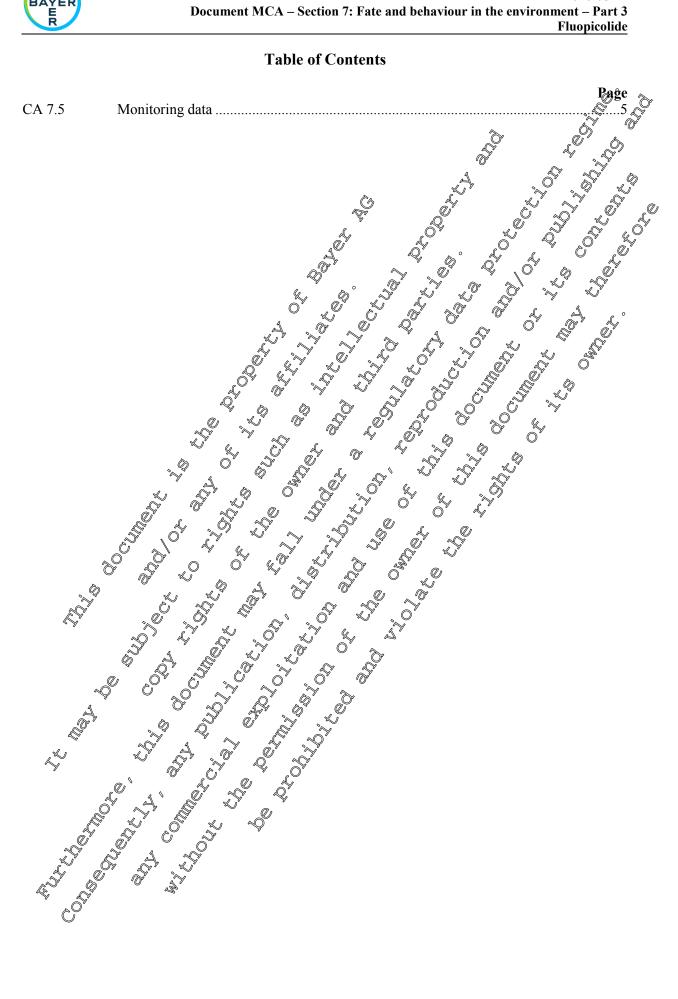


OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer AG and/or affiliated entities. No part of the document or any information contained the to any third party without the prior written authorisation of Bayer AG and or affiliated entities.


The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other a repartation on the bars of the importance of the im registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this document unless they of have received the data on which the summaries and evaluation are based with based with based with the summaries and evaluation are based with based with the summaries are based with based with based with the summaries are based with based with based with the summaries are based with based with based with the summaries are based with based with based with the summaries are based with based with based with the summaries are based with based with based with the summaries are based with based with the summaries are based wit

Version history

		version history	0
	Date [yyyy-mm-dd]	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
1	It is suggested th SANCO/10180/	Data points containing amendments or additions ¹ and brief description	version number version number de de d
		A J	

CA 7.5 Monitoring data

No monitoring data were evaluated during the initial EU review of fluopicolide. Two new assessments and 14 published peer reviewed papers are included as new data not yet reviewed.

Two comprehensive assessments of public data have been conducted. The assessment in KCA 7.5/01 describes the collection process of public monitoring data (from regional and national environment agencies) for European countries for fluopicolide and M-01 (BAM, 2,6 dichlorobenzamide) coverings soil, groundwater, surface water, drinking water, sediment and air. Monitoring of fluopicolide and M-01 has not been recorded or documented in soil or drinking water. The cope of the assessment in KCA 7.5/02 was to collect groundwater residue data of fluopicolide, M-04 and dichlobenil derived from public monitoring across representative EU Member States. The data were assessed spatially and temporally in order to differentiate whether M-01 residues are related to leaching following historical applications of dichlobenil or more recent applications of fluopicolide.

The 14 peer reviewed publications distribute as follows:

Five published peer reviewed publications provide additional information on NP01 residues in groundwater in France (KCA 7.5/03 and KCA 7.5/07). France and England (RCA 7.5/04), the Republic of Ireland (KCA 7.5/05) and KCA 7.5/06).

Two published peer reviewed publications provide additional information on Fluopicolide residues in surface water in France (KCA 7.5/08) and Switzerland (KCA 7.5/09), a further four publications provide information on M-01 residues in surface water in Switzerland (KCA 7.5/09), Demark (KCA 7.5/11), Luxembourg (KCA 7.5/12) and Sweden (KCA 7.5/13). The Luxembourgian publication has additional information on M-01 residues in draking water (tap and bottled).

Finally, a published peer reviewed publication provides additional information on M-01 residues in Norwegian drinking water in 1999 and 2000.

In addition, an assessment of the potential impact of drinking water treatment processes, considering both the exposure aspect and transformational chemistry, will be prepared for fluopicolide. The final report was not available in time to be included in this dossier. As agreed with the RMS, an updated dossier will be submitted by the notifier which will include the final report and its summary.

Overview of Results

Concernations of flugpicolide and its metabolite M-01 (BAM 2,6-dichlorobenzamide) arising from public monitoring datasets have been collected from regional and national environment agencies as well as published peer reviewed publications from literature searches. This data collection and analysis is comprehensive considering a range of environmental compartments and for a number of these compartments evaluates a very large dataset that allows firm conclusions to be drawn.

Throughout the documents in this chapter the metabolite M-01 is referred to as either BAM or 2,6dichlorobenzamide. This metabolite is common to both fluopicolide (FLC) and the herbicide dichlobenil (DCB). Dichlobenil was first marketed in the 1960s and its authorization expired between 1997 to 2013. In contrast, fluopicolide authorizations started between 2005 and 2011 in most EU Member States. The consequence is that residue detections of M-01 (BAM, 2,6-dichlorobenzamide) in groundwater cannot readily be attributed to fluopicolide usage but are mainly attributable to dichlobenil. This is particularly relevant for Denmark and Sorway, the oddy Member States in which fluopicolide was never registered for use. Denmark holds a flarge groundwater monitoring dataset on M-01 (BAM, 2,6dichlorobenzamide) and any detections can unequivocally be attributed to historic dichlobenil usage. Where M-01 (BAM, 2,6-dichlorobenzamide) groundwater data cannot clearly be attributed to dichlobenil, they are typically low and below 10 μ g/L.

The reports and publications assessed cover country, regional, provincial, and even specific locations or fields. Similarly, they cover a range of temporal scales ranging from a single sampling occasion to multimonthly and annual sampling schemes.

Table 7.5-1: Summary of minimum reported rates of compliance with regulatory acceptable concentrations (RAC) for measured concentrations of fluopicolide (FLC) and M-01 (AE C653711, BAM, 2,6-dichlorobenzamide) in each environmental compartment

		Fluopicolide			M-01 (BAM, 2,6-dichlorobenzamide)			
Compartment	Dataset Size	RAC ^A / Threshold (µg/L)	Compliance (%)	Dataset Size	AC A Threshold (µg/L)	Compliance	Ņ	
Soil	No data ^B	1.77 mg/kg		No data ^B	0.92 mg/kg	<u>~</u> - 8	¢	
Groundwater	Medium	0.1	99.9	Large	10.0 Ø	99. 9 €	Ő	
Surface water	Medium	3.6	>9900	Large	1800	× 199° d	¥	
Drinking water	No data ^B	0.1	100	No data ^B	6@350 ^E	100		
Sediment	No data	198 µg/kg		_⊘Small^≯	NAS	× - ×		
Air	Very small	NA	ŎŢ <u>Ţ</u> Ũ	Very small	je kon	<u> </u>		

NA Not applicable/available

^A Regulatory acceptable concentration

^B No soil or drinking water monitoring data in public databases was recorded opublication epotted analysis of danking water for M-01 (BAM, 2,6-dichlobenzamide), see footnote to Table 7.5

^C Arbitrary general concentration threshold for non-relevant metabolites

6 ^D 10 of 13 exceedances identified as either clated to historic dichlobenil applications related to ceptional environmental conditions.

see doctment E Life-time WHO health based safe donking water limfor all consumer groups

The rates of compliance with different RACs and thresholds are provided in Figure 9.5-1 and maximum reported concentrations in each compartment are submaried in Table 7.5-2. The rates of compliance with key RACs and thresholds for both fluopicolitie and M-01 are high (≥ 99.9 % of samples) and in some cases absolute (100 %) with of the of no exceedances reported.

n

Š Ø) Summary of reported maximum concentrations of fluopicolide (FLC) and Table 7.5- 2: M-01 (AE C653711, BAM, 26--dictionobenzan@de) in each environmental compartmen n M Ò

Compartment	Maximum corcentration	
, v	~ [*] KthopicoDde [*]	ÁM-01 (BAM, 2,6-dichlorobenzamide)
Soil	No data	y No data
Groundwater	0 1.200.73) AT 6 6	18.86 (10.57) ^A
Surface water		8
Drinking water Sedimeter	No data 🔍 🖉	No data ^B
Sedimeter	No data	23 µg/kg
Air 🔬	2 (1006 ng/m ³)	<0.006 ng/m ³

^A The maximum concentrations in groundwater reported in public monitoring databases for fluopicolide and M-01 (BAM, 2,6-dichlorobenzanide) are provider above The values in parenthesis are the maximum concentrations after elucidation of false positives (e.g. due to hydraute short outs) or values most likely related to historic dichlobenil usage are removed. Full details of this encidation are provided in KCA 723/02, <u>M-686676-01-1</u>. ^B No drinking water monitoring data in public databases was recorded. In the literature search two publications were found

which reported analysis of drinking water for M-01 (BAM, 2,6-dichlobenzamide). KCA 7.5/12, M-597682-01-1 reports BAM depected in Luxembourgian pap water (maximum 0.096 µg/L, n =34) and in bottled water (maximum 0.014 µg/L, n = 25) in 2008 to 2009. KCA 7.5744, M-532496-01-1 reports BAM detected in Norwegian drinking water wells (maximum 0.39 fig/L, 10-6) in 1999 and 2000 resulting from historic dichlobenil applications.

Maximum concentrations that exceed RACs or maximum allowable concentration are reported in Table 7.5-2. However, in large datasets comprising many hundreds of thousands of analytical results a small number of anomalous values are likely and may occur at several points during the sampling, storage and analytical process. A transparent and precautionary data analysis approach retained and contextualised these values (KCA 7.5/01, M-686397-02-1 and KCA 7.5/02, M-686676-01-1), for example, by determining the percentile of the RAC in the distribution of concentration values to demonstrate this much higher than the 99th percentile value. These observations are supported by publications which generally demonstrate lower concentrations.

de , pub. e des not pose a tis t ad use foi depositioned confluored back and confluored back and confluored back and confluored back and confluer and and confluer confluer confluer and confluer confluer and confluer conf A matrix summarizing these documents in Europe following the use is to the label. A matrix summarizing these documents is presented below in Table 7

Test item	Report reference	Author, Year	Relevant subchapter				° °	
			A. Soil	B.1 Groundwater	B.2 Surface water	B.3 Drinking ** ** water	C. Sediment	Air Ar Ar
Applicant Ass	sessments			.64		×,	N K	× (
Fluopicolide & M-01	KCA 7.5/01 M-686397-02-1	2020	A		°			
Fluopicolide, Dichlobenil & M-01	KCA 7.5/02 <u>M-686676-01-1</u>				d d			Ç.
Relevant Lite	rature Articles		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	S	· · · ·		Ű
M-01	KCA 7.5/03 <u>M-597785-01-1</u>	Lopez B. et al, 2015						×
M-01	KCA 7.5/04 <u>M-597786-01-1</u>	Lapworth D. et al., 2015	22			C.		
M-01	KCA 7.5/05				° ĉ		8	
M-01	KCA 7.5/06 M-681589-69-1	McManus, S. etal., 2019		Ĵ,		12 12 12		
M-01	KCA 7.507 M-681500-01-1	Pinasseau, D. et al 2019		\bigcirc		5		
Fluopicolide	KCA\$7.5/08 Me58968 101-1	Gulkovska, A. et al: 2014						
Fluopicolide	CA 75709 0 <u>M-589692-014</u>	Loranco M. et and 2017		L.				
M-01	KCA 7.5/20 M-529767-01-1	Mosoret, C. <i>et al.</i> , 2015		¥ 10-				
M-01	KCA (3.3/11 (M-53/7391-01-1 (0)	McKnight, U. et al., 2015	A Dr					
M-01	KCA 7.502	Bolfel, T. étral., 2043						
M-01	KCA 7.5/130 M-642712-01-1	Ahrens L. et af., 2018						
M-01	KCA 7 \$714 B M-530496-06-7	Kyaerner J. et aQ2014				В		

Table 7.5- 3: List of all monitoring studies and literature articles summarized

^A No public monitoring data are available in soil or driveling water for fluopicolide or M-01 ^B KCA 7.5/14, M-92496-01-1 reports BAM detected in Norwegian drinking water wells (maximum 0.39 μg/L, n =6) in 1999 and 2000 resulting from historic dicklobenil applications. Information is included for completeness only as residues are not due to fluopicolide applications.

Data Point:	KCA 7.5/01	
Report Author:		
Report Year:	2020	
Report Title:	Fluopicolide (FLC) and its metabolite 2,6-dichlorobenzamide (BAM): public environmental monitoring data (groundwater, surface water, soil, air and sediment)	
Report No:	EnSa-20-0476	
Document No:	<u>M-686397-02-1</u>	
Guideline(s) followed in study:	None	Î,
Deviations from current test guideline:	Not applicable	Ĺ
Previous evaluation:	No, not previously submitted x_{1})O' Y
GLP/Officially	No, not conducted under GP/Officially recognised testing facilities	
recognised testing	No, not conducted under GLP/Officially recognised testing facilities	
facilities:		
Acceptability/Reliability:	Yes O C A A	
		-

Executive Summary

Searches for public monitoring data were performed to provide an overview of residue concentrations of fluopicolide (FLC, parent) and 2,6-dichlorobenzamide (M.O.I., BAM, metabolite) in the environmental compartments of groundwater, surface water, soil, at and sediment in the frame of the EU approval renewal of fluopicolide according to EU Regulation (107/2009 and 844/2012. The search was predominantly based on interpet sources identifying databases and reports which are publicly accessible e.g. from the national Environmental Agencies of EU Member States.

The data search used the key words 'duopicolide' as well as "2.6 dichlorobenzamide" and "BAM". If applicable, the time period searched for was from 1995 to present (April 2020). Available monitoring data was analysed for potential sceedance of regulatory the sholds appropriate for the compartment and the results similarized. Results of the search indicate that monitoring information is not generally available to the public in all Member States. Information is also not necessarily available at national level, while it is in some cases only available at some state, regional of province level.

Metabolité M-01 "BAM" is a common metabolite of the two active substances FLC and dichlobenil. Dichlobenil is a former active substance no longer registered in the EU which entered the market in the 1960s and authorizations expired in the period 1997 to 2013. In contrast, FLC authorizations commenced between 2006-2010 in most EU Member States. The consequence of this is that residue detections of BAM may not be readily attributable to the use of FLC but are mainly attributable to dichlobenil. This is particularly relevant for Demaark being the only Member State in which FLC was never registered for use. Demark holds a large groundwater monitoring dataset on BAM and any detections can unequivocally be attributed to the use of

Key Regulatory Acceptable Concentrations (RACs) are considered for surface water (3.6 μ g/L for FLC, 1.8 mg/L for BAM). For groundwater a value of 0.1 μ g/L applies for FLC. As part of the EFSA conclusion (2009) for FLC, BAM is classified as a non-relevant metabolite. The conclusion was derived from application of the guidance document assessing the relevance of metabolites in groundwater (EU Sanco/221/2000 rev. 10 Feb 2003) which is the current guidance document, and this considered as still valid today. In this guidance document an arbitrary general non-specific limit value of 10 μ g/L was selected (for chlorinated aliphatic hydrocarbons) and therefore for the purpose of this project the same concentration threshold of 0 μ g/L was selected for BAM. The life-time WHO health based safe drinking water limit for all consumer groups ranges from 67-350 μ g/L – see document N4.

The results from the groundwater monitoring data search indicate that FLC concentrations above the regulatory trigger of 0.1 μ g/L are rare (14 samples; 0.10% of 13,573 analyses) with a maximum concentration of 0.73 μ g/L. For BAM, the monitoring data amount is much larger (293,108 analyses) but BAM concentrations above 10 μ g/L are proportionally also rare (32 samples, 0.011% of the analyses). Moreover, excluding the BAM data for Denmark, where this metabolite cannot originate from FLC usage, there are only 9 samples that exceed the 10 μ g/L concentration threshold which relates to an exceedance rate of 0.0044% for a total of 205,018 samples.

The results from the surface water monitoring data search indicate that ELC concentrations above the Tier 1-RAC-SW (3.6 μ g/L) are rare (5 samples, 0.022% @22,592 analyses) and the highest value was 19 μ g/L. The results from the surface water monitoring data search for BAM show that no result concentrations above the Tier 1-RAC-SW (1.8 mg/L) were measured (0 samples of 179,628 analyses) and the highest value was 8 μ g/L.

For the air compartment, analyses with FLC or B&M concentrations above the LOO were found but no residue concentration above 0.006 ng/m³ was reported.

For the sediment compartment, results from the monitoring data search were only bund for BAM, indicating that residue concentrations above LOQ were rare (2 samples, 0.15% of 1,350 analyses and did not exceed 23 µg/kg dry matter.

It cannot be discounted that some of the detections dentified are errone bus; given the originate from non-GLP monitoring networks and programmes of unknown quality.

Monitoring of FLC and BAM has not been recorded for documented in sol or druking water.

Overall it can be concluded from assessment of readily available proble monitoring datasets that fluopicolide (FLC) and 26-dichlorobenzamide (BAM) do not pose a concern for the investigated environmental compartments.

L Materials and Methods

This evaluation includes the following Member States: Austria, Czech Republic, Denmark, France, Germany, Greece, Italy, the Netherlands, Sweden, Slovenia, Spitin, Switzerland, United Kingdom, and also includes 'supra national' i.e. EU and river basin databases, for which Public Monitoring Programs and their data were found accessible data a link on the internet. Overall, the search includes results of public monitoring from between the years 1995 and 2019. Evaluation of these data should be undertaken with caution as they are collected from monitoring points of inknown quality and to unknown quality standards and experience from using these data suggests that they contain false positive findings.

Searches were performed in a hst of Catabases or national information portals (Table 7.5-4). The parent FLC as well as the metabolite M-01 BAM were subject of this overview of monitoring results. The search was conducted with "fluopicofide" as well as "2,6-dichlorobenzamide" and "BAM" as key words. This would, also over national spellings of the analyte, e.g. "fluopikolid", "2,6-dichlorobenzamide", "2,6-dichlorobenzamide", "2,6-dichlorobenzamide", "BAM" etc...

If applicable, the time period for which moniforing results were searched, was from 1995 to today (April 2020). Where monitoring data was found, this was analysed for exceedance of regulatory thresholds appropriate for the compariment and the results were summarised.

Table 7.5-4:Searching results for Austria, Czech Republic, Denmark, France, Germany,
Greece, Italy, Netherlands, Spain, Sweden, Switzerland, United Kingdom and
also includes 'supra national' i.e. EU or river basin data sources

see comment below
mitoring data
<u>, 9</u>
ð v
nitoring data
nitoring data ed**

Country	Data Source/Organisation	Monitoring Data available [Yes/No]
Spain	Confederación hidrográfica del Ebro, Web de Consulta de datos de Calidad de Aguas Superfíciales	No monitoring data
	Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas; Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía	No monitoring data
	Confederación hidrográfica del Guadalquivir; Consulta de datos de calidad de aguas superficiales	No monitoring data
	Confederación hidrográfica del Júcar; Descarga de datos Cartografía	No monitoring data v
	Confederación hidrográfica del Segura Redes de control de las masas de agua superficiales	No monitoring data
Sweden	Swedish University of Agricultural Sciences@-Pesticrde Database	Moes of the total
Switzerland	NAQUA – Report: Plant protection products and their degradation products in groundwater 2007 2017	Yes of the transformed and
United Kingdom	England Environment Agency Water mality atchive	No mantoring data
	Drinking Water Inspectorate of England and Wates – Chief Inspector Annual Reports	No monitoring data
	Pesticide Monifering Bulletin	Yes %

In the NORMAN database, the dataof the national/regional databases is repeated. Therefore, the results are displayed * only for the national/regional data.

- Search was conducted, but using English key words neither references in monitoring databases nor monitoring reports ** could be found. Ì X, Ľ \bigcirc
- In Denmark, FLC, was never registered for ose. As a consequence, the residue detections of BAM cannot derive from FLC usage and can be excluded. The data from this database is used here only as indicative since the quality check from authorities is still on-going. The database will be "reade" for me in 2000 a)
- b) database will be "ready" for rise in 2021.

AI. Results and Discussion

The parent fluopicohde (FLC) was moderately quantified (less than 11% of the analyses showed residue levels above LOQPin groundwater and surface water samples retrievable from readily available public monitoring databases manning 2010 2019 for Member States, namely Austria, Czech Republic, France, Germany, Italy, the Netherlands, Sweden and the UK. In the cases where it was quantified with residue levels above LOQ there were only sparse findings above the applied thresholds. A few records relating to concentrations in air were also found and were below the LOQ, except for Sweden.

The metabolite M-002,6-dichlorobenzamine (BAM) was also moderately quantified (less than 9% of the analyses showed residue levels above LOQV in groundwater and surface water samples retrievable from readily available public monitoring databases spanning 1995 – 2019 for 10 Member States, namely Austria, Czeck Republic, Dermark France Germany, Italy, the Netherlands, Slovenia, Sweden and Switzerland and the Danube database. There were only sparse findings above the applied thresholds. A few records relating to concentrations in air and sediment were also found and were below the LOQ, except for Sweden and France

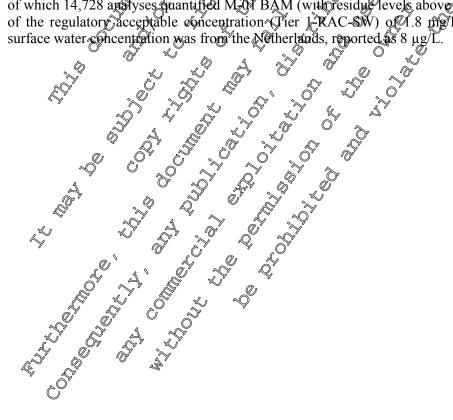
Groundwater

For FLC, a total of 13,573 groundwater analyses were investigated (Table 7.5-5), of which 590 analyses quantified FLC (with residue levels above LOQ), including 14 analyses which suggest exceedance of the regulatory threshold of 0.1 μ g/L (0.10% of samples). These exceedances were found in analyses from France, Germany and Italy where they represent 0.011%, 0.068% and 0.58% of all analyses, respectively. The maximum concentration was reported as 0.73 μ g/L (in Italy)

For M-01 BAM, a total of 205,018 groundwater analyses were investigated (excluding Denmark and Switzerland, Table 7.5-5), of which 11,112 analyses quantified BAM (with residue levels above LOQ), including at least 9 analyses (for reports from Austria and the Netherland's no conclusion can be drawn) which suggest exceedance of the threshold of 10 μ g/L (0.0044% of samples). These exceedances were found in analyses from Austria, France and the Netherlands. The maximum concentration was reported as 18.86 μ g/L (in France).

Table 7.5- 5: Summary of public monitoring results for Huopicelide (FLC) and M²91 / 2,62 dichlorobenzamide (BAM) in groundwater Image: Comparison of the second seco

					, <u> </u>	
			olide FLC			
Country	Data Source/ Organisation	Monitoring O Period	Samples	Quantifications*	20.1 µgL	≥0.Ŷµg/L ∅ (%)
Austria	Federal Ministry for Sustainability and Tourism – Water Database	2019 °	"		20.1 µ2L	0.0
Czech Republic	IS Arrow - Assessment and A Reference reports of water monitoring		\$407. Č			0.0
France	ADSS – Notional Groundwater Quality Portal	2016 – 2019	8,734 ~		1	0.011
Germany	Sachsen Environmeutal Agency	200-2-2018	1,477 0 ⁹ 4 ⁹	Ø ~ Ø5	1	0.068
Italy	Italian National Institute for Environmental Orotection and Research (ISPRA) Pesticide Portal	2013 - 2016		گ ^م 70	12	0.58
Netliter lands	Groundwater Atlas for Pespicides**	2015-2010 5	گ ⁷ 185	0	0	0.0
Neurorianus	Groundwater Quality Report 2017 Swedish University	2015-2010	161	1	0	0.0
Sweden	of Agricultural	9 Q015	62	0	0	0.0


Country	Data Source/ Organisation	Monitoring Period	Samples	Quantifications* (≥LOQ)	≥10µg/L	≥10µg/L∘ (%)
Austria	Federal Ministry for Sustainability and Tourism – Water Database	2014-2019	33,305 ^A	994	2 2	\$0.006 \$
	Annual reports on water quality	2013-2016	18,0200	572	<u>-%</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Czech Republic	IS Arrow – Assessment and Reference reports of water monitoring	2017-2019	3 8,663			
Denmark***	Geological Survey of Denmark and Greenland – Groundwater Data analyses		20° 2 88,090**	12,411 4 12,411 5 7 7 7 7 7 7 7 7 7 7 7 7 7		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
France	ADES – National Groundwater Quality Portal	20 0 9 – 20109	چ 12 0 025			× 0.0024
Germany	Sachsen & & & Environmental O Agency &	2006-2016	3,161			0.0
Italy	Italian Sationa Institute for Environmental Research (ISPBA) – (Pestivide Portal	2011 - 2016			0	0.0
Netherlands	Groundwater Athas for Pesterides and Water Quality Data portal of the Notherlands – groundwater ^D			1,708	4	0.046
	Groundwater Quality Report 2017	2015-2016	978 978	134	_E	E
Slovenia	Slovenia Envisionment Agency		h/	4	0	0.0
Sweden	Swedish University of Apricultural Souchces Desticide Database	200 7 – 2015	726	3	0	0.0
Switzerfand	NAQUA – Report: Plan protection products and their degradation products in groundwater 2007 - 2017	2002-2003	32 ^B	17	0 ^E	0.0 ^E

- * Ouantifications represent the number of analyses with residue levels amounted for neither "zero" and nor "<LOO". The value of the LOQ is depending on analytical method and therefore variable (LOQ values ranged from 0.005 to 0.02 μ g/L for FLC and from 0.01 to 0.1 µg/L for BAM and in some databases LOQ value was not specified, please see chapter 4.2 for details)
- The data from this database is used here only as indicative since the quality check from authorities is still on-going. ** FLC was never authorised for usage in Denmark, the recorded BAM detections must derive for Dichlobenil. Preferer ***
- this dataset is excluded from evaluation and is presented only as indicative. А
- In Austria, a total of 97,252 entries could be found in the database, but only 33,305 analyses contain residue data в
- In Switzerland, in the reports 2014 and 2017 the number of sampling points is given instead of numbers samples. and therefore the results are not included in the statistics.
- С In Germany, LOQ was unspecified, however the residue levels anged from 0.00 µg/L to 2 µg/L and was all boo Î 10 µg/L. K)
- D In Netherlands, for BAM, since some data were identical between these two databases, both datasets were compiled for BAM, and replicates were removed. Additionally, the data from the Groundwater Atlas database is used here only as indicative since the quality check from authorities is soll on-going. Ô Ľ,
- In the reports from Austria, Italy, Netherlands, Switzerland and Częch Republic, growndwater gata were only compared Е in the reports non-Austria, nary, reductioned, switch and and exception (c) ground water part were only compared to 0.1 μg/L, therefore no statistics are possible, however, the maximum value reported in Soutzerland, Italy and Czech Republic is always below 10 μg/L.

Surface water For FLC, a total of 22,592 samples of surface water analyses were investigated (excluding United Kingdom Table 7.5.6) of which 2.446 analyses are for the surface of the sur Kingdom, Table 7.5- 6), of which 2,460 analyses quantified FLC (with desiduclevels above LOQ), including 5 analyses which indicate exceedance of the regulatory acceptable concentration (Tier 1-RAC-SW) of 3.6 µg/L (0.022% of samples). All these 5 exceedances were found in analyses from the Netherlands. The maximum reported surface water concentration was reported as 19 µg/L (in the Netherlands). C

For M-01 BAM, a total of 179,028 samples of surface water analyses were investigated (Table 7.5-6), of which 14,728 analyses quantified M-Of BAM (with residue levels above LOQ), with no exceedance of the regulatory acceptable concentration (Tier 1-RAC-SW) of 1.8 mg/L. The maximum reported

Table 7.5- 6:Summary of public monitoring results for fluopicolide (FLC) and M-01 2,6-
dichlorobenzamide (BAM) in surface water

		Fluopicol	ide (FLC)			<u> </u>
Country	Data Source/	Monitoring	Samples	Quantifications*	>RAC**	> R (Č**
Country	Organisation	Period	Samples	(≥LOQ) 🎓	> NAC	(%)
Austria	Annual reports on	2013-2015	313	5	0	
Austria	water quality	2013-2013	515	5 @*	0	
	IS Arrow –			A	Ô	
Czech	Assessment and	2017 2010	2.200	725		× 0.05
Republic	Reference reports of	2017-2019	2,3			
P	water monitoring		·¥,	Q		
	Naïades – National		<u> </u>	O*	2 Q	0.0 ⁵
France	Surface Water Quality	2015 - 2018	1,520	Q. 38 ° 1		Con Q
1 funce	Data Portal	2013 2010	y 1,520			
	Sachsen					
Commons		2012 2010				≪y″
Germany	Environmental	2012 - 2019	Ø8,693			0.0
	Agency		8,693 L			
	Italian National					
	Institute for		i L			
	Environmental	je jež	v N		v s	0
Italy	Protection and	520134 2016	¥ 4,7 8		<u> </u>	© 0.0 ⁵
	Research (ISPRA) –	<i>'0' '</i> 'Y		X D N	S X	j [×]
	Pesticide Portal incl	Ô Ô	ð d		OCUNESS	
	annual reports		Å, Ø			
	Water quality Data	2000-2017-5- 		2 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	
Netherlands	Water quality Data	2010-2017	4,283	~ <u>1</u> ,8,35 Q	<u>م</u> 5	0.11
	Swedish University of		- -		, V	
Sweden	Agricultural Sciences	2015-2018		125	0	0.0
Sweden	Agricultural Schules	§ 2013-Q018	3470		» U	0.0
TT ', 1	Pesticide Database	- 0 .~	×.			
United	Pesticide Monitoring	2014 - 2018	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L 1,227	0	0.0
Kingdom	Buttetin O				l	
		1 2,6-dichloro				
Country	Data Source	Monitoring	Samples	Quantifications*	>RAC**	>RAC**
Č N	Organisation Ø	Period		° (≥LOQ)		(%)
Europe	Danubis The ICPDR	2013	Ş [×] 22 Ş [×]	<i>≫</i> 0	0	0.0
Lurope			° -€'		0	0.0
v	Federal Ministry for		× 1	K V		
A						
Austria	Sustainability and	and a solo		11	0	0.0
	Sustainability and Tourism — Water	2007 - 2908		11	0	0.0
	Sustainability and Tourism — water Database	2007 - 2908		11	0	0.0
~	Sustainability and Tourism — Stater Databage VIS Arkow ~			11	0	0.0
Czech 4	IS Arxov ~	2007 - 2008				
	IS Arxov ~	2007 - 2908		11 294	0 0 ⁵	0.0
	Assessment and Reference reports of	2007 - 2908				
Czech A Republic	IS Arrow ~ Assessment and Reference reports of water monitoring ~	2007 - 2908				
Republic [®]	IS Arrow ~ Assessment and Reference reports of water monitoring ~	2017-2019	€ 22 °	294	05	0.05
Republic [®]	IS Arrow Assessment and Reference reports of water monitoring Naïades - National Surface Water Quality	2017-2019				
Republic [®]	IS Arrow Assessment and Reference reports of water monitoring Naïades – National Surface Water Quality Data Portal	2017-2019	€ 22 °	294	05	0.05
Republic [®] France	IS Arrow Assessment and Reference reports of water monitoring Naïades – National Surface Water Quality Data Portal	2017-2019 1999 - 2018	€ 22 °	294 9,276	05	0.05
Republic ^y France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019	€ 22 °	294	05	0.05
Republic ^y France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018	22 7 3,838 137,304	294 9,276	05	0.05
Republic [®] France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018	22 7 3,838 137,304	294 9,276	05	0.05
Republic ^y France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018	22 7 3,838 137,304	294 9,276	05	0.05
Republic ^y France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018	22 7 3,838 137,304	294 9,276	05	0.05
Republic ^y France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018 2012 - 2019	22 7 3,838 137,304 7,753	294 9,276 28	0 ⁵ 0 0	0.0 ⁵ 0.0 0.0
Republic ^y France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018	22 7 3,838 137,304	294 9,276	05	0.05
Republic ^y France	IS Arrow Assessment and Reference reports of water monitoring Naïades - National Surface Water Quality Data Portal Sachsen, Environmental Assency Falian National Institute for Environmental Protection and Research (ISPRA) -	2017-2019 1999 - 2018 2012 - 2019	22 7 3,838 137,304 7,753	294 9,276 28	0 ⁵ 0 0	0.0 ⁵ 0.0 0.0
Republic [®] France	IS Arrow Assessment and Reference reports of water agonitoring Naïades - National Surface Water Quality Data Portal	2017-2019 1999 - 2018 2012 - 2019	22 7 3,838 137,304 7,753	294 9,276 28	0 ⁵ 0 0	0.0 ⁵ 0.0 0.0

()

Netherlands	Water quality Data Portal	1996 - 2017	15,3244	3,979	0	0.0
Slovenia	Slovenia Environment Agency	2015 - 2019	1,046	0	0	0.000
Sweden	Swedish University of Agricultural Sciences Pesticide Database	2002-2018	2,093	741	y 0	0.0 0.0

Quantifications represent the number of analyses with residue levels amounted to neither "zero" and not "< LOG The value of the LOQ is depending on analytical method and therefore variable (LOQ values ranged from 0002 to 2 µg/J2 for FLC and from 0.002 to 0.086 µg/L for BAM, in some databases LOQ value was not specified, please see chapter for details).

** RAC value for FLC: 3.6 µg/L; for BAM: 1.8 mg/L

*** Includes countries Austria, Bulgaria, Croatia, Hungary, Serbia, Romania

- 1 In Germany, LOQ was not specified, however the resider levels ranged from 0 upper to 1 Qig any RAC of 3.6 µg/L.
- In the UK, only "positive findings" (analyses with residue evels above LOO) are presented to the reports but the total 2 number of samples analyzed is unclear and therefore results are not included in the statistics.
- In Austria, a total of 22 entries could be found in the database, but only 11 analyses configin residue data. 3
- 4 In Netherlands, a total of 15,418 entries could be found in the database, but only 15,324 analyses contain residue data.
- In the reports from Italy and Czech Republic, sinface water data were onlocompared to 0. the/L, however the maximum value reported in Italy and Czech Republic is always below 3.6 µg/L for FLC and 1.8 mg/L for PAM. 5

Air

For FLC and M-01 BAM, Sweden reported 25 malyses of air for each analyse (see Table 7.5-7) but in none was a finding above 0.006 ng/m3 reported. Ő Ø

Supenary of public monstoring results for fluopicolide (FLC) and M-01 2,6- \bigcirc Table 7.5- 7: dishlorobenzamide (BAM) in air 2 Ż Å

		· · · · · ·						
4	C C Flatopicelide (FLC)							
Country	DataSource	Monitoring	Samlas	Quantifications*	Quantifications*			
Country	Organisation	Period	Samples	≥LOQ)	(≥LOQ, %)			
	Swedish University of		1 2					
Sweden	Agricultural Sciences	2018 - 2017	25		4.0			
	- Regional Pesticide	20-0 - 2017	\$ ²⁵		4.0			
	Database a Di	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		206-dichlorober	zamide (BA	AM)				
Company	Data Source/C	Monitoring	Same	Quantifications*	Quantifications*			
Country 🔍	Organisation		Samples	(≥LOQ)	(≥LOQ, %)			
A	Swedish University of		L L					
Sweden	Agricultural Sevences	2016 2017	25	5	20.0			
Sweden *	Agricultural Sevences – Regronal Pesticide		23	5	20.0			
L.	Database 🖓 💊	Q 29						

Quantifications represent the number of analyses with residue levels amounted to neither "zero" and nor "<LOQ". The value of the COQ is depending on the analytical method and therefore variable (LOQ values ranged from 0.002 to 0.003 ng/ng for FLC and from 0.0002 to 0.026 ng/m³ for BAM).

Sediment

No sediment data were identified for FLC.

For M-01 BAM, France reported 1,350 analyses of sediments (Table 7.5-8) of which two analyses and the sediments (Table 7.5-8) of which two analyses are sedimented to be a sedimented to quantified M-01 BAM at levels above LOQ. The maximum reported sediment concentration is reported@ as 23 µg/kg dry matter.

