and detached fronds observed in each test concentration up to and including 64% µg a.s./L.

Observations from Day 10 to the end of the study (day 14) found smaller fronds in the nominal expo concentrations of 64.8 and 197 µg a.s./L with planes in the 600 µg a.s./L exposure concentrations additionally being observed to have necrotic frond

#### C. VALIDITY CRITERIA

| Validity criterion                           | (OECD 221, 2006) Achieved |
|----------------------------------------------|---------------------------|
| Doubling time of frond number in the control |                           |
| <2.5 days (60 h), corresponding to           |                           |
| approximately 7-fold increase in a days      |                           |
| 40) ·                                        |                           |

The frond number increased in the controls by a factor corresponding to a doubling time (Td) of about 2.0 days after 7 days and by a factor corresponding to a doubling time of 1.9d after 16 days, therefore the validity criterion was met and the study can be considered valid.


### TOXICITY ENDPOINTS D.

çņ

| Table: Su                           | Immary of endpo                         |                                                              |                           | Y LY                  |
|-------------------------------------|-----------------------------------------|--------------------------------------------------------------|---------------------------|-----------------------|
|                                     |                                         |                                                              | Nominaleonc               | n (ng a.s./L)         |
| Ô                                   |                                         |                                                              | 7 dars                    | 0<br>14 days          |
|                                     | Mean frond<br>number frowth<br>Cate     | © <u>A</u> E <sub>r</sub> C <sub>50</sub><br>Q95% CI)        | 357 - 508                 | >600                  |
|                                     | , Cate , O                              | $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $ | \$250<br>\$2(26.4 \$39.6) | 204<br>(152 - 264)    |
|                                     | number growth<br>Cate                   | ∑ <sup>4</sup> E <sub>r</sub> C <sub>10</sub> © (95% €1) ~ © | 8.7                       | 62.2<br>(34.3 – 91.2) |
| ~                                   |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                       | 21.3                      | 21.3                  |
| Å.                                  | Š Ž                                     | NOEr                                                         | 7.00                      | 7.00                  |
| L<br>L<br>L<br>L<br>L<br>L<br>L     | Mçan total<br>frond area<br>stowth rate | ErCs<br>(95% CI), O                                          | 90.1<br>(84.4 - 96.1)     | >600                  |
| $\langle \!\!\!\!\!\!\!\!\!\rangle$ |                                         | $(95\% CI)_{\circ} O'$                                       | 15.2<br>(13.6 - 16.9)     | 472<br>(348 - 709)    |
|                                     |                                         | (95% p4)<br>E <sub>1</sub> 68<br>(95% CI)                    | 6.0                       | 117                   |
| Ő                                   |                                         | ≪ <sup>v</sup> (95%°CI)                                      | (5.1 – 6.9)               | (69.0 – 165)          |
| L.                                  |                                         | <u>√</u> (95%CI)<br>↓ ~QOErC                                 | 21.3                      | 21.3                  |
|                                     |                                         | NOErC                                                        | 7.00                      | 7.00                  |
|                                     | 24 pour peak on E                       | Day 0 and 3                                                  |                           |                       |
| Ň, OS                               |                                         | III. CONCL                                                   | USION                     |                       |



At the end of the first week after the two peak exposures, the  $E_rC_{50}$  was calculated to be 421 µg a.s./L for frond number and 90.1 µg a.s./L for frond area. At the end of the second week the effects were reduced resulting in  $E_rC_{50}$  values of greater than 600 µg a.s./L for both frond number and frond area.



Endpoints in **bold** were used in the risk assessment



- CA 8.3.1 Effects on bees
- CA 8.3.1.1 Acute toxicity to bees

### CA 8.3.1.1.1 Acute oral toxicity

| CA 8.3.1.1 Acut                   | e toxicity to bees                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA 8.3.1.1.1 Acut                 | e toxicity to bees                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data Point:                       | KCA 8.3.1.1.1/01                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report Author:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Report Year:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Report Title:                     | Final report - Laboratory Testing for Toxicity Acute Contact and Oral LD56 of a ACLONIFEN on Honey Bees (Apis mellifora L.) (Hymenoptera, Apidae)                                                                                                                                                                                                                                                                                                                   |
| Report No:                        | R007442                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Document No:                      | M-174936-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Guideline(s) followed in study:   | EPPO: Bulletin 22, 263-215 %. 170 (1992)                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deviations from current           | Current Guideling OECI 212/2 1005                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| test guideline:                   | Starvation time extended from up to 120 minutes to up to 135 uninutes to ensure<br>bees were hungry. Complete optake of contaminated food lasted up to 9 h<br>(instead of up to 3 h) as bees avoided contaminated food SuL droplet volume<br>used rather than louL recommended in the guideline. Environmental conditions<br>slightly surtside of recommended range. These deviations are not considered to<br>have affected the integrity of sutcome of the study. |
| Previous evaluation:              | yes, evaluated and accepted<br>Source: Study list relied pon, December 2011 (RMS; DE)                                                                                                                                                                                                                                                                                                                                                                               |
| GLP/Officially                    | Yes, conducted under OLP/Officially recognized testurg facilities                                                                                                                                                                                                                                                                                                                                                                                                   |
| recognised testing<br>facilities: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acceptability/Reliab@ty:          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                |

## Executive Summary

An acute test was conducted to determine the acute oral and contract effect of aclonifen on mortality and behaviour of the honey bee, Apis mellifera. The test ocluded a solvent control, a CO<sub>2</sub> treated negative control (contact test on ) and st groups (100, 50, 25, 12. S and 6.3 µg a.s./bee, nominal for both contact and oral testing, plug a toxic standard (dimethoate, 0.2 µg a.s./bee). Additionally, bees were assessed for any behavioural effects. Ő

The confact test was 48 hours duration. There was no mortality in any aclonifen test treatments and the 48-how LD<sub>50</sub> was ×100 μg a.s./be0. No behavioural effects were observed in any test treatment. There was 3.3% mortality in the CO<sub>2</sub> control treatment but no mortality in the solvent control.

The oral test was 48 thours deration. There was no mortality in any aclonifen test treatments and the 48hour  $LD_{50}$  was >106.8 µga.s./bee. No behavioural effects were observed in any test treatment. There was 3.3% mortality in the solution control.

The toxicity of aclosifien was tested in both an acute contact and an oral toxicity test on honey bees. The  $LD_{50}$  (48 h) was >100 µg a.s./bee in the contact toxicity test and the  $LD_{50}$  (48 h) was >106.8 µg a.s./bee in the oral toxicity test.

## **I. MATERIALS AND METHODS**



|              | IATERIALS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.           | Test Item:                         | Aclonifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Batch no.:                         | 97013/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | <b>Active Ingredient / Purity:</b> | 995 g/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Appearance:                        | Yellow powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | Storage:                           | Room temperature in the dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Expiry date:                       | 18 December 2000 (re-analysis date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.           | Reference item:                    | Perfekthion EC $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Batch no.:                         | 98-1 A Q B A A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | <b>Active Ingredient / Purity:</b> | 396 g/L directhoate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.           | Test Organism:                     | Worker honey bee, Apis melliferate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Age:                               | Four to six weeks old female A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | Source:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Feeding:                           | Commercial read to-use symp for hones bees (30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Q <sup>*</sup>                     | saccharose, 31% glucose, 39% fruetose, Supplied by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Į.                                 | Apiinvert, Co Sudzugker AG, D-97099 Ochsenfurt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A. S         | TUDY DESIGN AND WETH(              | DDS AS I A ROAD O'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.           | In-life phase:                     | Aclonifen<br>97013/03<br>995 g/kg<br>Yellow powder<br>Room temperature in the dark<br>18 December 2000 (re-analysis date)<br>Perfekthion EC<br>98-1<br>396 g/L dimethoate<br>Worker hone bee, <i>Apis melliferato</i> .<br>Four to six weeks old female<br>Commercial Tready to-user syrup for hones bees (30%<br>saccharose, 31% glucose, 39% fructose) Supplied by<br>Apiniver, Co Sudzucker AG, D-97099 Ochsenfurt<br>DS<br>25 to 28 May 1999<br>Stanless steel cages 10 cm x 8.5 cm x 5.5 cm (length x width x<br>height) with removable glass sheet |
|              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>2.</b> Ex | xposure conditions 🔗 🕺             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Test vessels:                      | Stoppless steel cages 10 cm x 8.5 cm x 5.5 cm (length x width x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | xposure conditions                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Experimental design                | <i>Contact:</i> CO <sub>2</sub> control, CO <sub>2</sub> solvent control, test item 100, 50,                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                    | 25, 12.5 and 6.3 fig a.s./bee;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                    | Dimethoate (toxic standard) 0.20 µg a.s./bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                    | Orat, CO <sub>2</sub> control, test item 100, 50, 25, 12.5 and 6.3 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                    | as, bee; primethorate (toxic standard) 0.20 μg a.s./bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | Replicates?                        | a s, bee; Dimethoate (toxic standard) 0.20 $\mu$ g a.s./bee<br>replicates per test item dose level, controls and toxic standard,<br>consisting 0 10 bees in one cage per test concentration                                                                                                                                                                                                                                                                                                                                                              |
|              |                                    | consisting of 10 bees in one cage per test concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Temperature: &                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Relative humidity:                 | @40 - 57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,            | Photoperiod: A                     | Darkness (except during observation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. A         | dministration of the test item     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Com          | tact toxicity test A S             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bees         | were sollected from edge posit     | tioned honeycombs without anaesthetic. Bees were anaesthetised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Bees were collected from edge positioned honeycombs without anaesthetic. Bees were anaesthetised with Countil completely impobilised immediately before application of test treatments. A single 5  $\mu$ L droplet of actionifer in appropriate carrier (acetone) was placed on the ventral bee thorax using a Butkhard opplicator. For the control 1 x 5  $\mu$ L droplet tap water containing acetone was used. The toxic standard was dimethoate (0.2  $\mu$ g a.s./bee).

Oral toxicity test



Bees were collected from edge positioned honeycombs without anaesthetic. Bees were starved for 135 minutes in all treatment groups prior to application of test item. Approximately 30 mg aclonifen contaminated food (1 part solvent, 19 parts ready to use syrup).

Treated food was offered in syringes, which were weighed before and after introduction to cages. Duration of uptake did not exceed 3 hours, except in highest treatment group where uptake lasted 9 hours. After treatment, the syringes containing treated food were removed, weighed and eplaced with fresh untreated food.

## 4. Measurements and observations

Observation of the bees was undertaken at the following times

- 1, 2 and 4 hours (first day)
- 24 hours, 48 hours following days

Any cases of mortality and/or poisoning or behavioural abnormanties of the bees (e.g. food refusal, apathy, moving coordination problems) were recorded.

## 5. Statistics/Data evaluation

No mortality or behavioural changes were noted during the study, therefore, statistical analysis was not required.

JI, RESULTS AND DISCUSSION.

## A. ANALYTICAL VERIFICATION

Dose levels of test item in orgenest were 106.8, 46, 30.6, 4.4 and 7.0 ug a.s. bee

No analytical verification of the doxing solutions for the contact test was performed.

No analytical verification of dose levels of dimethorate (toxic standard) were performed.

## B. BIQLOGICAL DATA

Contact Oxicity test

No behavioural abrormalities were observed in the test treatments at any time.

| Tab | le: Me  | in morta | lity and | bebavioura | l abgormalities | of the bees in th | ne contact toxicity test |  |
|-----|---------|----------|----------|------------|-----------------|-------------------|--------------------------|--|
|     | <i></i> | 0 v      |          | 0.         |                 |                   |                          |  |

| Dose               | <b>N</b> | h                    | ~~ <sup>0</sup> 4 | h 🔊 💊                                  | 0 <sup>9</sup> 24 | lh 🛛    | 48       | 3h      |
|--------------------|----------|----------------------|-------------------|----------------------------------------|-------------------|---------|----------|---------|
| µg/bee) ∠          | Mortalit | Behav                | Mortalit          | Behav                                  | Mortalit          | Behav.  | Mortalit | Behav.  |
|                    | » y      | abnorm               | ŴŸ 🆄              | abnowm.                                | У                 | abnorm. | У        | abnorm. |
| 100                | 0        | , v <sup>2</sup> , v | 0                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0                 | 0       | 0        | 0       |
| ×504               | 0 🗸      |                      | r B               | $\sim 0$                               | 0                 | 0       | 0        | 0       |
| 25                 | 0        |                      |                   | O 0                                    | 0                 | 0       | 0        | 0       |
| 12.5               |          |                      | $\sim 0 $         | 0                                      | 0                 | 0       | 0        | 0       |
| 6.25               |          |                      |                   | 0                                      | 0                 | 0       | 0        | 0       |
| Control            |          |                      | ð                 | 0                                      | 0                 | 0       | 0        | 0       |
| Solvent<br>control | 6%0      |                      | 0                 | 0                                      | 0                 | 0       | 0        | 0       |
| control            |          |                      | Т                 | oxic Standar                           | d                 |         |          |         |
| 0.200              | 0        | 0                    | 0                 | 23.3                                   | 96.7              | 3.3     | 96.7     | 3.3     |

Results are averages from three replicates (ten bees each) per dosage/control



| able:                                                                                                                                                                                    | Mean mo      | rtality and   | behaviour     | al abnorm       | alities of th | e bees in th | ne oral toxi                   | city test       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------|-----------------|---------------|--------------|--------------------------------|-----------------|
| Dose                                                                                                                                                                                     |              | h             |               | h               | 24            |              |                                | 8h 🏹 👸          |
| (µg/bee)                                                                                                                                                                                 | Mortalit     | Behav.        | Mortalit      | Behav.          | Mortalit      | Behav.       | Mortalit                       | Benav.          |
| (PB, 200)                                                                                                                                                                                | У            | abnorm.       | У             | abnorm.         | У             | abnorm       | У                              | <b>abnorm</b> . |
| 100                                                                                                                                                                                      | 0            | 0             | 0             | 0               | 0             | 0            | 0 🔊                            |                 |
| 50                                                                                                                                                                                       | 0            | 0             | 0             | 0               | õ. 0          |              | 0,~~                           |                 |
| 25                                                                                                                                                                                       | 0            | 0             | 0             | 0 «             | 0             | Ŵ0           | Ô,                             |                 |
| 12.5                                                                                                                                                                                     | 0            | 0             | 0             | 0 🔍             | 0             | 0            | × 0 ô                          |                 |
| 6.25                                                                                                                                                                                     | 0            | 0             | 0             | <u>Q</u>        | 0 Q           | <sup>0</sup> |                                |                 |
| Control                                                                                                                                                                                  | 0            | 0             | 0             | QQ <sup>Q</sup> | 0             |              | , 0°, .                        |                 |
| Solvent control                                                                                                                                                                          | 0            | 0             | 3.3           | & 0 @°          | 3.3           |              | 3.3 >>                         |                 |
|                                                                                                                                                                                          |              |               | T             | oxic Standar    |               | ĨŎĨ ~        | Ň Ň                            |                 |
| 0.20                                                                                                                                                                                     | 0            | 0             | 16 10         | 20.0            | 86,7          | 6.70         | <u>~</u> 90.0 '                | 3 <u>3</u> 3    |
| Results are                                                                                                                                                                              | averages fro | om three repl | icates den be | es each) per    | dosage/con    | rol 🔊        |                                | Ő               |
| C VALIDITY CRITERIA $\sqrt{2}$ |              |               |               |                 |               |              |                                |                 |
| Validity criterion                                                                                                                                                                       |              |               |               |                 |               |              |                                |                 |
| Mortality ii                                                                                                                                                                             | n controls   |               |               | £10% (          |               |              | % (contact te<br>.3% foral tes |                 |
| Oral LD <sub>50</sub>                                                                                                                                                                    | of the toxi  | c standard    | è 0.100       |                 |               | ×90% 1       | nortality afte                 | er 48h          |

No behavioural abnormalities were observed in the test treatments at any time.

| Validity criterion                                            | COECH 213/214, 1998)                             |
|---------------------------------------------------------------|--------------------------------------------------|
| Mortality in controls                                         | 40% 0 333% (contact test)<br>3.3% (contact test) |
| Oral $LD_{50}$ of the toxic standard<br>(dimethoate)          | 0.1 0 - 0.3 μg a.i/bee                           |
| Contact LD <sub>50</sub> of the exic standard<br>(dimethoate) | 96.7% mortality after 48h<br>at 0.2 μg a.i./bee  |

The study was conducted according test guideline (1993). The OECD 213/214 validity criteria regarding control mortality were get. The toxic standard showed 90 and 96.7% mortality for oral and contact test. Therefore of is considered that this study is yaid for bisk assessment purposes.

#### 5**èndpòi**t D. TOX

## Table:

| Endpoints (u.e.s./bc)1h4h24h48hContact LD50<br>[95% confidence limits]100 $2 \times 100$ >100Oral LD50<br>(oral LD50) $2 \times 106.8$ >106.8>106.8 |                                                                                |        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|--------|
| Qral LD <sub>50</sub> V 106 8 106 8 106 8                                                                                                           |                                                                                | 24h    | 48h    |
| $Qral LD_{50}$ $Q_{106.9}$ $Q_{106.9}$ $> 106.9$ $> 106.9$                                                                                          | Contact LD <sub>50</sub><br>[95% confidence limits]                            | >100   | >100   |
|                                                                                                                                                     | [95%  confidence limits] $[95%  confidence limits]$ $[95%  confidence limits]$ | >106.8 | >106.8 |

## III. CONCLUSION

The toxicity of a clonifen was rested in both in acute contact and an oral toxicity test on honey bees. The 100 µg a ... /bee in the contact toxicity test. The LD<sub>50</sub> (48 h) was >106.8 µg a.s. /bee in LD<sub>50</sub> (48 h) was the oral

(1999)

and conclusion by applicant: sment

O'



The OECD 213/214 validity criteria regarding control mortality were met. The toxic standard showed 90 and 96.7% mortality for oral and contact test. Therefore, it is considered that this study is vapid for risk assessment purposes. The toxicity of aclonifen was tested in both an acute contact and an oral toxicity test on hope The LD<sub>50</sub> (48 h) was >100  $\mu$ g a.s./bee in the contact toxicity test. The LD<sub>50</sub>  $>106.8 \mu g$  a.s./bee in the oral toxicity test. Assessment and conclusion by RMS: Data Point: KCA 8.3.1.1.2 Report Author: Report Year: 2016 Aclonifed tech .: Acute oral and contact toxicity to the bumble bee, Bombus Report Title: terrestrist. under laboratory conditions °~ S15-@0341. Report No: Mz567133-01-1 🝕 Document No: OECD Guidelines No. 213 and No. 214 (1998), OEPP PPO 270 (4) (2010), VAN DER STEEN (2001) and recommendations of the ICPPR bumble bee ring Guideline(s) followed in study: test group (2015) Ø Corrent Guideline: OECD 246/247, 2017 Deviations from current Behavioural abnormalities in reference, item treatment were not recorded. This test guideline:

deviation was considered not to have affected the integrity or outcome of the

winducted under GLP/Officiall@recognised testing facilities

Executive Summary Ø

Previous evaluation:

Acceptability/Reliabili

GLP/Officially recognised testing

facilities:

stud∳

No, not poviously submitted

An acute test was conducted to determine the acute oral and contact effect of aclonifen on mortality and behaviour of the bumble bee, *Bombus terrestric L*. The test included a solvent control and test groups 46.79, 57.33, 82,40, 95.75 and 130.36  $\mu$ g a s//bee, actual uptake for oral testing, plus a toxic standard (dimethoate, 6,43  $\mu$ g a.s./bee). The contact test treatment concentrations were 52.2, 68, 89, 115 and 150  $\mu$ g a.s./bee).

In the control and solvent control groups of the oral toxicity test 0% and 3.3% mortality was observed during the 48-hour set period, respectively. In the test treatment groups of the oral toxicity test at the second highest dose of 95.75  $\mu$ g a.s./bumble bee (based on actual uptake) a mortality of 3.3% (corrected mortality: 0%) was observed after 48 hours. No mortality was observed at the end of the 48-hour observation period in any other test treatment.



In the control and solvent control groups of the contact toxicity test 10% and 6.7% mortality was observed during the 48 h test period, respectively. In the test treatment groups of the contact toxigity test at the highest dose of 150 µg a.s./bumble bee a mortality of 3.3% (corrected mortality: -3.6%) observed after 48 hours. The maximum mortality of 6.7% (corrected mortality 0.0%) in the toxicity test was observed at the dose of 89 µg a.s./bumble bee.

In both the oral and contact toxicity tests no remarkable sublethal effects were observed our period of 48 hours.

In the reference item groups of the oral and contagt toxicity tests mortalities of respectively were within the required range. The validity criteria were met, thus the test is considered be valid.

The LD<sub>50</sub> (48 h) was >150 µg a.s./bee in the contact was >130.36 µg a.s./bee in the oral toxicity test.

I. MATER MATERIALS A. onifen technical 1. **Test Item:** PEA 1000235 Batch no.: 99.5% w/w (analysed) Active Ingredient / Purity **Appearance:** Yellow solid Storage: Room temperature in the dark (@-anatysis date) 6 November 201 **Expiry date:** Perfekthion E Reference iten 2. ≰ FRE-00/122 Batch no. Active brgredient / Purity: O 400 g/L dimethoat Adult worker Bumbly bee, Bombus terrestris L. 3. **Test** Organisn Not specified Àğe: Source: 50% (W/v) aqueous sucrose solution. Fed ad-libitum during Feeding; acclimatisation and test period, except during starvation and feeding of test freatment solutions (oral toxicity test only) STUDY DESIGN B. AND METHODS 29 Séptember to 01 October 2015 1. In-life phase 2. Exposure conditions Bees were housed individually in Nicot cages (queen bee schooling cages; slightly conical perforated plastic cylinder, S Experimental design base approx. 1 cm radius, height 7 cm Contact: Solvent control, test item 52.2, 68, 89, 115 and 150 µg a.s./bee (nominal); Dimethoate (toxic standard) 13 µg a.s./bee Oral: Solvent control; test item 52.2, 68, 89, 115 and 150 a.s./bee (nominal);



Mean actual uptake calculated as 46.79, 57.33, 82.40, 95.75 and 130.36 μg a.s./bee; Dimethoate (toxic standard) 1.5 μg a.s./bee; mean actual calculated uptake 1.43 μg a.s./bee 30 replicates (1 bee) per test item dose level, controls and toxic standard 24.3 – 25.0°C 55.9 – 63.8% Darkness (except during application and observation)

#### 3. Administration of the test item

**Replicates:** 

Temperature: Relative humidity:

**Photoperiod:** 

Stock solutions of test/reference item, using acetone as a solvent. In the oral toxicity test for the preparation of the highest dose level of 150 ing a.s. Dumble bee Aqueons' sucrose solution (w/v) containing 1% tween and 1% xanthan was used. Further dilutions of the stock solution were prepared using 50% (w/v) aqueous sucrose solution containing 5% acetone, 1% tween and 1% xanthan in order to get the required dose levels of application solution(s). For the reference item colonised water was used as solvent. In the oral toxicity test one further dilution of the stock colution was prepared using 50% (w/v) aqueous sucrose solution in order to get the required dose levels of application solution(s).

#### Contact toxicity test

Bees were randomly collected from have and introduced to test units, under test conditions, 1 day before test start. Bees were anaestheticed with CO2 until completely immobilised immediately before application of test treatments. A single 2  $\mu$ L droplet of a clonifen in appropriate carrier (acetone) was placed on the dorsal bet thorax using a Burkhard applicator. For the control 1 x 2  $\mu$ L droplet tap water containing acetone was used.

# Oral toxicity test

Bees were randomly collected from hive and introduced to test units, under test conditions, 1 day before test start. Bees were starved for approximately 2 hours in all treatment groups prior to application of test item.

Treated food was offered of syringes, which were weighed before and after introduction to cages using calibrated equipment. Duration of which were removed, weighed and replaced with fresh untreated food.

## 4. Measurements and observations

Observation of the bees was indertaken at the following times:

- 4 hours (fritst day &
- 24 hour 48 hours for wing days

Any cases of mortality and or poisoning or behavioural abnormalities of the bees (e.g. food refusal, apathy, moving coordination problems) were recorded.

### 5. Statistics/Data evaluation



Fisher's Exact Binomial Test with Bonferroni Correction (one-sided,  $\alpha = 0.05$ ) was used to evaluate significant difference between solvent control and test treatment mortality at the end of the test. Statistical analyses were conducted using ToxRat Professional 3.1.0.

#### **II. RESULTS AND DISCUSSION**

#### A. **ANALYTICAL VERIFICATION**

No analytical verification of the dosing solutions for the contact test was performed.

No analytical verification of dose levels of dimethoate toxic standard were performed.

#### **BIOLOGICAL DATA** B.

Contact toxicity test

No remarkable sublethal effects were observed in the at any time. test treatment

#### Mortality of the bees in the contact toxicity test Table:

| all analyses were     | conducted using T                                                                                                                                                                                                                                                             | ToxRat Profession    | nal 3.1.0.        | ty at the end of      |      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-----------------------|------|
|                       | II. RESU                                                                                                                                                                                                                                                                      | LTS AND DISC         | CUSSION           |                       |      |
| ANALYTICAL            | VERIFICATION                                                                                                                                                                                                                                                                  | N                    | 4                 | . S <sup>4</sup>      |      |
| ytical verificatior   | n of the dosing solu                                                                                                                                                                                                                                                          | utions for the con   | tact test was per | formed.               |      |
| ytical verification   | n of dose levels of                                                                                                                                                                                                                                                           | dimethoate (toxic    | c standard Swere  | performed.            |      |
| BIOLOGICAL            | DATA                                                                                                                                                                                                                                                                          |                      |                   |                       |      |
| toxicity test         |                                                                                                                                                                                                                                                                               | \$<br>\$, 6°         |                   |                       | J.   |
| arkable sublethal     | effects were obser                                                                                                                                                                                                                                                            | ved in the test tr   | atments at any t  | ime                   | A L° |
| Mortality o           | f the bees in the                                                                                                                                                                                                                                                             | ontact toxicity t    | est A             |                       |      |
| Dose<br>(ug a.s./bee) | Mortal                                                                                                                                                                                                                                                                        | ity (%) 0 .          | Corrected in      | iortalify (%)<br>4810 | Õ    |
| 52.2                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         |                      |                   |                       |      |
|                       | Able sublethal effects were observed in the test treatments at any time?Mortality of the bees in the contact toxicity test.DoseMortality (%)Coprected mortality (%) $(\mu g a.s./bee)$ 24h24h48h52.206800-7.2893.31153.36.701153.36.701503.36.7-Solvent control3.30-1393.3100 |                      |                   |                       |      |
|                       |                                                                                                                                                                                                                                                                               | (* 6.7 *<br>(* 3.3 ° | -3.4              | Ĉn                    |      |
|                       | 3.3                                                                                                                                                                                                                                                                           | 3.3                  | S V Z             | -3.6                  |      |
|                       | 33 Q                                                                                                                                                                                                                                                                          |                      | <u> </u>          | ~~~                   |      |
| 5                     | Oʻ 🦄 Refer                                                                                                                                                                                                                                                                    |                      |                   |                       |      |
|                       | 93.3×                                                                                                                                                                                                                                                                         |                      | <u>₹</u> \$93.3 ° | 100                   | l    |
| cicity test           | ~ à 4                                                                                                                                                                                                                                                                         |                      | ŭ ku              |                       |      |

Oral toxicity test

No remachable sublethal effect were observed in the test treatments at any time.

#### Mortality of the bees in the oral poxicity test Table:

| Target dose | Mean actual               | O Morta        | Îty (%)         | Corrected mortality (%) |      |  |  |
|-------------|---------------------------|----------------|-----------------|-------------------------|------|--|--|
| (µg/bee)    | Û uptake<br>(μg a.s./beeΩ | 24h 🖓          | <b>48h</b>      | 24h                     | 48h  |  |  |
| <b>D</b> .2 | <i></i> ¢46.79            |                | 0               | 0                       | -3.4 |  |  |
| 68          | ~~ 57 <u>3</u> 3 ~ ~      |                | 0               | 0                       | -3.4 |  |  |
| <i>√</i> 89 | \$3.40                    |                | 0               | 0                       | -3.4 |  |  |
| 115 🔊       | 95.75                     | Q 3,3V         | 3.3             | 3.3                     | 0    |  |  |
| 150         | A 130.56 ×                | J              | 0               | 0                       | -3.4 |  |  |
| Control     |                           | ~~~0           | 0               | -                       | -    |  |  |
| Solvent     |                           | 0              | 3.3             | -                       | -    |  |  |
|             |                           | Reference item | n (Perfekthion) |                         |      |  |  |
| \$<br>      | 1.43                      | 90             | 90              | -                       | -    |  |  |

**WALIDITY CRITERIA** C.



| Validity criterion                               | Required<br>(OECD 246/247, 2017) | Achieved         |
|--------------------------------------------------|----------------------------------|------------------|
| Mortality in controls – oral test                | ≤10%                             | 3.3%             |
| Mortality in controls – contact test             | ≤10%                             | ≥ 10% Ø          |
| Mortality in reference item group – oral test    | ≥50%                             | 90% <sup>4</sup> |
| Mortality in reference item group – contact test | ≥50%                             |                  |

All validity criteria were satisfied and therefore this study can be considered to be valid.

| ř I                                                 | sector and the sector of the s | S N         | N W   |                             | ×* |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-----------------------------|----|
| Endpoints (µg a.s./bee)                             | 24h 🔘 🤘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>48</b> h |       | NO ED X                     |    |
| Contact LD <sub>50</sub><br>[95% confidence limits] | 750 ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >150,       | × A ć | § <sup>°</sup> ≥1 <u>50</u> |    |
| Oral LD <sub>50</sub>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       | > \$ 36 S                   |    |
| [95% confidence limits]                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ř js  |                             | Q  |
|                                                     | Q JII. CONC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLASION     |       |                             | °~ |

#### JII. CONCLASION

The toxicity of aclonifen technical was tested in both an acute contact and an oral poxicity test on honey bees. The LD<sub>50</sub> (48 h) was  $>150 \ \mu g$  as bee in the contact toxicity test. The LD<sub>50</sub> (48 h) was >130.36 µg a.s./bee in the gral toxicity test. C Store

Ô

(2016)

## Assessment and conclusion by applicant

The OECD 213214 validity criteriaregarding control mortality were met. The toxic standard showed 90 and 100% mortality for oral and contact test, respectivels Therefore, it is considered that this study is valid for risk assessment purposes.

The toxicity of aclosufen technical was tested in both an acute contact and an oral toxicity test on honey bees. The LD<sub>50</sub> (48/h) was >150 µg a. 5 bee in the contact toxicity test. The LD<sub>50</sub> (48 h) was >130.36 µg a.s. bee in the oral toxicity test.

| Assessment and conclusion borkMS       |
|----------------------------------------|
| Assessment and conclusion boRMS        |
|                                        |
| CA 8.3.1,12 Acute contact toxicity     |
| CA 8.3.1,12<br>Acuto contact to stelly |
|                                        |
|                                        |



| Data Point:                | KCA 8.3.1.1.1/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Report Year:               | 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Report Title:              | Final report - Laboratory Testing for Toxicity (Acute Contact and Oral LD50) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                          | ACLONIFEN on Honey Bees (Apis mellifera L.) (Hymenoptera, Apidae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report No:                 | R007442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Document No:               | M-174936-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Guideline(s) followed in   | EPPO: Bulletin 22, 203-215 No. 170 (1992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Deviations from current    | Current Guideline: OECD 213/214, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| test guideline:            | Starvation time extended from up to 120 minutes to up to 138 minutes to ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | bees were hungry. Complete uptake of contaminated food lasted up to 9 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | (instead of up to 3 h) as been avoided contaminated food of µL droplet volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            | used rather than 1 µL recommended in the guideline. Environmental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | slightly ourtside of recommended range. These deviations are not considered to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | have affected the integrity of outcome of the study of of the study of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Previous evaluation:       | yes, evaluated and accepted<br>Source: Study list relied upon, December 2011 (RMS: DE)<br>Yes, conducted under GLP/Officially recognized testing factories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | Source: Study list relied upon, December 2011 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GLP/Officially             | Yes, conductor under GLP/Officially recognized testing factories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Acceptability/Reliability: | $\underline{\operatorname{Yes}}^{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}} \xrightarrow{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} \xrightarrow{\mathcal{Q}}} \xrightarrow{\mathcal{Q}} \mathcal{Q$ |

| Acceptability/Reliability: Yes & & & & O O O A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptability/Reliability:     Yes       Please refer to Section 8.3/1.1.1/01 for a full summary of this study.       Data Point:       KCA8.3.1/1.2/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Please refer to Section 8 1 1 1/01 for a full summary of this study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c c} & & & & & \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Data Point: C KCA8.3.11.2/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Report Authors O O A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Year: 7 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Report Title Acloraten tech: Acua oral and contact toxicity to the bumble bee, Bombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| terestris Londer laboratory conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Report No: SI 5200341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Document No: $\sqrt{1-567}$ $\sqrt{1-567}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Guideline(s) followed in A OECP Guidelines No. 213 and No 214 (1998), OEPP/EPPO 170 (4) (2010),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| study:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| beiting for the start of the st |
| Deviations from current Current Guide the: OFCD 246/247, 2017<br>test guide the: Behavioural bonomalities invreference item treatment were not recorded. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| test guidefine:<br>Behaviourab bnormalities invreference item treatment were not recorded. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| deviation was considered not to have affected the integrity or outcome of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Previous evaluation: No, not previously submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rievous evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GLP/Officially Conflicted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| recognised testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Acceptability/Revability. Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:<br>Acceptability: Yeo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Please  $\widehat{\operatorname{refer}}$  to Section 8.3.1.1.1/02 for a full summary of this study.