Table 7.5- 8: Summary of public monitoring results for M-01 2,6-dichlorobenzamide sediment L. (A B

		2,6-dichloro	benzamide (B			
Country	Data Source/ Organisation	Monitoring Period	Samples	Quantifications*	Quantific Quantific	
France	Naïades – Données sur la qualité des eaux de surface French database for surface water	2003 - 2018				5 4 5 °

Quantifications represent the number of and yses with residue levels amounted to neither "zere" and nor "<LOG". The * value of the LOQ is depending on the analytical method and therefore variable (LOQ values anged from 4 to 0 µg/kg dry matter). 2 kin contraction

Soil No soil monitoring data reporting concentrations on strass basis (e.g. mg/kg) were identified for FLC and M-01 BAMC

able 7.5- 9: Country	1	Monitoring	etailed results for trans-EU and individual countries
Country	Source	period	Groundwater
EU	NORMAN - EMPODAT	2002-2018	The database contains monitoring data for FLC and BAM compiled from national regional databases aready consulted. No new databases Owhich contains the feasility of the feasility of the feasility of the national regional databases owhich contains and the feasility of the feasili
	Danube River Basin Water Quality Database	2013	Not applicable The second se
Austria	Federal Ministry for Sustainability and Tourism – Water Database		2019: 482 analyses 1 0 analyses LOD (LOD: 0.015 ug/L) All analyses 1 2,6-dichterobenzamide (BAM) 2007-2008: 22 analyses, including 11 analyses without any information on residue level (empty cell)

Page 20 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

0 1	G				
Country	Source	Monitoring	Kelevant	Compartment	
		period	Groundwater		
	Annual national	1997-2016	Parent	Surface water Parent 2013-2015: 313 analyses 5 analyses > LOQ (with residue LOD/LOQ anspecified) Maximum residue Lovel 0.45 Q/L	
	reports on water		The reports do not contain monitoring on a for FLC	2013-2015: 313 analyses	
	quality		for this compartment.	5 malyses > LOQ (with residue, LOD/LOQ onspecified)	
			2,6-dichlorobenzamide (BAM) <u>2013-2016</u> : 18,020 analyses 572 analyses > 100 (with residue, LODDOOQ unspecified) 6 analyses > 3 02/L ("limit for not-relevant	Maximum residue fevel 0.45 pg/L Alfanályses 53 ο μg/L (Ter 1-RAC-SW of FLC)	
			2,6-dichlorobenzamide (BAM)	Alfanályses 53.6 µg/L (Der 1-RAC-SW of FLC)	
			2013-2016: 18,020 analyses 5/A analyses > DQ	C dia the share a local to the the share of	
			$($ while residue, LOLOLOQ unspectified) \sim	2,6-dichtorobenzamide (BAM) The eports doubt contain monitoring data for BAM for	
			metabolite ²	this compartment	
			6 analyses > 3 02/L ("limit for not-relevant metabolite" No incheation about analyses above 18 μg/L Parent 2019: 407 analyses 1 analysis > LOQ (LOQ: 0.04 μg/L) Maximum residue level 0.021 μg/D All analyses <0.1 μg/L	the reports against contain monitorang data for BAM for	
Czech	IS Arrow –	2015-2019	Parent &	Parent of the second	
Republic	Assessment and	.*	2019: 407 analyses CL _ OL _ OL _	2017-2009: 2,369 malyses	
	Reference reports of	document	1 analysis > LOG (LOQ: 0.04 μ g/L) $\sqrt{2}$	72 matyses ≥ 1000 (LOQ $\pm 0.01 \mu g/L$)	
	water monitoring	a DICLE	Maximum residue lever 9.021 µg/@	Maximum desidue level 0.28 µg/L	
		300 310	All analyses <0.1 µg/L	All analyses <3.5 mg/L (Tier 1-RAC-SW of FLC) (
	, ¢		All analyses <0.1 μ g/L 2,6-dichlorobenzamide (BAM) 2017-2019: 3,663 analyses 43/2000 (1 OC) 01 μ g/C	2,6-dichlorobenzamide (BAM) 2017-2019: 3 838 analyses	
	TTLL .	·04. K	2017 20 20: 3 66% or alway	2017/2019: 3,838 analyses	
	·	,t	2017-2019: 3,663 analyses 43@nalyses \$1900 (LQO+0.01 μg/D)		
		ie a	Maximum residue level 0.384 mg/l	Maximum residue level $0.24 \mu g/L$	
			All any fyses < 10 mg/L 0 0 00 000	All analyses < 1.8 mg/L (Tier 1-RAC-SW of BAM)	
All analyses <0.1 µg/L arc i and i analyses <0.0 (100 molenzamide (BAM) 2017-2019; 3.693 analyses 200 (100 molenzamide (BAM) 2017-2019; 3.838 analyses 200 (100 molenzamide (BAM) 2017-2019; 3.808 analyses					

Page 21 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

Country	Source	Monitoring	Relevant Compartment
		period	Groundwater Surface water
Den Gree Gro anal	TALE	period 1995-2020 1995-2020 0 CUMERAT 0 CUMERAT 1999-2005 5 UD J CLINE 0 CUME 1999-2005 5 UD J CLINE 0 CUME 1999-2005 5 UD J CLINE 0 CUMERAT 0 CUMERAT	Groundwater Surface watef Parent Not applicable The database does not contain monitoring data for Not applicable FLC for this compartment. Not applicable 2,6-dichlorobenzamide (RAM) C C 1995-2020: 88,090 analyses C C 65,414 analyses < DOQ (LOQ) 90.005-0.51 µg/L; D D C D 12,411 analyses > LOQ C D <th< td=""></th<>

Page 22 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

Countmy	Source	Monitoring	Dalamant	Compartment
Country	Source	Monitoring period		
		periou	Groundwater	Surface water Parent Surface water 2015 2018: 1,520 analyses 3& analyses > LOQ (I GQ: 0.005-0.04 µg/L; COD: 0.003-0.014 µg/E) 0.014 µg/E) Range: 0.02-0.514 µg/L Alf analyses 3.6 µg/L 2.6-tlichlorobinzamide (BAM) 1099-2018: 128.028 analyses LOQ including 136 analyses < LOD
France	ADES – National	1996-2019	Parent	Parent 2
Tunee	Groundwater Quality	1990 2019	2016-2019: 8,734 analyses	$2015 - 2018 \cdot 1.520$ analyses $3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 $
	Portal		8,703 analyses <loq 1,335="" <<="" analyses="" including="" td=""><td>$\frac{2010}{30}$ = 1,520 unarysta $\frac{1}{50}$ = 0.00 (Lator 0.005-0.04 µg/L · COD· 0.003-</td></loq>	$\frac{2010}{30}$ = 1,520 unarysta $\frac{1}{50}$ = 0.00 (Lator 0.005-0.04 µg/L · COD· 0.003-
	1 oftwi		LOD (LOO: $0 - 0.1 \text{ µg/L LOD: } 0 - 0.5 \text{ µg/L})$	$(0.014 \mu g/P)$
	Naïades – National		LOD (LOQ: 0 - 0.1 µg/L, LOD: Θ - 0.5 µg2) 31 analyses > LOQ Range: 0.007-0.193 µg2	Range $0.02-0.54$ µg/L 0
	Surface Water		Range: 0.007-0.193 ug	All analyses <3.6 ug/1 (Tier 1-ROAC-SW of FLC)
	Quality Data Portal		1 analysis >0.1 µ200	
	(including		Maximum concentration 9.193 µg41	2.6-dichlorobenzamide (BAM)
	sediments)		ne s it and	(1999-2018: 137,304 analyses *
	,		LOD (LOQ: 0 - 0.1 μ g/L, LOD: Θ - 0.5 μ g/L) 31 analyses > LOQ Range: 0.007-0.193 μ g/L 1 analysis >0.1 μg/D Maximum concentration 9.193 μg/L 2,6-dichdorobenzamide (BAM) 2000-2019: f24,025 analyses including 1,494 analyses at 2ero residue level 115 237 analyses 2LOQ including 58,922 analyses	128,828 analyses LOQ including 136 analyses < LOD
			2000-2019: \$24,025 analyses including 1,494	(COQ: 0.02-0.2 μg/L; ξOPD: 0.00067-0.2 μg/L)
		- 41	analyses at Zero residue level and a solution of the second second second second second second second second se	
		er.	115,257 analyses LOQ including 58,922 analyses	Range 0.002 Bug/L
		JIChe	LOD (LOQ:90 - 0.1 µg(b, LOD: 0°60.5 µg/b)(5)	A ganalyse 18 mg/L (Tier 1-RAC-SW of BAM)
		document	7,294 analyses > LOQ Ranger 0.03-18 86 μg/L 3 analyses >10 μg/L	
	. 6		Ranger 0.03-18,86 µg/L 0 0 0 0 0 0 0 0	S. G. J.
	0.0		3 analyses ≯t0 μg/L 1 the start f	
	J. He	<i>¹</i>	Maximum residue level 18-86 µg/L O	
Germany	Sachsen	1995-2010 5 JD JE T JO	Analyses > LOO Range: 0.03-18 86 μg/L 3 analyses >10 μg/L Maximum residuc tevel 18-86 μg/L Patent 2012-2018: 1,477 analyses including 1,472 analyses	Agrent
	Environmental	guid je rig	2012-2018: 1,477 analyses including 1,472 analyses at zero residue fouri (LOD/QOQ unspecified) Range: 0.025-0.12 μg/L	2012-2019: 8,693 analyses including 8,612 analyses at
	Agency	and all	at zero residue level (LOD QOQ unspecified)	zero residue level (LOD/LOQ unspecified)
			Range: 0.025-0.12 µg/L@ ^{LD} O ^{WB} ^{KLD}	Range: $0.025-1.4 \mu g/L$
	j v	AOP TOP	A analyon >0.1 µg/S	All analyses < 3.6 μg/L (Tier 1-RAC-SW of FLC)
	A A A A A A A A A A A A A A A A A A A	COPY CUINE	A analygie >0.1 μg/ Maximum residue level: 0.12 μg/4 &	2 (dishlanshannamida (DAM)
	IPR I	3.0 4 h	2,6-dichtorobenzamide (BAM)	2,6-dichlorobenzamide (BAM) <u>2012-2019</u> : 7,753 analyses including 7,502 analyses at
	1		2006-2018:33,001 analyses including 3,117 analyses	zero residue level
	2,74		zero residue level (COD/LOQ unspecified)	28 analyses > LOQ (LOQ: 0.05 μ g/L)
			Range 105-2 Date I	Range: $0.051-1.4 \ \mu g/L$
	at ^e	Outre & Outre	Affanalyses 40 µg/L	All analyses $< 1.8 \text{ mg/L}$ (Tier 1-RAC-SW of BAM)
C.	ctherne cottent co	MART the	2,6-dichlorobenzamide (BAM) <u>2006-2018</u> : 3 Dol analyses including 3,117 analyses at zero rastitue level (DOD/LOQ unspecified) Range 0.05-2.039/L All analyses 40 μg/L	v g (

Page 23 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

Country	Source	Monitoring period	Groundwater	Compartment
	Rheinland Pfalz -	Varies	The reports do not contain monitoring data the FLC	The reports do not contain monthly foring data for FLC or
	State Office for the		or BAM for this compartment.	BAM Cor this compartment.
	Environment, Water Management and Trade Inspection		ty tes tud	The reports do not contain monthly data for FLC or BAMOOT this compartment?
	Baden-Württemberg - State Institute for the Environment, Measurements and	2006-2018	The reports do not contain monitoring data to FLC or BAM for this compartment. I for the former of t	Not applicable OF COP
	Nature Conservation Elbe River Basin - Data Information System	1995-2019		BAM for this compartment
	LAWA - Working Group on water issues of the Federal States and the	2003-2019	l he database does not wontain monited ring data for	BAM of this compartment.
	Federal Government			
	Rheinland-Pfalz GeoPortal Wasser			BAM for this compartment.
	Schleswig-Holstein- Landesamt für D- Landwirtschaft, Umwelt und	2015-2017 COP JOC UT	Not applicable Not applicable Cation Cation Contain monitoring data for PLC or BAM for this compartment.	The database does not contain monitoring data for FLC or BAM for this compartment.
	Ypeka – Ministry of Environment and Energy	Not speethed	The database does not contain monitoring data for CPLC or BAM for this compartment.	The database does not contain monitoring data for FLC or BAM for this compartment.
ĒV	CTBECTROLLIN'	nne ^{rcite} the	Not applicable (Not applicable Cathin of the the of the the of the the of the the of	

Page 24 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

taly	Italian National	2011-2016	Parent	Since the database displays the same results as the repo
5	Institute for		2013: 236 analyses	for 2013 - 2016, the two source types with not be
	Environmental		8 analyses >LOQ (LOQ 0.005 μ g/L)	distinguished were for these years:
	Protection and		Maximum residue level 0.034 µg/L	Parent C
	Research (ISPRA) -			
	Pesticide Portal		2014: 379 analyses	3 Panalyses >LOQ (LOQ 0.005 ug)
			$\overline{3}$ analyses >LOO (LOO 0.005 µg/L)	Maximam residue devel 0.854 Qe/L
	National Statistical		Maximum residue level 0.02 µg/L	$3 Panalyses > LOQ (LOQ 0.005 ug/L)$ Maximum residue devel 0.85 Pg/L All analyses $56 \mu g/L$ (Ter 1-RAC SW of FLC) $2014: 1.095 analyses = 1280 (LOQ 0.005 \mu g/L)$
	Data (2013 – 2016)		All analyses <0.1 ug/	~2014: 1.095 analyses 2 202 202
	, ,		2015: 464 analyses	128 malvses >LOO (LOO 0.005 µg/L)
	National Annual		$\overline{2}$ analyses >LGQ (LOO \oplus 005 µg/L)	Maximum resultue level 041 µg/L
	Reports		All analyses <0.1 μ g/L 2014: 379 analyses 3 analyses >LOQ (LOQ 0.005 μ g/L) Maximum residue level 0.024 μ g/L All analyses <0.1 μ g/Q 2015: 464 analyses 2 analyses >LOQ (LOQ 0.005 μ g/L) Maximum residue level 0.007 μ g/L All analyses <0.3 μ g/L 2016: 986 analyses 57 analyses >LOQ (LOQ 0.02 μ g/L) 12 column 0.000 (LOQ 0.02 μ g/L)	All analyses $3.6 \mu g/L$ (Ter 1-RAC SW of FbC) 2014: 1.095 analyses 128 analyses >LOQ (LOQ 0.005 $\mu g/L$) Maximum residue level 0.41 $\mu g/L$ All analyses <3.6 $\mu g/L$ (Tier K PAC-SW of FLC) 2015; 1.510 analyses 160 analyses LOQ (EQ 0.005 $\mu g/L$) Maximum residue level 0.009 $\mu g/L$ Maximum residue level 0.009 $\mu g/L$ All analyses $3.6 \mu g/L$ (Fer 1-RAC-SW of FLC) 2015 1.000 mg/L
	2011-2012		All analyses <0. Jug/L	2015 510 analyses
			20 for 986 analyses	160 analyses LOO (KOO 0.005 ug/L)
		×	$\frac{1}{57}$ analyses $\frac{1}{100}$ ($\frac{1}{100}$ $\frac{1}{10$	Maximum residue level 0.009 @p/L
			12 analyses > 0. Dug/L	All analyses Sto ug/L (Fier 1-RAC-SW of FLC)
		T JIA	Maximum residue lexel 0.73 µg/lo	<u>2016:</u> 1,9940analyses
		30 ^{C°} . 10	All analyses <0.1 µg/l 2015: 464 analyses 2 analyses >LCO (LOQ 0.005 µg/L) Maximum residue level 0.007 µg/L All analyses <0.3 µg/L 2016: 986 analyses 57 analyses >LOQ (LOQ 0.02 µg/L) 12 analyses >LOQ (LOQ 0.02 µg/L) 12 analyses > 0.3 µg/L Maximum residue level 0.73 µg/L 2,6-dichlorobenzamide (BAM) 2011: 1.221 analyses	185 an alyses >LQQ (LOQ 0.005 μg/L)
		0, 0,	2,6-dichloropenzamide (BAM)	Maximum residue level 0.274 µg/L
		Olyn .	2.6 dichlorobenzamide (BAM) 2.6 dichlorobenzamide (BAM) 2.6 dichlorobenzamide (BAM)	185 analyses >LQQ (LOQ 0.005 μg/L) Maximum residue level 0.274 μg/L All analyses <3.6 μg/L (Tier 1-RAC-SW of FLC)
	TTAL	document and.lc	2,6 cdichlorobenzamide (BAM) 2011: 1,321 analyses 65 analyses >LOO (LOO actions $\mu g/L$) Maximum residue level 0.76 $\mu g/L$ All analyses <10, $\mu g/L$ 2012 9,840 analyses 75 analyses >LOO (LOO of 0.02 0.9L) Maximum residue devel 1.2 $\mu g/L$ All analyses <10 $\mu g/L$	
		Ċ	65 anatyses >LOQ LOQ af Q05 μg/L) Maximum residue level 0.76 μg/L	2.6-dichlorobenzamide (BAM)
		il i	All analysies <10, µg/L , V , , V	<u>2011:</u> 1,443 analyses
			2012 9,840 analyses	5 analyses >LOQ (LOQ 0.05 μ g/L)
			2012 V,840 analyses 25 analyses >LOQ (LO@ of 0.02 @ L) Maximum residue to cl 1 2 u.c.	Maximum residue level 0.47 µg/L
	1 VOE	. 2 ⁷	Maximm residued vel 1.2 µgL	All analyses < 1.8 mg/L (Tier 1-RAC-SW of BAM)
	A	CO - Julius	All analyses 10 µg/L V h 10	<u>2012:</u> 2,087 analyses
	The s		2013: 1,660 analyses 75 analyses >LQQ (LOQ of 0.02 μ g/L)	61 analyses >LOQ (LOQ 0.02 μg/L)
	S. S.	s m	75 analyses >LQQ (LOQ of $0.02 \ \mu g/L$)	Maximum residue level 0.52 µg/L
		Le our	Maximum resulte level Q7 µg/L	All analyses < 1.8 mg/L (Tier 1-RAC-SW of BAM)
		a y	All analyses <10 µg/P	<u>2013:</u> 1,663 analyses
	. CO 1	Stor St	<u>2014</u> , 2,566 anabyses	47 analyses >LOQ (LOQ 0.02 μ g/L)
	01		Sanalyses LOQ (LOQ of 0.02 μg/L)	Maximum residue level 0.23 µg/L
	27 BB		Maximum residue level 0.63 µg/L	All analyses < 1.8 mg/L (Tier 1-RAC-SW of BAM)
		and the	All @ralyses <10 µg/L	<u>2014:</u> 2,117 analyses
aa1	Tt nay b thermore ' thermore ' thermore ' the contrary '		2015: 1,711 analyses	106 analyses >LOQ (LOQ 0.02 µg/L)
E.A	al al	10 ¹ 10 ¹	135 analyses >LOQ (LOQ of 0.02 μ g/L)	Maximum residue level 0.26 µg/L

Page 25 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

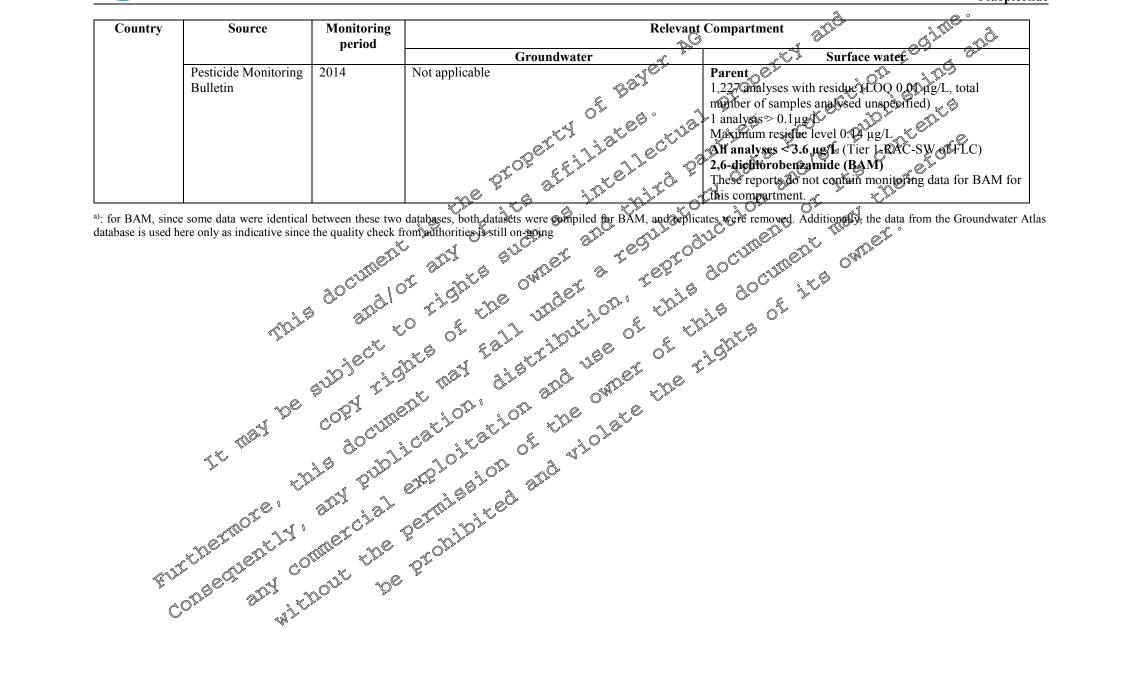
~	~			
Country	Source	Monitoring	Relevant	t Compartment
		period		
			Groundwater	Surface water
			Maximum residue level 0.03 µg/L	All analyses < 1.8 mg/L (Tier CRAC-SW of BAM)
			All analyses <10 µg/L	$\frac{2015}{100}$ analyses >LOQ (LOQ 0.02 upt) Maximum residue (Svel 0.02 upt)
			<u>2016:</u> 1,373 analyses	10 analyses >LOQ (LOQ 0.02 ug/L)
			2016: 1,373 analyses 86 analyses >LOQ (LOQ of 0.02 µg/L) Maximum residue level 1, 12 µg/L	Maximum residue level 0.02 gg/L
			Maximum residue level 1 12 µg/L	All analyses SLO mg/L (Pier 1-RAC-SW of BAM)
			All analyses <10 µg/LC	IQ analyses >LOQ (LOQ 0.02 µgL) Maximum residue (evel 0.02 µgL) All analyses < L8 mg/L (Der 1-RAC-SW of BAM) 2016: 2,209 analyses 80 analyses >LOQ (LOQ 0.02 µg/L)
				$180 \text{ analyses > LOQ}(LOQ 0.02 \mu g/L)$
				Maximum residue level 0.24 µg/L
			2016: 1,373 analyses 86 analyses >LOQ (LOQ of 0.02 µg/L) Maximum residue level 1, 12 µg/L All analyses <10 µg/L P P P P D C D C C C C C C C C C C C C C	All analyses < 1.8 mg/L (Tierd, RAC-SW of BAM) Maximum restatue level 0.2 µg/L Maximum restatue level 0.24 µg/L (All analyses < 1.8 mg/L (Tierd, RAC-SW of BAM)
Netherlands	Water Quality Data	1995-2017	Not applicable 1 9 6 The K	Parent Or A
	Portal – surface			2010-2017: 383 analoses .
	water	×	, a or offer differ offer of	2,548 any lyses < 0.001-0.1 µc (LOD/LOQ unspecified)
				1,875 analyses 0.001-0 \$ ug/L (LOD/LOQ unspecified)
		, TIGH	and the state of the	Bange 0.000-19 µg/L
				5 analyses > 3.6 us/L (Tier 1-RAC-SW of FLC)
		0, 91,		Maximum residue level 19 µg/L
		O.T. H.		
	The second	Ŭ, Š		2.6-dichlorobenzamide (BAM)
	<i>"</i>	e to		1996-2017: 15.418 analyses including 94 analyses
		10 1		Without any information on residue level (empty cell) and
		. 10° 19		1 analysis at zero residue level
			the of the time	11.344 analyses < 0.002-0.5 µg/L (LOD/LOO
	9 ₀₇			unspecified)
	. L	COL JIM		3.979 analyses > 0.002 -0.5 µg/L (LOD/LOO unspecified)
	TO DO L	30 ^{C°} ,		Range: $0.014-1.4 \text{ µg/L}$
	1 K 1			All analyses $< 1.8 \text{ mg/L}$ (Tier 1-RAC-SW of BAM)
	E.F.	T P	et a grand a give	
	@. 1	10 ³		
	at e	Out and the		
	Pr any	af ^C		
	MC Ath	MAE NE	e Older	
.4	(" ^{the} al ^{the} al	Man Repar		
T V		NE SO	nor appreciate to the approximation of the area of the approximation of	Its analyses >LOQ (LOQ 0.2 ugL) Maximum residue level 0.02 ug/L Alfanalyses 2016: 2.209 analyses 80 analyses >LOQ (LOQ 0.02 µg/L) Maximum residue level 0.24 µg/L Alf analyses 2010: 2.209 analyses 80 analyses >LOQ (LOQ 0.02 µg/L) Maximum residue level 0.24 µg/L Alf analyses 2010-2017: 4.383 analyses 2.548 analyses 2.548 analyses 0.001-0.1 µg/L (LOD/LOQ unspecified) 1.823 analyses 0.001-0.1 µg/L (LOD/LOQ unspecified) 0.835 analyses 0.001-0.1 µg/L (LOD/LOQ unspecified) 0.835 analyses 0.001-0.1 µg/L 5 analyses > 3.6 µg/L (Tier 1-RAC-SW of FLC) Maximum residue level 19 µg/L 5 analyses > 3.6 µg/L (Tier 1-RAC-SW of FLC) Maximum residue level 19 µg/L 2.6-dicfilorobenzamide (BAM) 1296-2017: 15,418 analyses including 94 analyses without any information on residue level (empty cell) and 1 analysis at zero residue level 11,344 analyses < 0.002-0.5 µg/L (LOD/LOQ unspecified) 3,979 analyses > 0.002-0.5 µg/L (LOD/LOQ unspecified) Range: 0.014-1.4 µg/L A
1 1	në atri	^y oz "Òz		
Ĉ		b		
<u> </u>				

Page 26 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

Country	Source	Monitoring	RelevantGroundwaterParent $2011-2016$: 185 analysesAll analyses < LOQ (LOQ 0.01 µg/L)	Compartment
Country	Source	period		Compartment 2005 Not applicable P ¹ D
		1	Groundwater	Surface water
	Water Quality Data	1995-2019	Parent	Not applicable
	Portal –groundwater		$\frac{2011-2016}{1}$: 185 analyses	at i gut
	Groundwater Atlas		All analyses < LOQ (LOQ 0.01 lpg/L)	
	for Pesticides		2 6-dichlorobenzamide (RAM) ^{a)}	Co out the term
	ior resticides		1995-2019: 8.681 anal@es	
			$1,708 \text{ analyses} > LOQ (LOQ 0.01 - 0.1 yg/L) = 0^{\circ}$	
			Range: 0.01-18Qag/L	t and all it is a life
			4 analyses 10 µg/L 12 12 1	
			Maximum residué lével 18 gg/L K K	
	Ground water	2015-2016	Parent	Parent The database does not contain monitoring data for FLC for this compartment. 2,6-dichlorobenzamide (BAM) 2015 - 2018: 1,046 analyses
	Quality – Report 2017		$\frac{2015-2016}{1 \text{ anglyses}} = 0$	AUTO STATES
	2017	TRACE	All analyses 2000 (100 unspecified)	200 Julie Out
		document	$\frac{2015-2016}{161}$ 161 analyses 1 analysis >LOCALOQ unspecified) All analyses 0.1 µg/(C 2,6 dichlorobenzamide (BAM) 2015-2016: 978 analyses	
		0,0,01,	2,6 dichloroberzamide (SAM)	
	1 L	9 Dipa	2015-2016: 978 analyses 2	
	L'In		134 analyses > EQQ (LOQ \oplus OD unspectfied)	30 ²
		N OCT A	74ganalyses (091 µg/L)	29 ^b
Slovenia	Slovenia	2007-2019-20 07-2019-20	No indication above analyses above 10 kg/L	Powent
Slovenia	Environment	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	The database does not contain monitoring data for	The database does not contain monitoring data for FLC
	Agency	copy rule	FLC for this compartment.	for this compartment.
		COL AUTER	FLC for this compartment.	
	TROCE	200 >	C.6-dichlocobenzamide (BAM)	2,6-dichlorobenzamide (BAM)
	K. V		2007 - <u>3019</u> : 2,979 analyses	
	Ϋ́,	Dr Dur	4 apartyses > LOQ (LOQ 0.006-0.06 µg/L)	All analyses <loq (loq="" 0.01<="" 0.02-0.05="" l;="" lod="" td="" μg=""></loq>
	· · · ·	A PA	Prange: 0.922-0.091 µg/L	μg/L)
		Oper top	All analyses < 10 Hg/L	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	- Der anter	ante. De	TLC for on's comparamile (BAM) 2007 - 2019: 2,979 analyses 4 apartyses > 100 (LOQ 0.006-0.06 μg/L) Range: 0.022-0.091 μg/L All analyses <10 μg/L	
)** <i>*</i> {\}* ** .	Q [×]	
F. Os	ger at .	ovi ve		
Å	Olphe Speed of the	LP		
U	L BAR			

Page 27 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

Country	Source	Monitoring	Relevant Groundwater Not applicable Propertix OPE Propertix OPE Propertix OPE Propertix Propertix	Compartment
		period	Groundwater	Surface water
Spain	Directiva Marco del	Junta de	Not applicable	These reports / databases do not contain monitoring data
1	Agua – Calidad -	Andalucía:		for FIQ or BAM for this compartment
	Junta de Andalucía	1995-2019	- E	
	Web de Consulta de	Ebro:		1 the off of the second
	datos de Calidad de	2002-2019		The solution of the solution o
	Aguas Superficiales			a at all us ret
	– Ebro	Segura: 2008-		at athe the per-
		2017		FT of at the
	Confederación			
	hidrográfica del	Report Rios		10° and the the
	Segura, O.A.	de		a the cost of the
	Ríos hormonados -	hormonados	and a second a solution	30 ^{Co} M ^{ler} O ^w
	Amplia presencia de		of the other of the a	
	plaguicidas	30° a.10	39^{1} and 38^{2} and 32^{2}	
	disruptores		To the will the the	
	endocrinos en tos	J. K		e de la companya de l
	ríos españoles	A.U.	s sor it as	
Sweden	Swedish University	2002-2018	Parent 1 , 6 th V ^P A. A	Parent
	of Agricultural		2015,092 analyses 2	<u>2015-2018</u> : 527 analyses including 402 analyses at zero
	Sciences –Pesticide		All analyses at zero residue level & Q 0.01 w/L,	residue level
	Database 🔊	COBA CATUR	2015 02 analyses All analyses at zero residue level (500 0.01 μg/L, LOD 0.002 μg/L) All analyses (LOQ 2,6-dichlorobenzamide (BAM)	125 analyses with residues above zero (LOQ 0.002 - 0.01
	Le mart	CC. Aller	All analyses & OQ * * ~ ~ ~	μg/L, LOD 0.001 - 0.005 μg/L)
	TCBO	<u>3</u> 0° , ×		Range: 0.002-0.24 µg/L
	T, ^E	15 PUDI	2,6-dichlorobenzamide (BAM)	All analyses < 3.6 μg/L (Tier 1-RAC-SW of FLC)
		all' pline	$2004 \sim 2015$: Q6 analyses including 723 analyses at	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Zero residue level	2,6-dichlorobenzamide (BAM)
	Chermore '			These reports / databases do not contain monitoring data for FLO or BAM for this compartment. Prove the prove of the pro
	ALL AND		Range: 0.91—0.019 μg/L	741 analyses with residues above zero (LOQ 0.01 - 0.04
	the the	ane ne	All malyses <10 µg/L	μg/L, LOD 0.002 - 0.03 μg/L)
~~		Pr. R.		Range 0.01-0.47 µg/L
EV.	$1 e^{0}$ i	w ^t ne	¥	All analyses <1.8 mg/L (Tier 1-RAC-SW of BAM)
	all all the	AURET C. * THE T		
Ć				




Page 28 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide

Country	Source	Monitoring period	Relevant Compartment
		periou	Groundwater Surface water
Switzerland	T.D.J.	, E	ParentNo       Not applicable         The report does not contain monitoring data for FLC for this compartment.       Not applicable         2.6-dichlorobenzamide (BANI)
United Kingdom	England Environment Agency Water quality data archive	200022019	These reports do not contain monitoring data for FLC or BAM for this compartment.
EV	Drinking Water Inspectorate of England and Wales – Chief Inspectors Annual Reports	ADY ADY DURCECIAL DURCECIAL	Simeasuring points     QCI PCL Control       Simeasuring points     QCI PCL Control       All analyses < 10 µg/L



Page 29 of 148 2020-08-11 Document MCA – Section 7: Fate and behaviour in the environment – Part 3 Fluopicolide





#### **III.** Conclusion

The groundwater monitoring data search indicates that fluopicolide (FLC, parent) concentrations above the regulatory trigger of 0.1  $\mu$ g/L are rare (14 samples; 0.10% of 13,573 analyses) with the highest value of 0.73 µg/L. For M-01 2,6-dichlorobenzamide (BAM), the monitoring data amount is much larger (293,108 analyses) but M-01 BAM concentrations above the threshold of 10 Je/L are propertionally also rare (32 samples, 0.011% of the analyses). Moreover, excluding the BAM data for Denmark, where this metabolite cannot originate from FLC usage, there are only 9 samples that exceed the Soncertration threshold which relates to an exceedance rate of 0.0044% of 205,018 analyses.

The surface water monitoring data search indicate that FCC concentrations above the Tier QRAQ-S (3.6 µg/L) are exceedingly rare (5 samples, 0.022% of 22,592 analyses), with the highest value of 19 µg/L. The results from the surface water monitoring data search for BAM show that no residue concentrations above the Tier 1-RAC-SW (1.8 mg/L) were measured (samples of 69,028 analyses) and are at most 8  $\mu$ g/L.

For the air compartment, FLC concentration and BAM above the LOQ were found but no residue concentration above 0.006 ng/m³ was reported. Õ Ø

For the sediment compartment results from the monitoring data search were only found for SAM, indicate that residue concentrations above LOQ were rare (2 samples, 0.15% of 10350 apalyses) and did not exceed 23 µg/kg dry matter. Ŵ

It cannot be discounted that some of the detections identified are encheous given they originate from large non-GLP monitoring networks and programmer of unknown quality. O

FLC and M-01 BAM monitoring is not documented in spil or drinking water.

Overall it can be concluded from assessment of readily available public monitoring datasets that fluopicolide (FLC) and M-01 2, 6-dickborobenzami (BAN) do not pose a concern for the environment for the following compartments - sorface water, goundwater, drinking water, soil, air and sediment.

O This study is reliable and provides information on the exposure values for fluopicolide and the metabolite M-01 (BAAT) in surface water, groundwater, drinking water, soil, air and sediment and 3Y

the contraction of the comparison of the compari



### A) Soil

No public monitoring data or peer reviewed published data is available in soil for fluopicolide or M-01.

#### **B)** Water

#### Fluopicolide

B) Water	KCA 7 5/02
B.1 Groundwater	
<b>D.1</b> Groundwater	
Fluopicolide	
	KCA 7.5/02
Data Point:	KCA 7.5/02
Report Author:	
Report Year:	
Report Title:	2020 Dichlobenil (DCB), fluopeolide (FLC) and their@ommon metabolite 2,6 dichlorobenzamide (BAM): Assessment of groundwater public monitoring data from 8 EU member state countries
	dichlorobenzamide (BAM): Assessment of groundwater public monitoring data
	from 8 EU member state couptries 2 4
Report No:	CEA.2028
Document No:	$\underline{M-686676-01-1} \xrightarrow{\mathcal{O}} $
Guideline(s) followed in study:	CEA.2028         Constraint         Constrain
Deviations from current	
test guideline:	No. Not applicable of the second seco
Previous evaluation:	No, not previously submitted
GLP/Officially	No not conducted inder GLP/Officially coognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliabilitx:	Yes y y y y y
Ş	

### Executive Summary: 10

Fluopicolide (BLC) is a folio applied fungicide jsed accelatively low, application rates on a range of vegetable crops, potatoes and vines. Recently, it has also been used as a seed treatment in oil seed rape at very low application rates. Dichlobenil (DCB) is a soil applied herbicide that was used to control weeds on a variety of goody crops, grassland non or opped areas and vineyards at very high application rates. Both FLC and DCB form a compon soft metabolite namely 2,6-dichlorobenzamide (M-01, BAM), which is known to potentially leach to ground water and has been intensively monitored in many Ô countries for many years.

FLC and DCB have different expirit authorisation dates, with only a small overlap where both a.s. were registered for use. DCB is an 'off' compound which entered the market in the 1960s and authorisations expired during the period 1997 to 2012 in the countries considered in this report. In contrast FLC foliar authorisations commerced between 2006-2011 in most EU Member States, with the first seed treatment authorisations granted in 2018. In addition, there is also a difference in target crops between DCB and FLC, although some overlaps pecur.

The scope of this study was collect groundwater residue data derived from public monitoring across several EU Member, State (MS) and to assess these spatially and temporally with the aim to discriminate whether M 01 BAM residues are related to leaching following historical applications of DCB or more recent applications of FLC.

The assessment of the groundwater public monitoring data concluded that there is no apparent risk to groundwater related to FLC usage. The detection rates of FLC are very low across all target Member States and the elucidation of exceedances shows that most of these are likely to be false positive findings or are related to exceptional environmental conditions.



For the non-relevant metabolite M-01 BAM, there is clear evidence that a significant proportion of the M-01 BAM detections are the legacy of historic DCB applications. These DCB linked M-01 BAM detections occur even several years after the expiry of the DCB usage authorisation. From the monitoring data, the possibility that some M-01 BAM detections are related to leaching following FLC usage annot be excluded, but the data indicate that these are typically low in concentrations and are below the threshold of 10  $\mu$ g/L for non-relevant metabolites. These conclusions are consistent with the much lower net effective application rates of FLC and its degradation / metabolism which @sults in less M-01 BAM entering the environment. Out of 210,000 M-01 BAM analyses across the target Member States thereon were only 13 exceedances of the 10 µg/L groundwater concentration threshold of which 10 were identified to be related to historic DCB applications or are related to exceptional environmental conditions.

conditions. I. Materials and Methods Groundwater residue data for DCB, FLC and VI-01 BAM from public monitoring were collected, from EU countries which are most prominent in terms of FLC with the Weil of FLC and VI-01 BAM from the Weil of FLC with the Weil o EU countries which are most prominent in terms of FLC use. In total 8 DU countries were selected for this exercise which represent in the order of 94% and 95% of FLC sales for the frain target crops potatoes and vines, respectively. These countries are: Austria Belgium, France, Germany, Italy, Netherlands, Poland and UK. From these countries there are large ground water monitoring data sets available, with more than 420,000 analytical results for the three analytes FLC, DCB and M-OF BANG covering a time period from 1989-2019. No data could be included from Poland and the UK. The authorities in Poland confirmed that the three analytes are not part of the rational groundwater monitoring programme, and for the UK only data for DCB exist. Although, FLC was nover registered for use in Domark there is a comprehensive dataset for DCB and BANQ and the data from Denmark was therefore included in this assessment as it forms a valuable baseline in terms of historical and opgoing BAM detections in groundwater without the use of LC. × Ô O

The registrations of BCB and FLQ were evaluated in terms of authorisation dates for each country and the crops for which the products containing the a.s. were authorised for usage. An assessment of the application rates and uses was undertaken in order to compare the possibility for leaching of M-01 BAM associated with DCB and FL apploations Ľ

The groundwater residue data were subsequently processed and assessed temporally and spatially to determine (a) the concentration ranges and detection rates over time in which the analytes were detected in groundwater, (b) whether there are trends in residue concentrations that can be related to the expiry of DCB and/or the authorisation of FLC and (c) whether there is a spatial correlation between M-01 BAM detections and the occurrence of FLC target crops and/or FLC usage data.

In addition, FIGE and OF-01 BAM detection above the regulatory threshold for groundwater (0.1 µg/L for FLC and 10 µg/L for the mon-relevant metabolite M-01 BAM) were subject to a desk-based elucidation. The aim of the elucidation was to investigate whether these detections were likely to derive from leaching following compliant uses of FLC or are related to historic DCB applications or other circumstances. The encidation of DCB exceedances was not part of the scope of this study.

Levan Lion Was to Indiant uses of F Lidation of DCB exceed



### **II. Results and Discussion**

#### Information on DCB and FLC registrations

I n

The temporal overlap between uses associated with DCB and FLC was assessed by comparing the authorisation expiry date for DCB, extracted from national product registration databases, with the first date of authorisation for FLC, provided by Bayer, for each of the target Member States (Table 3.5-10). In addition, the potential for a spatial overlap between the uses associated with DCB and FLC was assessed by comparing the crops for which products containing these a.s. were registered

While these data may be incomplete, they suggest that in most Member States there is little temporal overlap between the authorisation expiry date for DCB and the first date of authorisation for FLC. However, the authorisation expiry date for DCB may not be the date after which DCB usage ceased. An approximately one-year period may need to be added during which emaining DCB containing products stocks would have been "used up". DCB has a long use history of about 10-50 years and entered the FU market in the 1960s. Its authorisation expired in the EU successively and DCB is no longer registered in any EU Member States. For the target Member States the DCB authorisation expired between 1997 (Denmark) and 2012 (UK).

Similarly, the available product registration data suggest that there is finited overlap between crops for which DCB and FLC products were registered. DCB containing products were registered for rise with woody crops including top-fruit, small fruit, vines, ornamentals and forestry. They were also used as a total herbicide on in the amenity and industrial sectors e.g. to treat outhways and failway tracks. In contrast, FLC containing products are registered for use on potatoes vegetables. Here, cane fruit and herbs. Aside from the uses targeting vines there is fittle overlap in the target cops. Recently, FLC is also used as a seed treatment in oil seed rap but at very low application rates with the first registrations granted in 2018.

In summary, the registration data suggest that there is only a limited temporal overlap between DCB and FLC authorisation. In terms of common target crops, there seems to be an overlap for vines, however the non-agricultural uses of DCB may make it difficult to discount spatial overlap between DCB and FLC uses in other props.

A general overview of the registered uses of DCB and FbC in the target Member States is provided in Table 7.5-10, with overlapping uses marked in bold.

Table 7.5 10:	Authorisatio	a expirs	[®] date for	r DCB,	firstd	ateofa	uthorisatio	n for FLC and	
	authorised of	rops	St.	, M	ų.	1 A			
			A .	$\sim$	<u>~</u>	1			
		Øv .		°r (	┙ 🄄				

Member State	DCB author ation expiry date	PB registered erops	FLC first authorisation date	FLC registered crops
AT A	N/R - assume Mar 2010		Nov 2011	potatoes, vegetables, hops, cane fruit, vines
BE BE	Apr 2000	woody crops, including beyfies, orchards, ornamenta Until Nov 2007 also for uncultivated and paved land	May 2008	potatoes, vegetables
	Aug 2004, suspended in Mar 2001*	water bodies, meadows and pastures, garnet berry, blackcurrant, stone fruit, <b>vines</b> , ornamental trees, railway tracks, coniferous wood and hardwood, ways and places with woody plants and tree nurseries with woody plants	Jan 2007	potatoes, vegetables, hops, cane fruit, <b>vines</b>



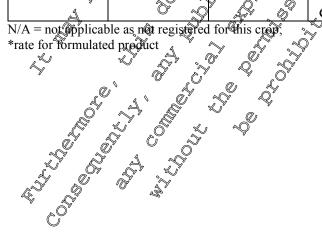
Member	DCB	DCD	FLC first	FLC registered
State	authorisation expiry date	DCB registered crops	authorisation date	crops
DK	Jul 1997	trees and shrubs, forestry,	N/A	N/A N/A
		total herbicide in		
		cultivated areas, non-	6	¢ ,¢ ,o
		agricultural use, amenity	Ô	
		use, hard surfaces, land	A	
		adjacent to aquatic areas	s s s s s s s s s s s s s s s s s s s	
FR	Mar 2010	trees and shrubs, cane $\mathcal{Q}$	Feb 2040	potatoes, vesetables
		fruit, <b>vines</b> , roses,	- Q	Vinges 📈
		forestry, non-agricultural	4	N & N
		use, hard surfacts,	Q' a°	
		aquatic		
IT	Mar 2009	vines, olives, apples, °	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	potatoes, vegetables,
		ornamentals amenity use,		Pierbs, vines, flowers
		hard surfaces, fand		
		adjacent to aquatic areas		
NL	Oct 2008	top frait (pome), amenity	よう June 2007 ネッ ダーダー ムダー ち	potatoes vegetables,
		use (excluding hard		[©] herbs [©]
		Surfaces), land not		
		intended to bear		
	a	vegetation		
PL	N/R - assume Mar	top fruit (pome), cane	đưn 2011	potatoes, vegetables
	2010	struit, vites, ornaunentals		, Ôj
		$\bigcirc$ forestry, amenity use,		L.
	·» A	drainage ditches		
UK	Sep 2011	App fruit (pome), cane	Nov 2005	potatoes
	Û,			
	\$ . 0 ×	amenity use, land not		
		intended to bear		
	8 <u>8</u> 0	vegetation, hard surfaces	Ĵ,	
Ö		aquatic, land immediately	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
° M		adjacent to aquatic areas,		
Ľ,	.00	portato (post-harvest use), potato (dumps for	, O	
- 1		destruction) refuse the		
		vacsuaetion), eetuse np.		
Overlapping us	es are marked in bold		*	
J/A – not applį	cable as no registered in	this MS		
$I/\mathbf{R} = \mathbf{n}\mathbf{o} \operatorname{record}$	ds: N/R – no records asse	Marting 2010 and 2008		
'BVL, 2009				
.~	A A			
<i>S</i> [™]		y		
		Q A		
	A A &			
Ŕ		use), potrio (dumps for destruction) teruse fip.		
, S		) "Y		
~				
s s s s s s s s s s s s s s s s s s s	G A I			
	V Ö X			
	Le la			
r C C				
$\bigcirc$				



A key difference in the registrations of DCB and FLC is in the approved application rates, although there is limited information on the formerly approved DCB rates for individual countries.