#### CA 8.3.1.2 Chronic toxicity to bees

No chronic toxicity studies on the active ingredient, aclonifen, have been perfomed on bees. Studies on the representative formulation containing aclonifen are presented in the product dossier. 

#### Effects on honeybee development and other honeybee life stages CA 8.3.1.3

|                                                     | KCA 8.3.1.3/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | KCA 8.3.1.3/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Data Point:                                         | KCA 8.3.1.3/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Author:                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title:                                       | Aclonifen technical - Horey bee (Apis melliferate) larvat toxico test (Repeated)<br>exposure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Report No:                                          | S15-04235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Document No:                                        | S15-04235     Y     Y     Y       M-600773-01-1     X     Y     Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Guideline(s) followed in                            | <b>P</b> agulation (EC) $\rightarrow 110^{400}000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| study:                                              | Directive 2003 01 (Canada/PMRA)<br>US EPA OC OP 850. SUPP<br>OECD Draft Guidance Document on Honey bee (Apis monifera)<br>Larval Toxicity Test, Repeated Exposure (Version dated April 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,                                                   | US EPA OC SOP 850 SUPP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                     | OECD Draft Guidance Document on Honey bee (Apis mentifera)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     | Larval Toxicity Test, Repeated Exposure (Version dated April 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | OECO Guideline for the Testing of Chemical's 237; Honey bee (Apis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                     | OECO Guideline for the Testing of Chemical's 237; Honey bee (Apis<br>majriera) Larval Foxicity Test, Single Exposure (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Deviations from current                             | Current Gaudeline. OECT Guidance Document No. 239, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| test guideline:                                     | The test was performed over an 8-day period rather than 22 days. This deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | was not considered to have @fected study integrity and validity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Previous evaluation:                                | No hot previously submitted in the second se |
| GLP/Officially<br>recognised testing<br>facilities: | Yes, conducted under GLP/Opticially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability:                          | Yes a free for the former of t |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Â, O                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ş.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Executive Summary**

The study was conducted to determine possible effects of aclonifen technical on the honey bee larvae, Apis mellifera L. from repeated feding exposite in 248-day in vitro test.

The test included a control, a solvent control and five test item groups (40.3, 81.2, 162.3, 324.7 and 649 E mg a.s./kg diet, equivalent to comulative doses of 6.3, 12.5, 25, 50 and 100 µg a.s/larva/ development period). In addition, a reference item (dimethoate, 48 mg a.s./kg diet, equivalent to a cumulative dose of Z4 µg s /larva development period). Additionally, bees were assessed for any behavioural effects.

Analysis of the freated larva Quiet for each test treatment including control and solvent control were analysed. Measured concentrations ranged from 82 to 101% of nominal. Measured concentrations remained within  $\pm 20\%$ , therefore, results were based on nominal test concentrations.

After in 8-day repeated honey bee larval exposure with aclonifen technical study the NOEC was determined to be 162.3 mg aclonifen/kg diet. The equivalent NOED was 25.0 µg aclonifen/larva/development period. The LC<sub>10</sub> was calculated to be 202 mg aclonifen/kg diet, equivalent



to an LD10 of 31.1 µg aclonifen/larva/development period. The LC20 was calculated to be 235.0 mg در پهرې پهرې aclonifen/kg diet, equivalent to an LD<sub>20</sub> of 36.2 µg aclonifen/larva/development period. The LC<sub>50</sub> was calculated to be 313.8 mg aclonifen/kg diet, equivalent to an LD50 of 48.3 de la companya de la aclonifen/larva/development period.

#### **I. MATERIALS AND METHODS**

| A.            | MATERIALS                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.            | Test Item:                                                                                                 | Aclonifen SC 600 A F068300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.            | Batch no.:                                                                                                 | PEA 1000325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Active Ingredient / Purity:                                                                                | 99.5% w/w applysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Appearance:                                                                                                | Vellow solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | Storage:                                                                                                   | Room temperate in the dark in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Expiry date:                                                                                               | 26 November 2016 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Enpiry autor                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.            | Reference item:                                                                                            | Aclonifen SC 600 (EA F068300)<br>PEA 1000325<br>99.5% w/w, analysed<br>Yellow solve<br>Room temperature in the dark<br>26 November 2016<br>BAS 152 V (Diracthoate technical)<br>55015 A161<br>98.8% w/w<br>Virst instar larvae (L4) honey bees ( <i>Apis mellifers</i> L.)<br>1 <sup>st</sup> instar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Batch no.:                                                                                                 | 95015A161 2 2 2 2 8 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | Active Ingredient / Purity:                                                                                | 98.8% w/w y y y y y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.            | Test Organism:                                                                                             | First instar larvae (L4) honey bees (Apis mellifered L.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | Age:                                                                                                       | 1 <sup>st</sup> instar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | Source:                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | Feeding:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | Feeding:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| п             | Age:<br>Source:<br>Feeding:<br>STUDY DESIGN AND ME<br>-life phase:<br>toposure conditions<br>Test vessels: | None prior to test<br><b>THODS</b><br><i>G</i> – 29 July 2017<br><i>G</i> – 29 July 201 |
| B.<br>1 In    | -life phase:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1. 111        |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ) F.          | xposure conditions                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. E <i>x</i> | Tost vessel                                                                                                | Frystal holyetyrene grafting cells diameter 9mm in 18-well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                                                            | celluar culture plate. Culture plates were wetted with 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                                                            | (very) giveral colution and placed in hermetically sealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                            | Plexist's desircator containing dishes filled with saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                                                                                                            | K <sub>2</sub> SQ <sub>4</sub> solution in order to maintain water saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A             |                                                                                                            | approsphere All desiccators placed in same incubator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Experimental design:                                                                                       | Control solvent control and five test item groups (40.3, 81.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                                                                                            | $162 3^{3}324$ 7 and 649 3 mg a s /kg diet equivalent to cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                                                                                                            | topses of 6.3 12.5 25 50 and 100 µg a s/larva/ development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                                                            | neriod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | P G A D                                                                                                    | Reference item (dimethoate 48 mg a s /kg diet equivalent to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 million     |                                                                                                            | cumulative dose of 7.4 µg a.s/larva/ development period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ŝ             | Replicates:                                                                                                | 45 larvae from three different hives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Temperature:                                                                                               | Crystal polystyrene grafting cells, diameter 9mm, in 48-well<br>cellular culture plate. Culture plates were wetted with 15%<br>(ww) gycerol solution and placed in hermetically sealed<br>Plexiglas desiccator, containing dishes filled with saturated<br>$K_2SO_4$ solution in order to maintain water saturated<br>atmosphere. All desiccators placed in same incubator<br>Control, solvent control and five test item groups (40.3, 81.2,<br>162,3, 324.7 and 649.3 mg a.s./kg diet, equivalent to cumulative<br>doses of 6.3, 12.5, 25, 50 and 100 µg a.s/larva/ development<br>period<br>Reference item (dimethoate, 48 mg a.s./kg diet, equivalent to a<br>cumulative dose of 7.4 µg a.s/larva/ development period<br>45 larvae from three different hives<br>28.5 – 35.0°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Relative humidity:                                                                                         | 38.4 - 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | •                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### **Photoperiod:**

Darkness (except during application and observation)

#### 3. Administration of the test item

#### Dose preparation

Test item stock solutions were prepared freshly at each application day. Test and solvent control solutions were prepared using acetone as a solvent.

The larval diet was prepared freshly in advance, divided into aliquots and subsequently stored deepfrozen ( $\leq$  - 18 °C) until use. On each feeding day the required amount of diet was thawed and waitined of in the incubator before use. The diet was prepared with deionized, autoclaved water using the following ingredients:

- Diet A: 50% weight of fresh royal jefty + 50% weight of an aqueous solution containing 2% weight of yeast extract, 12% weight of glugose and 12% deight of fructose
- Diet B: 50% weight of fresh royal jelly 7 50% weight of an aqueous solution containing 3% weight of yeast extract, 15% weight of glucose and 18% weight of fructose
- Diet C: 50% weight of frestoryal yelly + \$0% weight of an aqueous solution containing 4% weight of yeast extract, 18% weight of glucose and 18% weight of fluctose

#### Oral treatment

Each larva was fed once a day (except on day 2) with a standardized amount of artificial diet. On Day 1 each larva was fed with  $20 \,\mu\text{L}$  of untreated diet Å, on Day 3 each larva was fed with  $20 \,\mu\text{L}$  of treated or untreated diet B, on Day 4 each larva was fed with  $20 \,\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet C, on Day 5 each larva was fed with  $40 \,\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated or untreated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated diet Å, on Day 6 each larva was fed with 50  $\mu\text{L}$  of treated diet Å, on Day

### 4. Measurements and observations

Mortality was assessed before feeding on Day A to 6 as welf as on Days 7 and 8. Larvae were recorded as dead from respiration (movement of spiracles) was observed. Any dead larvae were systematically removed. Other observations (larged appearance and size) were assessed qualitatively in comparison to the solvent control. On Day 8 (last day) the presence of uncaten food was recorded qualitatively.

Analytical samples were taken directly from the prepared diets prior to feeding. Two sub-samples (1 for analysis, 1 retained) of 2.5mL were taken and the weight of each sample recorded.

No samples of reference feeding solutions were taken. Samples were stored frozen (-18°C) with 1 hour of sampling until required for analysis.

Analytical determination was conducted by Bayer, Crop Science Division, Monheim am Rhein, Germany.

### 5. Statistics Data evaluation

The percent conjulative mortality was calculated for each treatment group and was corrected for control mortality according to the formula of (1925) and modified by (1947).

A multiple sequentially-rejective Fisher Test after **control** (one-sided greater,  $\alpha = 0.05$ ) was used to evaluate whether there are significant differences between the mortality data of the solvent control and the test item treatment group and to determine the NOEC and LOEC based on mortality.



The corresponding NOED (No Observed Effect Dose) and LOED were calculated by taking into account the density of the larval diet (1.1 g/cm<sup>3</sup>) and cumulative feeding volume per larva (140  $\mu$ L diet).

Fisher's Exact Binomial Test (one-sided greater,  $\alpha = 0.05$ ) was used to evaluate where was a significant difference between mortality in the reference treatment group compared to the solvent control

Probit analysis using linear maximum likelihood regression was used to calculate the LCo, LCo LC<sub>50</sub>. The corresponding LD<sub>10</sub>, LD<sub>20</sub> and LD<sub>50</sub> were calculated by taking into account the density larval diet (1.1 g/cm<sup>3</sup>) and cumulative feeding volume perfarva (140 µ2/diet).

Statistical calculations were made by using the statistical program TOXRAT Professiona

# II. RESULTS AND DISC

#### A. ANALYTICAL VERIFICATION

ling colutions ranged from 93 0 98% of The mean measured concentrations determined in the free nominal.

| •                                          | ,O`                      | ~~~                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | × ~ °O     | s Dr                                      | . ~               | S.    |
|--------------------------------------------|--------------------------|------------------------------------|----------------------------------------|------------|-------------------------------------------|-------------------|-------|
| Nominal concentration<br>(mg a.s./kg diet) | Lowest an<br>of aclonife | nd highes<br>n from d<br>onifen/kg | t concn<br>ay 3 to 6<br>diegy          | Lowest a   | om day<br>(%)                             | St recove<br>to 6 | ěry " |
| Control                                    | £ (.                     | <li>Cod</li>                       | 2                                      | , k        | ~~~-<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Ò.                |       |
| Solvent control                            | Ô¥ ,                     | SEOD (                             | D <sup>r</sup> O                       |            | \$ <u>-</u> `                             | <u>y 19</u>       |       |
| 40.6                                       |                          | ₹33.3 \$*<br>40.©                  |                                        |            | <u>82</u><br>(100                         |                   |       |
| 81.2                                       |                          | 68.3<br>\$1.8                      | 52<br>24 E                             |            | 0 <sup>×</sup> 84                         | <i>Y</i>          |       |
| 162.3                                      |                          | 145.8<br>16203                     |                                        | <u>5 0</u> | 100 YOU                                   |                   |       |
| 324.7                                      |                          | 290.4<br>\$26.1                    |                                        |            | © 89<br>, 100                             |                   |       |
| 649.3 C                                    |                          | 531.6<br>578.6                     |                                        | Ĵ<br>Ĵ     | 82<br>89                                  |                   |       |

#### Analytical verification of feeding solution Table:

LoD (limit of detection) = 0.001 mg/aclonifen/kg diet

The validated method is summar Ă4 (CA 4.1.2/95).

# B. 🔬 BIOLOGIĈĂI

#### Effects of acloniten on honey bee larvae from repeated exposure Table:

| Concn Cumulative mortality<br>(mg (mg (mg (mg (mg (mg (mg (mg (mg (mg |    |     |     |     |        |   | Adjusted<br>(% | mortality<br>%) |      |
|-----------------------------------------------------------------------|----|-----|-----|-----|--------|---|----------------|-----------------|------|
| action(reg)/ kg                                                       | Â  | \$5 | 6   | 7   | 8<br>8 | 5 | 6              | 7               | 8    |
| Control                                                               | 00 | 2.2 | 2.2 | 2.2 | 2.2    | - | -              | -               | -    |
| Solvent<br>control                                                    | 0  | 0   | 0   | 2.2 | 2.2    | - | -              | -               | -    |
| 40.6                                                                  | 0  | 0   | 0   | 0   | 0      | 0 | 0              | -2.2            | -2.2 |
| 81.2                                                                  | 0  | 0   | 0   | 0   | 0      | 0 | 0              | -2.2            | -2.2 |



| 162.3                           | 0      | 0      | 2.2    | 2.2    | 2.2   | 0    | 2.2  | 0      | 0     |         |
|---------------------------------|--------|--------|--------|--------|-------|------|------|--------|-------|---------|
| 324.7                           | 0      | 0      | 4.4    | 13.3   | 55.6* | 0    | 4.4  | 11.3   | 54,6° |         |
| 649.3                           | 2.2    | 4.4    | 37.8*  | 82.2*  | 97.8* | 4.4  | 37.8 | 81.8   |       | Ş       |
| Reference<br>item<br>(48 mg/kg) | 13.3** | 42.2** | 66.7** | 95.6** | 100** | 40.9 | 660  | 95.5 A |       | O<br>ÊN |

Significant increase compared to solvent control (Fisher's Exact Test with Bonferroni Correction, one with side greater,  $\alpha = 0.05$ )

Significant increase compared to solvent control (Fisher's Exact Test, one-side greater, \*\*

Uneaten food was observed in all treatment groups on day 8. Larvae in the three highest test treatm C. VALIDITY CRITERIA

#### С. VALIDITY CRITERIA

| Validity criterion                                                                                                                                   | Required<br>VOECD Gindance<br>VDocument No. 239, 2016)       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Average mortality in control treatment $\bigcirc$ | 2.25 in control and solvent                                  |
| Adult emergence rate (Day 22)                                                                                                                        | P 10% P Not applicable as study<br>performed @er 8 days only |
| Average mortality in reference item freatment                                                                                                        |                                                              |
| (Day 8)                                                                                                                                              |                                                              |

All relevant validity criteria mere satisfied and therefore this study can be considered to be valid. D. TOXICITY ENDPOINTS

| Table: Su | mar of e       | ndpoints 40                           |                                                                                           |
|-----------|----------------|---------------------------------------|-------------------------------------------------------------------------------------------|
|           |                | ndpoint &                             | mg selonifen/kg diet                                                                      |
|           |                |                                       | 324.7<br>162.3                                                                            |
| ~Ģ        |                |                                       | 202.0(163.0-231.7)                                                                        |
|           | O,             |                                       | 235.0 (198.6 – 264.2)<br>2313.8 (280.9 – 350.6)<br>Уµg actonifen/larva/development period |
|           | Day 8          |                                       | <b></b>                                                                                   |
| Υ<br>Γ    | e <sup>v</sup> |                                       | , ⊙ <sup>v</sup> 25.0<br><sup>v</sup> 31.1 (25.1 − 35.7)                                  |
|           |                | <b>LD50</b>                           | <u>36.2 (30.6 - 40.7)</u><br>48.3 (43.3 - 54.0)                                           |
| Ű,        | S C            | Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î | CONCLUSION                                                                                |

Measured concentrations remained within  $\pm 20\%$ , therefore, results were based on nominal test concentrations.

After  $an^{\circ}$  8-day repeated honey bee larval exposure with a clonifen technical study the NOEC was determined to be 162.3 mg aclonifen/kg diet. The equivalent NOED was 25.0 µg aclonifen/larva/development period.



The LC<sub>10</sub> was calculated to be 202 mg aclonifen/kg diet, equivalent to an LD<sub>10</sub> of 31.1  $\mu$ g aclonifen/larva/development period.

The LC<sub>20</sub> was calculated to be 235.0 mg aclonifen/kg diet, equivalent to an LD<sub>20</sub> of aclonifen/larva/development period.

The  $LC_{50}$  was calculated to be 313.8 mg aclonifen/kg diet, equivalent to an LD aclonifen/larva/development period.

Assessment and conclusion by applicant:

All relevant validity criteria were satisfied and therefore this study can be considered to be valid

After an 8-Day repeated honey bee larval most with selonifer technical sprdy the NOEC determined to be 162.3 mg acloniten/kg diet. The equivalent NOED **W**as aclonifen/larva/development period

The LC50 after 8 days of repeated exposure was determined to aclonifen diet. equivalent to an LD<sub>50</sub> of 48.3 µg at lonifer larva development per

Assessment and conclusion

| Data Point: 2 K&A 8.3 \$3/02 \$ 2 5 5 5                                                     |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
| Data Point: $\sqrt{1-10}$ $\sqrt{1-10}$ $\sqrt{1-10}$ $\sqrt{1-10}$ $\sqrt{1-10}$           |
| Report Author:                                                                              |
| Report Year. A 201 A av C                                                                   |
| Report Que: Repeated exposure of aclourfen to poney bee (Apis mellifera) larvae under       |
|                                                                                             |
| Report No: 16 10 49 139 B                                                                   |
| Document No: 0 A M-55 600-041 0                                                             |
| Guideline(s) followed in ELDirectore 91/4 4/EEG Regulation (EC) No 1107/2009 (2009); US EPA |
| study: «O O OCSPP Not Applicable, Directive 2003 01 (CANADA/PMRA)                           |
| Deviations from current Current Guidenne: OFCD Gradance Document No. 239, 2016              |
| test muid shinker a News Contract State                                                     |
|                                                                                             |
| Previous evaluation: V No, not previously submotied                                         |
| GLP/Officially GYes, Conducted under GLP/Officially recognised testing facilities           |
| recognised testing                                                                          |
| facilities: A A A A                                                                         |
| Acceptability Reliability: Ses                                                              |
| Acceptability Reliability: Ses                                                              |
|                                                                                             |
|                                                                                             |
|                                                                                             |

# Executive Summary

The study was conducted to determine possible effects of aclonifen on the honey bee larvae, Apis mellifera from repeated exposure under laboratory conditions (in vitro).



The test included a control, a solvent control and five test item groups (40.3, 81.2, 162.3, 324.7 and 649.3 mg a.s./kg diet, equivalent to cumulative doses of 6.3, 12.5, 25, 50 and 100 μg a.s/lagy/a/ development period). A reference item (dimethoate, 48 mg a.s./kg diet, equivalent to a cumulative dose of 7.4 µg a.s/larva/ development period) was included in the study design. In addition to mortality, bees were assessed for any behavioural effects. Analysis of the treated larval diet for each test treatment including control and solven Control analysed. Measured concentrations ranged from 84 to 05% of nominal. Measured concentrations remained within  $\pm 20\%$ , therefore, results were based on nominal test concentration  $\Im$ 

The ED<sub>50</sub> (successful adult emergence up to Day 22) were determined to be  $80.0 \text{ }\mu\text{g}$  as  $10^{-10}$ respectively. The respective LOED was 80.0 µg a S./larva, the NOED was 40.0 µg a S./larva

The EC<sub>50</sub> (successful adult emergence up to Day 22) were determined to be 520 mg a.s./kg food, respectively, while the respective LOEC was 519 mg a.s. Akg food and the corresponding NOEC was 260 mg a.s./kg food.

- A. MATERIALS
- , ig iarva J mg a.s./kg sponding NOEC Actonifen techm 1. **Test Item:** 10003 ₽₽₽ Batch no.: 99.5% w/w analysed Active Ingredient / Puri Yellow powder **Appearance:** Room temperature in the dark Storage: **Expiry** date 26 November 2016 nethoate Reference item? 2. 35015 Batch no.: Actřvě Ingredient∳ First instar larvae (L1) honey bees (Apis mellifera L.) 3. Test Organis Age: <sup>st</sup> instar, 1 day old 🖉 Source: Feeding: None prior to test STUDY
- d, methods B.
- 05 to 1. In-life phase 26 September 2016

~Ç

2. Exposure conditions - set vessels:

Crystal polystyrene grafting cells, diameter 9mm, in 48-well cellular culture plate. Culture plates were placed on adjustable warming plate set to 34.5°C. Test was conducted in a Binder KBF 720 climatic chamber

After day 8 relative humidity was decreased and honey bee pupae were transferred into emergence boxes on day 15. Each



culture plate was covered with a perforated lid and equipped with a syringe containing 50% w/v sucrose solution **Experimental design:** Control, solvent control and five test item groups (32, 65; 260 and 519 mg a.s/kg food, equivalent to doses of 5.0, 10, 20 40 and 80 µg total a.s./larva Reference item (dimethoate, 48 mg ass./kg diet, equivalento a cumulative dose of 7,4 µg a.s/larva/ development period Three replicates of 12 larvae were used. Therefore a total **Replicates:** number of 36 bees for each control, test item concentration treatment and for the reference treatment were set up Target:  $34\% \pm 0.5$  °C; Achieved: 34.0 - 35.0 °C **Temperature:** Target: day 1 to 3, 95 \$5%; Achieved: 94 \$8% **Relative humidity:** Target: day & to  $15, 00 \pm 5\%$ ; Achieved: 70 - 79% Target: day 15 to 22, around 50%; Acheved: 48 - 52% Photoperiod: Dorkness (except during application and observation) **3. Administration of the test item**  *Dose preparation* 

#### Dose preparation

Test item stock solutions vere prepared reshloat each application day. Fest item and solvent control solutions were prepared using acetone as a solvent Pest solutions were placed in an ultrasonic bath for several minutes. Final feeding solutions were prepared by mixing previously compounded stock solution with untreated final diet at a fixed volumeter ratio. Final diet@were placed on a multiple vortexer for 5 mutues to ensure even distribution.

Application of control, test and reference item took place from day 3 definal diets were warmed to 34.5°C in a climate chamber and vortexed again before feeding.

## 4. Measurements and observations

Mortality: Number of dead larver (impobile of which doe not react to contact is noted as dead) were assessed daily on Days 4 to & (larvae) and day 15 (pupae). Larval mortality included all individuals, which had died between Days 3 and 8, while dead individuals between Days 8 and 22 were termed 'pupal mortality'. Together they were termed, total mortality'.

Adult emergence: At the end of the test Day 2), bees which emerged successfully were counted. Lifetess pupae and bees opthose phable to leave the breading cups on their own accord, were marked as dead. In order the offects observed in the treatment group by the control (i.e. background mortality) any calculations were performed using 'mortality' rather than 'adult emergence'.

Other observations included amounts of unconsumed food and/or substantially undersized larvae.

All fipal diets were samples in duplicate directly after preparation (Days 3, 4, 5 and 6). Analytical samples were stored frozen (-18°C) until required for analysis. Analysis was conducted by reversed phase high performance liquid chromatography (RP-HPLC) with MS-MS detection.

#### 5. Statistics/Data evaluation



The percent cumulative mortality was calculated for each treatment group and was corrected for control mortality according to the formula of (1925) and modified by (1947).

The Step-down Chochran-Armitage test was used (one-sided greater,  $\alpha = 0.05$ ) to evaluate significant differences between mortality data in the control and the test treatments and to determine the NOEC/NOED. A Trimmed Spearman-Karber procedure was used for calculation of ED/EC<sub>50</sub> values. A Weibull regression was used to determine the  $EC/ED_{10}$  and  $EC/ED_{20}$  values.

Statistical calculations were made by using the statistical professional Ratte.

# II. RESULTS AND DISCUSSIO

#### A. ANALYTICAL VERIFICATION

to 15% with no actonifen Measured concentrations of aclonifen in test samples ranged from 84 detected in either the control or the solvent control. The concentrations remained within  $\pm 20\%$ , therefore, results were determined based on homispal test concentrations. 

#### Analytical verification of feeding solutions Table:

|                          | , Q           |                            |                                         | ò x       |
|--------------------------|---------------|----------------------------|-----------------------------------------|-----------|
| Nominal<br>concentration | Sampling time | Measured concre<br>(mg/kg) | <sup>3</sup><br><sup>3</sup> of nominal | Mean % of |
| (mg a.s./kg)             |               |                            |                                         | Ô         |
| Control                  |               | n.d.                       | <u> </u>                                | <u> </u>  |
| Solvent control          |               |                            | _~ ^v \$                                | -         |
| 519.67                   |               |                            | 0 407 xy<br>0 02 xy                     | 104       |
| S <sup>I</sup>           |               | ~ <u>552</u> % ~           | 101<br>106<br>106<br>103                |           |
| 259 <sub>8</sub> 3       | ≪ 4.          | \$ 258.5~                  | 103<br>99<br>0 115                      | 106       |
| - ÉG                     |               | 279.6                      | → 107<br>→ 99                           |           |
| 129.92                   |               |                            |                                         | 92        |
|                          |               | × 109.4 °                  | 84<br>98                                |           |
| ¥ -                      | 8 40 6        | 64.85                      | 100                                     | 100       |
| 6496                     |               | 67596<br>67596             | 104<br>96                               |           |
| A D                      |               | 2 33.84<br>33.39           | 104<br>103                              |           |
| 32.48                    |               | 30.97<br>30.51             | 95<br>94                                | 99        |
| d. not detected          |               | 00.01                      |                                         |           |

method is summarised in Document M-CA4 (CA 4.1.2/76). The



After 120 hours of repeated oral exposure (Day 8) larval mortalities ranged from 5.6 - 8.3% in the controls. Pupal mortality (between Days 8 and 22) was 14.7% in the control and 9.1% in the solvent control. The control group showed a total mortality of 16.7 - 19.4% by Day 22. At the end of the test (Day 22), adult emergence rates between 80.6 and 83.3% were determined.

In the test item group larval mortalities at Day 8 ranged between 0 and 38.9%. Pupal mortalities ranged between 2.9 and 31.8% in the test item treatment groups. Total mortalities by Day 22 ranged between 8.3 and 58.3%. The adult honey bees emerged at rates ranging between 41.7 and 91.0% following an application of 80.0, 40.0, 20.0, 10.0 and 5.0  $\mu$ g a.s./larva, respectively, during the tarval stages. Only the larvae treated with 80.0  $\mu$ g a.s./larva showed a statistically significantly increased mortality when compared to the solvent control. The statistical evaluation of the adult emergence rate was done using all absolute mortality data, in order to correct the adult emergence rate with control mortality.

|                  |                  | .4                                  |                 |                            | Un los          | $\bigcirc^{\prime}$ |           |
|------------------|------------------|-------------------------------------|-----------------|----------------------------|-----------------|---------------------|-----------|
|                  |                  | Ę,                                  | Day 8           | × ×                        | A ô             | ,                   |           |
| Dose             | Concn            | Laryal m                            | ortality 🖉      | Mean                       |                 | mortality 🗶         | Emergence |
| μg a.s./larva)   | (mg a.s./kg      | Q (%                                | ₩ ≫             | ð ð ther 🖉                 | Č (?            | P S                 | rate (%)  |
| (µg a.s./1a1 va) | food)            | abs.                                | corr.           | obs. <sup>a</sup> O<br>(%) | Sabs.           | corr.               | abs.      |
| Control          | -                | 5.6                                 |                 |                            | 192             |                     | 80.6      |
| Solvent control  | - ~              | 8.3                                 | 0 0             | L 0 2                      | 16.7            |                     | 83.3      |
| 80               | 519 🔊            | & <b>3</b> 8.9                      | 33,3            | 56.7                       | °≈58.3* ©       | 50 J                | 41.7      |
| 40               | 2600             | 0 <sup>2.8</sup> × 5.6 <sup>3</sup> | - <b>6</b> .1** | Q                          | \$ 16,7         | s p                 | 83.3      |
| 20               | 130              | 5.6                                 | 3.0**           |                            | 8:3             | \$\$10**            | 91.7      |
| 10               | ×65 ×            | »<br>(Q.                            | ⊃_9.1⊘          |                            | <u>%</u> 11.1 % | -6.7                | 88.9      |
| 5.0              | \$ <sup>32</sup> | ~~ <sup>5.6</sup> ©                 | -3,0** 2        |                            | 0ľ6.7 🖑         | ″ <u>0</u>          | 83.3      |
| Reference item   | <u> </u>         | Ø) 83 <u>3</u> S                    | <u>82.4</u>     |                            | 94.             | 93.1                | 5.6       |

## Table: Effects of aclonifen on honey bee larvae from repeated exposure

Results based on mean of 3 replicates (12 larvae each replicate)

- a Other observations (e.g. remaining food)
- \* Statis ally significant compared to control
- \*\* Negative values indicate higher mortality in control graph than in treatment group

# C. ALIDITY CRITERIA

| Validity criterion                                       | Required<br>OECD Suidance<br>cument No. 239, 2016) | Achieved                                     |
|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------|
| Average mortality in control treatment Q Q               | ∠© ≤15%                                            | 5.6 - 8.3% in control and<br>solvent control |
| Adult emergence rate Day 22)                             | ≥70%                                               | 80.6 – 83.3% in control and solvent control  |
| Average mortality in reference item treatment<br>(Day 8) | ≥50%                                               | 83.3%                                        |
|                                                          |                                                    |                                              |

All validity criteria were satisfied and therefore this study can be considered to be valid.



#### Table:Summary of endpoints

| Endpoint (up                | o to day 22)     | μg aclonifen/larva<br>(95% confidence interval)    |         |
|-----------------------------|------------------|----------------------------------------------------|---------|
|                             | LOED             | 80.0                                               |         |
| Test item                   | NOED             | 40.0 Ø <sup>y</sup>                                |         |
| Test item<br>doses          | ED <sub>10</sub> | 80.0 (71.3 - 89.8)                                 |         |
| uuses                       | ED <sub>20</sub> | 47.3 (25.2 - 88 <sup>(4)</sup> )                   |         |
|                             | ED <sub>50</sub> | 18.0(9.6 - 32)                                     |         |
|                             |                  | mg aclonifen kg food Ø<br>Ø5% confidence interval) |         |
|                             | LOEC             | A 99 & A                                           |         |
| Test item                   | NOEC             |                                                    | D' Q Q' |
| Test item<br>concentrations | EC10             | ° 52@(463,~\$83) © ~                               |         |
|                             | EC <sub>20</sub> | 208 (163 – 581) S                                  | · y 🔍   |
|                             | EC50             | <u> </u>                                           |         |
|                             |                  |                                                    | × & Q'  |

## III. CONCLUSION

Measured concentrations remained within  $\frac{420\%}{3}$  therefore, results were based on nominal test concentrations.