Example DCB rates, compiled from publications, product labels and country authority product registration databases, can be summarised as follows:

- In Denmark, DCB was registered for use at rates around 4-30 kg a.s./ha
- In France, DCB was registered for use on vines (Casoron G UC) at rates of 100 kg/ha (7,5 kg a.s./ha) and rates on non-crop areas and aquatic environments (Aqua G) were up to 160 kg/ha (12 kg a.s./ha).
- In the Netherlands, DCB rates varied from 30,100 kg/ha (casoron G and Casoron 64) depending on the target crop, which corresponds to 2-4 kg a scha.
- In Belgium, DCB was last registered in berries, orchards, orhamental trees and hedges a Cannual application rates between 80-135 kg/ha (Cassron 4GR and Cassron GR) which corresponds to 5.4 kg a.s./ha.
- 5.4 kg a.s./ha.
  Germany confirmed product rates for applications in strangentral trees of 4 g/m² (2.84 kg a.s./ha) and on railway tracks at 25 g/m² (17.96 kg a.g./ha).
- In Italy, DCB rates varied from 75-120 kg/ha (Du-Cason 20 SR) or 16-48 L/ha (Du-Cason Liquid) depending on the crop which corresponds to 80 to 20 kg a sha or 2.7-8.2 kg a.s.
- In Poland DCB rates varied from 40 to 100 kg/ha (Casoro 6.75 GR) depending on the target crop which corresponds to 2 to 6.95 kg as /ha.
- In the UK DCB rates varied from %6 to 225 kg/ha (Casoron 6) depending on the target weed and use which corresponds to 3.% to 15.2 kg a 9/ha.


Apart from the information from Denmark, the DCB rates listed above would typically relate to the last authorisation of DCB containing products when fates would likely have been restricted. It is likely that DCB was authorised at even higher rates in older registrations and would have typically been applied as a granular herbicide directly to the ground with little or no oop interception to reduce the amount of the a.s. reaching the soil.

In contrast, FLC application rates are much lower. Maximum registered annual application rates vary between 133.2 ga s/ha and 266.4 g.a.s/ha for vines and 400 g a g/ha for potatoes (Table 7.5-11). In addition, as a bingicide FLG is a obliar application, with applications after BBCH 53 in vines and between BBCHs 20 and 95 in potatoes. Crop interception rates used in regulatory modelling for these BBCH growth stages (EFSA, 2014) are (1) 60% (BBCH20-39), 85% (BBCH40-89) and 50% (BBCH90-99) for vines. As such, significant crop interception will occur as part of FLC applications, tus limiting the amount of a.s. reaching the soil where it can be degraded/metabolised forform (AAM. Recently, FLC is also used as a seed treatment in oil seed rape but at very tow application rates with a maximum of 12 g a.s./ha with the first registrations granted in 2018.



Product name®	Target crop	FLC application rate (max.)	Number of applications per year (max)	Max. annual 。 registered rate (g a.s./ha)
Profiler	Vines	44.4 g a.s./kg at 3 kg/ha*	2	
Infinito	Potatoes	62.5 g a.s./L at 1.6 L/ha*	4	~400.0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
N/A	Vines	Č-	<u> </u>	
Infinito	Potatoes	62.5 g a.s./L at		5400.0 Q
Profiler	Vines	44.4 g a.s./kg at 3 kg/ha*≯		
Infinito	Potatoes	62.5 g a STL at * 1.6 E ha*		°≫ 400.69 √y °
Profiler	K, N	44.4 a.s./kg at		<b>3</b> .2 <b>4</b>
Infinito/ Kyriel	otatoes *	≪62.5 g`a,s./L at ↓ 1,6 ℓ/ha* ⑦		\$ \$ \$ \$ \$ \$ \$ \$
R6 ERRESEI ALBIS EASY R6 ERRESE ALBIS R6 ERRESEI ALBIS ØRTO		44.4 g a.s. Abg at		~~~ ⁴ 266.4
Wolare S	<u>z z z</u>	62.5 g.a.s./L at £6 L/ha*		400.0
S NOV Y	- 📎	<u>, 9 - 6 4</u>		
antinito y	Potatoes	62.5 g a.s./L at 16 L/ha* of at 1.2 L/ha* \$	≪ 4	400.0
A A	ØVines Ø			
· Infinito	Potatoes	62.5 g a.s./L at	4	400.0
5 NA 5	Nines			
	C Potatoes C	62.5 a.s./L at	4	400.0
	name® Profiler Infinito N/A Infinito Profiler Infinito Profiler Infinito/Kyriel R6 ERRESEI ALBIS EASY R6 ERRESEI ALBIS K6 ERRESEI	name®         Profiler       Vines         Infinito       Potatoes         N/A       Vines         Infinito       Potatoes         Profiler       Vines         Infinito       Potatoes         Profiler       Vines         Infinito       Potatoes         Profiler       Vines         Infinito/Kyriel       Potatoes         R6 ERRESEI       Vines         ALBIS EASY       Potatoes         R6 ERRESEI       Vines         ALBISYORTO       Vines         Volare       Potatoes         Volare       Potatoes         MA       Vines         MA       Vines         MA       Vines	name®application rate (max.)ProfilerVines44.4 g a.s./kg at 3 kg/ha*InfinitoPotatoes62.5 g a.s./L at 1.6 L/ha*N/AVines2-InfinitoPotatoes62.5 g a.s./L at 1.6 L/haProfilerVines44.4 g a.s./kg at 3 kg/ha*InfinitoPotatoes62.5 g a.s./L at 2.5 g a.s./L at 1.6 L/haProfilerVines44.4 g a.s./kg at 3 kg/ha*InfinitoPotatoes62.5 g a.s./L at 1.6 L/ha*ProfilerVines44.4 g a.s./kg at 3 kg/ha*Infinito/KyrielPotatoes62.5 g a.s./L at 1.6 L/ha*R6 ERRESEI ALBISVines44.4 g a.s./kg at 3 kg/ha*K6 ERRESEI ALBISVines44.4 g a.s./kg at 3 kg/ha*WolarePotatoes62.5 g a.s./L at 1.6 L/ha*WolarePotatoes62.5 g a.s./L at 1.6 L/ha*WAVines	name®     application rate (max.)     application per year (max)       Profiler     Vines     44.4 g a.s./kg at 3 kg/ha*     2       Infinito     Potatoes     62.5 g a.s./L at 1.6 L/ha*     4       N/A     Vines        Infinito     Potatoes     62.5 g a.s./L at 0.1 6 L/ha     4       Profiler     Vines     4     4       Infinito     Potatoes     62.5 g a.s./L at 0.1 6 L/ha     4       Profiler     Vines     44.4 g a.s./kg at 1.6 L/ha*     2       Infinito     Potatoes     62.5 g a.s./L at 0.4 4 g a.s./kg at 1.6 L/ha*     4       Infinito     Potatoes     62.5 g a.s./L at 1.6 L/ha*     4       Infinito     Potatoes     62.5 g a.s./L at 1.6 L/ha*     4       R6 ERRESEI     Vines     44.4 g a.s./kg at 1.8 LBIS     4       ALBIS     Potatoes     62.5 g a.s./L at 1.6 L/ha*     4       Vines     44.4 g a.s./kg at 1.6 L/ha*     4       ALBIS     Potatoes     62.5 g a.s./L at 1.6 L/ha*     4       Vines

Table 7.5-11.	FLC registration f	or vines and r	potatoes for target Member States	
1 abic 7.5-11.	The registration r	or vincs and p	potatoes for target member states	





In addition, the metabolism of the two parent a.s. in soil is different with the addition of a water molecule to DCB producing up to 110% mass units of BAM for every mass unit of DCB reaching soil. In contrast, the metabolism of FLC results in cleavage of the molecule to produce up to 50% mass units of Mr.01 BAM for every mass unit of FLC reaching the soil. Therefore, DCB will form about twice as funch BAM for any applied mass unit compared to FLC.

In summary:

- DCB application rates were much higher (23-30 times related to kg a.s./ha) that for FQ France the application rates (in kg a.s./ha) for DCB usage in vines were even \$6 times those registered for FLC;
- As a herbicide DCB was commonly applied as a granular formulation directly to group with no or little crop interception. In contrast, FLG as a fungicide is applied to toliage with significant crop interception; Ą, Ø
- During metabolism, DCB will form about tasice as much BAM, for any applied mass unit compared to FLC.

#### **Overview of residue detections**

Public groundwater monitoring data were requested from the competent authorities in the individual target Member States (Austria, Bergium, France, Germany, Italy, Netherlands, Poland and UK) for the analytes DCB, FLC and M-01 BAM. The authorities in Poland confirmed that the analytes are not part of their national groundwater fronitofing program and that no data exist. The UK authority confirmed that only data for DCB exist, but hot for OLC of M-01 BAM. The UK data were not included in the further assessment as data on DCB alone will not facilitate an assessment as to whether BAM residues may be related to FLC applications.

Although, FLC was never registered for use in Desmark there is a congrehensive data set for DCB and BAM, and the data from Donmar Were therefore included in this assessment as it forms a good baseline in terms of BAM detections in groundwater without the use of FLQ."

Following the deceipt of the data, the were joined for each country, checked for consistency and quality, before further data analysis. Data were removed for one of the following, principal reasons:

- Data incomplete for a certain year. This applies to data in the last monitoring year. Data were only considered in the assessment of these were available for the full year to facilitate a year on year comparison of detections
- Duplicates;
- Official data quality flag which states that the quality of the analyses is not validated or the status unknown:  $\bigcirc$
- Data with a LOO  $\ge 0.1$  to z/L

A total of 155, 7,197 and 8,038 datapoints were eliminated for FLC, DCB and M-01 BAM respectively, representing 2.6% of the originally available data. Most data were removed because they were incomplete for the last gear. Fire available data for each Member State, following check for data consistency and quality, are listed in Table 7.5- 12. In total there are more than 580,000 data points available for an assessment across the selected Member States. The available data for FLC are comparatively low with about 12,000 data points, whereas extensive data sets are available for DCB and M-01 BAM. By far the most data exist for France with almost 250,000 analyses for the three analytes and Denmark with more than 160,000 analyses for DCB and BAM.



Table 7.5- 12:	General data availability for FLC, DCB and M-01 BAM for target Member
	States

Target Member State	FLC	DCB	M-01 BAM 🖉 之
	Number of data points & (time period)*	Number of data points & (time period)*	Number of data points
Denmark		69,776 (1994-2019)	92,446 (1994Q019)
France	6,294 (2016-2018)	127,821 (1997-2018)	14,5,235 (2900-2018)
Belgium	542 (2016-2017)	7,279 (1995-2047)	0 15.990 0 (1995-2017,0 V
Netherlands	498 (2011-2016)	8,238 (1989-2016)	(1989-2016)
Germany	2,152 (2011-2017) (2011-2017)	21,562 (1990-2017)	26,862 (1993-2014)
Austria		25,498 (1998-2018)	32,7 <b>86</b> (2004-2018)
Italy	2.383 (20.0-20175/ ~~	× × 8,249 × (2008-2017) ×	2,048 O 2,008-2047)
UK		$\sim \sim^{2}$	
Poland	O S-S O	\$ 0' ³ 0' 0	~~3
Total	11,869 S	268,423	902,768
Total (excluding DK)	6 011,869 Q	199,647	210,322

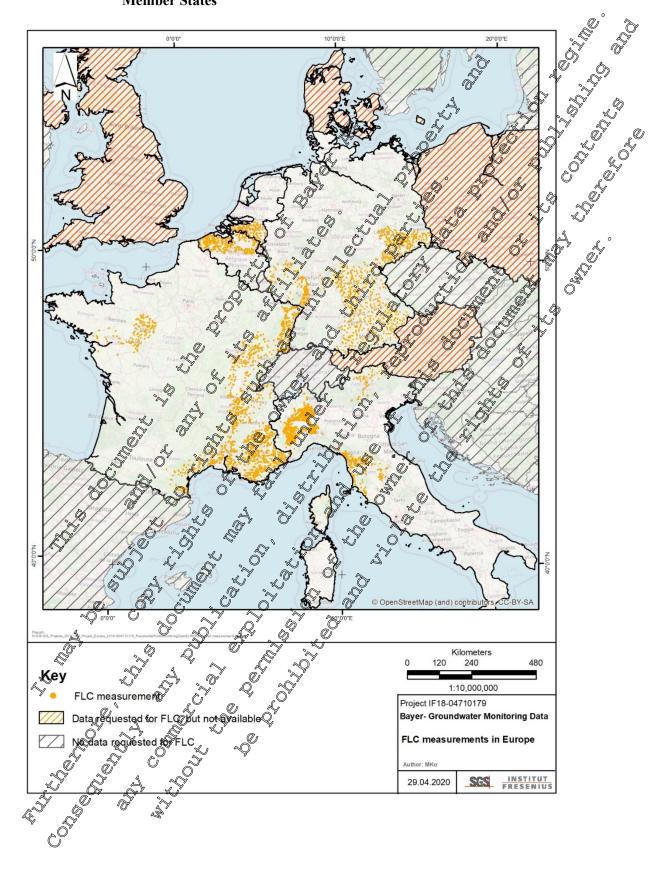
*the time period for which data are available is provided in brackets

¹ FLC data are only available for 2016, these were omitted as DCB data on the up to 2018) ² 3114 DCB data are available for the UK these were omitted as DCB data on their win do not allow an assessment on the leaching risk of BAM following FLC applications

³ Confirmed data not collected by the national asthority

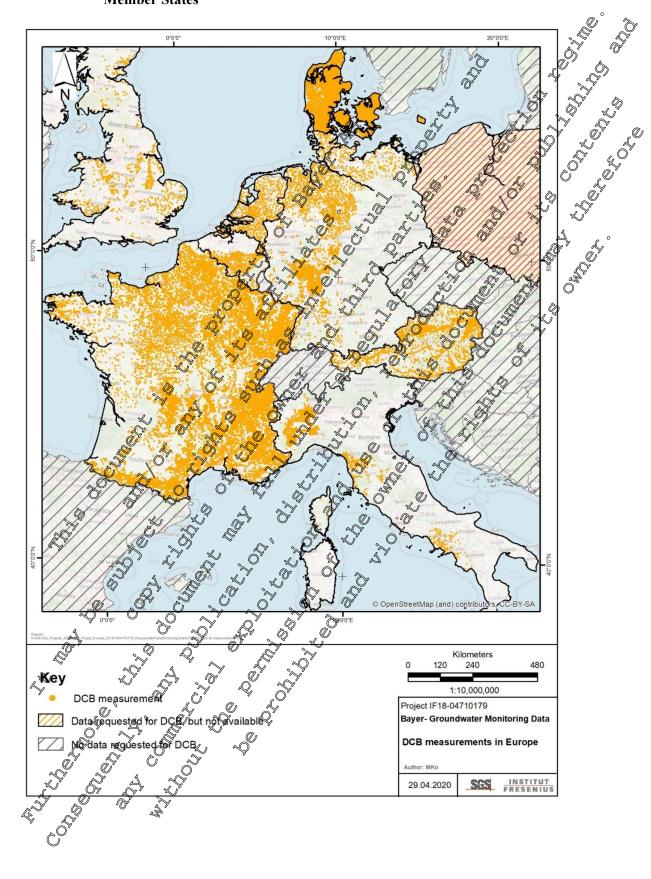
The geographica distribution of the available data is shown in Figure 5.5-1 to Figure 7.5-3 for the analytes FLC, DCB and 4-01 BAM respectively.

For FLC, the distribution of the monitoring data is scattered across individual regions of the selected MSs, with no coherent coverage. The most prominent clusters of monitoring data occur in the east of France, parts of northern Italy, southern and central Germany and in the west along the border region with Belgium and the Netherlands.


The geographical distribution of DCB data in groundwater is extensive. The data cover all of Denmark, the Netherlands, France, Austria, the southern parts of Belgium, large areas of western, southern and northern Germany and individue or giographical targets.

The widest distribution of data across the selected \$185 exists for M-01 BAM. The data cover most areas of the selected countries except for italy where the data clusters predominantly in the northwest of the country. There are also some federal sates in central Germany where M-01 BAM was not monitored in groundwater.

The time series of the number of samples analysed in each year is shown in Figure 7.5-4 for each of the three analytes. The data for Denmark is excluded in this figure as FLC was not registered in this country and the data were only assessed to provide a baseline for the other MSs in which FLC is registered. The time series exemplifies that the number of groundwater analyses for DCB and BAM markedly increased from the late 1990s to about 2013, when it reached a maximum with more than 20,000 analyses for both DCB and BAM. In the subsequent period the number of available data gradually decreased again for the two analyses but remained at sizable numbers. Monitoring for FLC only started in 2011, at low numbers and the data availability only increased slowly. Most FLC analyses are related to the year 2017, when the sample number was just under 5,000.

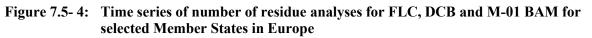


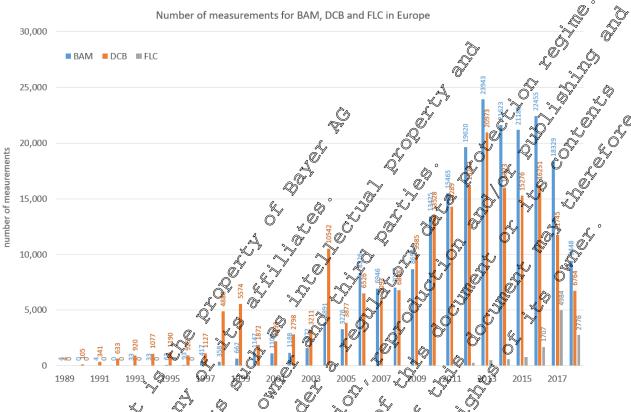

## Figure 7.5-1:Geographical distribution of FLC groundwater residue data for selected<br/>Member States






## Figure 7.5-2: Geographical distribution of DCB groundwater residue data for selected Member States




## Figure 7.5-3: Geographical distribution of M-01 BAM groundwater residue data for selected Member States









An overview of the residue detections for the selected MSs is provided in Table 7.5-13 and details the detection rates in the individual concentration classes for FLQ, DCB and M-01 BAM. Also provided are the detection rates aggregated across all target MSs, although it should be noted that these are biased by the much larger number of analyses from France.

Over the years the LOQ for DCB FLC and M-OF BAM will have decreased due to significant advances in analytical technology. While the achievement of an LQQ of 0.95 to 0.1  $\mu$ g/L might have been an analytical challenge in the 1990s, it is somewhat routine in modern analysis that LOQs as low as 0.01  $\mu$ g/L or even 0.002  $\mu$ g/L can be achieved of o avoid a bias in the temporal assessment of the residue data due to a lower LQQ with time, the lower boundary of the LOQ was fixed to 0.025  $\mu$ g/L. This means that all residue concentration detected below a value of 0.025  $\mu$ g/L were set to <LOQ. This allows for a more ready comparison of actual data to those determined 10 or 20 years ago. Data for which the LOQ was >0.025 $\mu$ g/L remained unchanged. This approach is considered valid as the set LOQ is still significantly lower than the regulatory groundwater threshold of 0.1  $\mu$ g/L for active substances or relevant metabolites.

For the subsequent data analysis, the residue data for all countries were subdivided into the following classes (x):

- <LOO
- $0.925 \ \mu g/L \le x \le 1 \ \mu g/L$
- $\mathcal{D} \mu g/\mathcal{L} \leq x < \mathcal{D} \mu g/\mathcal{L}$
- $1.0 \ \mu c$   $L \le x \le 10.0 \ \mu c$  L

A subdivision of residue concentration classes higher than 0.1  $\mu$ g/L are applicable since M-01 BAM derived from FLC was classified as a non-relevant metabolite in the EFSA conclusion, 2009.



For FLC, 99.5-100% (average = 99.86%) of the samples across the target MSs were below the concentration threshold of 0.1 µg/L and for 99.7-99.9% of the samples from FR, BE, NL and DE concentrations were <LOQ ( $<0.025 \mu g/L$ ). For IT the concentrations between LOQ and  $<0.1 \mu g/L$  were noticeably higher with 1.3%. The detection rates of FLC  $\geq 0.1 \ \mu g/L$  were 0.02% for FR (n=1), 0.55% (n=3) for BE, 0.00% (n=0) for NL, 0.05% (n=1) for DE and 0.5% (n=12) for IT. Out of the almost 12,000 samples only 17 samples exceeded the groundwater concentration threshold, with most exceedances (n=12) reported from Italy. All FLC exceedances were subject to a desk-based elucidation.

For DCB detection rates were also very low. Apart from the target MSs, DCB detection rates are also provided for Denmark. On average, across the target MSs, @9.99% of all samples showed concentrations <0.1  $\mu$ g/L, in Denmark the rate is comparable with 99.90%. The detection rates of DCB  $\geq 0.0 \mu$ g/L. were 0.1% (n=69) for DK, 0.00% (n=1) for FR, 0.00% (n=0) for BE, 0.13% (n=11) for NL, 0.07% (n=3) for C DE, 0.02% (n=5) for AT and 0.01% (n=1) for IT. Qut of the more than 270,000 samples, 90 samples exceeded the groundwater concentration threshold, with most exceedances (n=69) reported from Denmark. The DCB exceedances were not further investigated as part of an olucidation, as DCB bage is not the prime driver for this report.

For the more mobile metabolite M-01 BAM, detection rates >LOQ are much higher than for its parent compounds. M-01 BAM is classified as non-relevant metabolite and as such a concentration threshold of 10 µg/L has been chosen for this report, although fower thresholds may be applicable at a national level. In Demark, FLC was never registered and as such M-05 BAM tesiders in groundwater can unequivocally be attributed to DCB usage. In Denmark, BAM was detected in concentrations above LOQ (0.025  $\mu$ g/L) in 18.39% of the samples,  $\mu$ g/L, and 0.03 % (n=29) of the samples showed concentrations 10 µg/L. Detection rates in the countries in which FLC is registered are considerably lower. Across the target MSs, M-01, BAM was detected in concentrations >LOQ in 549% of the samples. 231% of the samples that concentrations  $\ge 0.1 \ \mu g/L$  and 0.01% (n=13) of the analyses exceeded the chosen groundwater concentration threshold of 10  $\mu g/L$ . Across the target MSs M-01 BAM defection rates 20.1 µg/L are noticeably higher in BE and in particular in NL. In total, there are only 13 M 01 BAM exceedances of the 10  $\mu$ g/L concentration threshold: 3 in FR, 4 in BE, 4 in SE, 0 in DE, 2 in AT and Q in IT @ should be noted that this may include multiple detections at one site and that there only 9 sites for which exceedances are reported. All exceedances were subject to a desk based ducidation.  $\mathcal{L}^{O}$ Ś

Table 7.5 3:	Number of detections concentration	ation classes	and detection rates across selected
sQ'	Member States	S S	O ^Y
	and rections for target Member Stal		× ×
A) EL Canalyses	and defections for target Member Stat	es 🖏 A	

	<i>"</i>		y or					
Į į	Unit	All o	, FR		NL	DE	AT	IT
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×0×	countries		v 0,				
Ŷ		except DK	N in	ð				
Data period	0	2019-2018	2016-2018	× 2016-	2011-	2011-2017		2013-
		Q°,		2017	2016			2017
Total analyses	¶ count ₊	11,869	6,294	542	498	2,152		2,383
< LOQ (0.025 µg/L)	%	99 .42 [*]	♀ 99	98.89	99.80	99.67		98.20
$LOQ \le x < 0.1 \ \mu \text{C}$	<i>"</i> %	~ 0.44	<u>0</u> .17	0.55	0.20	0.26		1.30
$0.1 \le x \le 1.0$ C L *	∽%	0.19	Ø 0.02	0.37	0.00	0.05		0.50
$1.0 \le x \le 100 \ \mu g/L$	~% [©]	0 9.01	0.00	0.18	0.00	0.00		0.00
>100 µ0 0	<u> %</u>	0.00	0.00	0.00	0.00	0.00		0.00
		, , , , , , , , , , , , , , , , , , ,						
	r _d i	,						
× , Q¥								
(([•] [•]								

A) FLC analyses and detections for target Member States

Ô

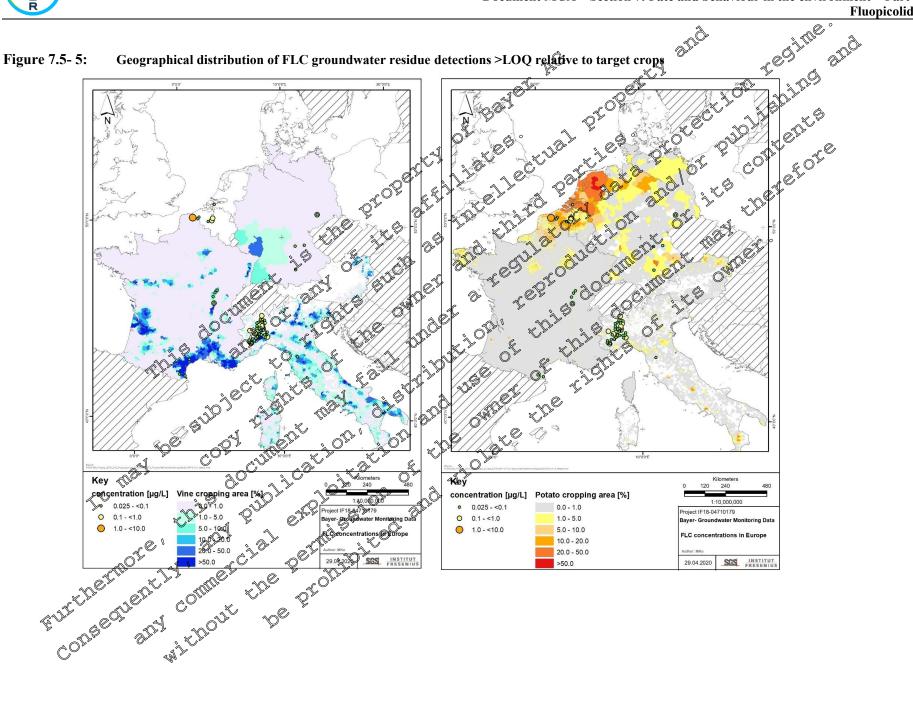
B) Analyses and detections for Denmark

		Unit	DCB	BAM
Data period			1994-2019	1994-2019
Total analyses		count	69,776	92,446
< LOQ (0.025 µg/L)		%	99.66	81.61
$LOQ \le x < 0.1 \ \mu g/L$		%	0.24	10.92 💞
$0.1 \le x < 1.0 \ \mu g/L$		%	0.09	6.72
$1.0 \leq x < 10.0 \ \mu\text{g/L}$		%	0.01 💍	0,71
$\geq 10.0 \ \mu g/L$		%	0.00	Q0.03
C) DCB analyses and	detection	ns for target N	- 10° ×	BAM 1994-2019 92,446 81.61 10.92 6.72 6.72 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0
	Unit	All countries except DK	FR BE	
Data period		1989-2018	1997-2018 1999- 2917	1989- 1990-2018 19 2016
Total analyses	count	201,760	1274821 37,279~	8,2,38 21,562

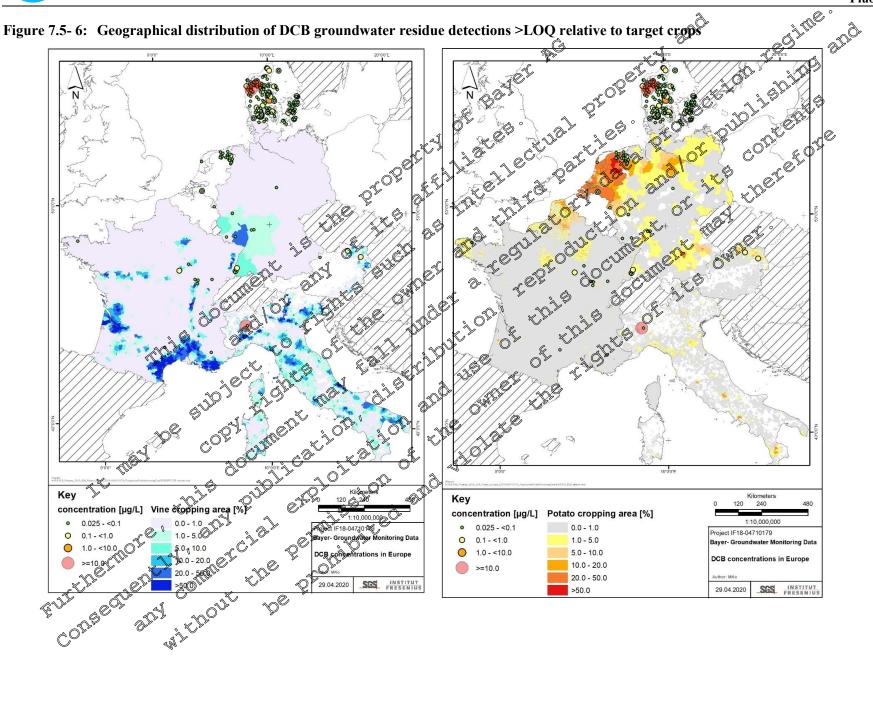
	-	_ 0	r "	v		Å »	
Unit	All	FR 🖗	BE	NL	PE		ALL S
	countries	\$			× ¢	P 'N	× V
	except DK	0	$ \int $	Ø	S O	Sec.	A, co
	1989-2018	1997-2018		1989- 4	1990-2018	1998-2018	2008
		ζ \sim	2917	O 2016		Ŷ,	2017
count	201,760	1274821	£7,279	8,238	َ \$21,562	25,498	Q ,249
%	99.91 ^{0°}	& 9.99 🍾	× 100x00	% .17) 99.9 [°]	29 .98	99.98
%	0.08	© 0.01	@ 00	2 [°] 1.700	604	0.00×	0.01
%	Ø.01 🕺	0.00	\$0.00		0.01	0.02	0.00
%	∞0.00	<u>ک</u> 00.06	0.00	~0.00 ×	0.00	0.00	0.00
%) 0. 00 °	₹ ³ 0.00	0.00	0.00	£000 ×	0.00	0.01
	 count % % % %	countries except DK 1989-2018 count 201,760 % 99.91 % 0.08 % 0.00	Unit All countries except DK FR 1989-2018 1997-2018 1989-2018 1997-2018 1997-2018 201,760 1278821 % 99.91 1278921 % 0.06 0.01 % 0.06 0.00 % 0.00 90.00	countries except DK 100 1989-2018 1997-2018 1997-2018 1997-2018 1997-2018 1997-2017 count 201,760 124,821 27,279× % 99.91 99.99 × 10000 % 0.68 0.01 500 % 0.68 0.01 500 % 0.00 5000 0.00 % 0.00 5000 0.00 % 0.00 5000 0.00	Unit All countries except DK FR BE NL 1989-2018 1997-2018 1997-2018 1997-2016 1989- 2917 1989- 2016 count 201,760 1278821 7,279 8238 % 99.91 99.99 10000 98.17 % 0.68 0.01 900 1.70 % 0.68 0.01 900 0.03 % 90.01 0.00 0.00 0.03 % 9.00 500 0.00 0.00	Unit All countries except DK FR BE NL DE 1989-2018 1997-2018 1992-2 1989-2018 1990-2018 1989-2018 1997-2018 1992-2 1989-2016 1990-2018 count 201,760 12%821 7,279 8.238 21,562 % 99.91 99.99 10000 98.17 99.99 % 0.06 0.01 5000 1.70 604 % 0.00 50.00 0.00 0.00 0.00 0.00 % 0.00 50.00 0.00 0.00 0.00 0.00 0.00 % 0.00 50.00 0.00	Unit All countries except DK FR BE NL DE AT 1989-2018 1997-2018 1997-2018 1997-2018 1998-2018 1998-2018 1989-2018 1997-2018 1997-2018 1998-2018 1998-2018 \sim 2917 2016 2918 2917 2016 25498 \sim 99.91 99.99 10000 98.17 99.92 29.98 $%$ 0.00 0.01 0.00 1.70 0.04 0.00 $%$ 0.01 0.00 0.00 0.01 0.00 0.00 0.00 $%$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $%$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D) M-01 BAM analyses and detestions for target Member States ×

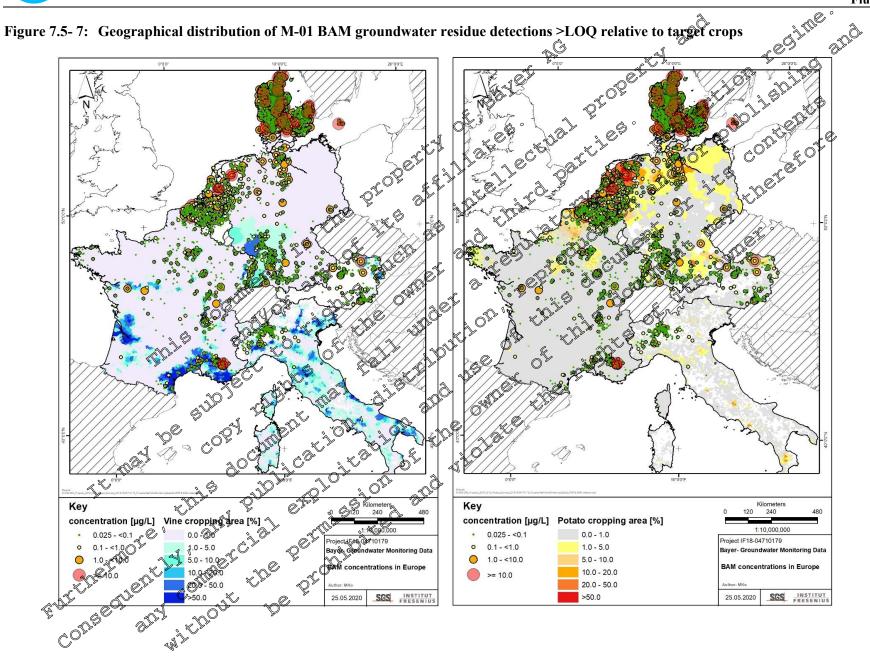
	Ň	·0		\sim	\sim \cap	· ~		
	Unit (AD) countries except D4x	~ ~ ¥	BE S		DÉ	AT	IT
Data period	S ×	J1989-2018	2000-2018	1995- 2017 @	01989-@ 2016	1991-2018	2004-2018	2008- 2017
	count	20,322	115,235	\$15,916		26,862	32,780	12,048
< LOQ (0.025 µg/L)	5%	≫ 94.81	6.63°	86,34	\$0.65	92.50	97.20	95.97
$LOQ \le x < 0.1 \ \mu g/L$	× %	288	7 1.94	(3 ,30	7.55	3.76	1.98	2.41
$LOQ \le x < 0.1 \ \mu g/L$ $0.1 \le x < 1.0 \ \mu g/L$	A A	<u>\$</u> 2.09 °	°1,35 d	¥ 4.70	10.07	3.42	0.74	1.59
$1.0 \le x < 10.0$ g/L	۵% . (0,21%	~0.09 ~	0.65	1.68	0.32	0.08	0.03
$\geq 10.0 \ \mu g/L$	% 0	200 1 4		Ø.02	0.05	0.00	0.00	0.00
D'	, Ô	N W		\sim				


The spatial distribution of the residue detections for FLC, DCB and M-01 BAM are illustrated in Figure 7.5-5 to Figure 7.5-7 in correlation to the main vine and potato cropping areas.

The map for FbC (Figure 7.5, 5) shows how sparse detections are across the target MSs. There is however a noticeable cluster of detections in the northeast of Italy. This cluster is outside the main potato cropping area and only shows a limited correlation to the vine cropping areas. Similarly, sparse is the distribution of DCB detections of journe 7.5-6), with only a small cluster of detections in the north of the Netherlands and a much higher density of detections on mainland Denmark.



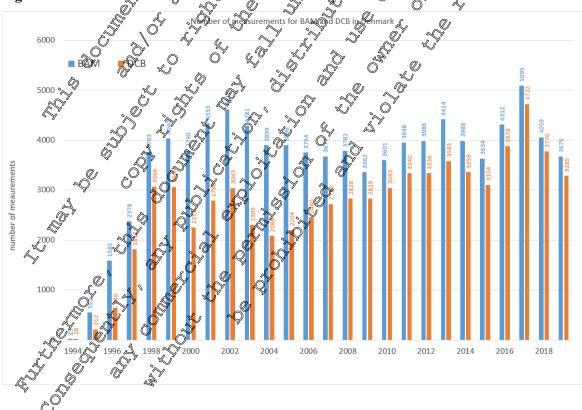
The figure for the spatial distribution of M-01 BAM (Figure 7.5-7) illustrates that there are many more detections for this analyte. Clusters of low concentration detections (<1 μ g/L) occur particularly in Belgium, Netherlands and in Denmark. Smaller clusters are also apparent in the southwest of Germany. In terms of higher residue concentrations ($\geq 1.0 \ \mu g/L$) the large number of detections in Denmark stands And some of the second of the In terms of higher residue concentrations (>10 µµ1) the large number of detections in Demmark Winds out. Other clusters occur in the Netherlands and in Germany which appear to have a correlation to joint do growing areas. However, it should be noted, that Demmark laso has significant pdiato corpositions do FLC was never authorised for usage. Despite this, the number of BAM detections in Demmark is suich more pronounced than in the Netherlands or northern Germany. out. Other clusters occur in the Netherlands and in Germany which appear to have a correlation to potato A LIR ON LING OF THE OWNER OWNE growing areas. However, it should be noted, that Denmark also has significant porato cropping areas by



The detection rates and trends for individual countries will be further discussed below. While reference is made to the study scale maps, graphs and tables already presented, detailed maps, graphs and tables are available within the report:

<u>Denmark</u>

The active substance DCB was registered for use in Denmark in the period between 1965 of 1997 FLC was never authorised in Denmark. The monitoring data therefore provide a valuable baseline in terms of BAM concentrations that may derive following the usage of DCB and ongoing groundwater quabty issues that may result.


A general overview of the registered uses of DCB in Denmark is listed in Table 7.9-10. The application dose of DCB was high at around 4-30 kg a.s./ha/ The authorisation for DCB expired in July 1997, although an approximately one-year period for phase-out would be typical during which the use of remaining DCB containing products would have been allowed.

Following the check for data consistency and mality a total of more than 162,000 values from groundwater analyses were available for the DCB and BAM covering common time period 1994,0019 for both analytes (Table 7.5-12). For both analytes the spatial distribution of the monitoring data is extensive and covers all regions of Denmark

The time series of the number of samples analysed in each year is shown in Figure 7.5-8. The number of analyses was low in 1994 with less than 30 data points for each analyte but increased rapidly until the end of the 1990s. From 1997 onwards there are more than 1,000 analyses available for each, DCB and BAM and about 2,000-5,000 analyses for each monitoring year in the period 2000-2019. In general, there are more analyses for BAM but the data coverage for DCB is still excellent.

 \mathcal{O}

An overview of the available groundwater residue data for DCB and BAM is provided in Table 7.5-13B in relation to the concentration classes.

For DCB there almost 70,000 analyses available, of which 235 are >LOQ (0.34%), with 69 detections >0.1 μ g/L (0.1%). For the more mobile metabolite BAM there are more than 92,000 analyses available of which 16,311 analyses fall within the concentration range of >LOQ to 1 μ g/L (0.76%). There are 688 detections >1.0 μ g/L (0.74%) of which 29 are above 10 μ g/L (0.03%).

DCB detections >LOQ but also >0.1 μ g/L occur all over Denmark with no particular cluster. The detections >1 μ g/L occur in north-western Denmark and along the eastern coastline of the regions Nordjyland and Syddanmark.

BAM detections were found wide spread across all of Denmark, this accounts for detections >0 $\beta\mu g/L$ but also for the higher concentration classes. There seems to be aparticular cluster of elevated BAM concentrations >10 $\mu g/L$ in the vicinity of the main Danish cities Coperhagen and Aarhus suggesting that the residues derive from historic non-agricultural applications.

France

A general overview of the registered uses of $D \otimes B$ and FLC in France is listed in Fable $F \approx 10^{3}$

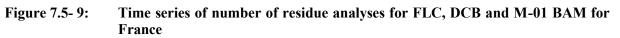
DCB had a long historic registered use in France; mainly in woody crops as well as for applications on hard surfaces and in aquatic environments. The authorisation for DCB use expired in 2010, although an approximately one-year period for phase-out would be typical, during which the use of remaining DCB containing products would have been allowed.