The ED<sub>50/20/10</sub> (successful adult emergence up to Day 22) were determined to be  $80.0/47.3/18.0 \mu g$ a.s./larva, respectively. The respective LOKD was  $80.0 \mu g$  a.s./larva, the NOED was  $40.0 \mu g$  a.s./larva. The EC<sub>50/20/10</sub> (successful adult emergence up to Day 22) were determined to be 520/308/116 mg a.s./kg food respectively while the respective LOFC was  $219 \mu g$  as /kg food and the corresponding NOEC

food, respectively, while the respective LOE was 919 mg a.s./kg food and the corresponding NOEC was 260 mg a.s./kg food.

(2017)

Assessment and conclusion by applicant: All validity criteria were satisfied and therefore this study can be considered to be valid.

After a 22-Day repeated fromey bee larver exposure with ackinifen technical study the NOEC was determined to be 200 mg aclonifen/kg tood. The equivalent NOED was 40.0 µg aclonifen/larva.

The EC<sub>50</sub> after 22 does of pepeated exposure was determined to be 520 mg aclonifen/kg food, equivalent to an ED<sub>50</sub> of 80-0  $\mu$ g aclonifen/larva

Assessment and conclusion by RMS:

CA 8.3 .4 Sub-lethal effects

No studies to assess the sub-lethal effects of the active ingredient, aclonifen, have been perfomed on bees.



#### CA 8.3.2 Effects on non-target arthropods other than bees

No studies on the active ingredient, aclonifen, have been perfomed on non-target arthropods other than bees. Studies on the representative formulation containing aclonifen are presented in the product of dossier.

| Data Point:                | KCA 8.3.2/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Report Year:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Report Title:              | A study of the acute toxicity for aleochara blineata (staphy midae) of SAG 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | $01 \text{ H} \qquad 0'' \qquad 0' \qquad 0' \qquad 0'' \qquad 0''' \qquad 0''' \qquad 0'''' \qquad 0''''''''$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Report No:                 | R007268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Document No:               | M-174575-01-1 & Q X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Guideline(s) followed in   | IOBC/WPRS (Samsoe-Petersen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deviations from current    | Current Guideline: Grimon et al 2000 2 2 2000 2 2000 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| test guideline:            | The test was performed over \$5-Day exposure period rather than the current<br>requirement of 28 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | requirement of 28 days a gran a gran gran gran gran gran gran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Previous evaluation:       | yes, evaluated and accepted a strain of the |
|                            | Source. Study ast relies upon Decemper 201 (RMSDE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GLP/Officially             | Yes, Conducted under GLP Official Grecognised testing factities &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Acceptability/Reliability: | Supportive only of a way way was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3.2.1 of the product dossion.

| Data Point:                | KCA \$3.2/02~ 0 0                                                            |
|----------------------------|------------------------------------------------------------------------------|
| Report Author: 🖉 🛁         |                                                                              |
| Report Year:               | 1992 $O' O' O'$                                                              |
| Report Title?              | @ study of the adute tox city for Poecilus cupreus (Carabidae) of SAG 127 01 |
| Report No.                 | K007267 4 0 0                                                                |
| Documeto No:               | M-074573-64-1                                                                |
| Guideline(s) followed in   | BBA: V123-2.1.8                                                              |
| study. V                   |                                                                              |
| Deviations from current    | Current Guideline: BBA VI 23-2.1.8                                           |
| test guideline:            | Ngộc <sub>v</sub> ý                                                          |
| Previous evaluation:       | res, evaluated and accepted                                                  |
|                            | Source; Study of st relied upon, December 2011 (RMS: DE)                     |
| GLP/Officially             | Yes Sonducted under GLP/Officially recognised testing facilities             |
| recognised testing         |                                                                              |
| facilities:                |                                                                              |
| Acceptability/Reliability: | Yes                                                                          |

COS S



O

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3.2.1of the product dossier.

| Data Point:                | KCA 8.3.2/03                                                                                                                          |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                       |
| Report Year:               |                                                                                                                                       |
| Report Title:              | A study of the acute toxicity for pardosa sp. (spidets) of SAG 127 01                                                                 |
| Report No:                 | R007269                                                                                                                               |
| Document No:               | M-174577-01-1                                                                                                                         |
| Guideline(s) followed in   | BBA (July 28, 1987)                                                                                                                   |
| study:                     |                                                                                                                                       |
| Deviations from current    | Current Guideline: BBA VI, 23-2.1.8, 1991                                                                                             |
| test guideline:            |                                                                                                                                       |
| Previous evaluation:       | yes, evaluated and accepted Source: Study listrelied mon, December 2011 (RMS: DE)                                                     |
|                            | Source: Study listrelied upon, December 2011 (RMS: DE)                                                                                |
| GLP/Officially             | Yes, conducted under GPP/Officially recognised testing facilities                                                                     |
| recognised testing         | Source: Study list relied upon, December 2011 (RMS: DE)                                                                               |
| facilities:                |                                                                                                                                       |
| Acceptability/Reliability: | Yes A 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                             |
|                            | $Yes \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q}$ |
|                            |                                                                                                                                       |

In the previous submission (DAR 2006) this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in tail in Section 10.3.2.1 of the product dossier (2006) and ( 

| Data Point: S OKCA'8.3.2/04 S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Data Point:     KCA 8.3.2/04       Report Author:     Image: Constraint of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title Final Report 2 Effects of EXP04209E on the Sacewing Chrysoperla carhea Steph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Nearoptera Chrysopidae) in the Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $[Report (No: \mathcal{O} \ ROO (S586) \ \mathcal{O} \ \mathcal$ |
| Document No: $\sqrt{177360-01-10}$ $\sqrt{1}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Guideline(s) followed in JIOBOWPRS 1988; rug-test group Vogt 1995, Vogt et al. in prep.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| study: Q A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Deviations from current V Corrent Chridelin IOBC WPRS 4988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| test guideline. None None None None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Previous evaluation: yes, evaluated and accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Souce: DAR, Vol 3 B9 (9,5 table 9.5-7), August 2006 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GLP/Officially Set conducted order GLP/Officially recognised testing facilities facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| recognised testing facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acceptability/Renability: Yes a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Inclinities:     Inclinities:       Acceptability/Renability:     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $Q_{\mu}^{\nu} \sim \tilde{\gamma}^{\nu} = \tilde{Q} \sim \tilde{\gamma}^{\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3.2.1 of the product dossier.



| Г                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Point:                | KCA 8.3.2/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | Effects of EXP04209E on the wolf spider Pardosa sp (Araneae, Lycosidae) if the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                            | Laboratory - Extended Laboratory Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Report No:                 | B002997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document No:               | M-238654-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   | BBA: VI, 23-2.1.9 (1994) Draft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current    | Current Guideline: BBA VI, 23-271.9 (1994) Draft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| test guideline:            | A natural soil (LUFA 2.1) was used instead of quartz sand as the substrate. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | time interval of checks for portality, sublethal effects and food consumption were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | slightly changed. Deionized water rather than tap water was used as the test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | vehicle. Acceptable control mortality was reduced from 10% to 8.8%. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | acclimatisation period was 3 days before the start of the experiment rather than 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | days. The above deviations, were considered not to have have any adverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            | scientific effect on the outcome of the study. $O^{*}$ $O^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Previous evaluation:       | yes, evaluated and accepted a gradient of the second                                                                                                                                                                                                                                              |
|                            | Source: Study Ist relied upon December 2067 (RMS?DE) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GLP/Officially             | Yes, conducted under GLP Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Yes a with the first the f |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3.2.2 of the product doster.

| CA 8.3.2.1 Effects            | s on Aphidias rhopalosiphi                                           |
|-------------------------------|----------------------------------------------------------------------|
|                               |                                                                      |
| ÊŶ O,                         |                                                                      |
| Data Point:                   | KKA 8.3.2.1/01 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                 |
| Report Author:                |                                                                      |
| Report Year:                  |                                                                      |
| Report Title: 🖉 🔊             | Effects of WXP 0 209E on the apprid parasitoid Aphidius rhopalosiphi |
|                               | Olymenoptera Aphididae) in the laboratory                            |
| Report No 🕰                   | R00697 4 0                                                           |
| Document No:                  | M-D2247-64-1 X                                                       |
|                               | IOBC/WBRS 1988 . 9                                                   |
| study 🗸                       |                                                                      |
|                               | Current Guideline: IOBC/WPRS 1988                                    |
| test guideline: $\mathcal{Q}$ | Note of of                                                           |
|                               | yes, evaluated and accepted                                          |
|                               | Source; Study of st relied upon, December 2011 (RMS: DE)             |
| GLP/Officially                | Yes conducted under GLP/Officially recognised testing facilities     |
| recognised testing            |                                                                      |
| facilities:                   | K∫ <sup>v</sup>                                                      |
| Acceptability/Reliability:    | Yes                                                                  |
|                               |                                                                      |



In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3 2.1 of the product dossier.

#### CA 8.3.2.2 Effects on Typhlodromus pyri

| Data Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KCA 8.3.2.2/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Year:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Effects of EXP04209E on the predatory mite typhtodromus pyri Scheuten (Acarit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phytoseiidae) in the Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Document No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M-172210-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Guideline(s) followed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M-1/2210-01-1<br>IOBC/WPRS 1988;<br>Current Guidefine: IOBC/WPRS 1988<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| study:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Deviations from current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current Guidefine: IGBC/WPRS 1988<br>None<br>yes, evaluated and accepted<br>Source: Study list relied upon December 2011 (RMS: DE)<br>Yes, conducted under SLP/Officially decognized testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| test guideline:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None Q V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Previous evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yes, evaluated and accepted with a start of the second s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source: Study list relied upon December 2011 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GLP/Officially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes, conducted under GLP/Quicially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| recognised testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| facilities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>v</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u> <u>k</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acceptability/Reliability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ayes of o of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a de la companya de la |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3.2.1 of the product clossics.

L.S.

| × %                        |                                                                                     |
|----------------------------|-------------------------------------------------------------------------------------|
| Data Paint:                | KG 8.3.2 02                                                                         |
| Report Author:             |                                                                                     |
| Report Year:               |                                                                                     |
| Report Title:              | 2003 Toxicity to the predictory mite Typhedromus pyri Scheuten (Acari, Phytoseidae) |
|                            | in the labouratory Actionity water miscible suspension concentrate 600 g/L code:    |
| ¥                          | AE F068300 00 SC 50 A203                                                            |
| Report No.3                | QC032803 QX QX                                                                      |
| Document No:               | M-32137-00-1                                                                        |
| Guideline(s) followed in   | ESCORT: 2001; IOBC: 2000                                                            |
| study:                     |                                                                                     |
|                            | Current Guideline: IOBC (                                                           |
| test guideline:            | Note of other                                                                       |
| Previous evaluation:       | yes, evaluated and accepted                                                         |
|                            | Source: Study of trelied upon, December 2011 (RMS: DE)                              |
| GLP/Officially             | Yes bonducted under GLP/Officially recognised testing facilities                    |
| recognised testing         |                                                                                     |
| facilities:                |                                                                                     |
| Acceptability/Reliability: | Yes                                                                                 |
|                            | <b>v</b>                                                                            |

Ĉ



In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.3, 2.1 of the product dossier.

| Data Point:                | KCA 8.3.2.2/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Title:              | EXP04209E: An Extended Laboratory Study to Exaluate the Effects on the predaceous Mite Typhlodromus Wri Scheuten (Keari: Phytoseijdae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | predaceous Mite Typhlodromus wri Scheuten (Keari: Phytosejidae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report No:                 | B002976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document No:               | M-238634-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| study:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from current    | Current Guideline: 1992 & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| test guideline:            | Age of protonymphons not exactly known but is expected to be less than 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | hours A & Q Q O' Q' A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Previous evaluation:       | yes, evaluated and accepted a gradient of the second secon |
|                            | Source: Study ist relied upon December 2007 (RMS?DE) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GLP/Officially             | Yes, conducted under GLP Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | Yes a w w w w w w w w w w w w w w w w w w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is subarized in full in Section 10.3.2.2 of the product dosser.

| _0~    |            | Å 40         |               |             |
|--------|------------|--------------|---------------|-------------|
|        | Pffaats an | nên takata   |               |             |
| CA 8.4 | Enects on  | mon-target s | sour mesorand | Imacrofauna |
|        |            | V and V      |               | ¥           |

Table 8.41: Summary of the effects of Acloniten on non-tagget soil meso and macrofauna

| ~ 2             |           |                                                   | a                                            |                                     |
|-----------------|-----------|---------------------------------------------------|----------------------------------------------|-------------------------------------|
| Test Species    | Test Item | Duration of                                       | Endpoint                                     | Reference                           |
| Earthworms      |           |                                                   | ý <sub>O</sub> y                             |                                     |
| Eisenia andrei  | Aclonifer | Active 5                                          | $\bigcirc OEC = 100 \text{ mg a.s./kg d.w.}$ | KCA 8.4/01<br>M-174306-01-1<br>1990 |
| d.w. Dry weight |           |                                                   |                                              |                                     |
|                 |           | 1 + cut y 5 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                              |                                     |
|                 |           |                                                   |                                              |                                     |



| Data Point:                | KCA 8.4/01                                                                                               |
|----------------------------|----------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                          |
| Report Year:               | 1990                                                                                                     |
| Report Title:              | The acute toxicity of aclonifen, CME127 to earthworms (Eisenia foetida)                                  |
| Report No:                 | R007146                                                                                                  |
| Document No:               | M-174306-01-1                                                                                            |
| Guideline(s) followed in   | EU (=EEC): 87/302/EEC; OECD: 207                                                                         |
| study:                     |                                                                                                          |
| Deviations from current    | Current Guideline: OECD 207 (1984)                                                                       |
| test guideline:            | None V O O V                                                                                             |
| Previous evaluation:       | yes, evaluated and accepted $\mathcal{A}$ $\mathcal{O}^{\vee}$ $\mathcal{A}^{\vee}$ $\mathcal{O}^{\vee}$ |
|                            | Source: Study list relied upon, December 2004 (RMS: DE)                                                  |
| GLP/Officially             | Yes, conducted under GLP Officially recognised testing facilities                                        |
| recognised testing         |                                                                                                          |
| facilities:                |                                                                                                          |
| Acceptability/Reliability: | Yes O V V V V V A                                                                                        |
|                            |                                                                                                          |
|                            |                                                                                                          |
|                            |                                                                                                          |

In the previous submission (DAR, 2006), this study was evaluated and accepted as valid for risk assessment purposes. This study design and endpoint is no longer required for the registration of active ingredients in the EU and hence a summary of this study is not presented in this cossier.

# CA 8.4.1 Earthworm, sub-lethal effects

No earthworm sub-lethal studies on the active ingredient acloriten, have been performed. Studies on the representative formulation containing acloriten are presented in the product dossier.

| Data Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Anthor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report ear:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report Title: Assessment of Sublethal Effects of EXE4209 - (Official German Regristration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Report Title:<br>Assessment of Soblethal Effects of EXE4209 - (Official German Regristration<br>Name Bandury - on Fosenia foetida in artificial soil - (Determination of Effects<br>on Reproduction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report No: $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Document No. M-1749/2-01-5 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guideline followed in BBA VI, 2-2, 1SO: 1268-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| study: 2 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Deviations from current Guideline, ISO, Guideline 11268-2 and BBA Guideline VI, 2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| testegnideline:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Previous evaluation: ves, evaluated, not accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Source: DAR, Vob3 B9 (9.6.2), August 2006 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GLP/Officially a set of the set o |
| recognised testing a so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| facilities for the second seco |
| Acceptability/Reliability: Now is no longer acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section despite it being performed on the representative formulation. The study was evaluated and not accepted as valid for risk assessment purposes. Therefore a summary of this study is not presented in this dossier.