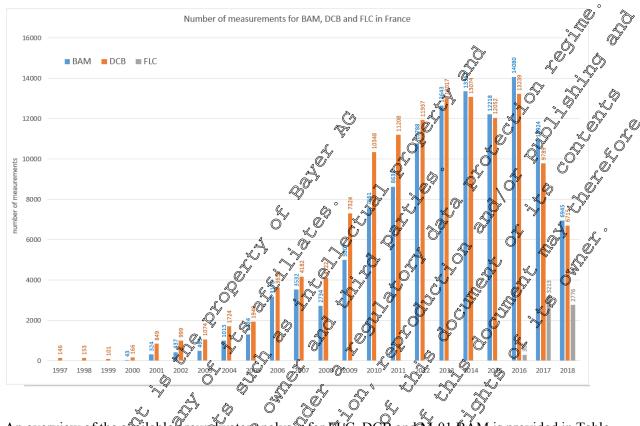
FLC was first registered in Franco n February 2010 for applications on vines, potatoes and vegetables. As such, there is a negligible temporal overlap between DCB and FLC authorisation. In terms of common target crops, there is only a spatial overlap for use on vines, but the non-agricultural use of DCB may make it difficult to discount spatial overlap between DCB and FLC uses as farmers may have used DCB on non-copped areas on their farms or associated with other crops.

A comparison between typical application rates and modes for DCB and FLC identified a much higher possibility for eaching of BAM associated with DCB applications.

Following the check for data consistency and quality, a total of almost 250,000 values from groundwater analyses were available for the three analytes covering the time period 1997-2018 (Table 7.5-12).

The geographical distribution of the available data for the three analytes is shown in Figure 7.5-1 to Figure 7.5-3.


For FLC data are only available for 9 years covering the time period 2016-2018. The monitoring data coverage across France is laterogeneous Data are only available for the eastern parts of France and the 'Pays de la Loire'.


For DCB almost 130,000 data points are available for the time period 1997-2018. There is wide geographical coverage of the monotoring data although it is apparent that there are much less data for the western central and southern parts of France.

For M-01 BAM, there are more than 120,600 data points available for the period 2000-2018. Despite the large number of data there is a hoterogeneous distribution in the geographical distribution of monitoring points, with distinctively fewer monitoring data for the central and western parts of France.

The time series of the number of samples analysed in each year is shown in Figure 7.5-9 for each of the three analyte. The figure in ustrates that there was a sharp increase in the sampling frequency for DCB and M-01 BAM from about 2005 to around 2014. Whereas in 2005 less than 2000 samples were analysed for DCB and M-01 BAM each, this increased to >10,000 samples each in the mid-2010s. The number of analysis for DCB and M-01 BAM decreased again towards 2017 and 2018.

An overview of the available groundwater analyses for FLC, DCB and M-01 BAM is provided in Table 7.5-13A, Table 7.5-13C and Table 7.5-13D in relation to the concentration classes.

For FLC there are more than 6000 analyses, vailable of which only 12 are >LOQ (0.19%), with only 1 detection ≥ 0.0 (0.19%), with onl

For DCB there are more than 127,000 analyses with only 9 detections >LOQ (0.007%) of which only 1 detection is $\geq 0.1 \ \mu g/L$. Detections >LOQ are scattered in the eastern half of France and appear to have correlation to vine cropping. There are 9 detections >LOQ which relate to 9 monitoring sites. The DCB detection rate is less than 0.01%. Four out of the DCB detections >LOQ fall in the period 2011-2015, indicating that DCB was detected up to Syears after the authorisation for DCB usage had expired. This is attributed to soll residues that continue to leach and longer leaching times through the unsaturated zone to the groundwater

For M-01 DAM there are in the order of 115,000 analyses available for an assessment of which 3762 analyses fall within the concentration range of >LOQ to 1 μ g/L (3.3%). There are 104 detections \geq 1.0 μ g/L (0.09%) of which 3 are above 10 μ g/L. The highest density of detections occurs in the South and East of France in the regions of Provence Alpes and Franche Compte, in the northern central region of Champagne and along the Loire valley in the West of France. In the concentration class $1.0 \leq x < 10.0 \mu$ g/L there were 101 detections (0.09% of samples) which relate to 17 monitoring sites. The 3 detections \geq 10 μ g/L all relate to 1 monitoring site. Many of the M-01 BAM residues correspond to areas outside the main vine or potato growing regions with no apparent correlation to the density of these two crops. A desk-based elucidation of these detections concluded that the region is known for lavender farming.

The time series of M-01 BAM residues with repeated M-01 BAM detections prior to the authorisation of FLC together with the absence of FLC target crops suggests that the elevated M-01 BAM detections must be related to historic DCB usage, possibly associated with the lavender (woody crop).

<u>Belgium</u>

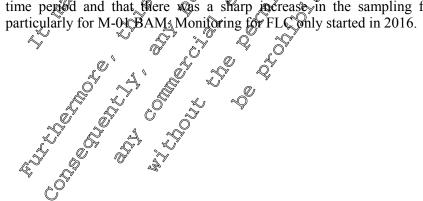
A general overview of the registered uses of DCB and FLC in Belgium is listed in Table 7.5-10

DCB had a long historic registered use in Belgium until April 2010 when the authorisation expired Until November 2007, DCB was registered for a variety of uses, including the usage on uncultivated and paved land. In the subsequent period, until April 2010, DCB usage was only further authorised for usage in the following crops: berries, orchards, ornamortal trees and hedges. For the later uses authorised annual application rates were between 80-135 kg/hat Casoron 4GR and Casoron (FR) which corresponds to 5.2-5.4 kg a.s./ha.

FLC was first registered in Belgium in May 2008 for applications in potatoes and vegetables. As such, there would have been an approximately 2-year temporal overlap between DCB and FLC authorisation. There were no common target crops, but the non-agricultural use of DCB and FLC authorisation. There were no common target crops, but the non-agricultural use of DCB and FLC authorisation. There were no common target crops, but the non-agricultural use of DCB and FLC authorisation. There were no common target crops, but the non-agricultural use of DCB and FLC authorisation. There were no common target crops between DCB and FLC uses as farmers may have used DCB on non-cropped areas on their farms or associated with other crops.

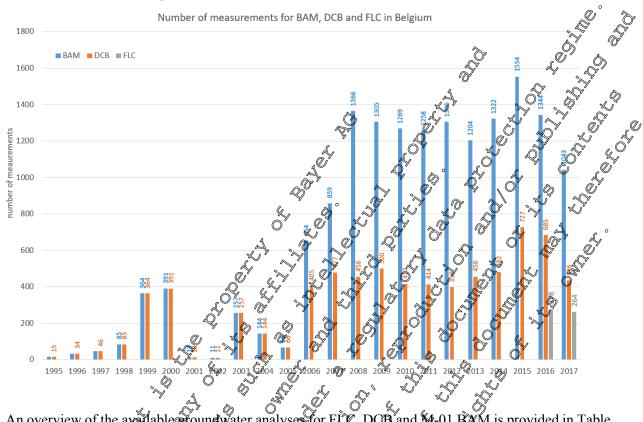
A comparison between typical application fates and modes for DCB and FLC identified a much higher possibility for leaching of M-01 BAM associated with DCB applications.

Following the check for data consistency and quality, a total of more almost 24,000 values from groundwater analyses were available for the three analyses covering the time period 1995-2017 (Table 7.5-12).


The geographical distribution of the available data for the hree analytes is shown in Figure 7.5-1 to Figure 7.5-3.

For FLC data are only available for 2016 and 2017 and only for the region of Flanders. The monitoring data are relatively events distributed across Flanders, expect for the central eastern part for which there are no data.

For DCB almost 7,300 data points are available for the time period 1995-2017. Data for this analyte only exist for the region of Vallonic where there is an even coverage but there are no data for the Ardennes, a mountainous area in the east of Belgium with less agriculture and large forest areas.


For M-01 BAM, there are almost 16,000 data points available for the period 1995-2017. Monitoring data are distributed evenly across Belgium, except for the Ardennes region.

The time series of the number of samples analysed in each year is shown in Figure 7.5-10, for each of the three analytes. The figure illustrates that there are only relatively few data available for the early time period and that there was a sharp increase in the sampling frequency from 2006 onwards, particularly for M-01 BAM Monitoring for FLC only started in 2016.

Figure 7.5-10: Time series of number of residue analyses for FLC, DCB and M-01 BAM for Belgium

An overview of the available foundwater analyses for FLC, DCB and M-01 BAM is provided in Table 7.5-13A, Table 7.5-43D in relation to the concentration classes.

For FLC there are only 542 analyses available of which 536 are 2LOQ (98.9%). Six detections were >LOQ and 3 > 0.1 µg/C. The 3 detections 201 µg/C relate to 3 individual sites, 2 of them are located in the centre of Belgium and 4 at the border to France. The 3 detections occur in typical potato growing regions. They were all single detections. The desk-based elucidation concluded that all 3 detections are likely face positives. For 2 sites FLC detection is larely to be related to sample/well contamination and for the other site the well is not ideally suited for residue monitoring (Ground flush installation next to a ditch and agricultural field, at a function of a farm track).

For DCB there are more than 5,000 analyses, all of which were <LOQ.

For M-01 BAM there are in the order of 16,000 analyses available for an assessment of which 13,736 were <LOQ. 2067 analyses fail within the concentration range of >LOQ to 1.0 μ g/L. There are 107 detections >1.0 μ g/L of which are above 10 μ g/L. The highest density of detections occurs in Flanders and the north-western part of Wallonia and appear to have a correlation to the potato growing areas. There are also M-01 BAM detections in the South-eastern part of Wallonia, outside the main potato growing areas. But these are generally small in concentration, with only few detections in the concentration class of 0.1- μ g/L. The desk-based elucidation of the 4 sites above 10 μ g/L was inconclusive for 3 of the sites, although for one site the analytical result looks suspicious and there may be an indication for an analytical or transcription error. The elevated M-01 BAM detection at the fourth site was found to be related to DCB usage.

Netherlands

A general overview of the registered uses of DCB and FLC in the Netherlands is listed in Table 7.5-10.

DCB had a long historic registered use in the Netherlands, mainly for top fruit (pome), amenity use (excluding hard surfaces) and land not intended to bear vegetation. The authorisation for DCB expired in the autumn of 2008, although an approximately one-year period for phase out would be typical, during which the use of remaining DCB containing products would have been allowed.

FLC was first registered in the Netherlands in June 2007 for applications in potatoes, we getables and herbs. As such, there is an about 1-year temporal overlap between DCB and FLC authorisation. It's unlikely that were significant common target crops, but the non-agricultural use of DCB may make it difficult to discount spatial overlap between DCB and FLC uses as fathers may have used DCB of none cropped areas on their farms.

A comparison between typical application rates and modes for DCB and FLC identified a much higher possibility for leaching of M-01 BAM associated with DCB applications.

Following the check for data consistency and quality, more than 16,000 values from groundwater analyses were available for the three analytes covering the time period 1989-2016 (Table 7.5 12)

The geographical distribution of the available data for the three availytes is shown in Figure 75-1 to Figure 7.5-3.

For FLC, there 311 data points with co-ordinates available and only for the provinces in the southern Netherlands, North Brabant and Limburg. The data cover the time period 2911-2016.

For DCB there are almost 4,500 data points available that have co-ordinates, covering the time period 1989-2016. The data are for all provinces of the vetherlands with a relatively even coverage across the country.


For M-01 BAM there are almost 4,000 data points with co-ordinates available for the period 1989-2016. Monitoring data are distributed evenly across all provinces of the Netherlands.

The time series of the number of samples analysed in each year is shown in Figure 7.5-11 for each of the three analytes. For DCB and M-0 BAM there are only few analyses for the years before 1999. More than 100 analyses for each analyte and year typically exist for the period 1999-2016 with marked increases of analyses in the years 2006 and 2002 when the number of measurements is >1,000 for each analyte for FLC, data are available for the period 2011-2016 but with only very few measurements for the years 2013 (n=34), 2014 (n=1) and 2013 (n=0).

analyte Ker FLC, data are available for the period 2011-2016 the years 2013 (n=34), 2014 (n=1) and 2045 (n=6).

Figure 7.5-11: Time series of number of residue analyses for FLC, DCB and M-01 BAM for the Netherlands

An overview of the available groundwater analyses for FLC, DCB and M-01 BAM is provided in Table 7.5-13A, Table 7.5-3C and Table 7.5-16D in selation to the concentration classes.

For FLC there are $\frac{998}{100}$ analyses available of which $\frac{497}{100}$ are $\frac{9200}{900}$ There is one FLC detection in the concentrations range between 4.00 and 0.1 μ g/L (in the southwest of the Netherlands) and no exceedances of the 0.5 μ g/L groundwater concentration threshold.

For DCB there are more than 8000 analyses of which 98.2% are (LOQ). There are 140 analyses with detections < 0.1 µg/L and 1 Samples which exceed the 0.1 µg/L concentration threshold, but these detections relate to only 2 sites. One in the northeast of the country and the second in the south.

For M-01 BAM there are 7,500 analyses available for an assessment of which 6,083 were <LOQ. 1319 analyses fall within the concentration range of >LOQ to 10 μ g/L. There are 130 detections ≥1.0 μ g/L of which 4 are above 10 μ g/L trigger value. Lower M-01 BAM concentrations were detected across all of the Netherlands. Higher concentrations are more frequent in the south of the country, and in a cluster in the central part of the country which seems to relate to the military airport Soesterberg. There are 4 detections with M-01 BAM concentrations 10 μ g/L which correspond to 3 sites. Two of them occurred in central Netherlands in the city of Zeisc, the third relates to a location in the central northern part of the country near Havelterberg. The desk-based lucidation concluded that all 4 detections are most likely related to histor DCB usage

- che desk-bi - che

<u>Germany</u>

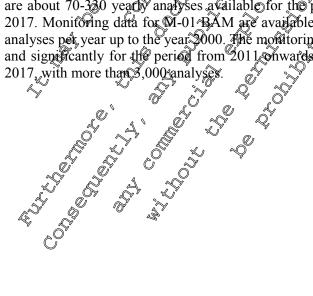
A general overview of the registered uses of DCB and FLC in Germany is listed in Table 7.5-10.

DCB had a long historic registered use in Germany, in orchards, ornamental, vines and other woody crops as well as for applications on grassland, non-cropped areas including railway tracks and water bodies. The authorisation for DCB use expired in 2004 but was already suspended in March 2001. For Germany, confirmed DCB product application rates are 4 g/m² (2.84 kg a.s. that for ornamental trees and 25 g/m² (17.75 kg/ha) on railway tracks (written communication with BVL, 2020).

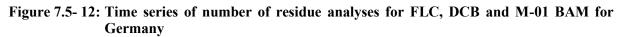
FLC was first registered in Germany in January 2007 for applications in kines, potatoes and xegetables, but also in hops. There is a 2.5-year gap between the expiry of the DCB registration and the apphorisation of FLC. In terms of common target crops, there is only a spatial overlap for use of view but the nonagricultural use of DCB may make it difficult to discount spatial overlap between DCB and FLC uses as farmers may have used DCB on non-cropped areas on their farms or associated with other crops.

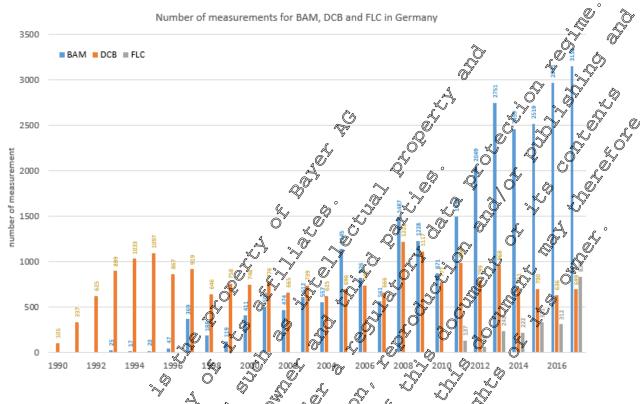
A comparison between typical application rates and modes for DCB and FLC identified a much bigher possibility for leaching of M-01 BAM associated with DCB applications

Following the check for data consistency and quality, around 50,000 groundwater analyses were available for the three analytes covering the time period 1990-2017 (Fable 7, 5-12)


The geographical distribution of the available data for the three malytes is shown in Figure 7.5-1 to Figure 7.5-3.

For FLC data are available for 7 years, covering the time period 2011-2017. Because only 3 federal states are monitoring FLC, the distribution of the data points is here rogeneous. The federal state Saxony contributes more than 50% of the available measurements.


For DCB more than 20,000 data points are available for the time period 1990-2017. The focus for DCB measurements was in the west of German Specifically in the southern parts of Hesse DCB was intensively monitored with more than 14,000 analyses.


For M-01 BAM there are more than 26,000 data points available for the period 1993-2017. M-01 BAM was monitored in many regions across Germany. There is a concentration of data points in the south of Hesse and around the city of Hamburg. There are no M01 BAM data available for the federal states Saxony-Anhalt and Thuringia.

The time series of the pumber of samples analysed in each year is shown in Figure 7.5-12 for each of the three analytes. DCB was the first of the 3 substances to be analysed in Germany, with data starting from 1990. The amount of analyses increased slightly from around 100 to a maximum of 1,200 in 2008. Up to 2017 there are about 70-330 yearly analyses available for the period 2011-2016 and more than 800 for the year 2017. Monitoring data for M-01 BAM are available from 1993 onwards but with only a few hundred analyses per year year up to the year 2000. The monitoring effort increased slightly in the period 2000-2010 and significantly for the period from 2011 onwards. The maximum number of data available are for 2017, with more than 3,000 analyses.

An overview of the available groundwater analyses for FLC, DCB and M-01 BAM is provided in Table 7.5-13A, Table 7.5-3C and Table 7.5-4D in Clation to the concentration classes.

FLC is monitored in 3 federal states and has been detected in 7 analyses from 4 sites in Germany. Three of the detection Swere made in Bavaria and the single concentration >0.1 µg/L relates to a site in Saxony. The monitored deterions do not correlate with the typical One or potato cropping areas. The one groundwater concentration threshold exceedance for PLC was further investigated as part of a deskbased elucidation study but the reason for the exceedance could not be elucidated. In the sample from April 2013, FLC was detected with a concentration of 0.12 µg/b but its metabolite M-01 BAM was not detected. This pattern of parent detection without detections of the more mobile metabolite indicates towards a relatively direct entry pathway via a hydraulic stort-cut. Several other a.s. were detected in elevated concentrations with up to 1.6 Hg/L at the same sampling event, suggesting that some exceptional event triggered the observed concentrations. Nitrate concentrations are <30 mg/L and do not suggestivery vulnerable site conditions which are prone to excessive leaching. Possible explanations for the observed detections are a) rapid leaching through cracking soils following storm events, or b) an entry of substances into groundwater following handling, mixing and loading of crop sprayers at the nearby farm yard. In any case, the FLC exceeds was a single occurrence related to some exceptional event. The data for this site do not suggest excessive leaching of FLC under normal environmental conditions and following compliant productuse.

DCB detections \geq LOQ mainly occur in the southwest of Germany with a tendency to vine cropping areas but the detections could also relate to urban areas in this region. The 3 analyses with concentrations \geq 0.1 µg/2 correspond to 2 sites in the Rhine valley in southern Germany near to the border with France.

In the east of Germony there are only very few M-01 BAM detections, despite the fact that M-01 BAM was also pointored for in most of these federal states. There are three clusters of detections apparent:

1) the southwest of Germany shows the highest number of residue concentrations >LOQ but the number of high concentrations is limited,

2) central northern Germany with a high number of detections >1 μ g/L, and

3) a cluster in the central western part of Germany along the border with the Netherlands. There is no obvious correlation of M-01 BAM detections with intensive vine or potato areas, apart from the cluster in central western Germany, which is an area with a high potato cropping density and also known as a significant vegetable producing region.

<u>Austria</u>

A general overview of the registered uses of DCB and FLC in Austria is listed in Table 73-1

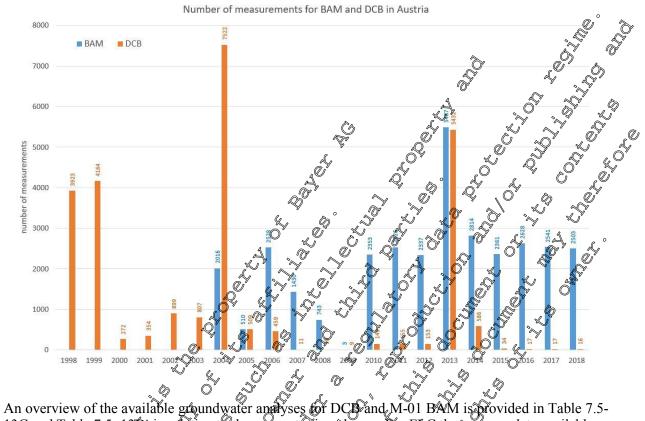
DCB had a long historic registered use in Austria but there are no records readily available on the registered uses or the exact authorisation expiry. Across the EU, DCB was registered for usage as a herbicide mainly in woody crops such as vines, orchards and berries and for weed control in non-coopped (PPDB, access 2020). A similar usage authorisation is anticipated for Austria. The authorisation for DCB use would have certainly expired in 2010, authough an approximately one-year period for phase-out would be typical, during which the use of remaining DCB containing products would have been allowed.

FLC was first registered in Austria in November 2011 for applications in poratoes, vegetables, heps, cane fruit and vines. As such, there is an approximately 1.5-year temporal gap between DCB and FLC authorisations. In terms of common target crops, there is only a spanial overlap for use of vines, but the non-agricultural use of DCB may make it difficult to discount spatial overlap between DCB and FLC uses, as farmers may have used DCB on non-cropped areas on their farms or associated with other crops.

A comparison between typical application rates and modes for DCB and FLC identified a much higher possibility for leaching of M OI BAM associated with DCB applications.

Following the check for data consistency and quality, a total of more than \$8,000 results from groundwater analyses were available for DCB and M-01 BAM, covering the nine period 1998-2018 (Table 7.5-12). Even though FLC is registered since November 2011 in Austria, it is only monitored from 2019 in groundwater. As data for 2019 were not considered further, to ensure that only complete years were assessed to allow for a comparison on a year-on-year basis, there were no FLC data available for the assessment.

The geographical distribution of the available data for the three analytes is shown in Figure 7.5-1 to Figure 7.5-3.


For DCP almost 25,500 date points are available for the time period 1998-2018. There is wide geographical coverage of the monitoring data atthough it is apparent that there are less data for the western, central and southern algene parts of Alestria where agriculture is of less importance.

For M-01 BAM, there are more than 2,700 data points available for the period 2004-2018. Despite the large number of data, there is a heterogeneous distribution in the geographical distribution of monitoring points. Like for DCB, there are distinctively fewer monitoring data for the western, central and southern alpine parts of Austria

The time series of the number of sample analysed in each year is shown in Figure 7.5-13 for each of the 2 analytes. The sampling frequency for DCB was high in the years 1998, 1999, 2004 and 2013 with about 4,000 date points per year and 2 peak in 2004 with about 7,500 data points. From 2000 onwards a decrease in analyses was recorded, with only 9 data points in 2009 and an average of 150 data points in 2010-2012 and 2014. From 2015 a constant drop of sampling frequency, with only 16 samples in 2018 was recorded. Monitoring for M-01 BAM started in 2004 and has a decrease in sample numbers towards 2009, with only 3 data points in that year. From 2010 to 2018 the sampling frequency was stable with about 2,500 data points per year, except the one peak value in 2013 with 5,500 data points. In general, there are more analyses for M-01 BAM than for DCB.

Figure 7.5-13: Time series of number of residue analyses for DCB and M-01 BAM for Austria

13C and Table 7.5-13D in relation to the concentration classes For FkC there are no data available.

DCB detections >LOO but also >0 µg Coccur in Lover and Upper Austria, with no particular cluster and with no obvious convelation to vine or potatoes cropping. There are 6 detections >LOQ which relate to 3 monitoring sites. Ò n

M-01 BAM detections were found widespread across the plain terrains of Austria (Lower and Upper Austria, Byrgenland, southern part of Styria, south eastern part of Carinthia and north eastern part of Salzburgy. This accounts for detections >0,1\u00e4g/Lout also for the higher concentration classes. There seems to be particular clusters of Elevated M-01 BAM concentrations in the districts Linz, Linz-Land and the districts Graz and Leibrarz. Many of the M-OP BAM residues correspond to areas outside the main vine or potato growing regions with no apparent correlation to the density of these 2 crops. In the vine cropping areas there was only one M-91 BAM detection $\geq 1 \mu g/L$ and this occurred in 2006, prior to the authorisation of FIC. There were no detection $\geq 1 \mu g/L$ in potato cropping areas. These data imply that M-01 BAM, detections ≥ 1 fg/L are related to historic DCB usage. There is however, one exception, where M-W BAM residues $\geq 10^{10} \mu g/L$ are related to potato cropping and FLC usage. The groundwater of this point or a site (ID: RG31300362) was analysed for M-01 BAM residues since 2007 and there were no detections until early 2012 Plevated M-01 BAM detections $\geq 10 \,\mu g/L$ were detected in April 2012 and in July 2013 with genaxicham of 12 μ g/L. Subsequently there was a sharp decline in concentrations, and from 2014 onwards concentrations were typically in the order of 1-2 µg/L. Although the monitoring site is outside of main portato cropping areas, aerial pictures show that at this site potato farming is of loca importance. The elevated M-01 BAM detections ≥10 µg/L cannot unambiguously be elucidated. It is likely that the detections are related to FLC usage. However, the timing of the first detection (mig of April 2012) very shortly after a first opportunity for a FLC application, together with the rapid decrease of concentrations in the subsequent monitoring period, suggest that M-01 BAM entered the groundwater relatively directly. This may have happened via hydraulic short cuts or via a point source during handling, mixing or loading of spray broth. It is concluded that the elevated M-01 BAM detections at this site are not related to excessive leaching under normal environmental conditions following good agricultural practice.

<u>Italy</u>

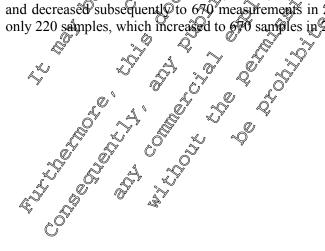
A general overview of the registered uses of DCB and FLC in Italy is listed in Table 7.5-10.

DCB was used since 1970's in Italy, in vines, olives, apples, ornamentals, amenity use, hard surfaces, and adjacent to aquatic areas and was in wide spread use until 1980, when it was partially replaced by glyphosate in agriculture and other uses. DCB was used mainly to control weeds in industrial treas, car parks, railways and motorway sides. The authorisation for DCB use expired in March 2009, although an approximately one-year period for phase-out would be typical, during which the use of remaining DCB containing products would have been allowed.

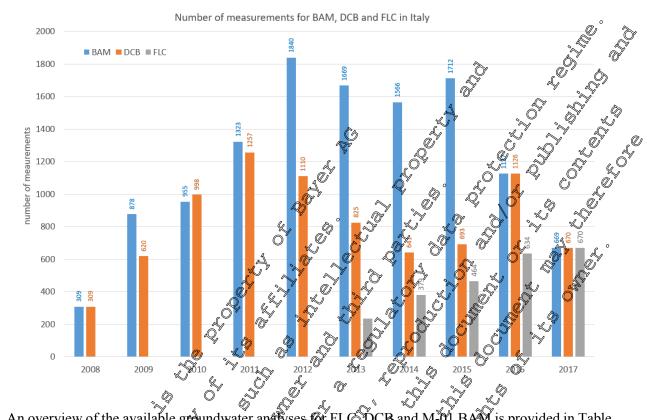
FLC was first registered in Italy in July 2008 for applications in vines, potatoes, vegetables herbs and flowers. As such, there is a negligible temporal overlap between DCD and FLC authorisation. In terms of common target crops, there is a spatial overlap for use on vines but the non-agricultural use of DCD may make it difficult to discount spatial overlap between DCB and FLC uses a farmers may have used DCB on non-cropped areas on their farms or associated with other crops.

A comparison between typical application rates and modes for DGB and CLC identified a much higher possibility for leaching of M-01 BAM associated with DCB applications.

After completion of the data consistency check, a total of almost 23,000 values from groundwater analyses were available for the three analytes overing the time period 2008-2010 (Table 7.5- 12).


The geographical distribution of the available data for the three analytics is shown in Figure 7.5-1 to Figure 7.5-3.

For FLC data are only available for 4 years, covering the time period 2013-2019. The monitoring data cover northern and north-western Italy diuscarly, Piermont and Trentino Alto-Adige/South Tyrol regions).


For DCB almost 8,300 data points are available for the time period 2008,2017. Wonitoring data are only available for the regions Piedmont Tuscage and Campania.

For M-01 BAM GN there are more than 12,000 data points available for the period 2008-2017, located in Tuscany, Piedmont Lombardy and Trentipo-Alto Adjge/South Tyrok regions.

The time series of the number of samples analysed in each year is shown in Figure 7.5-14 for each of the three analytes. The figure illustrates that there was a shap increase in the sampling frequency from 2008-2017 for DCB and from 2008-2012 for M-01 BAM. DCB and M-01 BAM were the first 2 of the 3 substances analysed in Italy in 2008. The amount of analyses slightly increased from around 310 to a maximum of 1,257 in 2011 for DCB and 1,870 for M-01 BAM in 2012. From 2011 a decrease in sampling frequency for DCB to an average of 700 analyses searly can be recorded. In the period 2012-2015, the number of MOII BAM analyses stayed and high evel, with an average of 1,600 measurements and decreased subsequent to 670 measurements in 2017. The FLC monitoring started in 2013 with only 220 samples, which increased to 670 samples in 2017.

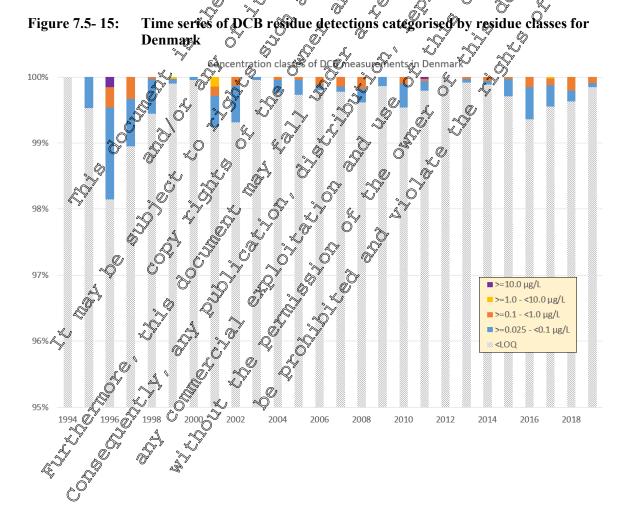
Figure 7.5-14: Time series of number of residue analyses for FLC, DCB and M-01 BAM for Italy

An overview of the available groundwater analyses of FLGDCB and M-01 BASA is provided in Table 7.5-13A, Table 7.5-13C and Table 7.5-13D in relation to the concentration classes.

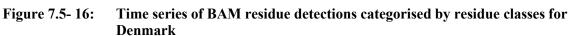
For FLC there are simost 2,400 malyses available of which 43 are >LOQ (1.8%), with 12 analyses exceeding the regulatory groundwater concentration threshold of Q4 µg/LSAll FLC detections occurred in the Piedmon Pregion an area where vine cropping is only of significance in the southern part, in the provinces Cuneo and Astr. The 43 detections LOQ Felate to 42 stees as repeated detections were encountered at one of the monitoring files. The 12 elevated FLC exceedances relate to 11 sites. The elucidation concluded that the detections at 10 of the sites are likely to be false positive findings, possibly related to sample contamination or an analytical pror Most of the samples that show detections were sampled in October 2016 and are single detections with FLC concentrations <LOQ in subsequent samplings. Several of these findings occurred in deep and confined aquifers and there were no detections of M-01 BAM@esidu@. The circumstantia evidence suggest that the findings are false positives. There is no obvious correlation to potato growing regions

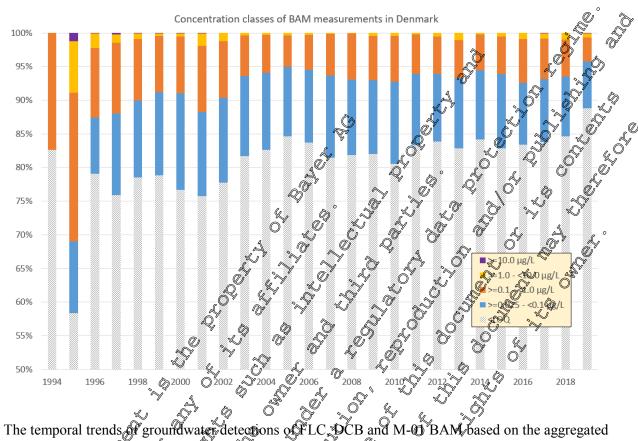
analyses with only 2 detections (0.02%) >LOQ. One is <0.1 μg/L, the For DCB there are almost 8,2 other $\geq 10^{\circ} \mu g/L$

For M-01 BAM there are in the order of 12,000 analyses available for an assessment of which 491 analyses are >LQQ (4.0%). The highest density of detections was found in the province Monza and Brianza. There were no detections $20 \mu g/L$ in the concentration class $0.75 \le x < 1.0 \mu g/L$ there were 6 detections (0.05%), which relate to 4 monotoring sites. The 4 detections in the class $1.0 \le x \le 10.0 \ \mu g/L$ relate to 3 monitoring siles and that all of these detections were observed outside the main vine and potato copping areas, which implies that these these detections are related to historic DCB usage.


Spatial and temporal assessment of residue data

The residue analyses for each analyte were categorised according to their concentrations classes and assessed for temporal trends.


The data for Denmark set a baseline, as FLC was never registered in this country. The time series for DCB detections is shown in Figure 7.5-15. In Denmark the authorisation for DCB usage expired in Jdy 1997. Although the parent detection rates are generally low, (166 detections >LOQ, out of 69,776 samples) the time series illustrates that DCB was found in groundwater persistently even more than 20 years after its registration expiry. Detection rates were in the order of 1-2% in 1996 and 1997 and declined to <1% in the following monitoring period. Taking the year 2007 as an example, 20 years after the expiry of DCB usage in Denmark, the detection rate was still in the order of 0.5%, corresponding to 15 samples with detections >LOQ, and a further 6 samples with concentrations >01 μ g/D


For BAM, residue concentrations in groundwater remained even more persistent (Figure 7.5-16). In the late 1990s, shortly after the expiry of DCB usage, detection rates >LOQ were in the order of 20% and the detection rates in the concentration class >0.1 μ g/J, were around 10%. If the subsequent monitoring period detection rates declined only very slowly, and in 2017 there were still 15% of the samples with concentrations >LOQ and about 7% (n=350) of the samples with concentrations >0.1 μ g/J.

The data for Denmark clearly show that DCB and BAM residues are still detected in groundwater long (>20 years) after the expiry of the DCB registration. The reason for this is residual DCB concentrations in soil following very high use rates which still degrade to form BAM coupled with the percolation times through the unsaturated zone?

Ś data from the six selected target Mass is discussed below

Gata from the six spected parget was is discussed below. For FLC, the data are listed in Table 7.5- 4. FLC was first registered in the target MSs, for which residue data are available, between 2007 (Germany and the Netherlands) and 2010 (France). The number of detections were low in the period 2011 -2015 with only 3 detections >LOQ in this 5-year period. The detection pumbers increased marked on 2016 and 2017 with 45 detections >LOQ in 2016 and 14 in 2017. This is strongly Giased by the data from Ital Where 41 detections >LOQ were reported for 2016, of which 11 detections were ≥ 0.1 by L_{L} the detections above the 0.1 μ g/L threshold were subject to a

of which 11 detections were ≥0.1 grg/L. The detections above the 0.1 µg/L threshold were subject to a desk-based elucidation which concluded that many the reported concentrations are most likely false positive detections.

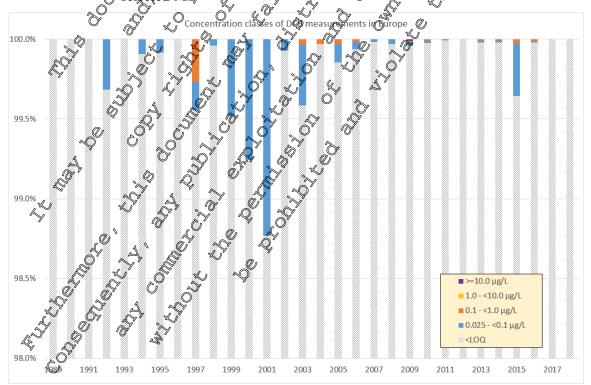
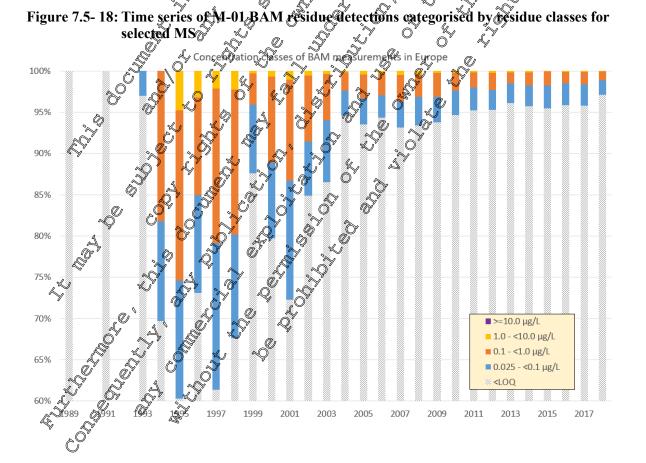


Table 7.5- 14:	Number of residue detections and sites for FLC in selected MS categorised by
	residue classes

	Total		< LC μg/			x < 0.1 /L	$0.1 \leq x <$	1.0 μg/L	1.0 ≤ x μg	< 1000 /L	
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	∞ No. of sites	No. of	No. of ²² 20	analyses	Notafe Sites 23)
2011	232	155	232	155	0 🚿	0	, O	0	0,0	NO C	S C
2012	260	226	260	226	S	0	0^{0}	0%)	Q	0^{0} %	
2013	513	438	511	436	A 1	1 🖓	l b°		LO (
2014	602	428	602	428 🖉	0 0	0) , 271	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
2015	795	577	794	576	A		© 0 √		ŶŶ	«νΰ	
2016	1707	1435	1662	1400	≪32 (5 32 0	129	PŽ	sty 1 🚊	l l	
2017	4984	2853	4970	x 2848 %	12	10	A2	\$ 2			
2018	2776	1066	2769 ى	1066	Ø,	×6 (kç	\$0	£0	
Total	11869	4154	11800	4147	چې 52 م	× 46	16	100 2015		1	
			Å	Ø, i	Š⊘		ð,				

The time series for DCB detections over the monitoring period is inustrated in Figure 7.5-17. In the target MSs the registration for DCB usage expired between 2004 (Germano) and 2010 (France, Belgium). The residue detection rates are generally low and vary between 0-1.5%. The temporal trend may be biased by the total number of analyses which increased significantly over time. Nevertheless, the data show that DCB detections were staff recorded in the period following the expiry of the registration. In 2015, DCB was detected in groundwater on 53 occasions (0.35%).

Figure 7.5-17: Fime series of DCB residue detections categorised by residue classes for



The temporal trend of M-01 BAM detections is shown in Figure 7.5-18 for the target MSs. M-01 BAM detection rates show a significantly decreasing trend from the mid-1990s to about 2003. During this period DCB was still registered in all target MSs and the strong decline in detection rates is more likely related to the increase in number of analyses that are available for each year and a more widespread monitoring away from known problem sites. For instance, in 1995 there are only the results for 63 M-01 BAM analyses available. From 2004 onwards there were more than 3,000 analyses for each monitoring year and in the period 2013-2016 more than 20,000.

From the mid-2000s onwards, M-01 BAM detection rates decreased slowly over time from about 7% in 2007 to 2.5% in 2018. This decrease relates particularly to the higher concentration residue classes between 0.1-1.0 μ g/L and 1-10 μ g/L.

In comparison to Denmark, the aggregated BAM data across all MSs show considerably lower detection rates. For the period post 2010, following the expirit of DCB authorisation in all target MSs, detection rates were in the order of 2.5-5% with a slightly decreasing trend. In the same time period, BAM detection rates in Denmark were 12-17%, although DCB usage was plready banned for almost 15 years. It should however be noted, that the aggregated MSs data are biased by the nuch arger sample numbers from France. When looking at individual countries M-01 BAM detection rates appear to have a bimodal distribution. In France, Germany, Austria and Italy the detection rates post 2010 are in the range of 2-7%, whereas in Belgium and the Netherlands the detection rates are in the range of 13-20%.

For the target MSs it may be concluded that M-01 BAM residues in the period post 2010 cannot readily be linked to FLC usage. Instead, a significant proportion of M-01 BAM detections in this period are most likely caused by leaching related to the legacy of DCB asage. This is based on the conclusions that can be drawn from the Danish data and the fact that there are still dumerous DCB detections in the target MSs after 2010.

The spatial and temporal trends from the country assessments are as follows:

Denmark

Denmark - Temporal assessment of residue data

The number of residue analyses for each monitoring year are categorised according to residue concentration classes in Table 7.5-15 and Table 7.5-16 for DCB and BAM respectively. These tables also include the number of sites that fall into each residue concentration classes.

Table 7.5- 15: Number of residue detections and sites for DCB categorised by cesidur classifier for Denmark Image: Comparison of the second secon

Iorai µµ/L µ/L µ/L <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>1</th> <th>Ŕ</th> <th>Qʻ</th> <th><u> </u></th> <th>í de</th> <th>Ó</th> <th></th>						1	1	Ŕ	Qʻ	<u> </u>	í de	Ó	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Tot	al			0.025	x < 0.1	0.1 🔬 🗴	x < 1.₽			<i>≩</i> 1	0.0
j j		100	a1	μg/l	L)	μğ	/L 。	ωμg	/L `>	ωĥβ	/ I	¢ٍ∜ گي م	/) \$\$
1995 212 188 211 187 1 1 0 2 0 1 1 1996 646 561 634 557 4 5 5 0 1 1 1997 1812 1535 1793 1726 13 010 6 5 0 0 1998 3068 2466 3051 2455 16 160 1 4 4 5 0 0 1999 3066 2474 3063 2473 5 0 </td <td>Year</td> <td>No. of analyses</td> <td>No. of sites</td> <td>No. of analyses</td> <td>No. of Stites</td> <td>No. of a</td> <td>ot of</td> <td>Alo, of Caracter analyses</td> <td>Sites</td> <td>who of anaryses</td> <td>Action and a sites Of</td> <td>No of analyses</td> <td>Ko of sites</td>	Year	No. of analyses	No. of sites	No. of analyses	No. of Stites	No. of a	ot of	Alo, of Caracter analyses	Sites	who of anaryses	Action and a sites Of	No of analyses	Ko of sites
1995 212 188 211 187 1 1 0 2 0 1996 646 561 634 557 8 2 2 2 0 1 1 1997 1812 1535 1793 1826 13 10 6 5 0 0 1998 3068 2466 3051 2455 167 160 1 0 0 1999 3066 2474 3063 2473 0 <td< td=""><td>1994</td><td>28</td><td>28</td><td>28</td><td><u> </u></td><td></td><td></td><td></td><td>, , (</td><td></td><td> Ø</td><td>0</td><td></td></td<>	1994	28	28	28	<u> </u>				, , (Ø	0	
1996 646 561 634 559 47 72 72 70 71 1 1997 1812 1535 1733 1726 13 10 6 5 0 0 1998 3068 2466 3051 2455 16 167 1 4 4 9 0 1999 3066 2474 3063 2473 2 0 0 0 2000 2251 1774 2250 4777 1 1 0 0 0 2001 2788 298 2167 2098 13 12 4 4 4 2 0 2002 3043 2505 3022 2237 174 1 1 0 0 0 0 0 0 0 0 0 0	1995	212	188	211			l N	0,7	Č,	Ô	de la comencia de la come	<u>`</u> ≪0 [°]	
1997 1812 1535 1793 1726 13 0 0 6 5 0 0 1998 3068 2466 3051 2455 167 167 1 1 0 0 1999 3066 2474 3063 2478 5 2 0 0 2000 2251 1774 2250 477 1 1 0 0 2001 2788 298 2767 2098 13 12 4 4 4 2 0 2003 2305 1775 2304 4774 1 1 0 0 0 2004 2080 4099 4081 1606 4 4 6 0 0 0 0 0 0 0 0 0 0 0	1996	646	561	634	559	R		2	<i>‰</i> 2	0	0 <i>"</i>	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1997	1812	1535	1793		[™] 13	® ₁₀	۶6 ¢	× 5 6		0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1998	3068	2466	3051	∀2455	[*] 16	160	-		°.	, Ôg	0	
2001 2788 2008 2767 2098 13 12 4 4 4 2 0 2002 3043 2250 3022 2237 17 14 4 4 4 2 0	1999	3066	2474 2	≫ ³⁰⁶³	24 🕸		2	Ô	\$ <u></u>	ŝ ⁹ i 🧋	×1	0	
2002 3043 32250 3022 2237 47 44 44 53 00 $$ 0 $$ 2003 2305 1775 2304 4774 1 1 0 $$ 0 $$ 0 $$ 2004 2086 1699 2081 1606 4 4 4 10 10 0 $$ 0 $$ 2005 2204 1765 2198 1769 5 2 2 3 3 0 $$ 0 $$ 2006 22460 1977 2255 4975 2 2 3 3 0 $$ 0 $$ 2007 2724 2465 27118 2162 2 4 3 0 $$ 0 $$ 2008 2828 2432 2817 2422 6 5 4 0 $$ 0 $$ 2009 2829 2474 2825 2468 4 3 0 $$ 0 $$ 0 $$ 2010 3042 2833 3333 2859 4 3 2 0 $$ 0 $$ 2011 3340 2833 3336 2843 356 2843 0 $$ 0 $$ 0 $$ 2013 3583 356 2786 2 2 2 1 1 0 $$ 0 $$ 2014 3359 2788 335	2000	2251			84 h	-	9 - **		%		Š	0	
2003 2305 1775 2304 4774 1 1 0 $$ 0 $$ 0 $$ 2004 2086 1609 2081 1606 4 4 1 0 $$ 0 $$ 2005 2204 1765 2198 1769 5 2 3 3 0 $$ 0 $$ 2006 22460 1976 265 4975 2 2 3 3 0 $$ 0 $$ 2007 2724 2465 2718 2162 2 4 4 3 0 $$ 0 $$ 2008 2828 4432 2817 2422 6 6 5 4 0 $$ 0 $$ 2009 2829 2476 2825 2468 4 3 0 $$ 0 $$ 0 $$ 2010 3049 2833 3332 2843 4 3 0 $$ 0 $$ 0 $$ 2011 3440 2833 3332 2843 0 $$ 0 $$ 0 $$ 2013 3583 343 356 2786 2 2 1 1 0 $$ 0 $$ 2014 3359 2786 3356 2786 2 2 2 0 $$ 0 $$ 2013 3583 3471 8853 3354 <t< td=""><td>2001</td><td>2788</td><td>2608</td><td>2767 🛒</td><td>2098©</td><td>13</td><td></td><td>4</td><td>Ð″</td><td></td><td>2</td><td>0</td><td></td></t<>	2001	2788	2608	2767 🛒	2098©	13		4	Ð″		2	0	
2004 2086 1699 2081 1606 4 4 6 0 0 2005 2204 1765 2198 1760 5 0 1 0 0 2006 2460 1979 2455 4975 2 2 3 3 0 0 2007 2724 2465 2718 2162 2 4 2 0 0 2008 2828 2432 2817 2422 6 6 5 4 0 0 2009 2829 2474 2855 2468 4 3 0 0 0 2010 3043 2597 029 2587 11 9 3 2 0 0 2011 2340 2883 3335 2843 0 0 0 2013 3583 34	2002	3043	\$2250 (22 3 7	A7	Ĵ.	<i>Q</i> 4	Å3 ≈	$\gg 0$		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2003		1775		\$ 4 ,774		¢́1 ₅	[∼] 0 ≰Ç	~	0		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2004		1609	≪ 2081	1606	40	400	D	, Ø	0		0	
2006 2460 1976 2685 4975 2 2 3 3 0 0 2007 2724 2465 2718 2162 2 4 2 0 0 2008 2828 2432 2817 2432 6 6 5 4 0 0 2009 2829 2470 2835 2468 4 3 0 0 0 2010 3049 2897 0029 2587 11 9 3 2 0 0 2010 3049 2897 0029 2587 11 9 3 2 0 0 2011 2840 2833 3332 2843 0 0 0 2013 3583 1343 3580 3110 2 2 1 1 0 2014 3359	2005	~2 2 04		, 2198,	1760	ð,	9	@1	ŵ1	0		0	
2008 2828 2432 2817 2422 6 6 5 4 0 0 2009 2829 2478 2855 2468 4 3 0 0<	2006	\$2460	1979	2655	1 975		S 2 🛴	્રું 3 ા	∛ 3	0		0	
2008 2828 2432 2817 2422 6 6 5 4 0 0 2009 2829 2478 2855 2468 4 3 0 0<	2007	2724		2718	0	້ 2 🖉			2	0		0	
2010 304Q 2597 6029 2587 11 9 3 2 0 0 2011 2340 2883 3332 2949 2 2 1 1 0 1 1 2012 3336 2843 3526 2843 0 0	2008	2828	£432			ר		°∂~5	4	0		0	
2011 2883 3332 2899 3 1 1 0 1 1 2012 3336 2843 3366 2843 0 </td <td>2009</td> <td>2829</td> <td>()) *</td> <td></td> <td>2468</td> <td>) (</td> <td>S 3 🧳</td> <td>y 0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td>	2009	2829	()) *		2468) (S 3 🧳	y 0		0		0	
2012 3336 2843 3326 2843 0 0	2010	*	2\$97	s y			ð	3	2	0		0	
2013 3583 313 3580 3110 2 2 1 1 0 0 2014 3359 2788 3356 2788 2 2 2 0 0 2015 3104 2676 3695 2669 8 8 1 1 0 0 2016 3879 3371 3853 3356 19 17 6 6 0 0 2016 3879 3326 4705 3912 15 14 5 4 1 1 0 2017 4722 3926 4705 3912 15 14 5 4 1 1 0 2018 3776 3266 3262 3252 6 6 8 8 0 0 2019 3285 2 2 3 3 0 0 2019 <td< td=""><td>2011</td><td>3340</td><td>~</td><td></td><td></td><td></td><td>Ľ,</td><td>1</td><td>1</td><td>0</td><td></td><td>1</td><td>1</td></td<>	2011	33 40	~				Ľ,	1	1	0		1	1
2014 3359 2788 3355 2786 2 2 2 0 0 2015 3104 2676 3095 2669 8 8 1 1 0 0 2016 3879 2371 3853 3356 19 17 6 6 0 0 2016 3879 3971 3853 3356 19 17 6 6 0 0 2017 4722 3926 4705 3912 15 14 5 4 1 1 0 2018 3776 3266 362 3252 6 6 8 8 0 0 2019 3287 2890 3280 2885 2 2 3 3 0 0 7041 69776 18677 69541 18586 166 135 61 47 6 4 2	2012	\$3336	- //	v 🔉		0^{0}	¥	0		0		0	
2015 3104 2676 3995 2669 8 8 1 1 0 0 2016 3879 3371 3853 3354 19 17 6 6 0 0 2016 3879 3926 4705 3942 15 14 5 4 1 1 0 2017 4722 3926 4705 3942 15 14 5 4 1 1 0 2018 3776 3266 362 3252 6 6 8 8 0 0 2019 3289 2890 3280 2885 2 2 3 3 0 0 Total 69776 18677 69541 18586 166 135 61 47 6 4 2 2			\sim			23			1	0		0	
2016 3879 3371 3853 3354 19 17 6 6 0 0 2017 4722 3926 470 3912 15 14 5 4 1 1 0 2018 3776 3266 3462 3252 6 6 8 8 0 0 2019 3285 2800 2885 2 2 3 3 0 0 Total 69776 18677 69541 18586 166 135 61 47 6 4 2 2	2014		<u></u> 2788 @		<u> </u>	<u>O</u>	2	2	2	0		0	
2017 4722 3926 4701 3912 15 14 5 4 1 1 0 2018 3776 3266 3262 3252 6 6 8 8 0 0 2019 3287 2890 3280 2885 2 2 3 3 0 0 Total 69776 18677 69541 18586 166 135 61 47 6 4 2 2	2015	3104			¥	Q ⁷ 8	8	1	1	0		0	
2018 3776 3266 3262 3252 6 6 8 8 0 0 2019 3287 2890 3280 2885 2 2 3 3 0 0 Total 69776 18677 69541 18586 166 135 61 47 6 4 2 2	2016						17		6	0			
2019 3289 2890 3280 2885 2 2 3 3 0 0 Total 69776 18677 69541 18586 166 135 61 47 6 4 2 2	2017	47Ž2	ح €3926		3912	15	14	5	4	1	1	0	
Tutal 69776 18677 69541 18586 166 135 61 47 6 4 2 2	2018				3252			8	8	0		0	
	2019	N//		\sim	2885	2							
	Total				18586	166							

The sum of the number of sites in each class does not necessarily match the total number of sites in each year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Example 1 or 1 o
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Example 1 or 1 o
1994232319190 $-\sqrt{4}$ 40 $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ 199555236632224359491225942207 $\sqrt{6}$ 199615851226125310341321071641243523111997237817891805147028919525017229205019983763275529562310428309345236181524199940402897318624484992328335236181524200037902738290722595443543182251919220014333314432832547541378425590825822200246183093591202158139739028056430-20034281309234962658511356251791344610101200538962999326263340430618013016150-20063754291534432541405297194144120-20073677282629962493<	27 27 27 27 27 27 27 27 27 27
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{2}{6} $ $ \frac{1}{6} $ $ \frac{1}{6} $ $ \frac{1}{7} $ $ 1$
1995552366322243594912259422071996158512261253103413210716412435231199723781789180514702891952501722920519983763275529562310428309345236812731999404028973186244849923283352361815220003790273829072259544354318225191922014333314432832547544354318225191922002461833093591272158139739028056430-2003428130923496265851135625713150-2004389928823220249944650122054101012005389629993296263340430618013016150-2006375429153443254140529719414412120-20073677282622962493447333229447550- <td>76 0⁹ <u>1</u> 0⁹ <u>6</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u></td>	76 0 ⁹ <u>1</u> 0 ⁹ <u>6</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 3
1998 3763 2755 2956 2310 428 309 345 236 31 27 3 1999 4040 2897 3186 2448 099 0328 335 236 180 15 2 2000 3790 2738 2907 2259 544 354 318 225 19 19 20 2001 4333 3144 3283 2547 544 378 225 290 82 58 2 2002 4618 3309 3591 2021 581 397 390 280 56 43 0 $-$ 2003 4281 3092 3496 2658 511 356 257 159 15 66 $-$ 2004 3899 2882 3220 2499 446 591 222 054 10 10 11 2005 3896 2999 3266 2633 404 306 180 130 16 15 0 2006 3754 2915 5443 2541 405 297 194 144 12 12 0 2007 3677 2826 22996 2497 447 333 229 447 55 5 0	*3
1998 3763 2755 2956 2310 428 309 345 236 31 27 3 1999 4040 2897 3186 2448 099 0328 335 236 180 15 2 2000 3790 2738 2907 2259 544 354 318 225 19 19 20 2001 4333 3144 3283 2547 544 378 225 290 82 58 2 2002 4618 3309 3591 2021 581 397 390 280 56 43 0 $-$ 2003 4281 3092 3496 2658 511 356 257 159 15 66 $-$ 2004 3899 2882 3220 2499 446 591 222 054 10 10 11 2005 3896 2999 3266 2633 404 306 180 130 16 15 0 2006 3754 2915 5443 2541 405 297 194 144 12 12 0 2007 3677 2826 22996 2497 447 333 229 447 55 5 0	*3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ê ^y
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[*] 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2006 3754 2915 3443 2541 4050 297 194 144 12 0 - 2007 3677 2826 2996 2499 447 333 229 147 5 5 0 -	1
2007 3677 2826 2996 249 47 333 229 447 5 5 0 -	
2008 3782 3056 3095 2620 224 2322 259 182 4 4 6 4 0 -	
	1
	1
2016 4312 3573 3597 307	
	1
	2 24

Table 7.5- 16: Number of residue detections and sites for BAM categorised by residue classes for Denmark

1 otal 22446 20519 75477 10096 2833 6215 2193 659 381 29 24 The sum of the number of sites in each class does not necessarily match the total number of sites in each year. This is because one site may have been sampled coveral times in a particularly ear, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this case over more than one year.

DCB detection rates \geq LOQ range from 0% to 1.9% and were highest in the years 1996 and 1997. However, this may be a bias of the data density, as there are relatively fewer residue results available for these years, particularly for the year 1996. DCB detection rates are generally low, typically in the order of 02-0.7%. Detection rates \geq 0.1 µg/L range from 0.0-0.5% and are on average 0.1%. It is however striking that even though the DCB authorisation expired in 1997 the detection rate of DCB in groundwater does not decline nor is there a clear trend towards decreasing concentration classes over time. Detections of DCB in concentrations \geq 0.1 µg/L were still observed in recent years, some 20 years after the expiry of the usage authorisation for this a.s..

BAM detection rates \geq LOQ typically range from 15-25% with the exception for the year 1995 when the detection rate was 41%. The latter is likely to be a bias due to the relatively smaller number of analyses in this year. Detection rates $\geq 0.1 \,\mu g/L$ show a slightly decreasing trend in the late 1990s following the expiry of the DCB authorisation but remain relatively stable at 4-7% from 2003 onwards. Over the monitoring period there were 29 BAM detections $\geq 10 \,\mu$ g/L most of which occurred until 2001, but there? were occasional further detections also in the later monitoring period (compare to Table 7_1 % 16) on 2019 two BAM detections $\geq 10 \ \mu g/L$ were made, 22 years after the expiry of the DCB authorisation

Denmark - Spatial assessment of BAM residues pre and post FLC registration

The geographical distribution of DCB and BAM residue was assessed in relation to the time period pre and post DCB authorisation. Three time periods were chosen for the, 1) 1994-1997 representing the Ô time period when DCB was still authorised for usage, a 1998-2009 sovering the fost 12 years following the expiry DCB authorisation, and 3) 2010-2019 as a later time period post authorisation.

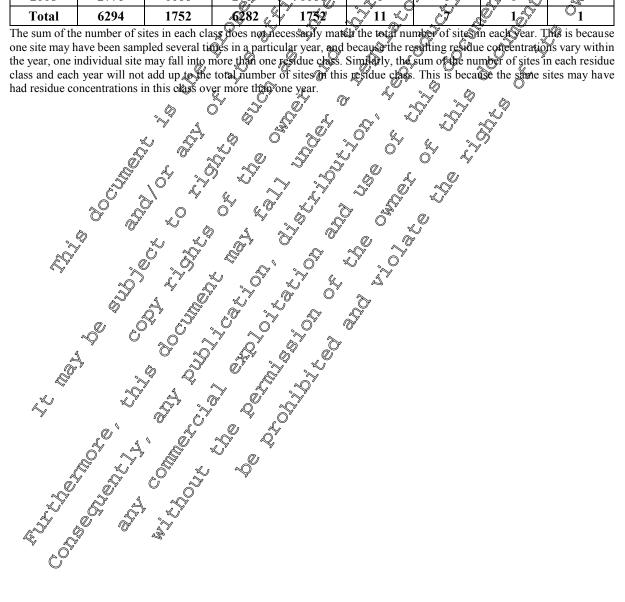
For DCB there were 9 detections $\geq 0.1 \,\mu g/L$ in the monitoring period to the end of the DCB suthor sation in 1997, but this also included one detection >10 grg/L. All detections occurred in the regions of Nordjyland and Syddanmark. In comparison to the later monitoring period there are fewer detections in this early monitoring period. The likely reason for this is the shorter monitoring time period covering only 4 years and that monitoring was not yet as intensive as in the subsequent time period. In later monitoring period further DCB detection $\geq 0.1 \ \mu g/k$ were observed. The detections are not related to particular sites or areas of Denmark, instead the locations where elevated DCB concentrations were found change over time. Q, °~

BAM detections show that there is no obvious geographical pattern to the distribution of BAM detections over time. All areas of Depiprark are affected by BAM detections, also by higher concentrations of $\geq 1 \ \mu g/L_{O}r \ even \geq 10 \ \mu g/L$. By the first monitoring period to 1.997 there are fewer detections, but this is simply because the data are for a shorter time period and monitoring for BAM was not yet as extensive. The elevated BAM concentrations are not restricted to certain areas, instead the groundwater across all of Denmarlos affe@ed. Similar to DCB there iono general pattern whereby high concentrations are detected persistently at certain locations over the monitoring period, instead the locations where BAM concentrations >10µg4 were Yound Change Gver, fine.

In summary the DCB and BAM residue data for Denmark show no particular relation to certain sites or regions over the monitoring period. Detections of high residue concentrations change over time. It is however, remarkable that DCB and BAM in particular, are detected wide spread across Denmark even decade after the expire of DCB.

AB were found chan ...e data for Deman's shown ...e data for Deman's sh

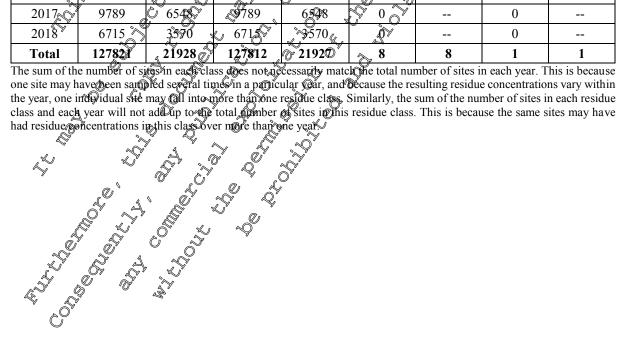
France


France - Temporal assessment of residue data

The number of residue analyses for each monitoring year are categorised according to residue concentration classes in Table 7.5- 17 to Table 7.5- 19 for FLC, DCB, and M-01 BAM respectively. These tables also include the number of sites that fall into each residue concentration class.

Table 7.5-17: Number of residue detections and sites for FLC in France categorised. classes Þ

					C3	A	"Ku"	NY SY	ø
	To	otal	< LC)Q 🚿	$0.025 \le x$	< .0.1 μg/L	$0.1 \le x \le 0.0 \ \mu g d$		
Year	No. of analyses	No. of sites	No. of analyses	Nagf sites Lor	Wo. of analyses	لاحلي No. ها چانده	Roof analyses	ZNO. OF OR	,0 ¥
2016	305	155	305 Ø) 15	8 0 g		0 V	A	
2017	3213	1488	3208	<u>,</u> 1 4 88	Ø5~%	1 ⁴ \$	P° 4	S S	
2018	2776	1066	2769	×1066	Å Å				
Total	6294	1752	Q282	1752	م ^م ر 11 م	ð,		\mathbb{O}_1	


The sum of the number of sites in each class does not necessarily match the total number of sites in each gear. This is because

	classes	•							
	Total			<loq< th=""><th>< 0.1 µg/L</th><th>0.1 ≤ x <</th><th>ð</th></loq<>		< 0.1 µg/L	0.1 ≤ x <	ð	
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of Sites	یں No. of analyses	No. of Q2	G G
1996	1	1	1	1	rs 0	<u> </u>	Q^Y		ř.
1997	146	78	146	78 🔦	r 0	<i>"</i> ⁽		° « (°	L.
1998	153	95	153	95 K	0	Ď [™]	× 0 ô		
1999	101	58	101	58	0 🖓				ŗ
2000	166	108	166	Q 108	0×		. (0″ ~	\$ X	
2001	849	444	849	« 444 گې [°]		C	0 7	4) [×]	
2002	999	418	999 ⁽	418	<u>č</u> 0 <i>č</i>	a de la companya de l	8 0.C	A	
2003	1074	423	1074	× \$23		s S		Q	
2004	1724	953	1723	953	Å Ó			Jan Star	
2005	1949	1082	Ø47 🖉	1081	2 🖉	jų k		0	
2006	3652	1956	لا‱ 3652°℃	ື 19ັ56 <u>ຼ</u> ້		ð" <i>ð</i>	J. A	S	
2007	4182	2291	[≪] 418§2	Q 2291Q					
2008	4122	1938	°≉¥122	19308					
2009	7324	4517	K 7323℃	A517 @	- 10	× 1,0			
2010	10348	×\$451	103,47	S 5450		Ĭ`t⊊ [™]			
2011	11208 👷	5512	ja 1207 Ö	55.4	0×1 %	i i .) 0		
2012	11937 🔗	6304 🚕	×11937	75240 75240		0 [°] 4 [°]	0		
2013	1301	√¥522 ∘~	13016	75240			0		
2014	13074	∑7330	&13074 ^	7230		<i>\$</i> ²	0		
2015	02052	7,694	012050/	<i>3</i> 613			0		
2016	¢ 13239	7484	13239	74840			0		
2017	9789	⁽²⁾ 654	\$ 789	65\$8			0		
2018	6715	3570	6715	^≈¥570	Č.		0		
Total	127821	21928	127812		≫ 8	8	1	1	

Table 7.5-18: Number of residue detections and sites for DCB in France categorised by residue classes

Table 7.5- 19:	Number of residue detections and sites for M-01 BAM in France categorised by
	residue classes

	Total		< LOQ		$0.025 \le x < 0.1$ $\mu g/L$		$0.1 \le x < 1.0$ $\mu g/L$		$\begin{array}{c} 1.0 \leq x < 10.0 \\ \mu g/L \end{array}$		≥ 10.0 µgA		
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of sites	Nozof	No. of	Û Î Î
2000	43	15	38	12	2	2	3	20	0	- 4,		,-O	
2001	324	143	314	142	5	Ł	2	2 Ŵ	3	L.I		§ (Ô
2002	437	173	431	173	2	s℃ž	0	ñ~	。 4 🦼		S 0 Č	P',@	
2003	493	239	483	235	5	p " 5	lay		4~Q*	10 ⁹	8	Ð	
2004	1013	538	999	536	A.	2°	S.	1. F	J ØZ	(S)	~~~~0	<u> S</u>	
2005	1324	614	1274	606	Q5	A 4	، 22 🦓	🖓 10 🧹	0 ⁻³ 1	۶ ¹ ر	0 4		
2006	3176	1734	3097	1711 #	25	- 🤊 .	₹ 46 <i>°</i>	24	80	3Ô*	₿ [©] ́	a de la compañía de l	
2007	3532	1802	3400	1760	<i>₅</i> 53 √	29/ ×42	<u>Å</u>	\$ 4	° _≫ Pi	×6	Ň, Õ	\$ ⁷	
2008	2734	1321	2602	1281	<u>,</u> %69	لي 42	\$∕759 ₹		4		0 (
2009	5007	3054	4766	2977 a	115	∛ 64	121	540	55	lli k	, ÓP		
2010	7561	4095	7295 🖉	4002	1409	Ð	REG	\$ 6	, di	Č3	°≈y0		
2011	8636	4404	8279	4301	296	A 16	J31	Q 68	° 10 Ĉ	4 %	r 0		
2012	10788	5354	10399 «	چ 5252	چ 206	126	175	80	\$	3	0		
2013	12643	7144 。	Q12287 C	702	215	129	132	£33		x)5	1	1	
2014	13357	7501	12927	7358	254	Ø151	Õ166 🌾	73	8 8	x 5	2	1	
2015	12218	7856	12887	S1727	, 203	120	1270	55	Ł,×	1	0		
2016	14080	\$936	L13650Ô		297	163	JG ⁄1	<i>2</i> 70	@ ²	2	0		
2017	10924	7366	10546	7229	~257	¥40	ఫి147	¢ 65 🔬	¥ 4	3	0		
2018	6945	3807	0705	O3804&	0°141	920	95	42,	4	1	0		
Total	115235	19735	11134%	19529	2232	506	1550	219	101	17	3	1	

The sum of the number of sites in each class does not necessarily match the total number of sites in each year. This is because one site hav have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fait into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

For FLC the rate of detections $\bigcirc OQ$ is in the order $\bigcirc O.2\%$ for the monitoring years 2017 and 2018. The number of detections is too small to derive a statistically meaningful population to assess whether there may be potential trends in the detection frequency over time. The same accounts for DCB where the detection rate is even lower. For DCB it is however worth noting that some detections were still observed in the year 2019, 5 years after the authorisation for DCB use expired. Half of the detections (n=4) occurred in the period post 2019, after the DCB authorisation had expired.

Due to the small number of FLC and DCB detections, no further temporal assessment was performed for the two analytes.

For M OF BAA there are more detections >LOQ which enables an assessment of detection rates and concentration classes over time. A summary of the residue data for each monitoring year is provided in Table 7.5, 9.

ĉ

The M-01 BAM detection rate >LOQ is typically in the order of 2-5% of the total number of analyses in any one year. The detection rate is however much higher in the year 2000 which is attributed to the relatively low number of analyses in this first monitoring year, which distorts the statistics. Detection rates increased in the first monitoring decade and reached a maximum of about 5% in the years 2008 and 2009 just before the expiry of the DCB authorisation. In the period 2010-2018 there is an overall declining trend in M-01 BAM detections although a slight increase in detection rates is indicated for the years 2017 and 2018.

More important are the detection trends for the higher concentration classes. Detection rates in the concentration class $0.1 \le x < 1.0 \mu g/L$ peaked in 2008 and 2009 when they were just over 2%. In the subsequent period this concentration class shows a generally decreasing trend. Detection rates were in the order of 1.4% in the monitoring years 2017 and 2018. This detection rate is even lower in the order of 1%, when the detections are related to the number of monitoring sites rather than the total number of detections (compare to Table 7.5- 19). For instance in the years 2017 and 2018, there were 147 and 95 detections in this concentration class respectively. These detections relate to 65 sites in 2017 and 42 sites in 2018.

The most obvious trend is observed in the concentration dass $1.0 < x < 10 \mu g/L$. In the early 2000s the detection rate in this class was in the order of 4% which decreased in subsequent years. In the period post 2010, after the expiry of DCB authorisation, the detection rate was mostly <0.1% and the detections related to only very few sites (maximum of 10 sites) across France. Detections $\geq 100 \mu g/L$ were only observed 3 times over the entire monitoring period. The detections occurred in 2013 and 2014. All detections in this class relate to one monitoring site and are the legacy of DCB usage.

The M-01 BAM residue time series data are further assessed by discriminating them against the occurrence of the main FLC targer crops, hamely wines and polatoes. To factifitate this, annual residue data were processed in GIS to correlate them to fand use data.

The number of M-01 BAM detections in the higher concentration class (≥ 1 µg/L) are listed in Table 7.5-20, categorised per year and dominant cropping areas. In the monitoring period there were 104 BAM detections ($\neq \mu g/L$) of which 44 occurred prior to the authorisation of FLC in 2010. As such, 81% (n=84) of all detections $\geq 1/\mu g/L$ were observed in areas with no' ($\neq \gamma_{0}$) vines or potato cropping, the remaining 9% (n=20) derived from vine cropping areas. There were no detections $\geq 1/\mu g/L$ in potato cropping areas.

The 20 M_{\bullet} 01 BAM detections 1 μ g/ in vines areas, occurred at only 6 sites across France. In vine areas there is a generally declaring trend in M-01 BAM detections in this concentration class from 2013 onwards and there was only 1 detection 2^{μ} μ g/k since 2015.

In summary, most M-01 BAMS detections $\geq 1 \ \mu g/L$ (81%) were observed outside the main FLC target crops areas and are almost certainly related to DCB usage. These DCB related detections still occur in 2018, 7 years after the expry of the DCB authorisation. Given that DCB was also extensively used in vines it is expected that the logacy of this usage is also observed in vine cultivation areas. In vine cropping areas there are only very few detections $\geq 1 \ \mu g/L$ and there is a declining trend in this concentration class. It is therefore likely that these detections derive from historic DCB applications and not from FLC. There are no detections $\geq 1 \ \mu g/L$ in potato cropping areas.

Table 7.5- 20: Number of residue detections and sites ≥1.0 µg/L for M-01 BAM in France categorised by cropping density

	categor	iscu by cit	opping densit	y					
			D	etections ≥1	.0 μg/L				Ô
	Tota	al	Vines and cropping a		Vines crop >1	pping area	ð,		
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. 64 L	Box of analyses	No. OF 2	
2000	0	0	0	<i>A</i>	0 20	0	~ 0 Q	Óð s	₩ M
2001	3	1	3	A 1	00	¢°0 €	, de j		7
2002	4	1	4 4	V 1	~ 0 ~				
2003	4	1	4					, V	
2004	2	1	2	×1 C	AO'		<u>d</u>	چ 0 چ°	
2005	3	1	s a	N 1 N	s. 0 🔎		× 0 4		
2006	8	3		_@ [*]	√y 3 Ô ^V	Å.		A R	
2007	11	6	0 8 K	<u></u>	× * .		Ø	0	
2008	4	2	1 × 4	2	20 S			0	
2009	5	2	<u></u>			ð s		0	
2010	10	39	× 8,0	2	Ø,	<u>م</u> 1	0 [×]	0	
2011	10	Å Å		× 3 °	3		¢ 0	0	
2012	8	مَّةِ ^{ال}		Â.	<u>م</u> ع		0	0	
2013	11 🗶		SX /	ð 3 x		<u>کې کې ک</u>	0	0	
2014		6		5	2	14	0	0	
2015	j, ž	Ô ^Y 1 ÌY	wi ~		Q 0 /		0	0	
2016		2~	× 1.0	$\sqrt{1}$	A	≪ ^v 1	0	0	
2017		13	4		$\bigcirc 0 $	0	0	0	
2018 🦻	4		A 0			0	0	0	
Total 🔊	104 🥡	₩. B	× 84 ×	گ 12 گ		6	0	0	
				(A) A1	* >>/				

Note: The sum of sites may not add up to the otal number of sites over all monitoring years. The reason for this is that detections at particular sites may occur in more than one year.

France - Spatial assessmen of M-OI BAN residues preand post FLC registration

The geographical distribution of M-0 BAM residue data was assessed in relation to the time period pre and post FLC authorisation. The M-01 BAM residue data up to the end of 2009 and the data for 2010-2018 were plotted in relation to the mail vines and potatoes cropping areas. This assessment is only indicative as remaining DCB containing products will have probably been used until 2011 (authorisation expiry date pluse) year to use up old stocks) in addition, the time dependent assessment in the previous chapter has charly shown that a significant proportion of M-01 BAM residues in the period post 2010 are likely attributable to historic DCB usage.

The spanal distribution of M-OI BAM detections pre and post 2010 show that significantly more M-01 BAM detections at few concentrations ($<1 \mu g/L$) are observed in the period post 2010. There is no obvious correlation of M-OI BAM detections to intensive vine or potato cropping areas and many detections are even located in areas which are not related to any vine or potato cropping (e.g. Paris region). The higher number of M-OI BAM detections post 2010 is therefore most likely due to the increase in M-OI BAM sampling points in this later monitoring period (compare with Table 7.5-19). There is a shift in locations with M-OI BAM residue concentrations $>1\mu g/L$ in the period post 2010 but

this shift is again not towards regions of intensive vine or potato cultivation in which FLC containing products could potentially have been used.

The M-01 BAM residue detections post FLC authorisation are further plotted in relation to the PLC product usage and show that there is no clear correlation between the spatial occurrence of M-01 BAM residues and the intensity of FLC usage. Many of the detections are located in areas where there is very limited or 'no' FLC product usage (1-5%) and clusters of M-01 BAM detections seem to be unrelated to higher FLC usage.

Belgium

Belgium - Temporal assessment of residue data

The number of residue analyses for each moreoring year are categorised according to residue concentration classes Table 7.5-21 and Table 7.5-22 for FLC and M-01 BAM, respectively. The data for DCB are not further tabulated as there were no depections LOQ for this analyte.

For FLC the rate of detections >LOQ is in the order of 00% for the monitoring year 2016 and 20%. The number of detections is too small to derive a statistically meaningful population, to assess whether there may be potential trends in the detection frequency over time Due to the small number of FLC monitoring data and detections, no further temporal assessment was performed for this analyte.

Table 7.5-21: Number of residue detections and sites for LC in Belgium categorised by residue

	ci	asses	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>`~</u>	- O	× .	ñ r	0×	Ő	
	То	tal		00 °C	0-025≤ Տ բց		0.1 ŠX <	1,0°µg/L	$1.0 \le x < 1$	10.0 μg/L
Year	Z E	VI) No. OF Miles	No. of 27	NGC M NGC M sites 0	No. ok analyses	Do. of sifts	No. of No. of analyses	رام مراجع No. ok sites	No. of analyses	No. of sites
2016	278	3 37 4	⁰ 275 ^C	23¥		0 1 0		1	1	1
2017	s 264	238	261	235	2	<u>e</u>	<u></u> <i>©</i> 1	1	0	
Total 🔏	542	296	0\$ 36	[©] 292 \	. 3	£ ³ , (2 2	2	1	1

The sum of the number of sites in each class does of necessarily match the total number of sites in each year. This is because one site may have been sampled several times in aparticular year, and because the resulting residue concentrations vary within the year, one individual site may fall it to more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will no add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

For M-OF BAM there are more detections. LOO which enables an assessment of detection rates and concentration classes over time. The M-OF BAM detection rate >LOQ is typically in the order of 12-25% of the total number of analyses in any one year. In the year 2005 the detection rate >LOQ was 29% but the total number of analyses in this year was relatively small (n=66) which may distort the statistics. Detection rates are relatively stable at about 12-15% for the monitoring period 2006-2017. Also, in the higher concentration classes there seens to be no significant trend. M-O1 BAM detections $\geq 0.1 \ \mu g/L$ were in the order of 5% in the period 2006-2007 before the authorisation of FLC and are similar, in the order of 4-7% in the period 2008-2017 after the authorisation of FLC. M-O1 BAM concentrations in the concentration class $\leq 1 \le x < 10 \ \mu g/L$ occurred at exceedance rates in the order of 1% in the period after the FLC authorisation in 2008 and there is a slight increase in detections in this concentration class until 2014. M-O1 BAM was detected in concentrations $\geq 10 \ \mu g/L$ in the years 2006 (n=1), 2012 (n=2) and 2016 (n=1).

Table 7.5- 22: Number of residue detections and sites for M-01 BAM in Belgium categorised by residue classes

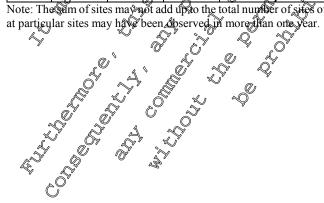
	m			0.0	0.005	.0.1	01.	.1.0	10.4	. 10.0		<u>.</u>	
	То	tal	< L	UQ	0.025 ≤ μg			x < 1.0 g/L	1.0 ≤ x μg		21	0.0 /L	
					μg	/L	με	;/ L.	μg	/L 🔊.	(0h	ď
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of sites	≽ No. of analyses	No. of sites	Alo. of analyses	No. of sites	⁽ Ny)of analyses	No. of sites 29	Ê9 Î
1995	15	15	15	15	0		R.		$\tilde{\mathcal{O}}$ 0	Õ		-0	s.
1996	34	14	34	14	0	🦿	0	0	0	×,			Ő
1997	46	35	46	35	0	3	0	Q,	0	<u></u>	0	, , ¢	ř
1998	85	73	85	73	0		0 4	, , (¢, ô	00	-0 ⁷	
1999	364	83	364	83	0 🌾	, @	° 0 炎	· "	20	ð	°∼V	<i>\$</i> -	
2000	391	87	391	87	0 0		ø	Q ,	~ ⁰⁰	<i>~</i>	<u>گ</u> 0 ع	。	
2001	13	12	13	12	Ó	æ.	ØÕ.	Q 4	0	, 0		-0 [°]	
2002	11	9	11	9	$\mathcal{A} 0$	× ~	ý 0 Č	4	r QÕ	2 Q Q		\$ 7 -	
2003	257	77	192	71	40%	13	251		ð.	<i>Ŭ</i>	\$0 •	D'	
2004	144	78	108	60 ⁰ '	25		×1 4	5 ¢		× \$	00		
2005	66	47	45	\$75 }	ي 12	8	> 9 8	5,0		ê	૾ૹ૾		
2006	654	382	548	©352∞	^y 75 ^{'0}	27	20		A	8-1 g	∛ 1	1	
2007	859	453	740 ⁶ / ³	420	ð	28	4 6			1	0		
2008	1366	620	<u>1</u> 95	\$73	A13	54	52	25		4 ⁹	0		
2009	1305	672	1140	596	<u>ໍ</u> 105	65V	. Ø [%]	¢35	8	55	0		
2010	1269	666	1069	5 7 9	129	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	£60	041	× 11 🛴	⊁້8	0		
2011	1258	6	14,01	<u>څ</u> ه ک	\$ ⁸ 8	~60 <u>~</u>	D [®] 59, O	40	10	7	0		
2012	1306	678 🚕	\Y137 ⊀	612	79	65	59 © 735	\$5	A 5	13	2	2	
2013	1204	650	103@	5@ [°]	\$¢09	83	۵۶5	\$ [°] 41	16	12	0		1
2014	1322	634	1122	\$ 545	م م 111 م	¢דֿ 78 מ	70	5 🕬	19	11	0		
2015	3 54	676	ۍ1330 <u>م</u>	588	133	7.8		~55	6	4	0		
2016 🏼	≶°1344	648	112	562°	1Q1	<u>}</u> 81	72	≫ 48	3	3	1	1	
2017	1043	A	891	4 74	≫96 a	59 °	₹ 42	35	7	5	0		
Total	15910	906	3736	\$ 8 77	1320	262	747	151	103	27	4	4	

The sum of the number of Sites in each class does noncessarily match the total number of sites in each year. This is because one site may have been sampled everal times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one esidue class. Similarly, the sum of the number of sites in each residue class and each year will not old up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

Note: For the period to 2005 data for BAM only exist for the Wallonia region. From 2006 onwards BAM data are for Wallonia and Prenders.

The M-01 RAM residue time series data are further assessed by discriminating them against the occurrence of potatoes, the main FLC target crop. For this, annual residue data were processed in GIS to correlate there to land use data.