In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is sumarized in full in Section 10.4, 1.9 of the product dossier.

# CA 8.4.2 Effects on non-target soil meso and macrofauna (other than earthworms)

#### CA 8.4.2.1 Species level testing

No studies on non-target soil meso and macrofauna other than earthworms) on the active ingredient, aclonifen, have been performed. Studies on the representative formulation containing aclonifen the presented in the product dossier.

| Data Point:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:                 | AE F068500 00 \$C50 A203 = EXP04209E (Bandur): Eaboratory dose-repons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Report Title:                  | AE F068500 00 SC 50 A203 = EXP04209E (Bandur): Laboratery dosectepons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | test to evaluate ffect on survious and sproduction of the prediceous mite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | Hypospis active ifer Canestrin (Acati. Laelapidae) in standard soik (LUFA 2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report No:                     | CQ29557 × ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document No:                   | M-217404-01-1 7 7 7 7 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Guideline(s) followed in s     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| study:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Deviations from current        | Caprent Guideline: OECD 226, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| test guideline:                | The test was performed to the outdated Bakker test design with 14-day mortality,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , Š <sup>*</sup> , (           | 7-day mating and 7-day reproduction phases tather than a single 14-day mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | and reproduction phase is a interval of the second se |
| Previous evaluation:           | yo, evaluated and accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O <sup>V</sup>                 | Source: Study list relied upon, December 2014 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GLP/Officially                 | Source, Study list relied upon December 2014 (RMS: DE)<br>Yes, conducted under GLP/Officiall@recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| recognised testing facilities: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Acceptability/Reliability:     | Supportive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | Supportive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

In the previous submission (DAD, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is discussed in Section 10.4.2.1 of the product dossier.

### CA 8.5 @ Effects on nitrogen transformation

Table 8.5-1; Summary of the effects of Aclonifen on soil nitrogen transformation processes

| Test item | Timescale | *<br>Endpoint                                                                                            | Reference                             |
|-----------|-----------|----------------------------------------------------------------------------------------------------------|---------------------------------------|
| Aelonifen | 28 days   | No adverse effect after 28 days at a maximum<br>tested concentration of 15 kg a.s./ha (20 mg<br>a.s./kg) | KCA 8.5/01<br>M-218214-01-2<br>, 1984 |



| Test item                              | Time scale                | Endpoint Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|----------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Aclonifen                              | 5 days                    | No adverse effect after 5 days at a maximum<br>tested concentration of 13.5 kg a.s./ha (18 mg)<br>a.s./kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Endpoint in <b>bold</b> was use        | ed in the risk asses      | ssment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Data Point:                            | KCA 8.5/0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Report Author:                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Report Year:                           | 1984                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Report Title:                          | Study to d<br>Definitive  | Study to determine the effect of Aclonifen (CME 127) on solonicroftora -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Report No:                             | R007411                   | R007411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Document No:                           | M-218214                  | $-01-2\sqrt{7}$ is a final field of the field o |  |  |  |  |
| Guideline(s) followed study:           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Deviations from currer test guideline: | t Current G<br>None       | OECD 216, 2010 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Previous evaluation:                   | yes, eyalua<br>Source: St | yes, evaluated and accepted Source: Study list relied upon, December 2001 (RMS: DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| GLP/Officially                         |                           | No, not conducted under GLP/Officially recognised testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| recognised testing facilities:         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Acceptability/Reliabili                | ty: Yes                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

### Executive Summary

Laboratory experiments were carried out to determine the effect of Actionifen (CME 127) on the nitrogen cycle. The study was carried out in accordance with the 1981 BBA-Richtlinienentwurf (draft guideline of the Federal Institute of Biology).

The test item was applied at 2 cates, 4 mg/kg and 20 mg/kg equivalent to 3 kg a.s./ha and 15 kg a.s./ha respectively, to two different soils (sand and loam) 0.5% of powdered lucerne meal (containing approx. 2.3% of nitrogen) was added as organic substrate.

The nitrogen cycle was unaffected by aclosifien After 2-4 weeks, nitrification of added ammonium sulphate was complete. There was no loss in the ammonium- and nitrate-nitrogen balance.

Ammonification and nitrification of Eucerne, meal was very slow which was not caused by aclonifen but by the slight N-mineralization of Eucerne. A subsequent test using sand with horn meal (instead of Eucerne) showed that mineralization progressed rapidly.

The results of this study indicate that soil nitrification and respiration were unaffected by aclonifen at levels up to 10 kg as ha. The deviation between treated and control soil was lower than 25% at the end of the evaluation. Therefore, the impact of aclonifen on soil was considered negligible.

Ĵ

#### I. MATERIALS AND METHODS

A. MATERIALS



Aclonifen (CME 127) 1. **Test Item:** Not provided Batch no.: **Active Ingredient / Purity:** 99.7% Not provided Expiry date: 2. **Test Soils:** Two types of soil were selected the one being used for fru (Ingelheim sand) and the other for vegetable cultivation ( (Schwabenheim loam). No grochemicals or organic manure had been applied to either soil for several years. Mixed samples were taken from the top soil (0-10 cm) directly before the start of the study « Source: dried (if required and stoved (Dmm) he soul was sampled a **Pre-treatment:** 



**Photoperiod:** 

In darkness

### 3. Administration of the test item

### Dose preparation and dosing

Individual soil samples equivalent to 100 g of dried soil were spread out over an area of about 100 cm<sup>2</sup> for treatment. Each quantity of active ingredient was dissolved in 1 mL of acetone and overly applied to the soil using a 1-mL sprayer. After evaporation of the acetone, the samples were puxed thoroughly using a Krupps mixing apparatus.

In order to examine the nitrification process, nitrogen was added to the soils (test sections i - ii) at the rate of 20 mg N/100 g of dried soil by mixing an aqueous solution of  $(NHQ_2SO_4)$  containing 4.71 g/100 mL.

0.5% of lucerne meal (about 11.5 mg N/100 g of soil) was added to other soil samples (test sections iv to vi) for the purpose of investigating nitrogen mineralization. Owing to the mineralization of lucerne discernible in the interim period, the BBA-Richtmien new (BBA) draft guideline) was amended, and a further series of test carried out with Ingelheim and storn neal was used instead of lucerne meal (test sections vii - ix) at the rate of 165 mg per 100 g of med soft (equivalent to 20 mg N). The water content of the soils was adjusted to 40% of their maximum water-holding capacity. Provision was made for each section of the test to be epeated twice at 40 g.

### 4. Measurements and observations

Samples were taken oprdays 0, 7, 14, 28 and 56.

Nitrogen cycle/nitrofication: On each sampling day, the samples (i viii) were extracted by shaking for one hour in 200 mL of otassium aluminium sulphate solution and the amounts of ammonium-nitrogen (NH<sub>4</sub>-N) and nitrate nitrogen (NO<sub>3</sub>-N) were determined using a colormetric method or ion-selective electrodes.

*Nitrogen cycle/minerdfisation*? The soil samples in sections iv  $\sqrt{2}$  ix were extracted by shaking for one hour in 50 mL of algominium sulplate solution. The supernatant liquid phase was decanted and the NO<sub>3</sub>-N and NH<sub>4</sub>-N content determined using an ion-selective electrode.

# 5. Statistics/Data evaluation

No statistical analysis of the generated data was performed.

A. A. H. RESULTS AND DISCUSSION

No analytical verification was required.

# B. BIOLOGICAL DATA

The nitrogen cycle was unaffected by aclonifen. After 2-4 weeks, nitrification of added ammonium sulphate was complete. There was no loss in the ammonium- and nitrate-nitrogen balance.

Ammonification and nitrification of Lucerne meal was very slow which was not caused by aclonifen but by the slight N-mineralization of Lucerne. A subsequent test using sand with horn meal (instead of Lucerne) showed that mineralization progressed rapidly.



# Table:Nitrification of ammonium sulphate: values expressed in mg N/100 g dried soil and in<br/>% of control ( )

| Devi | Sand    |                  | Loam           |             |                 |                |
|------|---------|------------------|----------------|-------------|-----------------|----------------|
| Day  | Control | 0.4 mg aclonifen | 2 mg aclonifen | Control     | 0.4 mg aclonife | 2 mg aclouifen |
| 0    | 19.3    | 19.3 (100)       | 19.3 (100)     | 19.7        | 19.0 (96.4)     | 19.15 (97)     |
| 7    | 20.3    | 20.3 (100)       | 20.3 (100)     | <b>(1</b> ) | 17.5 (96.7)     | 213 (147.7)    |
| 14   | 18.3    | 19.9 (108.7)     | 19.1 (104.4)   | ر<br>19.7   | 2017 (102)      |                |
| 28   | 19.5    | 18.2 (93.3)      | 18.2 (93.3)    | 20.3        | \$20.0 g(98.5)  | 243 (100)      |
| 56   | 21      | 20.3 (96.6)      | 20.3 (96.6)    | 。20.0 °     |                 | 20.0, ×(100)   |

# Table: Ammonification and nitrification of Lucerne meal and horn meal: values expressed in mg N/100 g dried soil and in % of control ()

| Day |         | Sand/Lucerne        | meal O            |                   | Sand/born m            |                    |         | Coam/Icocerne         | meal              |
|-----|---------|---------------------|-------------------|-------------------|------------------------|--------------------|---------|-----------------------|-------------------|
|     | Control | 0.4 mg<br>aclonifen | 2Qng<br>aclonifen | Control           | 0.4 mg ~<br>arclonifep | ©mg<br>actonifer   | Control | °QA mg<br>" aclonifen | 2 mg<br>aclonifen |
| 0   | 0.3     | 0.3 (100)           | 0.2 (66.6)        | \$ <sup>1.2</sup> | 1.2 (100)              | Q1.2 (000)         | 0.2     | 0.4 (200)             | 0.4 (200)         |
| 7   | 0.1     | 0.1 (100)           | <0.\$(<100)       |                   | 7.7 (124.2)            | 6,1 (98,4)         | 0%0     | 0.6 (100)             | 0.7 (116.6)       |
| 14  | <0.1    | 0.1 (100)           | Q.1 (>Q0)         | Q1.1 2            |                        | 9.4 (84.7)         | ×9.0    | 0.9 (90)              | 1.1 (110)         |
| 28  | 0.9     | 0 (100)             | 1.1 122.2         | 10.8              | 8.67 (79.6)            | 10.8 (100)         | ≶ 1.9   | 1.9 (100)             | 2.1 (110.5)       |
| 56  | 2.8     |                     |                   | A.6               | 14.6 (1900)            | <b>3</b> .8 (94,5) | 1.7     | 1.9 (111.7)           | 2.6 (152.9)       |

ð

# C. VAQIDITY CRITERIA

| Validity criterion |           |       | Bequired           (QECD 216, 2010) | Achieved |
|--------------------|-----------|-------|-------------------------------------|----------|
| Variation between  | ontroks 0 |       | ©* <u>≤15%</u>                      | 0%1      |
| li an Davi 56 🖉    |           | ê a ê | N° A                                |          |

<sup>1</sup>: on Day 56

The validary criterion was satisfied and there are this study can be considered to be valid.

# D. Summary of endpoints

| Endpoint 🖉 🖓              | Effect 🕡                                                                     |
|---------------------------|------------------------------------------------------------------------------|
| Nitrogen transformation 0 | No adverse effect after 56 days at a maximum tested concentration of 20 mg   |
|                           | S/kg soil dry weight (equivalent to field application rate of 15 kg a.s./ha) |
|                           |                                                                              |
|                           | III. CONCLUSION                                                              |

The results of this study indicate that soil nitrification and respiration were unaffected by aclonifen at levels up to 15 kg a.s./ha. The deviation between treated and control soil was lower than 25% at the end of the evaluation. Therefore the impact of aclonifen on soil was considered negligible



|                                                     | (1984)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment and conclus                              | ion by applicant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                     | e satisfied and therefore this study can be considered to be valid. $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aclonifen had no advers<br>be concluded that acloni | the impact on soil nitrate transformation at levels up to 15 kg a.s. Aga. It can<br>fen will not have any adverse long-term influence on soil microflora<br>pration depth of 5 cm and a bulk soil density of 1.5, the theorest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Assuming a soil incorpo concentration of 15 kg a    | .s./ha was estimated to be equivalent to 20 mg a.s./kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Assessment and conclus                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Point:                                         | KCA 8.502 0' 'Y 'Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Report Author:                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:<br>Report Title:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Thie.                                        | A laboratory assessment of the effects of Actoniton on asymbiotionitrogen fixation by soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Report No:                                          | R007082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Document No:                                        | M-14171-91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Guideline(s) followed in                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| study:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deviations from corrent. (                          | Not applicable no specific guideline gited in report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| test guideline: 🖉 🔊                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Previous evaluation:                                | y (3), evaluated and accepted a standard accepted and set of the s |
|                                                     | Source Study list relied upon December 2014 (RMS: DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GLP/Officially                                      | Yes, conducted under GLP/Officiall@recognosed testing facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| recognised testing facilities:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability:                          | Yes & w & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**Executive Summary** The effect of aclonition on soil microbial activity in terms of asymbiotic nitrogen fixation was determined.

The test item was applied at 2 rates to 2 soils to give 3.6 mg a.s./kg soil or 18 mg a.s./kg soil which is equivalent to 2.7 kg as./have 5 times that concentration distributed to a depth of 5 cm. The effect of aclonifen of asymbrotic proget fixation was investigated by measuring the rate of ethylene production from glucose and nded soil samples spiked with acetylene at daily intervals for up to 5 days.

The chay loan soil and ethylene production rates of between 50 and 100 times greater than the sandy loan soil which was considered to have a poor asymbiotic nitrogen fixing capacity. The poor nitrogen fixation rates in the sandy loam soil resulted in variations between replicates of the treatments. These variations gave rise to significant differences in the treatments which were not dose related and were



not sequential in time. By Day 5 there were no significant differences between the control and the treatments.

Aclonifen, when added to clay loam and sandy loam soils up to 13.5 kg a.s./ha, did not adversel affe asymbiotic nitrogen fixation.

|       | I. M                               | IATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.    | MATERIALS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.    | Test Item:                         | Aclonifen Technique (RPA 099795)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Batch no.:                         | 9229932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | <b>Active Ingredient / Purity:</b> | 995 g/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Appearance:                        | Yellow power ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Expiry date:                       | 22 November 1995 $\mathcal{S}$ $\mathcal{S}$ $\mathcal{S}$ $\mathcal{S}$ $\mathcal{S}$ $\mathcal{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Storage:                           | Ambient L & & A .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.    | Reference item:                    | Deproterby of a start st |
|       | Purity:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Purity:<br>Test Soils:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.    | Test Soils:                        | Aclonifen Technique (RPA 099765)<br>9229932<br>995 g/kg<br>Yellow powder<br>22 November 1995<br>Ambient<br>Obroterb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Source:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Pre-treatment:                     | Agriculture Linvited They had been sized to pass a 2mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                    | Screen prior & despatch. Of receipt, the soils were conditioned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                    | at $2^{\circ} \pm 2^{\circ}$ for s and 21 days a a moisture content of 22.62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                    | (clay loam) and 13.98% (sandy loam) respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B.    | STUDY DESIGN AND ME                | THODS & S O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1. In | -life phase: 🔬 📈                   | A May 18 June 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Ex | posure conditions 🗸                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Experimental design:               | Two test concentrations (3.6 and 18.0 mg test item/kg dry soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                    | weight) plusone control; five replicates of each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Temperature:                       | $2 \downarrow \downarrow 1^{\circ} C \downarrow \downarrow \uparrow 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Moisture content;                  | Elay loom: 22.62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                    | Sandy loan 13.98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Ac | iministration of the test item     | The soils used in the study were obtained from Rhone-Poulenc<br>Agriculture Limited. They had been sieved to pass a 2mm<br>screen prior to despatch. Or recent, the soils were conditioned<br>at 24 ± 2°C for 8 and 21 days at a moisture content of 22.62%<br>(clay loam) and 13.98% (sandy loam) respectively.<br>THODS<br>THODS<br>THODS<br>THODS<br>The source concentrations (3.6 and 18.0 mg test item/kg dry soil<br>weight) plucone control; five replicates of each<br>2) ± 1°C<br>Tay loam 22.62%<br>Sandy loam 13.98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The 1 | test item was distributed in acid  | washed silicon sand (3.6 mg or 18.0 mg test substance/10 g sand).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

10 g of the sand/test item mixture was roxed with 1kg soil (dry weight) to give the required target dose , Q Q levels. 4. Measurements and observations levels.