All M 01 B M detections $\geq 1 \mu g/L$ occur in potato cropping areas, although this is due to the fact that most of the and in Belgum has some potato crops in its rotation. In the monitoring period there were 107 M-0 BAM detections $\geq 1 \mu g/L$ of which 104 (97%) occurred from 2008 onwards, after the authorisation of FLC. The number of M-01 BAM detections $\geq 1 \mu g/L$ increases up to 2014, when there were 19 detections in this class. It decreased again in 2015-2017 with only 4-7 detections in each year.



The number of M-01 BAM detections $\geq 1 \ \mu g/L$ are listed in Table 7.5-23, categorised per year and subdivided in further concentration classes. By far most detections (n=80) fall into a concentration range of 1-3 µg/L and a further 19 detection were between 3-6 µg/L. This demonstrates that most of the higher BAM concentrations in potato areas are still well below the 10 µg/L GW concentration threshold

		1					0	~		S a	5
Fable	7.5-23:	M-01 E	BAM con	centratio	ns ≥1.0 μ	g/L		S S	Ą		
	≥1.0	μg/L	$1.0 \le x <$	3.0 μg/L	$3.0 \le x <$	6.0 μg/L	$6.0 \le x <$	10.0 µg/L	≥ 10.0	μg/Ĵ	à
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. MC	Rog. of analyses	No. of	No. of Carl	Sites	
1995	0		0		0			Q.		4	
1996	0		0			。 。	<u>o</u>	@ >			
1997	0		0	(V S	0 %	×	
1998	0		0	1	₿ ^C		$0^{\circ} 0^{\circ}$	'0	Õ ⁹ 0 (ç, K,	
1999	0		0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S S	× OF	<u> </u>	0 🖉	Ś	
2000	0		0	<u><u></u></u>	$\gg 0$		jõð 🖌	<u> 7 </u>	L.	ð	
2001	0		0	°~- ×∕	<u>,0</u>	<u>S</u>	$\tilde{\mathcal{O}} = 0$	<u> </u>	Č ⁰		
2002	0		0 Q	/ ·0	à ^Ó à	, _S	<u> </u>	<u>ð č</u>			
2003	0		<u>@</u>	<u></u>	0°0 S		<i>0</i> ⁰	<u> </u>	<u></u>		
2004	0		Ĩ,	· • · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0		Q ^V Q Q		Õ0		
2005	0				<u>Č</u> Õ	Ø		<u>}-</u>	\$ 0		
2006	2	1 🔊	<u>k</u>		\$ ⁷ 0	-\$		<u>) S</u>	1	1	
2007	1	1×	Â ^Y	β ₁ C	ġŶ.	<u>`</u> ~- (0 &		0		
2008	6	Å,	4		- Î - Î	ĵ° 1 _€	l	×1	0		
2009	8	چې 5 ر	47	<u> </u>	× 4 ×	J.	ê ^y o ~	ş	0		
2010	11_0			× 8,0°	<u> </u>	() 43	§ 1 ♥	1	0		
2011	10	Ĩ	لى 10 ھ	⁷ ۳		Ş O	s de la companya de l		0		
2012	× 19	14 🔊	16	ja se	° 3	, e	~~2	2	2	2	
2013	16	<u>,1</u> 2	<u></u>	¹⁰ 10		≪2 ू	₽́0		0		
2014	19		Ç″ 14 💭	、Φ ^ν	<u>k</u> 5 %	y 4 🔊	0		0		
2015	6	<u> 4 A</u>	5	×4 ×		<u></u>	0		0		
2016	4	<u></u> 67	J. E.			\$-	0		1	1	
2017	ŶŶ	Ğ,		Å	<u>6</u> 73 (y 2	0		0		
Total	197	27	80	23 🏊	1965	11	4	4	4	4	

Table 7.5- 23:	M-01	BAM	concentrations $\geq 1.0 \ \mu g/L$
1 abic 7.5- 25.	141-01	DANI	$concentrations \ge 1.0 \ \mu g/L$

Note: The stim of sites may not add up to the total number of sites over all monitoring years. The reason for this is that detections

Belgium - Spatial assessment of M-01 BAM residues pre and post FLC registration

The geographical distribution of M-01 BAM residue data was assessed in relation to the time period pre and post FLC authorisation. The M-01 BAM residue data up to the end of 2007 and the data for 2008-2017 were plotted in relation to the main potatoes cropping areas. This assessment is provided here for completeness but has significant limitations which make a meaningful interpretation difficult:

- 1- There are fewer M-01 BAM data for the monitoring period to the end 2007, representing only 18% of all M-01 BAM analyses;
- 2- M-01 BAM monitoring in Flanders only started in 2006, so the data for this region is strongly underrepresented in a spatial assessment to the end of 2007 (period pre FLC authorisation).
- 3- DCB was authorised to 2010 and DCB containing products will have probably been used until 2011 (1 year to use up old stocks). Therefore, there will be a temporal overlap of 4 years when DCB and FLC containing products were authorised for usage. In addition, there will be a proportion of M-01 BAM residues in the period post 2010 which are fixely attributable to historic DCB usage.

For the period before 2007 there are only few M-01 BAM detections > 0.1 µg/L. These detection are predominantly distributed in the central and north-western part of Belgium, in areas that are typical for potato cropping. The few detections > 0.1 µg/L and the single detection ≥ 10 µg/L are also becated in these typical potato regions. There are no M-01 BAM detections in the central northern part of Belgium, but this is attributed to the circumstance that in this time period there was only limited monitoring in this area.

In the period post 2008 there are significantly more M-01 BAM detections $\geq 0.1 \ \mu g/L$ but also $\geq 1 \ \mu g/L$. This is unsurprising given the significantly higher data density for this period. Monitoring mainly focused on the central and western parts of Belgium, which are also the main agricultural areas of Belgium. It is therefore to be expected that M-00 BAM data show some correlation to the potato cropping areas. There are no clear clusters of M-01 BAM residues, non is there a distinct correlation of M-01 BAM residues to regions of higher potato cropping density. Most M-01 BAM detections $\geq 1 \ \mu g/L$ seem to occur in the north-western part of Belgium and on the region around Brussels in the central part of Belgium, bu M-01 BAM detections were also observed in these areas in the period prior to the FLC authorisation.

The locations of M-01 BAM detection in relation to the FIC usage indicates that there is no conclusive correlation between M01 BAM detections $\geq 1 \ \mu gQ$ and the potato area that was treated with FLC. In the northwest of Betgrum there are several M-01 BAM detections in this residue class that correspond to higher FLC usage but there are also several M-01 BAM detections in the area around Brussels where the FLC usage was lower. The FLC usage is high in the southern central region of Belgium that borders to France, but there is only one M-01 BAM detection $\geq 1 \ \mu g/L$ in this region.

It must be concluded that the spatial assessment of M of BAM detections in relation to the authorisation timing of FLC is inconclusive and yields no reliable information as to whether M-01 BAM detections are related FLC usage in potato cropping areas or are related to historic DCB applications. The reasons for this are the uneven distribution of the available data across the monitoring period, the temporal overlap of FLC and DCB authorisation, and the low resolution of the land use and FLC usage data.

Netherlands

Netherlands - Temporal assessment of residue data

The number of residue analyses for each monitoring year are categorised according to residue concentration classes in Table 7.5- 24 to Table 7.5- 26 for FLC, DCB, and M-01 BAM respectively. These tables also include the number of sites that fall into each residue concentration class.

For FLC the rate of detections >LOQ is in the order of 0.2%, corresponding to only one detection above the LOQ. The number of detections is too small to derive a statistically methingful population to assess whether there may be potential trends in the detection frequency over time.

	by res	sidue classes		A	Q,	ø° á	5 4	U L
	Т	otal	< L	00	0.025 ≤ x	≲ 9.1 μg/L	$0,1 \le x \le$	Р.0 µg/L
Year	No. of analyses	No. of sites	No. of adalyses	Sites So	کرکر کون. of کر anabyses	No. A	No.of analyses	WNO. OF
2011	95	19	Q 95 4	× ¢¢,		25	Ø 069	O
2012	190	157	ر 1907	°≫¥57 ≪		2 2: 22:		<u> </u>
2013	34	8		\$ \$	St 1		Č 0 ×	
2014	1	1	× 1			<u> </u>	\$ 0%	
2015	0	<u>s</u>	<u>30</u> 0	L a.	0 <u></u>	× Ø	0	
2016	178	ر ۱69 ⁰	LEFT &	× 169	<u>_</u> ∿1 &			
Total	498	206	ن 497 ن	~2 6 6	Ő 1 K	Ϋ́, (6 0	

Table 7.5- 24:	Number of residue	detections and sites fo	r FLC jøthe N	Vetherlands	categorised
	by residue classes	4	Q [×] ~ °		,

The sum of the number of sites in each class does not necessarily match the total number of sites in each year. This is because one site may have been sumpled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations of this class over more than one year.

For DCB there were 150 detections above the LOG corresponding to 1.8% of all samples analysed for DCB. This is noticeably higher than for other countries that are assessed as part of this report. The detections occurred across the entire monitoring period but the highest detection rate of 7.7% (n=51) was observed in 2015, 7 years after the authorisation for DCB use expired. This clearly shows that there are residual soil residues of DCB which continue to leach even several years after the withdrawal of its authorisation.

For BAM there are more detections >EOQ which enables a more detailed assessment of detection rates and concentration classes over time. A summary of the residue data for each monitoring year is provided in Table 7.5- 26. M-01 BAM detection rates in the 1990s were very high up to 75%. But this is considered an artefact as the number of M-01 BAM analyses was below 100 in each year and in several years there were even less than 10 samples malysed. There are more data available for the monitoring period 2000-2016 but nevertheless M-01 BAM detection rates are still very variable and in the order of 10-40%. In this period the highest detection rates occurred up to 2004, when M-01 BAM was found in concentrations >LOQ in about 40% of the samples analysed. The detection rates following the expiry of the DCB usage authorisation in 2008 were 14-20%. These M-01 BAM detection rates are higher than for most other countries that were considered in this report and more comparable to those reported from Denmark. Also, the higher concentration classes do not show a continuous decline in detection rates, and M-00 BAM detections >1µg/L are still detected at rates of 1-3% with no apparent trend in the period 2010-2016.

Table 7.5- 25:	Number of residue detections and sites for DCB in the Netherlands categorised
	by residue classes

			-	0.0		0.4 7	0.4	· · · · · · · · · · · · · · · · · · ·	1 🔊
	То	tal	< L	UQ	$0.025 \le x$	< 0.1 µg/L	$0.1 \leq x <$	1.0 μg/Ψ	
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of Usites	م No. of analyses	ANO. OF CAR	6 ⁷
1989	4	1	4	1	õ 0	<u> </u>	Q [°] Y	, ² /- , ² /-	Į
1990	0		0	🐔	7 0	<i></i>	Ô a	° °	L.C.
1991	4	1	4	1 🎣	0	0 [%]			
1992	8	4	8	43	0 Q		ζ 0 _L [*]	9, 0	
1993	21	8	21	Q8	Ø	° '	′\ @ ″	\$ \$	
1994	44	15	44	ال 15 ¢	NO X		~° 0 ~~	4.J	
1995	78	32	77 (≤ 15 ∞° 3 3ℓ		S.	8 0.L	A , °	
1996	24	8	24	~ % ~		A S	P .	2	
1997	16	7	16						
1998	81	61	\$1 K	r <u>f</u> t		<u> </u>			
1999	187	85	چ 160 T	75 ~	275	ð ⁷ 12 d		S	
2000	274	146	× 2,60	â 144 Ô	275 054	20			
2001	195	910	°≫¥68	810	L 27 S	12	<u> </u>		
2002	212	116	🖕 210 C	A14 a	, 2 [°] ≶	× 2 . Q	0		
2003	264	°∼¶25	2 <i>6</i> 2	840 114 3 118 4 118 4	~ [№] «	j hç			
2004	175 💡	65	ja 75 Č		0 × 0 ×	<u> </u>) 0		
2005	238 🔊	۲ 9 <u>4</u>	235	\$ 94 \$	20	0 1 4	1	1	
2006	1206	836 5) 1 20 2 ,	8340		, 20	1	1	
2007	728	491	& 727 <i>\</i>		~~ 1 <u>~</u>	Ň	0		
2008	Q415 Q	293	° 415	255		Ø	0		
2009 ू	¢ 312	123	341	A 123 V		<u>۲</u>	1	1	
2010	629	O 518	£627	548		1	1	1	
2011	227	124	ر <u>227</u>	_^>¥24 🤬	Â7		0		
2012	1658	1371	1,658	~13710 [*]	ک 0		0		
2013	137	Q 100S	Q137 ×	1000	S 0		0		
2014	~~ ⁸⁴ °	Å Å	× 81~	×46	2	2	1	1	
2015	660	0563	609	6 ³ 5180	47	46	4	1	
2016	″ 357 👡	\$ 31£	\$54	315	1	1	2	1	
Total	8238	2515	8087	> 2501	140	68	11	3	

The sum of the number of sites in each class doe not necessarily match the total number of sites in each year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fail into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will for add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in the class over more than one year.

For the Netherlands a further spatial assessment, in which M-01 BAM residues are correlated to individual areas of potato crop land use, as done for the other countries, would not yield further results as potato cropping is prominent across most of the Netherlands. In addition, co-ordinates are not available for all analyses. There are also no regional FLC sales data available which could support a further analysis.

In the absence of a further data analysis the reason for the M-01 BAM detections in recent years cannot

unequivocally be resolved. However, the high number of DCB detections made in the period following the expiry of the DCB usage authorisation snows that residual son residues are present and it is considered likely that many of the observed M-01 BAM residues are related to historic DCB applications, similar to the observations made in Denmark and in the other target MSs. **Table 7.5- 26: Number of residue detections and sites for M-01 BAM in the Netherland** the expiry of the DCB usage authorisation shows that residual soil residues are present and it is

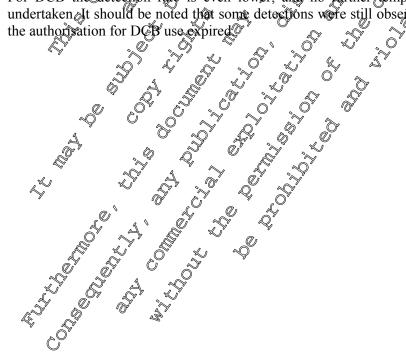
Table 7.5- 26:	Number of residue detections and sites for M-01	BAM in the Netherland	ڰ <i>ٚ</i>
	categorised by residue classes	Ĩ.	¥

		-	scu by rea		r		1				<u>S</u>		Ô
	Tot	al	< L(-	0.025 ≤		0.1 ≤ y	x < 1.0	(Ĵ.0 ≤ x	< 10.0 _×	0 ≥1 ~~	Ø.0 K	Ĭ
			μg/		μg	;/L ((βμg		μg			g/L v	, C
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	Ne. af	No. of Analyses	NO. OF	No. of Analyses	No. of Co	A No. of U.S.	No. of 2	
1989	4	1	4	1	Q,	6)° */		×,	x,O	<u>ò</u>	°≫0	Ŵ	
1990	0		0		9	\$ 		ð 8	00) K	0 4	0	
1991	4	1	4	1 🛒	> 0 🗞	~	Q R		ØÇ,			Ű	
1992	0		0	\$	~Q~	ð	, P	é.	°≫0	Ž	K) 0	S	
1993	8	2	7	Ą	K.M			V (Ŭ Ô	0	l	
1994	16	4	11	s 3 ℓ	Ø″1 [°] ^	× 1 ×	4	ð	B		×0 ³		
1995	28	4	11	× 20	<i>1</i> 2 2	Q.	00	4	~ ⁰	0 ,	\gg_0		
1996	12	2	ÂÇ.	°≫¥	2	<i>©</i> 1	Ç7	Ş• 3 _{(∞}	0 Č	» %	0		
1997	2	1	Ž (🖌 1 🎺) 0 <u>{</u>	· @	0 🖑		<u>, 0</u>	6	0		
1998	85	64 🕺	§ 60	4%)	S	<i>A</i>	14	≪JŽ	~\$ ³	\$\$ ⊘	0		
1999	179	80 _K	127	<i>0</i> 6 4	031	§16	0 [°] 9 %	7	<u>2</u>	2	0		
2000	302	152	233 🦂	×130 @	33	▶ 19\$	34	20	Zy"	2	0		
2001	261	\$ 1 03	Å 151 €	7,25	,65	.∼Q~	đ	£25	@4	4	0		
2002	266	ر 119	170/	<u>%</u> 96	25	ي 18 _	²⁰ 69 (y 35 🛴	2	2	0		
2003	2100	26	× \$25	© ₆₂ %	40	330	43	20	2	2	0		
2004	<u></u> 1651	51	99, 9	40	20	ſQ [×]	A30	20	2	2	0		
2005	231	90 Ĉ	197	<i>2</i> 5	11	\$711 ý	\$17 C	≥ 16	6	5	0		
2006	♥ 1142	485	1x037 ⊻	ل 455 م	19 🥎	14	767	43	10	9	0		
2007	564	3346	¹ 422	286	40	۵ ^۷	≈79	54	20	16	1	1	
2008	378	205Q	29	Ø77	≥~√28	\$23 g	Ş ⁹ 44	32	13	8	2	1	
2009	272	Ø	236	× 86 ∧	9 🥎		20	14	8	5	0		
2010	4 16	259	© 33 kQ'	216	25	QĂ	52	44	5	5	1	1	
2011	224	1120	1.93	\$ 9	<u></u>	×10	14	12	4	4	0		
2012	1300	604	A133	> 542		48	87	65	17	13	0		
2013	189	137 (\$ 161 _. Y	11%	ð	8	15	13	5	4	0		
2014	105 @	47	89	3 9	Q ⁴ 5	5	9	7	2	2	0		
2015	820	495	\$ 690 *	9 [°] 421	^{\$} 77	63	48	46	7	7	0		
2016	305	238	گ 241 €	198	20	20	32	29	12	9	0		
Total .	~7487 ~	້ 1493	6038	1390	565	242	754	222	126	53	4	3	

The sum of the number of sites in each year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class. Similarly, the sum of the number of sites in each residue class and och year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

Netherlands - Spatial assessment of M-01 BAM residues pre and post FLC registration

The geographical distribution of M-01 BAM residue data was assessed in relation to the time period pre and post FLC authorisation. The M-01 BAM residue data up to the end of 2006 and the data for 2007-2016 were plotted. Ô


This has large limitations given that DCB was registered for use until 2008 and eaching of MOI BAM residues due to historical DCB application will have occurred in the later monitoring period. In addition, not all M-01 BAM detections could be displayed, as co-ordinates are not available for al data. Nevertheless, in the northern and central part of the Netherlands, most of the residue concentrations >0 F $\mu g/L$ and in particular >1 $\mu g/L$ that are reported for the period post 2007, occur in areas where there were previous (pre 2007) M-01 BAM detections. The cluster in central Netherland seems to correlate to the military airbase Soesterberg. There are many detections in the regions with the potential $\sqrt{5}$ It can therefore be concluded that most of these detections are likely related to historic DCB applications.

The picture is different for the southern part of the country. There are several Mal BAN detections $>1\mu g/L$ in the period post 2007 which were not observed previously. The reason for this is that intensive M-01 BAM monitoring in this region only started in 2007 and it is unknown whether similar detections would have already occurred prior to the FDC authorisation in 2007.

Germany Germany - Temporal assessment of residue data The number of residue analyses for each, monitoring year are categorised according to residue to the second secon concentration classes in Table 7.5-48 Table 7.5-29 for F&C, DCB, and M-01 BAM respectively. These tables also include the number of sites that fall into each residue concentration class.

For FLC the rate of detections LOQAs in the order of 0.3% for the monitoring years 2011-2017. The number of detections is too small to derive a statistically meaningful population to assess whether there may be potential trends in the detection frequency over time. It is however worth noting that 5 of the 7 FLC detections 2000 were observed in 2017, These detections were made at 4 different sites.

For DCB the detection rate is even lower, and no further temporal assessment of detection was undertaken It should be noted that some detections wore still observed in the year 2008, 4 years after

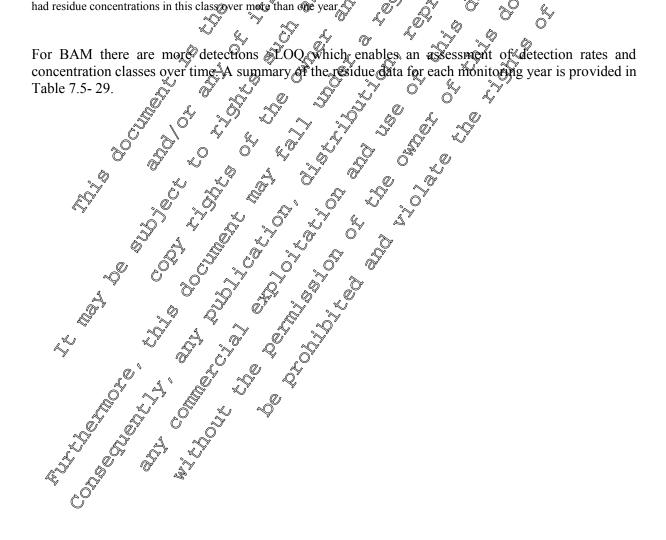


Table 7.5- 27:	Number of residue detections and sites for FLC in Germany categorised by
	residue classes

	To	otal	< L μg	OQ g/L	Q $0.025 \le x < 0.1$		0.1 ≤ x < 1.0 µg/L →
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	ہ No. of analyses	No. of	No. of Analyses
2011	137	136	137	136 🕷		Ø	
2012	70	69	70	69 "C	0	6°	
2013	243	242	242	244	0	<u>_</u>	
2014	222	222	222	202	0,	<u> </u>	0 0 0
2015	331	331	330	« <u>3</u> 30 °°	Ĵ.		
2016	312	307	312 (D 301₽		A Contraction of the second se	
2017	837	726	832	<u></u> 7024	Ø 5 Q	4 4 Q	Ø 8 0 -
Total	2152	978	2145	→ 977 →			

The sum of the number of sites in each class does not necessarily match the total number of sites in each year. This Obecause one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than the residue class. Similarly, the son of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. Similarly, the son of the number of sites in each residue had residue concentrations in this classover meter than one year of the son of the so

Table 7.5- 28:	Number of residue detections and sites for DCB in Germany categorised by
	residue classes

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		To	tal	< L	OQ	0.025 ≤	x < 0.1	$0.1 \leq x <$	1.0 µg	ð
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						μg	/L		, N	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of	م No. of می	sites	ţ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1990	105	101	105	101	Ö 0	Å	ø	S S	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1991	337	335	337	335	0	Q	ØØ "Â	<u> - x</u>	Å
1993 899 873 899 873 0 2 0 1 1 1 1 <	1992	625	617	623	615	2 🔍	2	$\sim 0 $. 0 - 2	
19951097102710971027 007	1993	899	873	899	873,	0 🖓	<u>6</u> -6		⁰ گ	ŗ
19951097102710971027 007	1994	1033	1010	1032	4010	1 ≻∕	. 0 1 3	r NQ	ĝ <u></u> 0	
1996867816867816867816 2° 0° 2° 0° 4° 1997919769914767 2°	1995	1097	1027	1097	« 1027 ₆ »	JØ ×	Ĵ zĵ	20°0 %	s a construction of the second	
199791976991476722223221998646601644 599 222051999758715788715 509 220520007486680002001776691900200266559666859600200373960673960600200462554262554200200569696268655600200674262774262700200812221150122811492202010 77 72000020119009369909360020139689389689380020147116917115910020139689389689380020147116917115910020157006747006	1996	867	816	867 (D 81.		×¢	0 O	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1997	919	769	914 🕰		Ø 2 Q	ື	n v	Q" 2 🎊	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1998	646	601	644		ð,	20°	×0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1999	758	715	7 5/8 (j	°∕71,5		í "L		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	748	668	_07/48 🖄	668	IN Q @		ř 🔐		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2001			D″ //0 -	691	<u></u>		ĴÕ.	y ~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2002	665			596					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2003	739	6060		606		<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		625		<i>y</i> <u>a</u> =	\$42 n	r 0%	× ¢			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						U 🖌	,v ≁ (>`	ي س 0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0 %	((
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2007		63			$> 00^{\circ}$	× ×	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1222				<u></u>	2 3	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	<u> ~</u>	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						6	<i>©</i>	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×	*			0, 105		<u></u>			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(<u>کَ 938</u>]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Č (P)				
2017 699 692 699 0^{7} 699 0^{7} 692 0^{7} 0 0						Ũ				1
		,	ڪ 606					-		1
Total №21562 №60 21550 4858 9 9 3 2						*				1
	Total	<u>~~21562</u> ∪	4960 ^	21550	<u></u>	9	9	3	2]

The sum of the number of sites in each gass does not necessarily match the total number of sites in each year. This is because one site machine been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add the to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

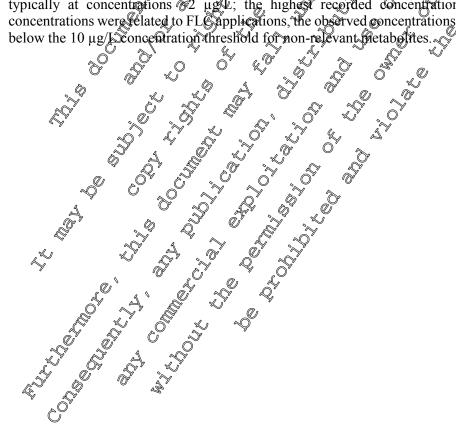
The M-01 BAM detection rate >LOQ has a wide range from 3% to 48% over the monitoring period from 1993-2017, the detection rates were significantly higher across all residue concentration classes in the early monitoring period to about 2002. In this period, detection rates were typically in the order of 17,48%. The significant decrease in detection rates in the early 2000s is probably due to a data bias with smaller sample numbers and data only being available for some federal states. In the period 2003-2006, before the authorisation of FLC detection rates were in the order 5-9%. From 2007 to 2017 the detection rates were relatively stable at about 4-7%. A similar trend is observed in the higher residue concentration classes, particularly for the detections $\geq 1 \mu g/L$. Detection rates in the latter concentration class were in the order of 2-15% in the period pre 2000, whereas they were <0.5% in the subsequent

monitoring period. The total number of detections $>1 \mu g/L$ in any one year has not significantly changed over time, but the number of analyses has increased, resulting in lower detection rates.

Table 7.5- 29: N	Number of residue detections and sites for M-01 BAM in	Germany c	ategorised	
ł	by residue classes	~	S -	O ^y

	b	y residi	ue classes						~	8		» "`	0
	Tot	al	< L(-	0.025 ≤	x < 0.1	$0.1 \le x$	x < 1.0	1.0 SX	× <10.0	∲1	0.0.0	
			μg/	L	μg	/L	μg	/L	μg	/L	_C γμg	/ĽÝ	Ĉo
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	SNo. of Sites	No. of analyses	Sittes	No. of analyses	Oke of sites 🧞 ္တ	Ave. of analyses	No Kof sites	
1993	25	25	25	25	0	(²	0	S S	°0	· 😽	0	\$	ĺ
1994	17	17	12	12	3 🕸	້ 3	20	ېگې مې		~ 1	×\$P	Ċ,	
1995	20	19	12	12		ĝ	L'	л Г	≪3	¢ ² 2	°≫0	2	
1996	47	44	31	30	<u>م</u> 9	ي م		° 4 0	3	2		- S	
1997	369	297	208	202 🗶	74~	5.9	78,	46	- Or	×5	Ð	Ĵ.	
1998	188	176	97	96	<i></i> ³ 7 ⁷	8 6	ر ¥9 .	, 0 ⁴ 4	⁷⁵	Ş 5	$\gtrsim 0$		
1999	119	98	79	8	م م 24 م	چ 24	S 16 O			@	0		
2000	411	314	252	205	71 ³	69	82	40		J.	, XY		
2001	506	395	320	275	89 ⁹	S ²	92	53	°°5 ⊗	0 ³ «	0		
2002	474	318	396	285	C 51	41 ⁴⁰ 41	لم 26 €		1	10	0		
2003	612	427	چ 560	∀ 399 ₀	33	240			à Qua	<u>Ģ</u>	0		
2004	557	391 💈	≫ [®] 519	372	3 8	\$0	Al O	×8 ,	$\sqrt[n]{0}$	Ş	0		
2005	1145	946	1044	\$ 56	054	چ 51 کې	42	/ 39	5	5	0		
2006	826	Ś	789 😤	> 664 C	195	14	14	1P	₩	4	0		
2007	561	٦\$ <u>5</u> 15、(517~	479 [°]	<u>~</u> %2	22	A 9	^م 15 م	Ø 3	3	0		
2008	14870	142	1445	\$ 388	0.10 %	16	22	₹ 21 [©]	4	4	0		
2009	1228	1532	⊀J174	1104	22	22 26	30	Ľ	2	2	0		
2010	×871	817 🛒		759	Ŷ6		<i>©</i> 82 "	Ø31	3	3	0		
2011 🤞	§1498	141	165	1336	<u>40</u>	5∛40 ≼	¥ 42 0	² 39	1	1	0		
2012	2049	1975	£1963	J 18940	37,7	3%6,/	46	45	3	3	0		
2013	2751 (£519 <u>4</u>	260 D	2392	J6	93	64	57	8	8	0		
2014	2459	233	2307	2228	°∕72 ć	S 65	58	54	2	2	0		
2015	2519	2404	2 412	2305	51	535,-	53	51	3	3	0		
2016	29,71	2736	2839	2617	<u>∿</u> 68	_{\$\$} 66	56	50	8	8	0		
2017	\$3152	292	2998	2784	\$ 87 _{~C}	¥ 82	60	56	7	7	0		
TotaK	26862	\$709	, 2 4847 0	⁷ 557 <i>3</i> Û	1017	434	919	251	85	30	0		

Total 26862 5709 24847 5573 100 434 919 251 85 30 0 --The sum of the number of site on each class does not necessarily match the total number of sites in each year. This is because one site may have been sampled several times a particular year, and because the resulting residue concentrations vary within the year, one individual site may fail into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will yot add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in the class over more than one year.



The M-01 BAM residue time series data are further assessed by discriminating them against the occurrence of the main FLC target crops, namely, vines and potatoes. For this, annual residue data were processed in GIS to correlate them to land use data (data in vines from 2015 and for potatoes from 2016).

The number of M-01 BAM detections in the higher concentration class ($\geq 1 \ \mu g/L$) are listed in Table 7.5-30 categorised per year and dominant cropping areas.

In the monitoring period there were 85 M-01 BAM detections $(\ge 1 \ \mu g/L)$ of which 41 occurred prior to the authorisation of FLC in 2007. 51% (n=43) of all detections $\ge 1 \ \mu g/L$ were observed in areas with 'no' (<1%) vines or potato cropping. Of these 43 detections, 84% (n=36) occurred in the period post 2004, following the expiry of the DCB authorisation, clearly showing that M-01 BAM residues are likely to derive from DCB applications long after the expiry of its registration. Adding up, all M-01 BAM detections prior to 2007 and all M-01 BAM detections in the 'no' vine/potato regions for the period 2007-2017 there are 71 detections $\ge 1 \ \mu g/L$ (\$4%) which are most likely felated to historic DCB applications. In the vine cropping areas, a total 60 27 detections $\ge 1 \ \mu g/L$ were made, of which only 1 relates to the period post 2007, following the FLC authorisation in Germany. In the potato regions there were 25 detections $\ge 1 \ \mu g/L$ of which 13 were made post 2007. The data suggest an increase in detection rates in potato areas in recent years. In terms of absolute concentrations 11 of the detections showed concentrations <2 $\mu g/L$, the other 2 detections were at concentrations of 2.9 $\mu g/L$ and 3.7 $\mu g/L$.

In summary, most M-01 BAM detections $\geq K_{\mu}g/L$ (84%) were observed outside the pain FLC target crops areas or occurred prior to the authorisation of FLC. These detections are almost certainly related to DCB usage. These DCB related detections still occurred in 2017, 15 years after the expire of the DCB authorisation. Given that DCB was also extensively used in vines by is expected that the legacy of this usage is also observed in vine cultivation areas. In vine cropping areas there is a strong declining trend in detections $\geq 1 \mu g/L$ and there was only one detection in this class in the period following the FLC registration. It is therefore fikely that this detection also derives from history DCB applications and not from FLC. In potato areas some detections $\geq \mu g/L$, were made in recent years these detections were typically at concentrations $\geq 2 \mu g/L$; the highest recorded concentration would still be significantly below the 10 $\mu g/L$ concentration threshold for non-relevant pretabilities.

Table 7.5- 30: Number of residue detections and sites ≥1.0 µg/L for M-01 BAM in Germany categorised by cropping density

	8	of iscu by c	11 8	J				0	
				Detections	s≥1.0 μg/L			Q°.	Ĉ
	Το	otal		l potatoes area <1%	Vines crop >1		Potato croj	pping area	L.Y
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	√¶© No. of analyses	Nerof Sites	No. of addyses	No. 02 Zites	ý
1993	0	0	0	0 💉	0	$\bigcirc^{\vee} 0$	$\sim 0 $	Ĵ	0
1994	0	0	0	0-	0 🖓		§ 0.Ç	C 0 L	
1995	3	2	0		3	2			
1996	3	2	0	& 0 Q		V 20		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1997	9	5	2		Č 7* ď			2 °	
1998	5	5	1 💭		¥ 4*	A 4 8	2*	\$* 2, 0 '	
1999	0	0	<u>e</u>			ŶŶ	$\sqrt[\infty]{0}$	A BY	
2000	6	3	A K		~~ ⁴ * ~~		2*0	1	
2001	5	3		Ŷ	3*	<u>ð 2 ð </u>		J 1	
2002	1	1	× QQ					1	
2003	0	0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×0	0'0'		0		0	
2004	0	0	& 0 °	<u> </u>			۵ ک	0	
2005	5	~~~5 	<u> </u>	\$ 3 <i>f</i>				1	
2006	4	L 4 S	<u></u> @3 () de		0 %) 1	1	
2007	3	3'0'		- 5 ⁷³ - 5		0 0 4	0	0	
2008	4	<u></u>	4 <u>,</u> 4 <u>, </u>	<u> </u>			0	0	
2009			<u>&</u> 2			×ð	0	0	
2010	03	× 20		<u>\$2</u>	P 6	<i>©</i> 1	0	0	
2011	<u></u>	× 1 ×		ST 1 O		y 0	0	0	
2012	S 3	3	\$3 	8		0	0	0	
2013		Ĵ ^Y	× 50°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>A</u>	0	3	2	
2014	2,57	<u> </u>	, dy		گ 0	0	1	1	
2015	3	Q 3 5		~ 4 ^G	S 0	0	2	2	
2016	~~~~~ Č	<u> </u>	ž 4 ×	2 ³ 4 2	0	0	4	4	
2017	4 7		ĬĄ,	\$¥ 4_0	0	0	3	3	
Total 🦼	85 🤋	30 Q	43	12	27*	7	25*	14	

Note: The sum of sites may not add up to the total number of sites over all monitoring years. The reason for this is that detections at particular sites may have been observed in more than one year.

*some detections are double counted cothey fall in area which have vine and potato usage. For this reason, the total number of analyses do not and up to the sum of detections made in the individual cropping areas

Germany Spatia assessment of M-01 BAM residues pre and post FLC registration

The geographical distribution of M-01 BAM residue data was assessed in relation to the time period pre and post FLC authorisation. The M-01 BAM residue data up to the end of 2006 and the data for 2007-2017 were plotted in relation to the main vines and potatoes cropping areas. Any M-01 BAM detections to the one of 2006 can unambiguously be attributed to DCB usage. For the data from 2007-2017 this is less obvious. Although only FLC was authorised in this period, the time dependent assessment in the previous chapter has clearly shown that a significant proportion of M-01 BAM residues in the period post 2006 are likely attributable to historic DCB usage.

For the period prior to the FLC authorisation there is a cluster of detection in the southwest of Germany in the federal states Baden-Wuerttemberg, Bavaria and Hesse, with only a few detections in the remainder of the country. This is due to the data availability as about ³/₄ of the available data derive from these 3 federal states.

The spatial assessment of detections shows no apparent correlation to the main vine croppine areas, particularly for the later monitoring period from 2007-2017. This indicates that the M01 BAM detections are not systematically related to FLC usage in vine areas.

A similar assessment of detections in relation to potato cropping areas suggests, that detections have and increased spatial density in the potato cropping areas in the Kleeve region along the Dutch border in central Germany, and in Lower Saxony in central northern Germany, bouth of Hamburg. Whether these areas already showed M-01 BAM detections prior to the FLC authorisation cannot be determined as there are no data for the earlier period. Apart from these 2 regions, there is no obvious correlation between BAM detections and the main potato cropping areas.

Spatial comparison of M-01 BAM detections to FLC product use show the product use data has a relatively low resolution which limits the conclusions that can be draw from this assessment. It is however worth noting that in the area of highest FLC usage in xines, there are fully very few A-01 BAM ive currios oduer use SAM detectio. product usage. detections. Similarly, there is a relatively high FLC usage in Bavaria for both, vines and potatoes with M-01 BAM detections mainly occurring in the low conceptition classes. The all region where there may be a correlation between product usage. M-01 BAM detections mainly occurring in the low concentration classes. The only region where there may be a correlation between product use and detections is in Lower Saxony, south of Hamburg, where

Austria

Austria - Temporal assessment of residue data

The number of residue analyses for each monitoring year are categorised according to residue concentration classes in Table 7.5- 31 and Table 7.5- 32 for DCB and M-01 BAM respectively. These tables also include the number of sites that fall into each residue concentration class.

Table 7.5- 31:	Number of residue detections a classes	and sites for DCB in	Austria c	ategorised by residue
	classes	۵.	×,×	

	classes	•			Ĉ5	-Sy	Ň	N G	,
	То	tal	< L	νų	$0.025 \leq x$	< .0.1 μg/L	0,9 ≤ x ≪	Ο.0 μgų 0.Q	Å
Year	No. of analyses	No. of sites	No. of analyses	Nor Sites	UNO. of analyses	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Actor Notof analyses Z A	No. of Q	,0 ,7
1998	3923	2005	3923 (D 2005			$\mathcal{O}^{r} = \mathcal{O}_{\mathcal{K}}$	A 0	
1999	4164	2004	4164	s_ 20 04 ~		<u> </u>	Ø,	¢ 0	
2000	272	168	279 Q54	× 168					
2001	354	214	Q54 4	214			05		
2002	899	389	L 899 V	` ~3 89 *		8° 8°		<u> </u>	
2003	807	00.	806	Ø 334 Ø			\bigcirc 1 $^{\diamond}$	1	
2004	7522	1981	\$7,520	1980		(2 ⁵ / ₂	1	
2005	509	169	لارچ 509 ¢€	J69	, 05	°~~~~ Q	0		
2006	459	م 172 °	459	↓ 172	Q ~ ~				
2007	11		@11 Ő	× ~ ,		() 0		
2008	10	Ĩ Î	10 O	<u>\$</u> 4 <u></u>	v″ 0 [⊖]	o ⁷ 47	0		
2009	9 5 149	×3 .	Ď. Ž ^e r	3.0		-0	0		
2010	149	149%	د 149 ۾	149		<u>\$</u>	0		
2011	€155 ¢	JØ	0 155		r gir	@	0		
2012	وم 153 م	155	153	× 153 %		У <u></u>	0		
2013	5432	C 1970 -	429	19070		1	2	1	
2014	586 🔊	520 ·	586 \$	ٍ 20 ¢	v 9		0		
2015	34	34	34	× 520 × 34 0	0		0		
2016	19	17	0 ¹⁷ ×	K.	\$ ⁷ 0		0		
2017	~ ⁰ 17 č ^C		× 12	×97			0		
2018	16	016	10		0		0		
Total	^ø 25498 🚬	\$ 252£	£ 5492	2522	1	1	5	2	

The sum of the number of sites in each class does not necessarily match the total number of sites in each year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one oscidue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

For DCB he rate of detection LOQ is in the order of 0.02% for the monitoring years 1998-2018. The number of detections is too small to derive a statistically meaningful population to assess whether there may be potential wends in the detection frequency over time. Due to the small number of DCB detections no further time dependent assessment was performed for the analyte.