The active of the nitrogen fixation enzyme complex - nitrogenase - was measured by determining the rate of thylene production from the enzymatic reduction of acetylene in glucose amended soils.



For the glucose amendment, 10 mg glucose/g soil (dry weight) was added as a solution in water. For the clay loam soil, 3.8 mL of water containing 800 mg glucose was added to each 80 g dry weight soil aliquot. For the sandy loam soil, 1.1 mL water containing 800 mg glucose was added to each 80g dry weight soil aliquot.

On 0, 1, 2, 3 and 4 days (5 days for clay loam), approximately 10% acetylene based on the void volume of bottle after soil addition was added using 2 syringe device by withdrawing 6.5 mL air though septum? and replacing with 6.5 mL acetylene. The vessels were incubated in the presence of acetylene for approximately 24 hours.

#### 5. Statistics/Data evaluation

No statistical analysis of the generated data was performed.

#### A. ANALYTICAL VERIFICATION

No analytical verification was required.

#### B. **BIOLOGICAL DATA**

Acrated data was performed. II. RESULTS AND DISCUSSION ICATION puired. by the second seco **B. BIOLOGICAL DATA** loam soil which was considered to have a poor as mbiotic nitrogen fixing capability. The pattern of nitrogen fixation activity in both seils was prical for a limited energy source addition, reaching a peak between 2 and 3 days after glucose amendment and reducing to effectively zero after 4 days when the glucose was exhausted,

No significant différences were observed between treatments for the clay loam soil at the greatest rates of nitrogen fixation as measured by acetylene reduction. The poor nitrogen fixation rates in the sandy loam soil resulted in variations between veplicates of the treatments. These variations gave rise to significant differences in the treatments which were not doso related (see Day 2). These differences are not considered to be due to the treatments and thus not agronomically important.

#### The effect of aclouden in a clay fram soil on the rate of acetylene reduction to ethylene Table: (µmole/h)Qaverage of 5 replicate determinations):

| ~\$             |            | Time (days) |        |       |
|-----------------|------------|-------------|--------|-------|
| Treatment       |            | 2           | 3      | 5     |
| Control         | 2 n t      | 1.783       | 1.677  | 0.944 |
| 2.7 kg a.s./ha  | n.d. 0.036 | 1.989       | 1.787* | 0.899 |
| 13.5 kg a.s. @a | n.4 0046*  | 1.934       | 1.724  | 1.025 |

Time (days) time after glucese amendment when soil spiked with acetylene

\*significate differ &ce (ANOVA; p).05)

n.d.= none detected



# Table:The effect of aclonifen in a sandy loam soil on the rate of acetylene reduction to<br/>ethylene ( $\mu$ mole/h) (average of 5 replicate determinations):

| Treatment       | 0    | 1     | 2             | 35      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|-----------------|------|-------|---------------|---------|----------------------------------------|
| Control         | n.d. | 0.003 | 0.045         | 0.021   | 5 0.0 <b>60</b> 4                      |
| 2.7 kg a.s./ha  | n.d. | 0.004 | <b>@</b> 091* | 0.055 × |                                        |
| 13.5 kg a.s./ha | n.d. | 0.004 | 0.066 رو کې   | 0.057 L | 0.000 kg                               |

Time (days) = time after glucose amendment when soil spiked with acetylene \*significant difference (ANOVA; p=0.05)

n.d.= none detected

### C. VALIDITY CRITERIA

|                                         | A . 0 .    | Beguined O                   |            |
|-----------------------------------------|------------|------------------------------|------------|
| Validity criterion                      |            | Required<br>(0ECD 216, 2010) | Achieved S |
| Variation between controls              |            | € <sup>15%</sup> C           | n.d        |
| n.d.: not determined as only mean value | Seported 2 |                              |            |

The test was not performed in accordance with any standardised lest guadeline and hence confirmation of validity is not possible. The study is acceptable for use as additional information

# D. TOXICITY ENDROPN

### Table: Summary of endpoints

 Endpoint
 Effect

 Nitrogen transformation
 No adverse effect after 5 days at a maximum tested concentration of 13.5 kg a.s./ha

# 

Aclonifen, when added to day loan and sandy to an souls up to 13.5 kg a.s./ha, did not adversely affect asymbiotic nitrogen fixation.

(1994)

Assessment and conclusion by applicant:

The test was not performed in accordance with any standardised test guideline and hence confirmation of validity is not possible. The study is acceptable for use as additional information.

Aclonifen, when added to chay loan and sandy loam soils up to 13.5 kg a.s./ha (18 mg a.s./kg), did not adversely affect asymptotic nitrogen fixation.

and conclusion by RMS:



Ĩ

#### CA 8.6 Effects on terrestrial non-target higher plants

No studies on the active ingredient, aclonifen, have been perfomed on terrestrial non-target plants. Studies on the representative formulation containing aclonifen are presented in the product dossier.

#### CA 8.6.1 Summary of screening data

No screening studies have been performed.

#### CA 8.6.2 **Testing on non-target plants**

No studies on the active ingredient, aclonifen, have been performed on terrestrial non-parget plants. Studies on the representative formulation containing aclonifen are presented in the product dossier. Q,

#### CA 8.7 Effects on other terrestrial organisms (flora and fauna)

No additional studies on the active ingredient, aclopifen, have been performed.

#### Effects on biological methods for severge treatment CA 8.8

Summary of data on the effects of activiten on biological methods for sewage Table 8.8-1: 4 ? treatment S

n

| Test item                        | Test species                                                                                                                                                | <b>Reference</b>                    |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Aclonifen                        | Activated sewage                                                                                                                                            | KCA 8.8/02<br>M-177356-01-1<br>1999 |
| Acloniten                        | Activated stwage<br>Fludge micro-<br>organisms                                                                                                              | KCA 8.8/03<br>M-664091-01-1         |
| <sup>1</sup> : Study does not me | eet the validity operia of SECD 209 (2010)                                                                                                                  |                                     |
|                                  | Sludge meto-<br>organisms<br>Activated sewage<br>Studgemicro-<br>organisms<br>eet the validity efferria of SECD 209 (2010)<br>as used in the ask assessment |                                     |

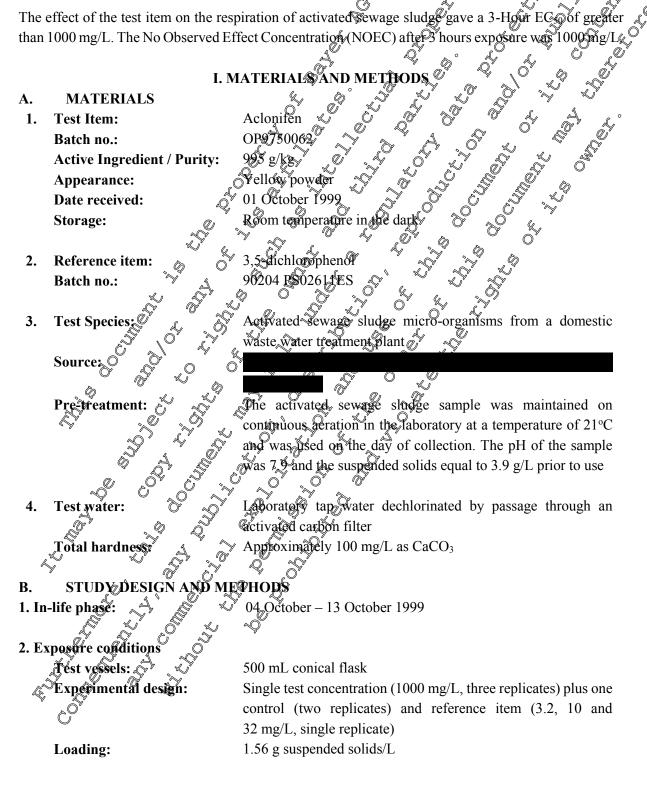


| Data Point:                     | KCA 8.8/01                                                                                               |
|---------------------------------|----------------------------------------------------------------------------------------------------------|
| Report Author:                  |                                                                                                          |
| Report Year:                    | 1994                                                                                                     |
| Report Title:                   | Bandur EXP04209 - Acute toxicity in bacteria (Pseudomonas putida).                                       |
| Report No:                      | R007904                                                                                                  |
| Document No:                    | M-175842-02-1                                                                                            |
| Guideline(s) followed in study: | DIN: 38/412                                                                                              |
| Deviations from current         | Current Guideline: DIN 38412-163985                                                                      |
| test guideline:                 | None                                                                                                     |
| Previous evaluation:            | yes, evaluated and accepted $\mathcal{A}$ $\mathcal{O}^{\vee}$ $\mathcal{A}^{\vee}$ $\mathcal{O}^{\vee}$ |
|                                 | Source: Study list relied upow December $26^{M}$ (RMS: DE)                                               |
| GLP/Officially                  | Yes, conducted under GLP Officially recognised asting facilities                                         |
| recognised testing              |                                                                                                          |
| facilities:                     |                                                                                                          |
| Acceptability/Reliability:      | Yes O' C A A                                                                                             |
|                                 |                                                                                                          |

In the previous submission (DAR, 2006), this study was presented in the active ingredient section. This study was performed on the representative formulation and hence is somarized in full in Section 10.8 of the product dossier. 

| Data Point:                |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Report Author:             |                                                                              |
| Report Year:               |                                                                              |
| Report Title:              | ACLODIFEN. Assessment of the inhibitory effect op respiration of activated   |
|                            | sewage sludge                                                                |
| Report No: 0               | $  R008584 \rightarrow \sqrt{0} \sqrt{7} \propto \sqrt{5}$                   |
| Document No?               | ₩ <sup>-</sup> 177356-01-1 <sup>™</sup> Q A O U                              |
| Guideline (Spfollowed in   | EU (=BEC): 83/302/BEC; OECD: 209; USEPA (=EPA): OPPTS 850.6800               |
| study:                     |                                                                              |
| Deviations from current    | Current Guideline, OECD209, 2010                                             |
| test guideline:            | The control oxygen uptake rate of 9.81 ang O2/g/h was lower than the current |
| Previous evaluation:       | guidetine requirement of 20 mg O2/g/h                                        |
| Previous evaluation:       | yes Evaluated and accepted 5                                                 |
|                            | Source: Study list elied (pon, December 2011 (RMS: DE)                       |
| GLP/Officially             | Ses, conducted inder GLP/Officially recognised testing facilities            |
| recognised testing         |                                                                              |
| Ideintice                  |                                                                              |
| Acceptability/Reliability: | Supportive only                                                              |
|                            |                                                                              |

### Executive Summary


Ś A study was performed to assess the effect of the test material on the respiration of activated sewage sludge. The method followed that described in the OECD Guidelines for Testing of Chemicals (1984) No 209 'Actionted Studge, Respiration Inhibition Test", EEC Commission Directive 87/302/EEC and US EPA Draft Ecological Effects Test Guidelines OPPTS 850.6800 (1996).



Following preliminary range-finding studies, activated sewage sludge was exposed to an aqueous dispersion of the test material item at a concentration of 1000 mg/l (three replicate flasks) for a period of 3 hours at 21°C with the addition of a synthetic sewage as a respiratory substrate.

The rate of respiration was determined after 30 minutes and 3 hours contact time and compared for the control and a reference material, 3,5-dichlorophenol.

The effect of the test item on the respiration of activated sewage sludge gave a 3-Hour EC than 1000 mg/L. The No Observed Effect Concentration (NOEC) afters hours





| Temperature: | 21°C                                                    |   |
|--------------|---------------------------------------------------------|---|
| Aeration:    | Compressed air (approximately 0.5 – 1 litre per minute) | Û |

#### 3. Administration of the test item

#### Dose preparation and dosing

An amount of test item (500 mg) was dispersed in approximately 250 mb of water and subjected to ultrasonication (approximately 30 minutes). Synthetic Sewage (16 mL), activated sewage slugge (200 mL) and water were added to a final volume of 500 mL to give the required concentration of 1000 mg/L.

#### Preparation of test system

At time "0" 16 mL of synthetic sewage was diluted for 300 mL with dilught and 200 mL of activated sewage sludge added in a 500 mL conical flask (first control) and the mixture aerated with compressed air. Thereafter at 15-minute intervals the procedure was repeated with appropriate amounts of the test or reference item being added. Finally a second control was prepared.

#### 4. Measurements and observations

As each vessel reached 30 minutes contact time an aliquot was removed from the conical flask and poured into the measuring vessel (250 ml darkened glass Biological Oxygen Demand (BOD) bottle) and the rate of respiration measured using a Yellow Springs dissolved oxygen meter fitted with a BOD probe. The contents of the measuring vessel were stored constantly by magnetic stirrer. The rate of respiration for each flask was measured over an approximate 10 minute period (between approximately 7.9 mg  $O_2/L$  and 1.3 mg  $O_2/L$ ). This procedure was repeated after 3 hours contact time.

#### 5. Statistics/Data evaluation

Percentage inhibition of respiration rate for the reference item was plotted against concentration and the  $EC_{50}$  values derived by inspection of the fitted line.

The ECS value for the test item was determined by examination of the respiration inhibition data.

# ai. RESULTS AND DISCUSSION

# A. ANALOTICOL VERIFICATION

Analytical verification was not required

## B. BIOLOGICAL DATA

The results obtained are sprimarized in the following table:

# Table:Oxygen consumption rates and percentage inhibition from the exposure of activated<br/>Sewage studge micro-organisms to Aclonifen

|                   | 30 minutes contact time |                                            |              | 3 hours contact time                       |              |
|-------------------|-------------------------|--------------------------------------------|--------------|--------------------------------------------|--------------|
| Concentration (mg |                         | O2<br>consumption<br>rate<br>(mg O2/L/min) | % inhibition | O2<br>consumption<br>rate<br>(mg O2/L/min) | % inhibition |
| Control           | <b>R</b> <sub>1</sub>   | 0.53                                       | -            | 0.51                                       | -            |
| Control           | R <sub>2</sub>          | 0.53                                       | -            | 0.51                                       | -            |
| Aclonifen 1000    | <b>R</b> <sub>1</sub>   | 0.68                                       | [28]         | 0.52                                       | [2]          |



|                                                                                                                                                                      | R <sub>2</sub>                                                         | 0.73                                                                            | [38]                                                                                               | 0.54                                                                                    | [6]                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                      | R <sub>3</sub>                                                         | 0.85                                                                            | [60]                                                                                               | 0.54                                                                                    | [6]°                                                                       |
|                                                                                                                                                                      | 3.2                                                                    | 0.47                                                                            | 11                                                                                                 | 0.41                                                                                    | 20                                                                         |
| Reference Item                                                                                                                                                       | 10                                                                     | 0.37                                                                            | 30                                                                                                 | 0.22 🏷                                                                                  | 57                                                                         |
|                                                                                                                                                                      | 32                                                                     | 0.13                                                                            | 75                                                                                                 | 0.09                                                                                    | 82                                                                         |
| $R_1 - R_3 =$ Replicates $1 - 3$<br>[increase in respiration rat<br>No significant inhibition<br>hence the EC <sub>50</sub> for aclo                                 |                                                                        | d to controls]<br>ration rate occu                                              | urred at the single                                                                                | test concentration                                                                      | of 1000 mg/k and                                                           |
| C. VALIDITY C                                                                                                                                                        |                                                                        |                                                                                 |                                                                                                    |                                                                                         | of 1009 mg/k and                                                           |
| Validity criterion                                                                                                                                                   |                                                                        | Ő                                                                               |                                                                                                    | equired 5<br>9 209,2010)                                                                | Achieved                                                                   |
| Oxygen uptake rate in c                                                                                                                                              |                                                                        |                                                                                 | × × 820                                                                                            | mg-@ <sub>2</sub> /g/h                                                                  | 9.81 mg O <sub>2</sub> /g/h                                                |
| Coefficient of variation                                                                                                                                             |                                                                        | ontrols 🖉 🔬 🥎                                                                   |                                                                                                    | 90% J 5                                                                                 | ~0% <sup>6</sup>                                                           |
| EC <sub>50</sub> for 3,5-dichloroph                                                                                                                                  | enol                                                                   | <u> </u>                                                                        | <u> </u>                                                                                           | ~25 mg/L                                                                                | 8.5 mg/L                                                                   |
| Fable:       Summary         Endpoint (mg/L) $EC_{50}$ ND = Not determine         The EC_{50}         For respiration         rested.         Assessment and concert |                                                                        | EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>EC<br>E |                                                                                                    | Stenifen/L, the hig                                                                     |                                                                            |
| In the previous submassessment purposes.<br>was inforce at the tim<br>In terms of the curren<br>variation between co                                                 | tission (De<br>The study<br>are of perfo<br>t version o<br>ontrols and | R, 2096), thr<br>wasperformed<br>runing the est<br>OECD 209<br>I the 3-hout E   | l according to OEC<br>and all relevant va<br>2010), the validity<br>EC <sub>50</sub> of the refere | CD Test Guideline<br>lidity criteria were<br>criteria relating to<br>ence item 3,5-dicl | 209 (1984) which<br>e satisfied.<br>the coefficient of<br>nlorophenol were |
| satisfied, however the<br>of 20 mg O g/h.<br>Due to the failure to sa<br>to current requirement<br>Therefore, as this st<br>considered as support                    | atisfy one<br>ts.                                                      | of the current g                                                                | uideline validity c                                                                                | riteria, the test is no                                                                 | ot valid according                                                         |

Assessment and conclusion by RMS:



| Data Point:                | KCA 8.8/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Author:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report Year:               | 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report Title:              | Activated sludge, respiration inhibition test with activitien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Report No:                 | EBCL0208 (3) 47 47 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Document No:               | M-664091-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline(s) followed in   | OECD Guideline 209 'Activated Sludge, Respiration Inhibition Test Carbon and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| study:                     | Ammonium Oxidation)' (adopted: 22 July 2010) and considered the Question-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | and-Answer Document by the German Federal Engironment Agency (Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | 2012-03-02). This test method is in most essential parts equal to Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | Regulation (EC) No 440/2008 Method C.11 Biodegradation Activated Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | Respiration Inhibition Test? (2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deviations from current    | Current Guidelines OECD 209, 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| test guideline:            | The studge concentration was goo mg/ instead of 1500 mg/ 4. Omy 5 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | Concentrations for the sest items were used. These deviations were not considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | to have affected study integrity and validity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Previous evaluation:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GLP/Officially             | Yes, conducted under GLP/Officially recognized terms faculties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| recognised testing         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| facilities:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptability/Reliability: | gres of a grant of a g |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Executive Summary

A study was performed to assess the effect of the test material on the respiration of activated sewage sludge. The study was conducted in accordance with OECD Guideline 209 'Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation)' (adopted: 22 July 2010) and considered the Question-and Answer Document by the German Federal Environment Agency (Version 2012-03-02). This test method is fit most essential parts equal to Council Regulation (EC) No 440/2008, Method C.11 "Biodegradation Activated Sludge Respiration Inhibition Test" (2008).

The activated sludge was exposed to performing at a minit test item concentration of 100 mg/L. The respiration rate of each mixture was determined after aeration periods of 3 hours.

Aclorifen showed no stanstical significant afference of respiration inhibition of activated sludge between control and a limit test iter concentration of 100 mg/L. The effect of the test item on the respiration of activated sewage sludge gave a 3-Hour EC<sub>50</sub> of greater than 100 mg/L. The No Observed Effect Concentration (NOEC) after 3 hours exposure was 100 mg/L.

| A.S. MOTERIALS              | . MATERIALS AND |
|-----------------------------|-----------------|
| 1. Test Item:               | Aclonifen       |
| Batch no.:                  | AE F068300-01-2 |
| Active Ingredient / Purity: | : 99.9% w/w     |

#### **D METHODS**

28 99.9% w/w



|        | Appearance:                           | Yellow powder                                                                                                                                                                                                                                       |
|--------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Expiry date:                          | 13 November 2020 🔊 🔊                                                                                                                                                                                                                                |
|        | Storage:                              | Not reported                                                                                                                                                                                                                                        |
|        |                                       |                                                                                                                                                                                                                                                     |
| 2.     | Reference item:                       | 3,5-dichlorophenol                                                                                                                                                                                                                                  |
|        | Batch no.:                            | A0357150                                                                                                                                                                                                                                            |
|        |                                       |                                                                                                                                                                                                                                                     |
| 3.     | Test Species:                         | Activated sewage sludge micro organisms from a domestic                                                                                                                                                                                             |
|        |                                       | waste water treatment plant $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                             |
|        | Source:                               | 13 November 2020<br>Not reported<br>3,5-dichlorophenol<br>A0357150<br>Activated sewage sludge micro organisms from a domestic<br>waste water treatment plant                                                                                        |
|        | Pre-treatment:                        | The sludge was settled and the supernatant was decanted. After                                                                                                                                                                                      |
|        |                                       | centrifuging the sludge (15 min at 3500 cpm and 20°C) the                                                                                                                                                                                           |
|        |                                       | supernatant was decanted again. Approximately y g of the wat                                                                                                                                                                                        |
|        |                                       | sludge was dried in order to calculate the amount of wet sludge                                                                                                                                                                                     |
|        |                                       | to achieve a concentration of activated studge of 3 g/b (dry                                                                                                                                                                                        |
|        |                                       | weight suspended solids. The calculated mount of sludge was                                                                                                                                                                                         |
|        | Ő.                                    | to achieve a concentration of activated shadge of 3 g/b (dry<br>weight) suspended solids. The calculated amount of sludge was<br>dissolved in synthetic prodium and then filled up to a defined                                                     |
|        | <i>Q</i> <sub>1</sub>                 | and volume will deign sed water $\delta \sim 0$                                                                                                                                                                                                     |
|        | Ţ,                                    | The activated sewage studge sample was maintained on                                                                                                                                                                                                |
|        | e e e e e e e e e e e e e e e e e e e | continuous aeration in the laboratory at a temperature of $20 \pm$                                                                                                                                                                                  |
|        | × A                                   | 2°C and was fed daily with synthetic medium. The pH of the                                                                                                                                                                                          |
|        |                                       | sample was 5 by of the by                                                                                                                                                                                                                           |
|        |                                       |                                                                                                                                                                                                                                                     |
| 4.     | Test water                            | Deionised water                                                                                                                                                                                                                                     |
|        |                                       | Y LO LY & LY                                                                                                                                                                                                                                        |
|        |                                       |                                                                                                                                                                                                                                                     |
| B.     | STUDY DESIGN AND ME                   | AMODS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                          |
| 1. In  | -life phase: $\sqrt{2}$               | 28 January 06 February 2019                                                                                                                                                                                                                         |
|        |                                       |                                                                                                                                                                                                                                                     |
| 2. Ex  | posure conditions                     | The activated sewage shudge sample was maintained on<br>communication in the laboratory at a temperature of 20 ±<br>2 °C and was fed daily with synthetic mechan. The pH of the<br>sample was 2.5<br>Deionised water<br>28 January 06 February 2019 |
|        | Test vessels:                         | 300 mL glass Erlenmeyer flasks                                                                                                                                                                                                                      |
|        | Experimental design:                  | 109 mg test item L, 3 replicates                                                                                                                                                                                                                    |
|        |                                       | 00 mg test item/L with (Allylthiourea) ATU, 2 replicates                                                                                                                                                                                            |
|        |                                       | Control, 6 replicates                                                                                                                                                                                                                               |
| A      |                                       | Control with ATU, 4 replicates                                                                                                                                                                                                                      |
|        |                                       | Control with ATU, 4 replicates<br>Reference item; 2.5, 5.0, 10, 20 and 40 mg/L<br>800 mg suspended solids/L                                                                                                                                         |
|        | Loading?                              | 800 mg suspended solids/L                                                                                                                                                                                                                           |
|        | Loading:<br>Temperature:              | $20 \pm 2 \text{ °C}$                                                                                                                                                                                                                               |
|        | Actation                              | Continuous aeration                                                                                                                                                                                                                                 |
| ,      |                                       |                                                                                                                                                                                                                                                     |
| $\sim$ | ministration of the test item         |                                                                                                                                                                                                                                                     |
| Dose   | proparation and dosing                |                                                                                                                                                                                                                                                     |
|        | -                                     |                                                                                                                                                                                                                                                     |



Direct weighings were prepared to give the different test item concentrations. The test item was added into Erlenmeyer flasks (incubation vessels) to about 130 mL deionised water and was stirred before testing (equilibration phase) overnight for 17 hours.

#### Preparation of test system

8 mL of the synthetic medium and 100 mL of activated sludge were added to the dissolved test item. The mixture was filled up with deionised water to 250 mL and aerated at  $20 \pm 2$  °C.

The exposure medium with the reference substance was prepared by adding 8 mc of the synthetic medium, 100 mL of activated sludge and a defined amount of the stock solution to achieve the test, concentrations, and was filled up with deionised water to 250 mL and acrated at  $20 \pm 2\%$ .

Control vessels (inoculated sample without test item) were prepared the same way

Additional vessels to determine the physico-chemical oxygen consumption were prepared containing the test item, and the synthetic medium but no activated studge.

To determine the heterotrophic oxidation four additional controls and two replicates with the test item concentration 100 mg/L, all containing 1.25 mL of ATU solution (N-allylthioprea), which equals to a final concentration of 11.6 mg ATU/L, were prepared a solution of a solution of the solution of th

### 4. Measurements and observations

Oxygen consumption and temperature were measured and recorded after an aeration time of 3 hours in all these vessels starting with control 1-3. Thereafter the pH as well and then the other test vessels were measured. Control 4-6 terminated the measurements.

# 5. Statistics/Data valuation

Statistical analogis of the mean respiration rate was performed using a Student-t test.

# 5 II. RESULTS AND DECUSSION

# A. ANALYTICAL VERIFICATION

Analytical verification was not required.

# B. BIOLOGICAL DATA

The results obtained are summarised in the following tables:

Table:Respiration rates after 3 bours incubation period, percentage inhibition, temperature<br/>and pH values in the test performed without ATU (total respiration)

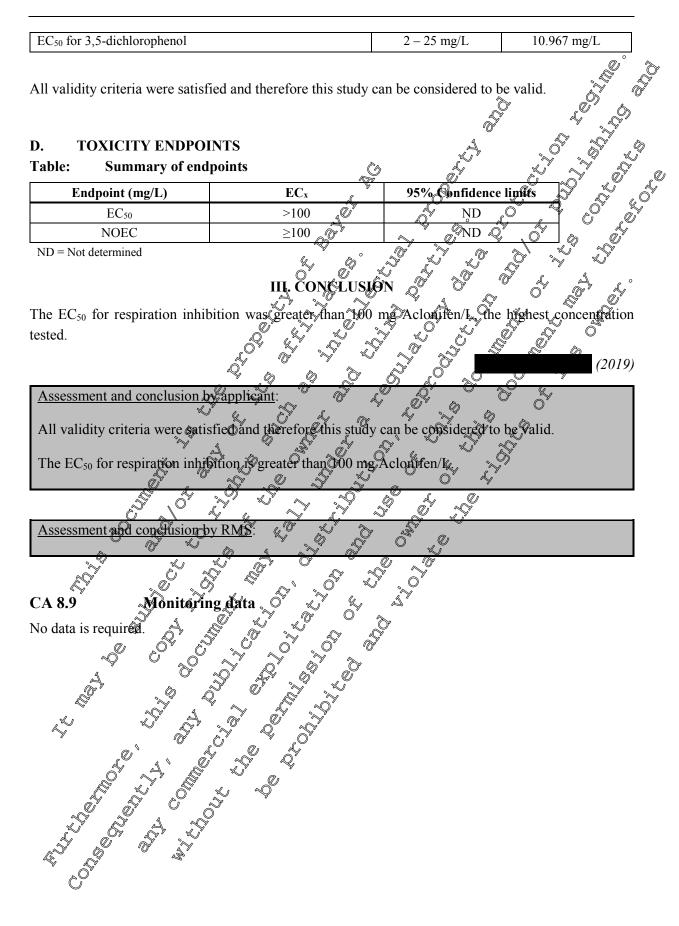
| Treatment (mg | AL) | Respiration<br>rate (mg/L/h) | Mean Temp.<br>(°C) | pH- | Inhibition (%) |
|---------------|-----|------------------------------|--------------------|-----|----------------|
| Control 1     | 0 ő | 23.984                       | 20.4               | 8.4 |                |
| Sontrol       |     | 23.247                       | 20.2               | 8.4 |                |
| Control 3     | 2   | 21.715                       | 19.5               | 8.5 |                |
| Control 4     |     | 22.422                       | 19.1               | 8.5 |                |
| Control 5     |     | 24.024                       | 19.4               | 8.4 |                |



| Control 6                                         |     | 18.898                | 19.6     | 8.4                 |             |
|---------------------------------------------------|-----|-----------------------|----------|---------------------|-------------|
| Control, mean (CV)                                |     | 22.381 (8.616)        |          |                     |             |
| Test item                                         | 100 | 22.941                | 19.3     | 8.4                 | 0.000       |
| Test item                                         | 100 | 22.142                | 19.5     | 8.4                 | 1.070       |
| Test item                                         | 100 | 22.152                | 19.5     | 8.5                 | -1.925 J    |
| Test item, mean (CV)                              | 100 | 22.412 (2.046)        | OF.      |                     | © 0.698     |
| Physico-chemical<br>oxygen consumption<br>control | 100 | 0.276                 | 19.5     | Q <sup>4</sup> 7.5. |             |
| Reference compound                                | 2.5 | 20.233                | × 19.9 5 | × 8.5 0             | D 9.597 . T |
| Reference compound                                | 5   | 16.167 <sup>©</sup> * | 19.10    | ô 😽 Ô               | \$7.768 Å   |
| Reference compound                                | 10  | 11.563                | ×        | 8.5                 | 48.335      |
| Reference compound                                | 20  | 6464                  | \$19.2°  | LO 85 L             | F 707.117 O |
| Reference compound                                | 40  | 4.6390                | × 19.4 ~ | ð 8.5 J             | 5 79.222    |
| CV = Coefficient of variance                      | e   |                       |          | A B B               |             |
|                                                   | Ĩ   |                       | ,        |                     | $\bigcirc$  |

Table: Respiration rates after 3 hours incubation period, percentage inhibition, temperature and pH values in the test performed with AOU (heterotrophic respiration)

| - 20                | Bosningtion Moort Tom                                                                                                         | i k. |                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|
| Treatment (mg/L)    | $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ | pH-                                     | Inhibition (%) |
| Control 1 Control   | 20.975 ¥ 19.6                                                                                                                 | 87 87                                   |                |
| Control 2 2 4       |                                                                                                                               |                                         |                |
| Control 3           | ~ 200902 19.3 · 19.3                                                                                                          | 8.4                                     |                |
| Control 4           |                                                                                                                               | 8.4                                     |                |
| Control, mean       | 20,659                                                                                                                        |                                         |                |
| Test iten           | 22.730 19%                                                                                                                    | 8.4                                     | 0.000          |
| Test item 900       | 222844                                                                                                                        | 8.4                                     | 0.000          |
| Test ftem, mean 100 | <sup>Q</sup> 22.790                                                                                                           |                                         | 0.000          |
| 4 4 G               |                                                                                                                               |                                         |                |


Aclonifen showed no statistical significant difference of respiration inhibition of activated sludge between the control and a tonit test item concentration of 100 mg/L and hence the EC<sub>50</sub> for aclonifen was estimated to be greater than 100 mg/L. Correspondingly the NOEC was  $\geq$ 100 mg/L.

| Validit Criterion                         | Required<br>(OECD 209, 2010) | Achieved                      |
|-------------------------------------------|------------------------------|-------------------------------|
| Oxygen uptake rate in controls            | $\geq\!\!20~mg~O_2\!/g\!/h$  | 27.977 mg O <sub>2</sub> /g/h |
| Coefficient of variation between controls | ≤30%                         | 8.6%                          |

# C. J VACIDITA CRITERIA



Aclonifen