For M⁶ BAM detection rates \geq LOQ typically range from 1-6% with the exception for the year 2009 when the detection rate was 33%. This is due to the relatively small number of analyses in this year. Detection rates in the concentration class $0.1 < x < 1.0 \ \mu g/L$ peaked in 2006 when they were just over

.1

2%. In the subsequent monitoring period, the detection rates in this class were in the order of 0.5-1%. The detection rate in the concentration class $1.0 < x < 10 \mu g/L$ was in the order of 0.2% in the early 2000s, which decreased in subsequent years, with the exception of 2009, where due to the small number of analyses the detection rate was 33%. In the period post 2010, after the expiry of DCB authorismon, the detection rate was mostly <0.1% and the detections related to only very few sites. Over the monitoring period there were only 2 M-01 BAM detections $\geq 10 \,\mu$ g/L which occurred in 2012 and 2003, both at one site. A summary of the residue data for each monitoring year is provided in Table 7.5, 32. S

		by res	idue class	ses		A A A A A A A A A A A A A A A A A A A	3	Û	1	Č,			
	Tot	al	< L0	Q	0.025≤ μg	x % 9.1	0.1 ≤ x μg	A	. 110	*10.0 A	2 2 2 10,0	Âġ,L	×
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	N© of analyses	Nocod sites	Sec.	Û_Î	vses 2	No. 80	A No. of C	2 No. of 2	
2004	2016	1227	1956	1202	34	26.	ŹĠŗ	ţ)	, Q	2	ð		
2005	510	169	503	186	Ň	×92	°~~~~4	,Q1 ;	©″1	1	× 0 0)	
2006	2528	968	2381	9 41	89 🧙	ه 63 گ	54 0	355	45	30	0¢2		
2007	1430	735	1388 🖓	717	30	28-	Ň	ð	Ĩ	Ĩ	~ 0		
2008	743	691	71	<u>6</u> 73	ФŤ	A 5	08	Q [¥] 7	Õ1 🇞	₽ ₽1 &	0		
2009	3	3		1	\$ 0 L		× 1 2		16	10	0		
2010	2353	1931	¢2294 ()	1909	450 396	23	13	~9	Å.	J.	0		
2011	2526	1941	> 2463	1916	Å,	23 21	_م 16	10	V 1 🖁	1	0		
2012	2337	1922	2379	×1902	46	21	100	8% 19	ĴŶŸ	1	1	1	
2013	5487	19 70	£ 5325 👸	1930	125	68	_ 83	19	3	2	1	1	
2014	2814	S1952	2732	1919	3 7	°∿46	\$¥22 _	¢ ⁷ 14 ٍペ	3	2	0		
2015	2361O	199	2296	°¥919 _{&}	Ø 51 🔍	ĵ [≫] 39∂-	13	13~	1	1	0		
2016	2628	1936	×2559	1910	0 51 K	35	10	No.	2	2	0		
2017	` \$541	1938	2409	19916	28	~20 ∝	©13 ∧	9 9	1	1	0		
2018 🐇	2503	1986	·2 47 0	1899 <u>(</u>	× 24) [*] 17 [×]	/ 8,0	7	1	1	0		
Total	32780	2318	~ 31863	231	648	158	242	81	25	6	2	1	

Table 7.5- 32:	Number of residue detections by residue classes	and sites for N	/I-01 BAM in	Austria categorised
	by residue classes	<u>G</u>	Ő	

The sum of the number of sites in each class dies not necessarily match to total number of sites in each year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fail into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

The M-01 BAM residue rime series data are further assessed by discriminating them against the occurrence of the main FLC target crops, namely vines and potatoes. For this, annual residue data were processed in GIS to correlate them to land use data.

The number of M OI BASI detections in the higher concentration class ($\geq 1 \mu g/L$) are listed in Table 7.5-33 categorised per rear and dominant cropping areas. There were 27 detections $\geq 1 \ \mu g/L$ in the monitoring period. Admost all of these detections are outside the vine and potato cropping areas. This is in part attributed to the fact that about 80% of the analyses relate to the 'no' vine/potato cropping areas. In the vine cropping areas there was only one M-01 BAM detection $\geq 1 \,\mu g/L$ and this occurred in 2006, prove to the authorisation of FLC. There were no detections $\geq 1 \ \mu g/L$ in potato cropping areas. These data imply that M-01 BAM detections $\geq 1 \ \mu g/L$ are related to historic DCB usage.

There is however, one exception, where M-01 BAM residues $\geq 10 \ \mu g/L$ are related to potato cropping and FLC usage. This site is outside the main potato cropping areas (<1%) but potato growing seems to

be of local importance. The elevated M-01 BAM concentrations at this site were further addressed as part of the desk-based elucidation. It is likely that the detections are related to FLC usage. However, the timing of the first detection (mid of April 2012) very shortly after a first opportunity for a FLC application, together with the rapid decrease of concentrations in the subsequent monitoring period, suggest that M-01 BAM entered the groundwater relatively directly. This may have happened via hydraulic short cuts or via a point source during handling, mixing or loading of spray broth. It is concluded that the elevated M-01 BAM detections at this site are not related to excessive leaching under normal environmental conditions following good agricultural practice.

		Joi is ear Ny	cropping den	Š	, O	, ,	<u>× q</u>	<u></u>
				.0 μg/ΙQ			Ŭ,	
	Tota	ıl	Vines and cropping a	potatoes rea 🔊 %	Vines crop	ping ar ea	Potato cro	pping area
Year	No. of analyses	No. of sites	No.06	Sites 2	lo. of	Voctor Noctof Annes Og	of vses	NR. N.
2004	3	2 🖉		2	$3^{9}0$) do		, 0
2005	1	1		Â.	0,5		Ç Ø	0
2006	4			2		Q 1	©″	0
2007	1	Ø I O					ý 0	0
2008	1	× 1 A	1 4	Û	\circ \circ		> 0	0
2009	1				ð		0	0
2010	1	<u> </u>			0		0	0
2011	L.	$0' 1 \gamma'$		× ×			0	0
2012		<u> </u>	× 20×			~ 0	0	0
2013		≪2 ₍₆₎	1.4	25	00 0	0	0	0
2014	× 3		$\frac{4}{\sqrt{3}}$	Ž ~		0	0	0
2015	1 . 0			0 [°] 1 <i>°</i>		0	0	0
2016	2 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			گ (0	0	0	0
2017	b)			T Ó) 0	0	0	0
2018			0 10 ⁹	\$ 1 \$	0	0	0	0
Total	~ ²⁷ ⁰		36 G		1	1	0	0

Table 7.5- 33:	Number of residue detections and sites ≥1 categorised by cropping density	.0 μg/Lær M-0	1 BAM	in Austr	ri
	categorised by cropping density		Ű	S.	r C

Austria - Spatial assessment of M-QY BASY residues pre and post FLC registration

The geographical distribution of M-01 BAM residue data was assessed in relation to the time period pre and post FLC authorisation. The M-11 BAM residue data up to the end of 2011 (authorisation expiry date plus 1 year to use up of stocks) and the data for 2012-2018 were plotted in relation to the main vines and poratoes coropping areas.

For the period before 2011, $\sqrt{2}$ 01 BAM detections >0.1 µg/L are predominantly distributed in Upper and Lower Austria and in the Burgenland, generally with no obvious correlation to vine and potato cropping. The exception is the Mur valley in the south of Austria, where the detections can be correlated with vine cropping. The few detections >1 µg/L show no obvious correlation to vine or potato cropping areas.

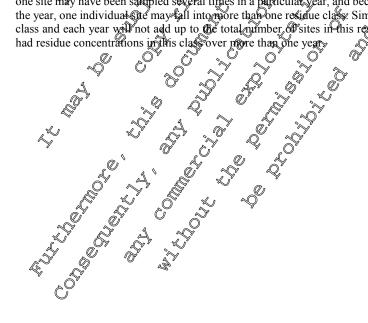
The geographical distribution of M-01 BAM detections in the period post 2012 is comparable to that prior to the FLC authorisation. There is again no obvious pattern, which suggests that clusters of M-01

BAM detections would correlate to intensive vine or potato cropping areas. There is one site with M-01 BAM detections $\geq 10 \ \mu g/L$, located in the northeast of Austria. The detections occurred in 2012 and 2013. The site is located in an area with 'no' vine cropping, but aerial pictures show that at this site potato farming is of local importance.

Italy

Italy - Temporal assessment of residue data

The number of residue analyses for each monitoring sear are categorised according to residue concentration classes in Table 7.5- 34 to Table 7.5- 36 for FLC, DCB, and M-01 BAM respectively.

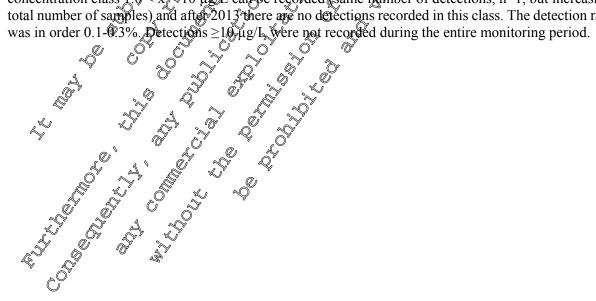

For FLC the rate of detections >LOQ is 1.8% for the monitoring years 2013-2007. Almost all detections were made in 2016.

Due to the small number of FLC and DCB detections, no further temporal assessment was performed for the 2 analytes.

Table 7.5-34: Number of residue detections and sites for FIOC in Italy categorised by residue classes

	classes		, Ôg
	Total 🗸	$2 \sim 100^{\circ} = 0.025 \le x \le 0.1 \ \mu g L = 0.1 \le x \le 0.1 \ \mu s = 0.1 \le x \le 0.1 \ \mu s \le 0.1 \le x \le 0.1 \ \mu s \le 0.1 \le x \le 0.1 \ \mu s \le 0.1 \le 0.1 \ \mu s \le 0.$	51.0 μg/L
Year	site	No. of Analyses analy	No. of sites
2013	236 188		
2014		370 370 370 0 0 0 0 0	
2015	464 246		
2016	64 567	4 593 593 593 593 593 593 593 11	11
2017	0670 × 401		1
Total ∝	2383 × 922 ×	2340 (b) 920 (c) 31 (c) 31 12	11

The sum of the number of sites in each class these not necessarily match the total number of sites in each year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual file may fall into more than one residue class. Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year



		classe										2	
	Tot	al	< L()Q		≤x< ug/L	0.1 ≤ x μg		1.0 <u>≤</u> 10.0	≤x < µg/L		0.0 N	
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	f íseg	No: ME No: ME Sites							
2008	309	309	309	309	0	@	0	0	0	-ô		0	Å
2009	620	324	618	324	1	Ł	0	, ô ^g	0	<u>~</u>	Å V	ST .	Ő
2010	998	542	998	542	0	<u>_90°</u>	0 ,	ô ^y "	。 0 🦼	P (°∑ 0 €	Ø	1
2011	1257	644	1257	644	0	¢"	0	· 0°	0~Q*	~0- ₇	Ø	- O	
2012	1110	585	1110	585	Ø	ð	, P	J.	, W	<u>}</u>	~~~0	\$°-	
2013	825	576	825	576	OŬ .	Ũ-		\$ <	0 0	Г L	0 4	。	
2014	641	333	641	333	ک <u></u> 0 _ (rQ	$\sim 0 $		0	0″	L.	Ó	
2015	693	340	693	340			Ű,		°~®`	Ž	, Õ	S-	
2016	1126	579	1126	579		<u>لي -</u>	×0 ×	ý ý		V 🦓	0 ()	
2017	670	401	670	×401 a	~ 0) K		-22	QS)	-4	<u></u>		
Total	8249	1085	8247	1085	Þ	ð	B All h total	_ @	ത്	ÕÕ	°≫1	1	

 Table 7.5- 35:
 Number of residue detections and sites for DCB in Italy categorised by residue classes

The sum of the number of sites in each dass does not necessarily match the total number of sites in cach year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class Similarly, the sum of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than one year.

For M-01 BAM there are more detections >LOQ which enables an assessment of detection rates and concentration classes over time. A summary of the residue data for each monitoring year is provided in Table 7.5- 36. Detection rates >LOQ typically range from 2-6%. Detection rates in the concentration class 0.1 < x < 0.75 µg/L peaked in 2009 with almost 3%. In the subsequent monitoring period, the detection rates in this class were in order of 0.52%. The detection rate in the concentration class 0.75 < x < 1.0 µg/L peaked in 2009 with almost 3%. In the subsequent monitoring period, the detection rates in this class were in order of 0.52%. The detection rate in the concentration class 0.75 < x < 1.0 µg/L was in the order of 0.22%. From 2008-2013 a constant decrease in detection rates in the concentration class 1.6 < x < 10 µg/L can be recorded (same number of detections, n=1, but increasing total number of samples) and after 2013 there are no detections recorded in this class. The detection rate was in order 0.1-0.3%. Detections ≥ 1.0 µg/L were not recorded during the entire monitoring period.

	1	estaue	classes										
	Tot	al	< L(Q		5≤x µg/L	0.1 < 1.0		0.75 < 1.0		< 10.0	≤x© ≈µg/L	
Year	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of sites	No. of analyses	No. of sites	Kol-of analyse	No. of Asites	N0.00 analyses	No: We B	Î,
2008	309	309	302	302	3	3 🔊	₹ 3	30	0	<u>, o</u>	\$°	J.	6 6 7
2009	878	460	835	446	19	15 ~20	24	<u></u>	0	2	\hat{Q}^0	∩° %	
2010	955	514	908	494	26	A20		₽°11 @	° 0	· X	1 C		ľ
2011	1323	716	1270	694	27 R	1	26	160	1		, de		
2012	1840	954	1786	940	33.	200 1.35	26 20	46	×Ĵ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°≫1	& ₁	
2013	1669	1013	1603	992	44 44		©21	@ ⁷ 14 ~	y 1	1		l °	
2014	1566	805	1494	792 🛒	" 🖉 46 🗞		26	19	g S		A		
2015	1712	762	1609	73	68	.38	<u>_</u>	Ô ^{%)}	<u>^</u> 2	۲. م	$\gtrsim 0$	 1	
2016	1127	580	1105	593		<u>م</u> الح	¢ 6	6		·			
2017	669	401	651	D" J J J	0°8	× 8 ×	10	B	Ċ	a a a a a a a a a a a a a a a a a a a			
Total	12048	1678	11563	1649	290	145	191	60 269	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 ⁴ (×4	3	

 Table 7.5- 36:
 Number of residue detections and sites for M-01 BAM in Italy categorised by
 residue classes

The sum of the number of sites in each class does not necessaril match the total number of sites weach year. This is because one site may have been sampled several times in a particular year, and because the resulting residue concentrations vary within the year, one individual site may fall into more than one residue class. Similarly, the or of the number of sites in each residue class and each year will not add up to the total number of sites in this residue class. This is because the same sites may have had residue concentrations in this class over more than the year \bigcirc

Concentration class ≥10.0 µg/L is oppitted, because there are no detections for this class.

The M-01 BAM residue time sories data are further assessed by discriminating them against the occurrence of the main FEC target crops, namely, vines and potatoes. For this, annual residue data were processed in GIS to correlate them to land use data?

The geographical distribution of M-01 BAM detections in relation to the FLC product use data shows that most detections are made outside the main vine and potatoes areas and therefore in regions of no/very mited FLC usage. This again confirms that there may be only a very weak link between M-01 BAM detections and PLC usage and that most M-01 BAM detections are related to historic DCB usage.

Italy - Spatial assessment of Me BAM residues pre and post FLC registration

Spatially most M-01 BAM residues correspond to areas outside the main vine or potato growing regions with no apparent correlation to the density of these 2 Grops. Instead clusters of M-01 BAM detections

with no apparent correlation to the density of these 2 grops. Instead clusters of M-0 correlate to the city areas of Mibin and Further Southwest to the area of Alessandria.

III. Conclusion

The assessment of the groundwater public monitoring data concluded that there is no apparent risk to groundwater related to FLC usage. The detection rates of FLC are very low across all target Merger States and the elucidation of exceedances shows that most of these are likely to be false positive findings or are related to exceptional environmental conditions.

For the non-relevant metabolite M-01 BAM, there is clear evidence that a significant proportion of the M-01 BAM detections are the legacy of historic DCB applications. These DCB linked M-01 BAM detections occur even several years after the expiry of the DCB usage authorisation. From the monitoring data, the possibility that some M-01 BAM detections are related to leaching following FLC using cannot be excluded, but the data indicate that these are typically low in concentrations and are below the threshold of 10 µg/L for non-relevant metabolites. These conclusions are consistent with the much lower. net effective application rates of FLC and its degradation / metabolism which results in less M-01 BAM entering the environment. Out of 210,000 M-01 BAM analyses across the target Member, States there were only 13 exceedances of the 10 µg/L groundwater concentration threshold of which 16 were Contraction of the contraction o identified to be related to historic DCB applications of are related to exceptional environmental conditions.

no concerns for Auopicolide No.

M-01 (AE C653711, BAM)

The public monitoring data assessments KCA 7.5/01 and KCA 7.5/02 include data on the metabolite M-01. In addition, five published peer reviewed publications provide additional information on 1001 residues in groundwater in France (KCA 7.5/03 and KCA 7.5/07), France and England (KCA 7.5/04) the Republic of Ireland (KCA 7.5/05 and KCA 7.5/06).

Data Point:	KCA 7.5/03
Report Author:	Lopez, B.; Ollivier, P.; Togola, A.; Baran, N.; Ghestern, J.
Report Year:	2015 2015 Screening of French groundwater for regulated and emerging contaminants
Report Title:	Screening of French groundwater for regulated and emerging contaminants
Report No:	<u>M-597785-01-1</u>
Document No:	<u>M-597785-01-1</u> A Q & A U
Guideline(s) followed in	
study:	
Deviations from current	No. Not applicable
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially	not applicable ky ky ky ky ky ky ky ky ky
recognised testing	
facilities:	
Acceptability/Reliability:	Yes y y y y y y y y y
Executive Summer	

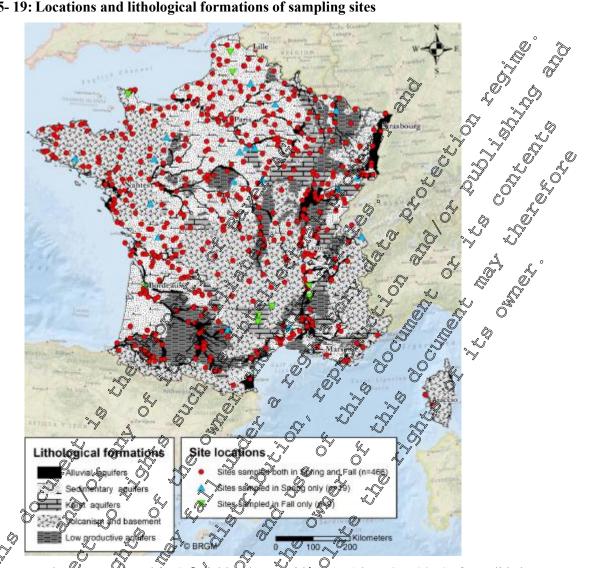
Executive Summary:

Nationwide screening of 411 compounds including 2,6-dichlorobenzamide (BAM) was done at 494 groundwater sites throughout France during two sampling campaigns in the spring and autumn of 2011. The quantification frequency for 26-dichlorobenzamide (BAM) for the total dataset (QF_{overall}) was 2.9% with 0.7% of samples exceeding a concentration of 0.1 µg/D for BAM. The maximum concentration of BAM was 0.42 µg/L and the mean concentration in positive samples (i.e. samples above the analytical LOQ) was 0.0936 µg/L. Most results for BAM were below the analytical LOQ of 0.02 µg/L.

7. Materials and Methods

The French Ministry of Ecology and the French National Agency for Water and Aquatic Environments initiated a national recomaissance stary of emerging (or poorly monitored) contaminants of different origins (411 in total) such as pharmaceutical products, industrial compounds, pesticides and personal care products. One hundred and thirty one pharmaceutical products (37 antibiotics, 17 steroids and hormones, 6 non-prescription arugs 5 biocides and 66 other prescription drugs), 143 industrial compounds (36 PCBs, dioxins and furans, 25 dyes, 13 perfluorinated compounds, 11 flame retardants, 10 plasticizers and 48 other industrial compounds), 103 pesticides and their transformation products (48 herbinides, 29 fungicides and 26 insectiedes) and 34 other emerging pollutants (13 lifestyle products, 10 cosmetics, 4 disinfection by-products, 4 toxins and 3 organotins) were sought in the groundwater samples, including the pesticide metabolite 2,6-dichlorobenzamide (BAM).

Samples were collected a 494 groundwater sites (springs, wells, and boreholes) throughout France during two campaigns in the spring (485 sites) and the autumn (475 sites) of 2011.



Hydrogeological contexts	Sedimentary formations	Alluvial aquifers	Basement formations	Low production aquifers	Volcanic & mountain aquifers	Total sites
Land uses					ð	
Agricultural	146	34	34	10	<u> </u>	⁴ √225 √Ç*
Urban and agricultural	68	38	19	1	2	G 128 0
Urban and industrial	35	45	2	1	0 >>	× \$3 ×
Natural	21	8	14		80	58 0 ³
Total	270	125	7 4	Ŭ,	× v	2 ⁷ 490 0 ⁹

Table 7.5- 37:	Characteristics	of selected	sampling sites
	Char acter istics	or serected	sumpring sites

The sites included a variety of lithological and hydrogeological conditions, anthropogenic pressures, urban, mixed, and natural or semi-natural environments and a variety of uses such as drinking water, irrigation and industrial water. The proportion of different environments sampled was representative at a national level: 55% of the groundwater was collected from sedimentary formations, 25% from alluvial aquifers, 15% from basement formations, 3% from yobduction aquifers, and 2% from votenic and mountain aquifers. The land surrounding the sampled stress was classified according to principal fand use as agricultural, urban-agricultural, arban industrial, or infural (2) breakdown of the charaoteristics of the selected sampling sites is givenbelow. The locations of the sampling site or shown in Figure 7.5-19. aquifers, 15% from basement formations, 3% from Tow production aquifers, and 2% from voltranic and mountain aquifers. The land surrounding the sampled sites was classified according to principal and

Figure 7.5-19: Locations and lithological formations of sampling sites

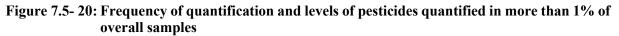
II. Results and Discussion

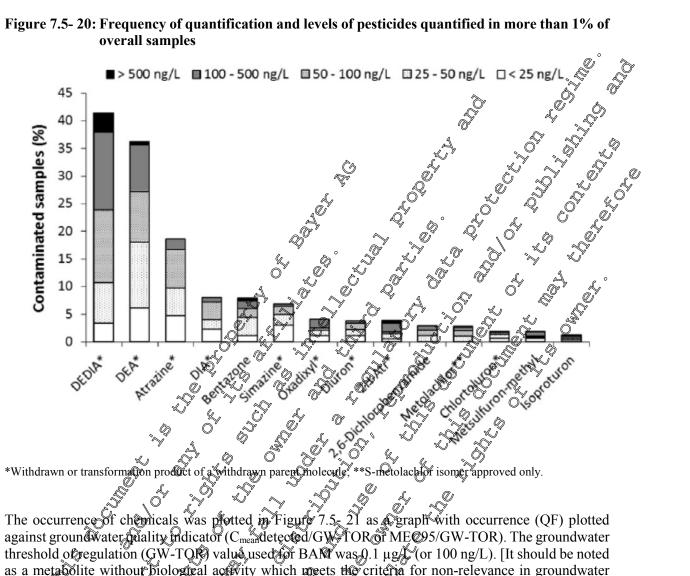
The concentrations of BAM in French groundwater are given in Table 7.5-38.

The maximum concentration of BAM was 0.42 µg/L and the mean concentration in positive samples ~ (i.e. samples above the analytical LOQ) was 0.0936 µg/L. Most results for BAM were below the analytical LOO of 0.02 µg/L (1036 out of 1067 samples tested). The quantification frequenc@(OF as %) was calculated as the number of results reported above the LOQ (ie only positive samples) divided by the total number of samples. The quantification frequency for 2,6-dichlorobenzamide (BAM) or the total dataset (QF_{overall}) was 2.9%, for samples collected in the spring of 20H (QF_{spring}) was 1.9% and for samples collected in the autumn of 2011 (QF_{fall}) was 3.8% 0.7% of samples exceeded a threshold of 0.1 $\mu g/L$ for BAM (FE_{0.1µg/L}). As discussed below this threshold is not frandatory for metabolites which \hat{O} meet certain criteria, but has been used in the publication to assess all pesticides and their transformation products.

Table 7.5- 38:	Summary of analytical	results	ِ for2,	6-dical	orobe	nzamide	(BÂM	l) quanti	ified in
	French groundwater	\bigcirc^{*}	<u> </u>	Å,	Ä	Ň	õ.	d, A	

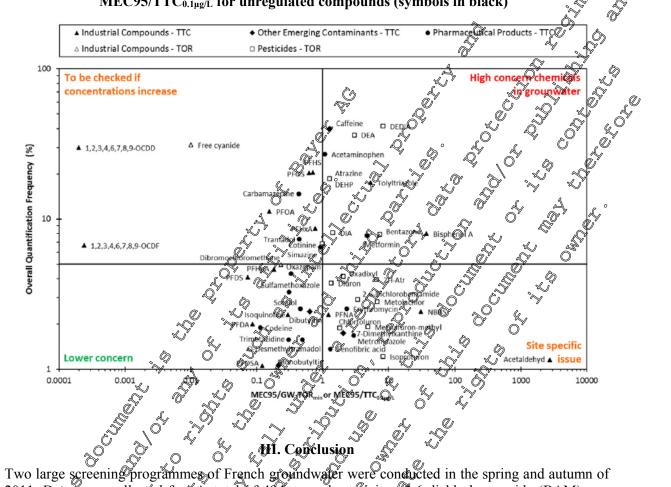
	- 5' ound	i decer	a	× a		Ő	-0	ă ă	
	LOQ	n	OF overal	QFspring	QFfall	FE0.1µg/L	Cmax,	MEC	Cracan
	(ng/L)	samples	(%)	(%)		م ⁽ %) کم	(ng/Ь)	(ng/L)	detects
		Q.		×,	S K		Ű	S.	Qng/L)
2,6-dichlorobenzamide	20	1.007	£.9 °	Ş [×] 1.9 «	3:80	Â,	A20	\$ 343 Q	93.6
(BAM)		Q [*]		, S	2º	0			
LOQ = Limit of quantificati	on (v \checkmark	Î OÎ	Ş		y de	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	&,	


n samples = number of samples


 $QF_{overall} = Quantification Frequency for samples in both campaigns (%)$

QF_{fall} = Quantification Frequency for the sprine campaign samples (%) FE_{0.1µg/L} = Frequency of exceeding the 0.1 µg/L TTC clue for the "overall" samples (%) C_{max} = Concentration maximum (ng/L) MEC95 = 95th percentil of maximum cancentration of EC per site (ng/L) C_{mean}detects = Concentration plean in positive samples (ng/L) Fourteen pesticides and their metabolites were quantified with opposite dichlorobenzamide ($\mathbb{R} \Delta X/L$) Fourteen pesticides and their metabolites were grantified with a QF ×1% (Figure 7.5-20) including 2,6dichloroben zamide (BAM). Agricultural use of some compounds detected has been forbidden in France for a number of years atrazine's simazine, oxadixyb'diurow and netolachlor) indicating the time course for transfer of water and perticides throughout soft, unsaturated and saturated zones that may take years or decades. This also applies to 250-dichlorobenzamid@which is a metabolite of dichlobenil (withdrawn

or decades. This also applies to 250-dichlorobenzamide which is a metabolite of dichlobenil (withdrawn in 2010), itself a transformation product of chlorthianid (withdrawn in 2004), and of fluopicolide whose use is permitted in France.



The occurrence of chomicals was protted in Figure 7.5-21 as a graph with occurrence (QF) plotted against groundwater quality indicator (C_{mean}detected/GW-TOR). The groundwater

And occurrence (QF) plotted against groundwater duality indicator (C_{mean}detected/GW/IOROi ME(295/GW-TOR). The groundwater threshold obregulation (GW-TOR) value used for BARt was ().1 µg/2 (or 100 ng/L). [It should be noted as a metabolite without biological activity which meets the criteria for non-relevance in groundwater this threshold is not applicable.]

Figure 7.5- 21: Matrix of occurrence in groundwater (%) against ratio MEC95/GW-TOR_{min} (95th percentile of maximum concentration of ECs per site/lowest groundwater threshold of regulation value) for regulated compounds (symbols in white) or MEC95/TTC_{0.1µg/L} for unregulated compounds (symbols in black)

Two large screening programmes of French groundwater were conducted in the spring and autumn of 2011. Data were collected from a total of 494 groundwater sites 2,6-dichlorbenzamide (BAM) was detected at an overall detection frequency of 2.9% at a mean concentration in positive samples (i.e. samples above the analytical LOOP of 0.0936 μ g/P. The maximum concentration of BAM detected was 0.42 μ g/L

Assessment and conclusion by applicant

This publication provides information on the exposure values for the metabolite M-01 (BAM) in French groundwater in 2011 and shows no concerns.

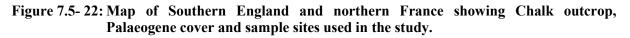
This put fication provides information on the exposit French groundwater in 2011 and shows no concerns.

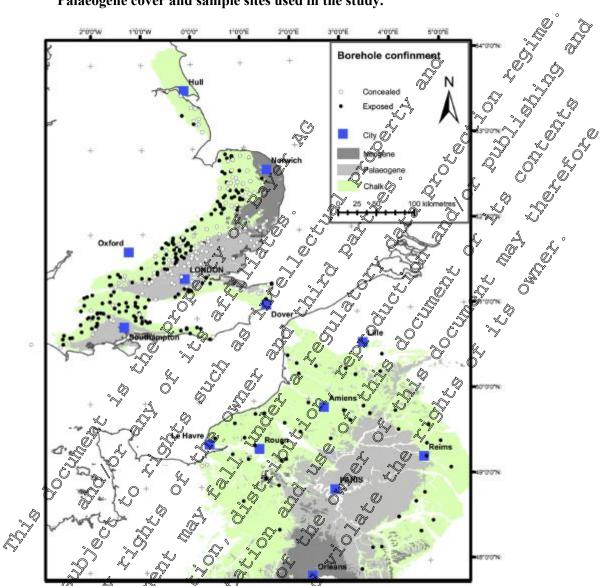
Data Point:	KCA 7.5/04	
Report Author:	Lapworth, D. J.; Baran, N.; Stuart, M. E.; Manamsa, K.; Talbot, J.	
Report Year:	2015	
Report Title:	Persistent and emerging micro-organic contaminants in Chalk groundwater of	, Or
	England and France	ð,
Report No:	<u>M-597786-01-1</u>	
Document No:	<u>M-597786-01-1</u>	
Guideline(s) followed in		Ĉo
study:		e) i
Deviations from current	No. Not applicable	Ø
test guideline:		Ś
Previous evaluation:	No, not previously submitted $\mathcal{A}_{\mathcal{A}}$	
		ľ
GLP/Officially	not applicable $\sqrt{2}^{7}$ $\sqrt{2}^{7}$ $\sqrt{2}^{7}$ $\sqrt{2}^{7}$	
recognised testing		
facilities:		
Acceptability/Reliability:	Yes O C A A	1

Executive Summary:

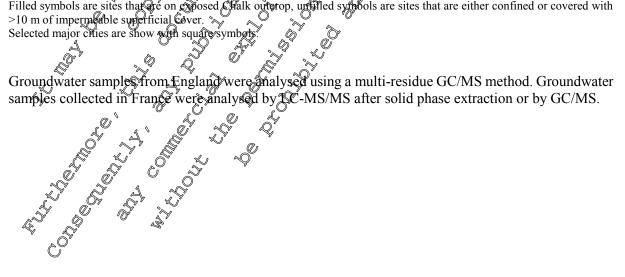
This study presents results from a decompaissance survey of microorganic contaminant in Chalk groundwater, including pharmacetticals, personal care products and pesticides and their transformation products, conducted across the major Chalk aguifers of England and France. Data from a total of 345 sites collected during 2011 were included in this study to provide a representative baseline assessment of microorganic contaminants occurrence of groups dwater. A sufference of 42 compounds were analysed for at each site including industrial compounds. (16), pesticides and their metabolites (14) and pharmaceuticals, personal care and lifestyle product (12).

2,6-dichlorbenzamide (BAM) was detected in English and French groundwater with an overall detection frequency of 6.1% The maximum concentration of BAM in England was 10 µg/L (although the 97.5 percentile was 0.15 µg/L) and in France was 0.11 µg/L. The mean concentration in England (n=300) was 0.1 μ g/L and in France (n=45) was 0.04 μ g/L


A. Materials and Methods

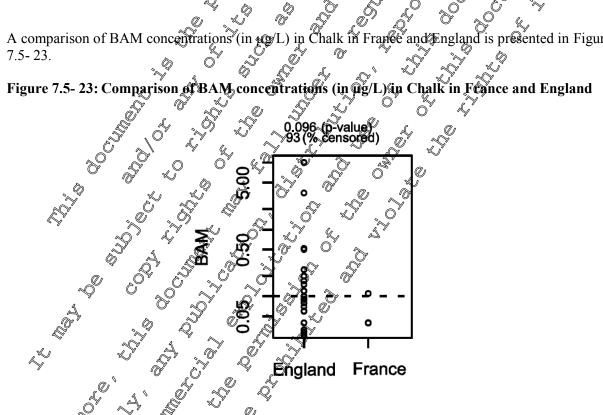

The purpose of this study was to saluat the occurrence of a broad range of organic contaminants (16 industrial compounds, 14 pesticides and their metabolites and 12 pharmaceuticals and personal care compounds) including BAM (\$6 dichoroberzamice) in unreated groundwater from two large areas in North West Enfope, the Chark of England and the Chark of North West France. Data from numerous sampling sites was analysed. The nature of the Chalk means that this aquifer can be very vulnerable to rapid migration of contaminants? Øi

45 sites in France and 300 sites in England of the Chalk outcrop were sampled during 2011. The outline


45 sites in France and 300 sites in England of the Chalk outcrop were sam of the Chalk outcrop and the sample network is shown in Figure 7.5-22.

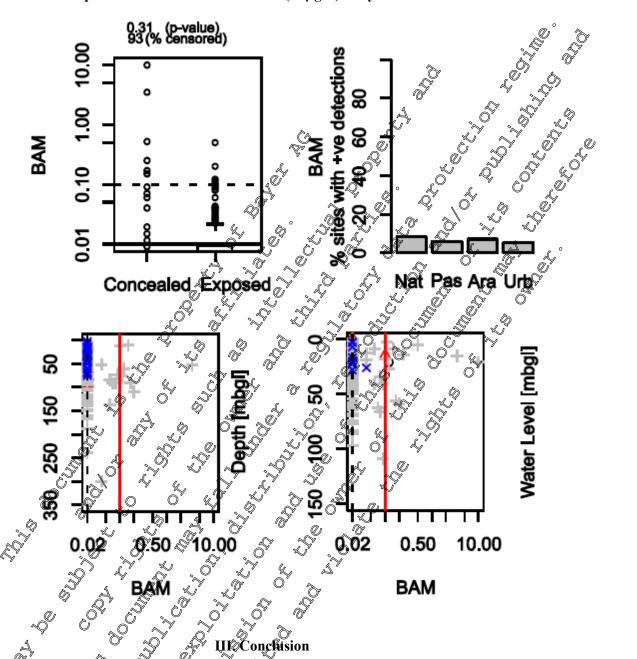
Filled symbols are sites that are either confined or covered with >10 m of impermeable superficial cover. Selected major cries are show such square symbols

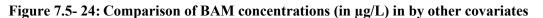
II. Results and Discussion


The minimum, mean and maximum concentrations of BAM in English and French Chalk groundwater are given in Table 7.5-39. The maximum concentration of BAM (10 μ g/L) was one of the highest concentrations detected in Chalk groundwater. Overall BAM was one of the most frequently detected compounds related to pesticides detected in England with a detection frequency of 6.3%.

			(1/2)	4
	Concentration and freq			
Tahla / 5_ 34.	Concentration and trea	uancy of 7.6_dichlaraba	nzomido (RANI) doto(etaone
1 and 1 of 37		$u \in \mathbb{N}$	ILAIIIIUU (DANI) UUU	

Substance	All	English Chalk (n=300)				
	Detection	Detection	Min 🐬	🔊 Mean	Max	Percentie V
	%	%	μg/L	μg/L	Ĵ,₩ĝ/L	90 2 95 97.5
2,6-dichlorobenzamide (BAM)	6.1	6.3	< <u>0</u> .03	0.1 4		


Substance	French Cha	alk (n=45)	ſ.°
	Detection	Min Mean Max Percentile	,¥
	%	Min Mean Afax Percentile	
2,6-dichlorobenzamide (BAM)	4.4		
	Ŕ		


A comparison of BAM concentrations (in 10/L) in Chalk in France and England is presented in Figure

A comparison of \mathcal{BAM} oncentrations (in $\mu g/L$) in exposed and concealed chalk sites, by land use wet depth and by water level is presented in Figure 7.5-24. category by

A large monitoring survey of the major Chark aquifers of England and France was conducted in 2011. Data from a total of 345 sites was collected. 2 6-dichlorbenzamide (BAM) was detected in vulnerable chalk groundwaters at a mean concentration of 0.1 μ g/L in England (n=300) and 0.04 μ g/L in France (n=45). The maximum concentration of BAX/rin England was 10 μ g/L (although the 97.5 percentile was 0.15 μ g/L) and in France was 0.11 μ g/L.

Assessment and conclusion by applicant:

This publication provides information on the exposure values for the metabolite M-01 (BAM) in English and French groundwater in 2011 and shows no concerns.

Data Point:	KCA 7.5/05	
Report Author:	McManus, S.; Moloney, M.; Richards, K. G.; Coxon, C. E.; Danaher, M.	
Report Year:	2014	
Report Title:	Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry	Ç Ç
Report No:	<u>M-597919-01-1</u>	
Document No:	<u>M-597919-01-1</u>	_
Guideline(s) followed in		2
study:		6
Deviations from current	No. Not applicable	L
test guideline:		0″
Previous evaluation:	No, not previously submitted	/
GLP/Officially	not applicable	
recognised testing		
facilities:		
Acceptability/Reliability:	Yes A ϕ Q Q ϕ O' ϕ' ϕ'	

Executive Summary:

An analytical method was developed and validated for 18 compounds in groundwater including 2,6dichlorobenzamide (BAM). Water samples were analysed using an efficient ubra-high-performance liquid chromatography (UHPLC) method prior to detection by pardem mass spectrometry (MS/MS). The limit of detection (LOD) of the method for BAM was 0.0006 μ g/L. The method was validated with recoveries ranging between 88 and 105% for BAM at spiked concentrations of 0.02, 0.04 and 0.06 μ g/L.

The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that that some transformation products were detected just as often as their parent active ingredients (a D) in groundwater. However the compound BAM was not detected at concentrations >4 OD (0.00064.g/L) in the groundwater samples 2

K Materials and Methods 🔗

This paper describes the development of a method to analysed for a number of herbicides and metabolites in groundwater including 2,6-dic florotenzamide (BAM). 42 groundwater samples collected in March 2012 from seven locations across heland were analysed using the method.

Descriptions of ground water samples are summarised in Fable 7.5-40. The same locations were used in a separate sublication (see M-68/589-04-1).

Table 7,5 40: Description of groundwater samples collected from seven sites across Ireland in March 2012

Site name	No. sæmples ænalysett	No. reps	Sâmple () ©date		Redox (mV)	Conductivity (µS/cm @25°C)	Turbidity (NTU)	Temp. (°C)
KWDg		\$ 2 ₄ ,	13 March	7.2	189	595	0	8.4
KWDa 🖉	. Ó ² (200	21 March	7.9	113	470	0	10.2
I/KWDa	\$ 7 A	× P	13 March	7.9	180	406	128	9.6
Fv Da	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	<u>کې</u> 2	14 March	6.1	164	127	167	9.5
	9	2	14 March	7.3	-40	263	194	9.8
FmWDa1 a	10	2	21 March	7.1	117	220	28	9.7
FmWDa2 ^a	9	2	20 March	6.5	120	196	53	10.6

Values are averaged across all samples collected at that site on each day

Groundwater samples were acidified with 2 mM HCl, extracted by Bond Elut ENV SPE cartridges and eluted with acetone. The acetone was evaporated under nitrogen at 40 °C to dryness and concentrated extracts resuspended in acetonitrile/water (50:50, v/v), prior to filtering through 0.2 μ m membrane. BAM was analysed by UHPLC-MS/MS by monitoring the transitions m/z 190.0 \rightarrow 109.0 and m/z 90.0 \rightarrow 144.9 with detection by electrospray in positive ionisation mode. The compound was stable in raw groundwater samples over 42 days.

The method was validated at concentrations of 0.02, 0.04 and 0.06 µg/L in ultra-pure water

Substance	Validation level (µg/L)								
	Α	ccuracy (%	%)	Prec	ision (% I	RSD)	(µgAL)	(µg/L)	
	0.02	0.04	0.06	0.02 🚕	0.04	0.06	Ô m	- OY	
2,6-dichlorobenzamide (BAM)	95	105	88				0.0009	0,0006	

Table 7.5-41: Validation results for 2,6-dichlorobenzamide (BAM)

Validation results tested at three concentrations: 0.02, 0.04 and 0.06 Accuracy and precision were determined from six replicates

The stability of raw groundwater samples over time was assessed by spitning 500 mL or groundwater to achieve a concentration of 0.1 μ g/D. Samples were stored in the dark at 4 °C and analysed every seven days over a 42 day period. BAM was stable in the groundwater samples to ough out the test.

The minimum, maximum, median and average concentrations of BAM detected in groundwater are given in Table 7.5- 42°

 Table 7.5- 42:
 Oncentration of 2.6-dichlorobenzamide (BAM) detected in groundwater samples collected from seven sites in Republic of Ireland in March 2012

Substance (Minimuno (µg/L)	Maximum S (i) S (i) S	ν Median (μg/L)	Average (µg/L)
2,6-dichlorobenz	amude (BAM)		[€] <lqd< td=""><td>0</td><td>-</td></lqd<>	0	-

II. Conclusion

Groundwater samples from seven agricultural sites in the Republic of Ireland were monitored in March 2012 for a number of pesticides and their metabolites. The compound 2,6-dichlorobenzamide (BAM) was not detected at conceptration D_{μ} (0.0006 µg/L) in the 42 groundwater samples.

conclusion by applicant: This publication provides information on the exposure values for the metabolite M-01 (BAM) in Irish groundwater in 2012 and shows no concerns.

Data Point:	KCA 7.5/06
Report Author:	Mcmanus, S. L.; Coxon, C. E.; Mellander, P. E.; Danaher, M.; Richards, K. G.
Report Year:	2017
Report Title:	Hydrogeological characteristics influencing the occurrence of pesticides and pesticide metabolites in groundwater across the Republic of Ireland
Report No:	<u>M-681589-01-1</u>
Document No:	<u>M-681589-01-1</u>
Guideline(s) followed in study:	
Deviations from current test guideline:	none
Previous evaluation:	No, not previously submitted
GLP/Officially recognised testing facilities:	not applicable
Acceptability/Reliability:	Yes O C A A

Executive Summary:

Groundwater pesticide occurrence was investigated at seven agricultural sites in different hydrogeological settings to identify where pesticide occurrence dominated in temperate maritime climatic conditions. In Ireland, six cereal dominated sites in the South East and are grassland site in the West were investigated. Soil and subsoils varied from acid brown earths with high perneability to clay and silt rich tills with lower permeability. Over a 2-year monitoring petiod, 730 samples were collected from a network of dedicated wells and springs across the seven sites. Piezometers were installed in intergranular, fissured and karstic type aquifers to target shallow, transition and deeper groundwaters. Several springs were also sampled and the network included @ confined aquifer. Groundwater was analyzed for nine pericide active agreements and eight metabolites.

BAM was not detected at the grassland site at concentration > LOD (0.0006 μ g/L) but was detected at the remaining of sites at concentrations up to 1.35 μ g/L. The total number of samples found to contain BAM at concentration > LOD was 31 out of a total of 750 samples. The average concentration of BAM in groundwater samples was 0.00 μ g/L.

I. Materials and Methods

The objective of this study was to evaluate the occurrence of pesticides and their metabolites in groundwater in a range of sites, representing the main arable regions across the Republic of Ireland. Sites were chosen for their contrasting bydrogeological characteristics.

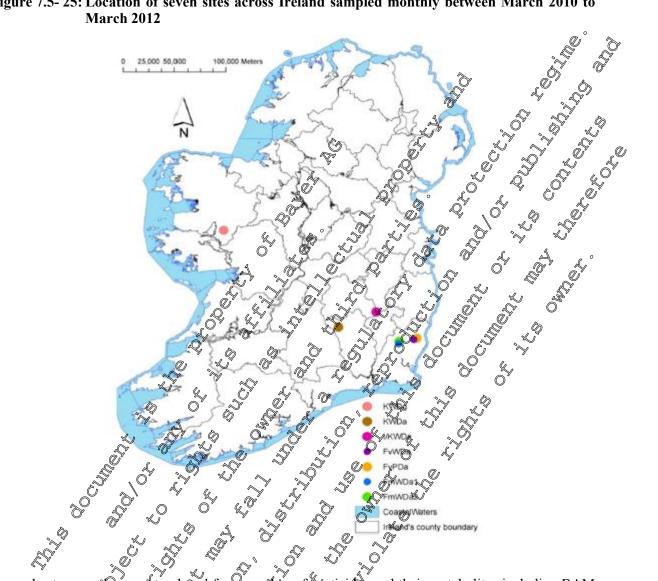
Two sites were sampled by goundwater fed springs (KWDg and KWDa). Piezometers were installed between 2008 and 2009 at the remaining sites between 2008 and 2009. The wells installed aimed to target three groundwater depths.

1. Shallow: within subsoil (i.e. Quaternary deposits), approximately 5 m below ground level

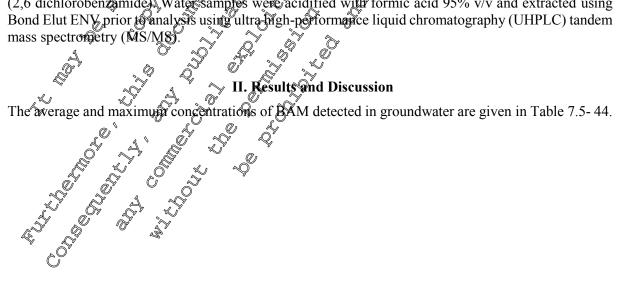
2. Interface the interface between subsoil and bedrock, approximately 10 m below ground level 3 Bedrock: within bedrock, approximately 20 m below ground level.

The characteristics of the seven sites are summarised in Table 7.5-43.

Site name	Dominant land use	Principal soil association	Soil drainage class	Quaternary deposit (subsoil)	Aquifer type (code)	Monitoring point (^b)
KWDg	Grassland	Rendzina	Deep well drained mineral	Bedrock at or near the surface	Karstified Impestone dominated by conduit flow (Rkc)	Spring (1)
KWDa	Spring barley	Minimal grey brown podzolic	Deep well drained mineral	Bedrock at or @ear the surface	Karstiffied limestone dominated by diffuse flow (Rkg)	Śpring (2)
I/KWDa	Spring barley	Grey brown podzolic	Shallow well drained mineral	Gravels derived from limestones	Gravel underlåin by karstified linnestone dominated diffuse (Rg and Rkd)	Piezopheters ((5) () (5) () () () () () () () () () () () () () (
FvWDa	Spring barley	Acid brown earth	Deep well drained (mineral)	Bedforck af or near the Surface	Fractured Volcanics bedrock (Ref)	Piezometers °
FvPDa	Spring barley and pasture	Gley	Deep poorly drained mineral	Irish Sea Till derived from Limestone	Fractured Wilcanies bedrock (RF)	Piezometers
FmWDa1 ^a	Spring barley	Acid brown earth	Deep well The well Th	Till deriver from Lover Palaeozoic sandstones and shales	Fractured Ordovician Ordovician Pretased ments (Ll)	Piezometers (9)
FmWDa2 ^a	Spring barles	Acid bown Searth	Deep well drained mineral	TH derived Orom Jower Palacozoic sandstones and shall	For the second s	Piezometers (9)

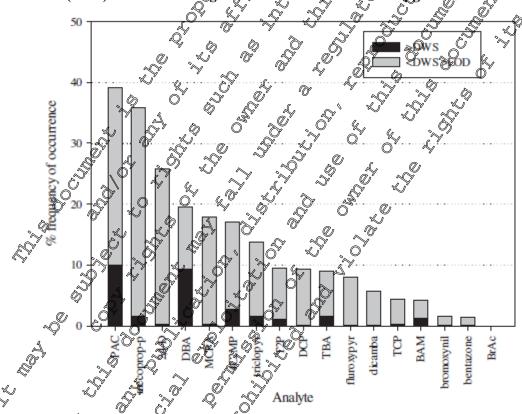

^a There were two fields monitored and labered FarWDa: Site 1 and Site 2 which have slightly contrasting soil conditions ^b Number available to sample in parenthesis of a site of a si

The location of the roven sites are shown in Figure 76-25. Groundwater samples were collected monthly between March 2010 and March 2012 Samples were taken using a bladder pump lined with Teflon. Water properties such as PH, turbridity, dissolved oxygen, specific conductivity, temperature and redox were recorded every 30 seconds. Groundwater was collected into a 500 mL amber glass bottle and stored under childed conditions (between 1 and 4 °C) prior to analysis. In total 730 samples were collected across the seven sites.


redox wege recorded every 300 seconds. Groundwater was collected into a 500 mL amber glass bottle and stored under childed conditions (between 1 and 4 °C) prior to analysis. In total 730 samples were collected across the seven sites.

Groundwater samples were analysed for a number of pesticides and their metabolites including BAM (2,6 dichlorobenzamide). Water samples were acidified with formic acid 95% v/v and extracted using Bond Elut ENV prior panalysis using ultra mgh-performance liquid chromatography (UHPLC) tandem

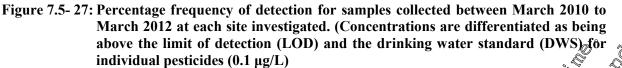
Table 7.5- 44:Concentration of 2,6-dichlorobenzamide (BAM) detected in groundwater samples
collected from seven sites in Republic of Ireland between April 2010 and March
2012

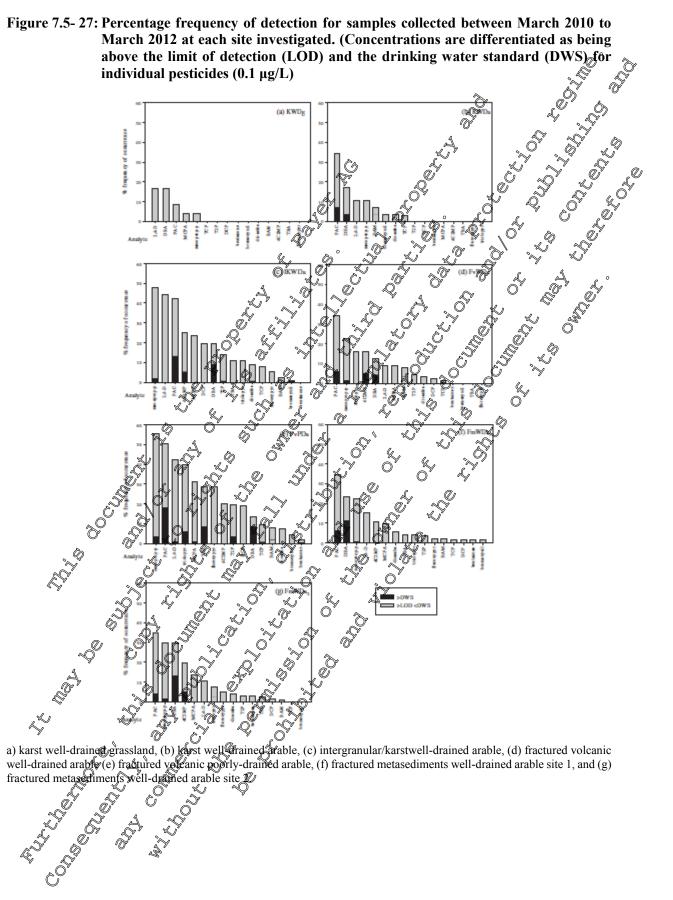

01						
Substance	LOD (µg/L)	LOQ (µg/L)	Total no. positive detections > LOD	Total no. samples analysed	Maximum observed conc. (µg/L)	Average contc. (µg/L)
2,6-dichlorobenzamide (BAM)	0.0006	0.0009	31	730	2) 1.35 ×	O OBY O
I OD - limit of detection I	00 - limit of	auantitation		<u>v</u>	_0	

LOD = limit of detection, LOQ = limit of quantitation

The average concentration was calculated by giving non-detects a zero value

Of the 17 compounds analysed for BAM was ranked as the fourteenth most frequent detected across the seven sites (see Figure 7.5-26). In general more positicide metabolites were present in this groundwaters than parent active ingredients.


Figure 7.5-26: Percentage frequency of detection for an seven sites sampled monthly from March 2010 to March 2012 differentiating concentrations above the limit of detection (LOD) and the drinking water standard (DWS) of 0.1 µg/L



Over the 2-year sampling campaign, the percentage of samples > LOD but < 0.1 μ g/L was lowest at KWDg and highest at FvPKa (Figure 7.5, 27). BAM was not detected at Site KWDg (Figure 7.5-27a) at > LOD (0.0006 μ g/L) but was detected at the remaining six sites (Figure 7.5-27b to g).

tw Dg and nugless at V PBa (Figure 7.5,27). BAM was not detected at site K w Dg (Figure 7.5-27b to g). at > LOD (0.0006 yg/L) bit was detected at the remaining six sites (Figure 7.5-27b to g).

Table 7.5- 45:	Percentage of detects > LOD for 2,6-dichlorobenzamide (BAM) analysed between
	April 2010 and March 2012 per sampling type and sampling depth.

April 2	UIU and N	larch 2012 per sa	ampning type and	sampling depth.	o
Substance	Springs	0-5 m below ground level	5.1-10 m below ground level	10.1-17 m below ground level	Artesian
2,6-dichlorobenzamide (BAM)	2	2	3	ground level	Artesian well
()				&	
		III. Con	clusion		
2,6-dichlorobenzamide (BAM) Irish groundwaters at se a number of pesticides a The average concentrati concentration of 1.35 µg groundwater samples.	even agricu and their m	iltural sites were i netabolites.	monitored between	April 2010 and N	1auch 2062 for 5
The average concentration	ion of 2,6-0	dichlorobenzami	ě (BAM) detected	was 0.0 Rug/L, Owi	th æmaxinæm
concentration of 1.35 µg groundwater samples.	g/L. BAM	was detected at co	oncentrations > LC	10 (0,0006 µgL) in	1.34 out of 730
		A . 0			
Assessment and conc	clusion by	applicant:			
This publication provide	des inform	ation on the expos	ure values for the	netabolite M-014	AND in Irish
groundwater in 2010 t	0 2012 ang	Shows no concer			BAM) in Irish
	J.	& 25 4		netabolite M-014B	
Å G					
	, d s				
				Ĵ,	
, Q 67					
Ê, Î					
Ĵ,					
			, A		
~9 U A			, O		
	Ì, Q		9		
		~ ~			
29 2 A					
concentration of 1.35 µg groundwater samples. Assessment and conc This publication provid groundwater in 2010 t	-				

Data Point:	KCA 7.5/07
Report Author:	Pinasseau, L.; Wiest, L.; Volatier, L.; Fones, G. R.; Mills, G. A.; Mermillod-
-	Blondin, F.; Vulliet, E.
Report Year:	2019
Report Title:	Calibration and field application of an innovative passive sampler for monitoring
	groundwater quality
Report No:	<u>M-681600-01-1</u>
Document No:	<u>M-681600-01-1</u>
Guideline(s) followed in	
study:	
Deviations from current	none V O O O
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially	not applicable $\begin{pmatrix} \varphi & \varphi & \varphi \\ \varphi & \varphi & \varphi \\ \varphi & \varphi & \varphi & \varphi \\ \varphi & \varphi &$
recognised testing	
facilities:	
Acceptability/Reliability:	Yes <u>A</u> <u>or Q</u> <u>O</u> <u>O</u> <u>O</u> <u>O</u>

Executive Summary:

The performance of polystyrene divinylbenzene (SDB-XC) EmporeTM disk-based passive sampler specially adapted to groundwater monitoring was evaluated. The sampler was calibrated in the laboratory using conditions that corresponded to groundwater (i.e. matrix medium, water temperature, flow rate and water flow across the disks). The retention and elution performance for sixteen semi-polar and polar pollutants on the sampler was evaluated. Overall mean recoveries were 76.8 % for BAM. Sampler uptake kinetics were measured over four compounds. There was no influence of concentration of the test analyte of the uptake profile. With mean Rs varying between 0.018 \pm 0.007 L day⁻¹ and 0.047 \pm 0.001 L day⁻¹. Passive samplers were deployed in twelve characterized groundwater wells near Lyon (France). BAM was found with a maximum time weighted concentration of 14 ng/L.

A Materials and Methods

Urban groundwater aquifers at 6 sites in the eastern metropolitan area of Lyon, France were sampled for a total of 16 polar and polar pericides and pharmaceuticals including BAM (2,6 dichlorobenzamide). At 12 groundwater wells (2 per site) a specially designed fig containing nine individual polystyrene divinylbenzene (SDB C) Empore EDS (47m diameter, 12 µm particle size, 0.5mm thick) was deployed for ten days between 26 October and 5 November 2018.

The passive samplers were adapted to groundwater monitoring by eliminating the polyethersulfone (PES) limiting diffusion membrane as is normal in the conventional Chemcatcher® passive sampler. Groundwater flow rates are how and so there is no need to slow the sampling process. Fouling issues are much more uncommon so the protection medded in surface water sampling is not needed. This adaptation decreased the analytical detection limits as diffusional uptakes of analytes into the ED increased.

Passive ED sample's were extracted individually with acetone/MeOH (50/50; v/v). Extracts from three EDs were pooled, evaporated to dryness and reconstituted in 500 μ L of water/MeOH (95/5; v/v) and diluted 30 times prior to analysis by LC-MS/MS.

Details of the analytical method and its performance are provided below. The product ions (m/z) 173.0 and 109 0 were monitored for 2,6-dichlorobenzamide and sulfamethoxazole-D₄ was used as an internal standard.

Table 7.5-46: Details of HPLC-MS/MS

Substance	Rt	Instrument detection limit	Instrument quantification limit	$RSD (n = 3)_{\circ}$
	(min)	(ng/L)	(ng/L)	(%)
2,6-dichlorobenzamide (BAM)	3.1	5.2	17.4	
			.1	\$ ~ ~ ~ ~

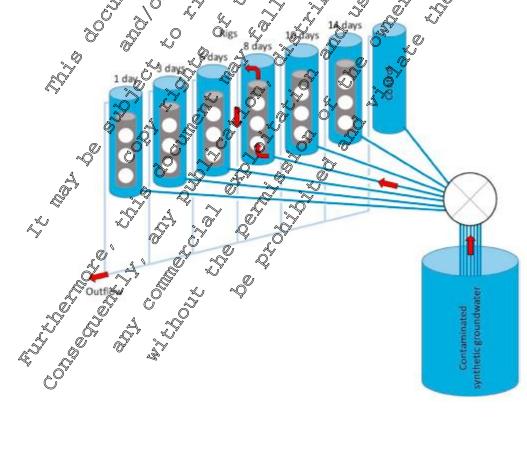

The performance of the passive samplers was assessed by filtering 30 mL of synthetic groundwater spiked at concentrations of 10, 100 and 500 ng/L with each substance. Each test was conducted in triplicate. For BAM the recovery increased with concentration (see Lable 7.5-47)

Table 7.5- 47: Log D _{ow} and mean concentrations	percentageæc	overy	for B A	M. from	theSI)B-XC disc	at three
concentrations	la	Ro ⁰	~0		, 'O'	$\sim \sim$	K.Y

concentrat	.10115	×		, i	K)	L.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Substance	Log Dow		Meanrec	overies (%	ð, , , , , , , , , , , , , , , , , , ,		Øverattme	
	(pH 7.4)	10 ng/I	10.0	ng/L	500 ng	/L	recoveries (%)
2,6-dichlorobenzamide (BAM)	2.03	60.5 ± 0	.707 78,8		913±		\$6.8 ± 5.	5
	Å	o" ~				UN.	, L	

Experiments on the uptake rates of four pollutants were performed under environmental conditions found in groundwater. Passive SDB-XC samplers contained within seatable columns 24 cm high, 10 cm diameter, 1.9 L volume) were expose to a constant concentration of atrazine, hexazinone, metolachlor and sulfamethoxazole dissolved in synthetic groundwater at concentrations of 10, 00 and 500 ng/L.

Figure 7.5- 28: Experimental second for uptake experiments onto the SDB-XC discs

1

Uptake experiments were conducted in the dark at a temperature of 16 °C to mimic groundwater temperatures. A flow rate of 5.9 mL min⁻¹ was applied in each column to obtain a Darcy velocity of 1.08 m day⁻¹ in the experimental system, a flow rate considered representative of the aquifer of Eastern Lyon. A set of seven columns was used: one column control (without rig) and one column for each of the six exposure times (1, 3, 6, 8, 10 and 14 days). The experiment was performed at three test concentrations: 10, 100 and 500 ng/L.

The uptake of chemicals by a passive sampler follows first-order kinetics. Between the start of exposure and the half-life to equilibrium, the uptake of an analyte is linear and can be described using the following equation:

$$M_{\rm S}(t) = C_{\rm W} R_{\rm S} t$$

where

ure time $M_s(t)$ is the mass (ng) of analyte accumulated in the sampler after e et(¢ay) ≫

 C_W is the concentration (ng/L of an analyte in the groundwater

 C_W is the concentration (ng/L of an analyte in the groundwatter and R_s is the sampling rate (L day) and represents the volume of water extracted by a sampler Ô per unit of time.

During a calibration experiment, Rs can be determined from the slope of the regression between the mass of analyte accumulated against the time of exposure Once Rs is known Cw, which corresponds Ő to the TWA concentration in the fold, can be calculated,

The sampling rate (Rs) of hexagenone was determined experimentally at three concentrations; 10, 100 and 500 ng/L (see Figure 7.5 29). The mean R_s for hexazinone was 0.047 ± 0.001 L day⁻¹. On the basis of similarities in their retention time on a coverse corbinate chromatographic column, log Dow and chemical structures, the hexazinone value was applied to BAN to determine TWA concentrations (Cw) in the field trial. It was assumed compounds with Simila physico-chemical properties would exhibit similar L.

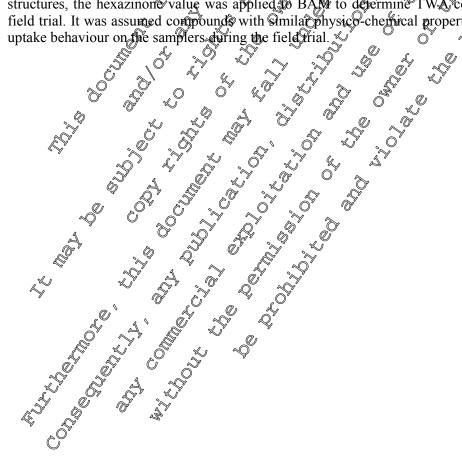
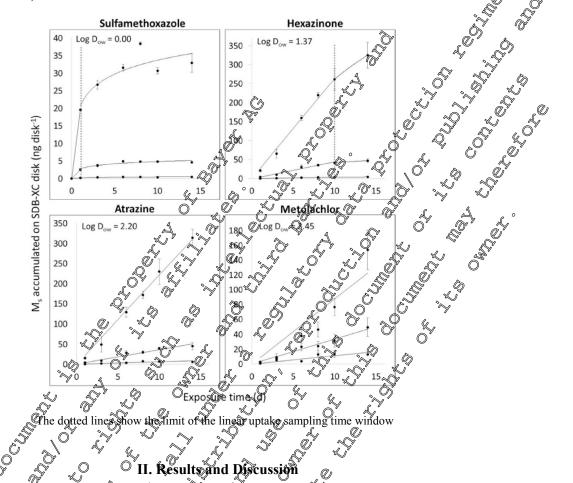



Figure 7.5- 29: Analyte uptake on SDB-XC Empore[™] disks for atrazine, hexazinone, metolachlor and sulfamethoxazole over 14 days at three concentrations (10, 100 and 500 ng/L, n=3).

After retrie al of the twelve deployment rigs (Six sites, with two groundwater sampling points per site) the passive samples were expracted and the concentration of each substance in groundwater (Cw) determined. The median, minimum and maximum time weighted average concentrations of BAM in groundwater are given in Table 75-48:

Table 7.5- 48: Concentration of 26-dichoroben Zamide (BAM) in groundwater samples collected S from urban aquifers in Dyon, France,

Substance	°~	Detection I	o) 🖉 🦂	9	Minimum Cw	Maximum Cw	MQL
A.	Ĵ,	Global		(ng/L)	(ng/L)	(ng/L)	(ng/L)
2,6-dichloroben (BAM)	zamide			3.5	0.5	17	*

MQL = metho@quantitication light

INIQL = method quantification librit * Cw values were calculated when S/N ratio > 0

III. Conclusion

Field trials were undertaken using twelve groundwater wells located in urban sites in Lyon, France. At each well a specially designed rig containing nine passive SDB-XC samplers was deployed between 26 October and 5 November 2018. Over a 10 day period in late 2108 the concentrations of 2,6dichlorobenzamide (BAM) reported ranged from 0.5 to 17 ng/L.

Assessment and conclusion by applicant:

This publication provides information on the exposure values for the metabolite X-01 BA French groundwater in 2018 and shows no concerns.

B.2 Surface Water

Fluopicolide

The public monitoring data assessment KCA 7.5/67 included sufface water monitoring data for fluopicolide. In addition, two published peer reviewed publications provide additional information on fluopicolide residues in surface water in France (KCA 7.5/08) and Switzerland (KCA 5.5/09).

Data Point:	KCAN7.5/08~
Report Author:	Gülkowska, A.; Buerge, J. J.; Poiger, T. &
Report Year:	
Report Title:	Online solid phase extraction C-MSMS method for the analysis of succinate
L	dehodrogenesse inhibitor function and its applicability to surface water samples
Report No:	<u>M³8968, 01-1</u>
Document No:	
Guideline(s) followed in	not applicable
study:	
Deviations from current	pone v v v v
test guideling:	
Previous evaluation:	No not prey busly submitted
K, V	
GLP/Officially	No, not conductor under GLP/Officially recognised testing facilities
recognised testing 5	
lacinties.	
Acceptability/Reliability:	No, not conducted under GLP/Officially recognised testing facilities

Executive Summary,

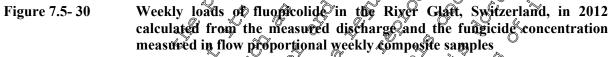
A sensitive and selective analytical pethod based on online solid phase extraction coupled to LC-MS/MS, was developed and validated to detect traces of fungicides in surface water and wastewater. The list of targe analytes included & succinate dehydrogenase inhibitors (bixafen, boscalid, fluopyram, flutolanil, fluopyroxad, isopyrazam, pentlufen, and penthiopyrad), and 2 other fungicides with different modes of action, feopyrazamine and fluopicolide. Detection and quantification limits in various matrixes were 0.1 2 and 0.5 - 10 fg/L, respectively. The applicability of the method was demonstrated in a study on the occurrence of fungicides in the River Glatt, Switzerland, that drains a catchment area of 419 km² with a substantial proportion of agricultural land. Of the studied compounds only boscalid and fluopicolide were detected in flow-proportional weekly composite samples, generally at low concentrations up to 15 and 5 ng/L, respectively. While fluopicolide was detected in only 30 percent of the samples above the LOD of 0.5 ng/L, boscalid was detected in all samples analysed between March and October 2012.

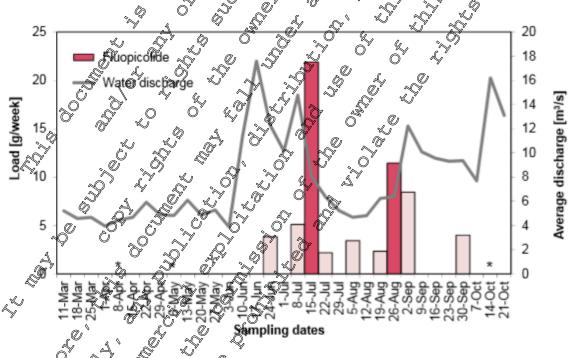
I. Materials and Methods

Surface water samples were collected from several lakes in the Swiss Midland region. Grab samples were taken at the outflow of the lakes at 0 - 1 m depth in June 2012. A 24-h composite effluent sample was taken from a wastewater treatment plant of Horgen, Switzerland following sand filtration. "Fossil" groundwater from a public fountain (Aqui) in Zurich, Switzerland was used as blank samples to study potential contamination from reagents and the experimental procedure as welf as cross contamination between samples. Purified water was used for recovery experiments and preparation of calibration standards. A sampling campaign was performed at the river Glatt, Switzerland, during March – October 2012 to monitor the presence of the pesticides and the seasonality of their occurrence in the river. Thirty-three flow-proportional weekly composite samples were taken from an outomatic water sampling station installed ≈ 400 m upstream from the mouth of river Glatt, where it flows into river Rhine (coordinates 47° 34' 25" N/08° 28' 33" E). The catchment area of 419 km² is characterized by intensive agricultural production (45 %), mainly arable land and grassland, followed by urbat areas 26 %, and forests 24 %). All water samples were collected into glass bottles and stored at A. C in the dark.

The samples were concentrated by an online SPE procedure which involved three main steps, sample loading, pre-concentration, and elution using a comm, switching technique. A 2-ml PEEK loop was over-filled with 2.1 mL of sample via an auto-sampler syringe. The sample was transferred from the loop to the SPE cartridge (two stacked Cemini NX C/8 cartridge pre columns, f > 3.0 mm i.d. 5 µm; Phenomenex, Torrance, CA) with printed water at a flow rate of 1 mL min, providing enrichment of the analytes as well as clean-up of the samples from highly polar components. After valve switching, the enriched analytes were eluted backwards directly on to a Gemini NX C/8 column (150×2.0 mm i.d. 5 µm; Phenomenex) equipped with a guard column filled with the same stationary prase (4×3 mm i.d.). The mobile phase consisted of 1 mM ammorium acetate in water (eluent A) and methanol (eluent B). Gradient elution at a flow rate of 0.2 mL/min was done in two steps with a fast initial increase from 5 to 50 % B within 2 min, followed by a slower mean increase to 95 % B within 2 min. Initial conditions were re-established within 0.4 min, and the column was equilibrated for 8.9 min prior to the next analysis, yielding a total run time of 32 mur.

Detection of fungicides was accomplished using an A&I 4000 triple quadrupole tandem mass spectrometer equipped with a Turbo fon Spray source. The most specific or most intense product ion of each target analyte was used for quantification, and a secondary product ion was used as a qualifier ion for confirmation. Together with the retention times, they were used to ensure correct peak assignment. The use of an isotopically labeled internal standard for each substance would be favourable for trace analysis to correct for the loss of analyte during sample preparation and for matrix effects. However, no such labelled standards were available for the fungicides tested in this study and, therefore, penflufen was selected as the most suitable surrogate standard. Penfluten has a medium retention time (21.2 min; range of all analytes = 17.0, 24.3 min) and its chemical structure resembles most other fungicides investigated. Furthermore, penfluten has not been authorized in Europe very long and is therefore not expected to appear in natural waters. The concentration of each compound was calculated by comparing the peak area ratios of the analytes and penfluten to the corresponding ratios in the calibration standards. Calibration curves, were constructed from two sets of 11 standards spiked in purified water (concentrations, 0.K-1,500 ng/L), acquired at the beginning and at the end of a measurement series, and obtained by a weighted (1/Q) linear least equares regression.


Three different water matrices were used for validation of the method: purified water, surface water from Swiss Andland lakes and treated vastewater. The following parameters were determined: limits of detection (LOD) and quantification (LOQ), linearity, precision, and accuracy. The LODs were determined on the basis of the lowest calibration standard where the peak in the quantifier ion trace reached a signal-to-mole ratio of ≥ 3 . The lowest concentration levels for which the quantifier signal-to-noise ratio of ≥ 3 .



II. Results and Discussion

The method was used to monitor samples from the river Glatt, Switzerland from March – October 2012. At the time when analyses were conducted, only plant protection products containing boschid, fluopicolide, and bixafen were commercially available on the Swiss market. Boscalid and fluopicolide, were found in low, but detectable concentrations in the range of 0.5 - 15 ng/s, with boscal being detected in all samples collected. Fluopicolide was detected in 30% of the collected samples above the LOD of 0.5 ng/L. The third compound, bixafen, was not detected at all. Only a small number of samples contained concentrations above the respective LOQs. The maximum concentrations were 15 and 4.5 ng/L for boscalid and fluopicolide,

Weekly fungicide loads were also calculated from the measured discharge of the river and the functicide concentrations in the flow-proportional weekly composite samples. The loads ranged between 22 and 22 g for fluopicolide Figure 7.5- 30. There was no clear correlation between weekly concentrations of fungicides and water discharge. This maybe, in part, due to the fact that the river originales at Lake Greifensee that contributes a significant portion of water in the river downstream. The maximum water concentrations typically coincided with fungicide treatments in the river downstream. The maximum water concentrations typically coincided with fungicide treatments in the River Glaw catchment area. For example, the occurrence of fluopicolide (approved for use on poteto fields with up to four applications per culture) mirrored the potato growing season, which fails within May – September. Typically, fungicide applications are ceased 3 weeks before farvest. This is reflected by lower fluopicolide detections in October.

Dark coloured based on samples with concentrations above LOQ, light coloured bars indicate loads calculated based on samples with concentrations below LOQ but above LOD (* - no sample available)

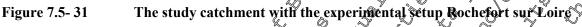
III. Conclusion

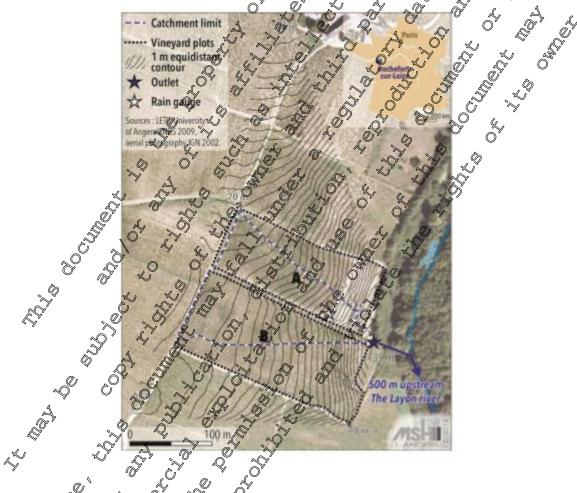
In the monitoring programme fluopicolide was detected in 30% of the collected samples above the LOD of 0.5 ng/L between March and October 2012. Fluopicolide was detected in flow-proportional weekly composite samples, generally at low concentrations up to 5 ng/L.

Assessment and conclusion by applicant: This publication provides information on the values for fluopicolide in Swiss surface water in 2012 and shows no concerns.

Data Point:	KCA 7.5/09
Report Author:	Lefranco, M.: Jadas-Hecart, Alb La Jenniesse Ny Landry, D.: Ravrauderu, S. 🛸 👘 🗌
Report Year:	
Report Title:	High frequency monitoring of pesticides in runoff water to improve understanding
Den ent Net	of their transport and environmental impacts
Report No:	
Document No:	$\frac{M-589692-38 \times 1}{\sqrt{2}}$
Guideline(s) followed in	
study:	
Deviations from current	none a s a s a s a s a s a s a s a s a s a
test guideline:	
Previous evaluation:	No, not previously submitted of a standard o
GLP/Officially	not applicable
recognised testing	
facilities:	not applicable
Executive Summary:	

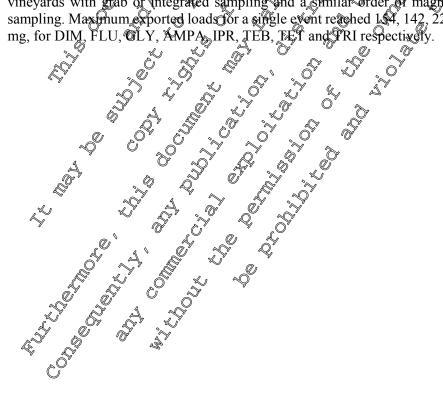
Executive Summary:


Rainfall induced peaks in pesticide concentrations can gour rapidly. Low frequency sampling may therefore largely underestimate maximum pesticitle concentrations and fluxes. Detailed storm-based sampling of pesticide conventrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2 minute) of seven pesticides (dimeromorph, fluppicolide, glyphosate, iprovalicarb, tebuconazole, tetraconazole and triadimenoi) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of vine and catchment in France. The maximum pesticide concentration were $587 \ \mu g \ U^1$. Samples from all of the runoff events exceeded the legal limit of 0.1 µg L⁻¹ for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles 125 percent). The point and average (time or dischargeweighted) concentrations indicated up to a 0 - or 4 - fold underestimation of the TU obtained when measuring the maximum concentrations respectively. This highlights the important role of sampling

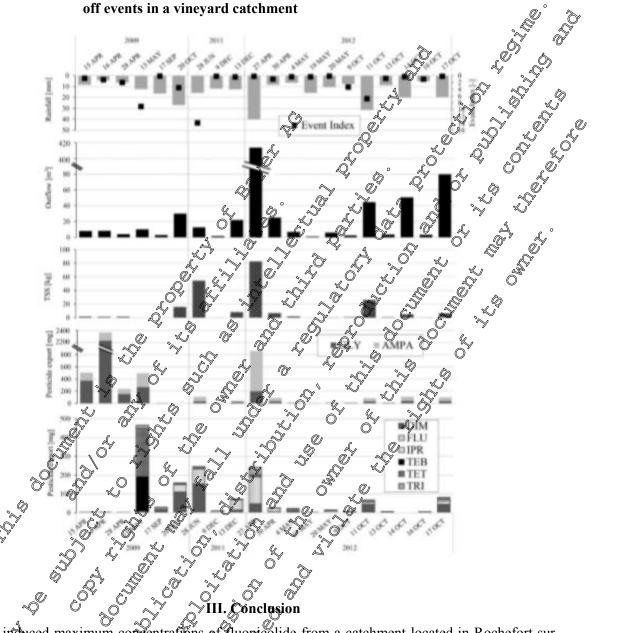

methods for assessing peak exposure.

I. Materials and Methods

The 2.2 ha catchment was located in Rochefort sur Loire in the West of France, $47^{\circ}19''19.47''$ N; $0^{\circ}38''21.39''$ W). The outlet of the catchment was located 37 m from an influent of the Layon River that is itself 500 m downstream and is characterised by three different gradients: (i) The upper catchment had 0 - 5% slopes (51% of the total catchment area); (ii) The middle catchment had 5 - 15% slopes (40%); and (iii) The lower catchment had >15% slopes (9%), including apricultural terfaces. Soll characteristics for the catchment were as follows: sand: 42.3%; silt: 36.1%; clay: 19.5% OM: 24%; pH: 7.1; CEC: 10.4 meq 100 g⁻¹; CaCO₃: 0.1%. Vineyards cover 89% of the catchment and were divided into two fields managed by two farmers (subscripts A and D) Figure 7.5-31). These fields were separated by a grassed strip that had been reinforced with stones near the catchment outlet to lumit errol on. Vines were planted perpendicular to the slope. Grass covered the vineyard plots along every two vine rows (1.4 m separated).


31 commercial products with 21 different active ingredients were applied to the vineyard during 2009, 2010, 2011 and 2012. The study focussed on 7 pesticides (dimetomorph (DIM), fluopicolide (FLU) this summary will focus on the results for fluopicolide, glyphosate (GLY), iprovalicarbe (IPR), tebuconazole (EB), retraconazole (TET) and triadimenol (TRI)) and one degradation product (AMPA). The 7 pesticides were mostly applied between March and July. TEB and TRI were generally applied to the oppstream section of post A, while FLU, IPR and TET were only applied to plot B (Figure 7.5- 30).

Water discharge was measured at the catchment outlet every 30 s using a bubbler flow module with a 5 mm precision combined with a Venturi channel. As soon as the water level increased above 2 cm, 500 mL of water were sampled every 2 minutes using an automatic sampler containing 24 polyethylene flasks of 500 mL. Water samples were then collected and placed on ice for transportation to the laboratory.


Samples were filtered through a 0.45 µm regenerated cellulose filter to measure the total suspended solid concentration (TSS). Raw and filtered samples were kept at -18° C in the dark prior to chemical analysis. GLY and AMPA samples were analysed after filtering (0.45µm), this step being required for the derivatization of both compounds prior to their analysis by HPLC with fluorescence detection. Other compounds were analysed in raw water in order to not underestimate the runoff export via the particulate phase (>0.45 μ m). After spiking with surrogate standards chlorpyriphos-d₁₀ and diuron-d₆, water samples (500 mL) were successively liquid-liquid extracted at 3 pHs (∞^2 , 7 and >12) using a morture of dichloromethane: ethyl acetate 80:20. The extracted were combined, depydrated and vaporated to ≈ 1 mL under vacuum. The concentrated extract was transferred into a vial and adjusted accurately to YmL with ethyl acetate. An aliquot of this extract was solvent exchanged with a mixture of water methanol (50:50 with 0.1% acetic acid). Analysis was performed by fiquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS-MS). The remainder of the ethyl acetate extract was analysed by gas chromatography/ion trap tandem mass spectrometry GCAT-MS-MS. The pesticide quantification limit within the water camples was (95 µg)⁻¹. Recovery rates ranged between 86 and 96%.

Twenty rainfall-runoff events occopring between 2009 and 2012 were studied. Each event yielded >1m³ total discharge at the outlevof the catchment. These events represented a wide range of rainfall intensities and durations, runoff percentages and volumes fogure 3- 32 Maximum perticide concentrations reached 13, 8, 386.9 37, 3, 81, 68 and 4.2 agL⁻¹ for DIM, FLU, GLY, @MPA, IPR, TEB, TET and TRI, respectively. These concentrations are more than one order of magnitude higher than reported in French vineyards with grab or integrated sampling and a similar order of magnitude for short time interval sampling. Maximum exported loads for a single event reached 1.44, 142, 2229, 660, 39, 185, 255 and 39

Figure 7.5-32 Rainfall, outflow, total suspended solids (TSS) and pesticide and degradation product loads (GLY, AMPA, DIM, FLU, IPR, TEB, TET, TRI) for 20 run off events in a vineyard catchment

Rainfall-induced maximum concentrations of fluopicolide from a catchment located in Rochefort sur Loire in the West of France, taken during 2009, 2010, 2011 and 2012 reached 8 µg/L (concentration in surface runoff prior of entering a sufface water body). The maximum exported load of fluopicolide for a single event reached 142 mg. C

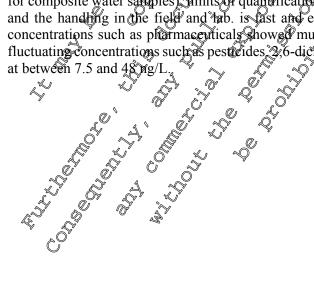
Assessment and conclusion by applicant.

j.

Ø1

C^A

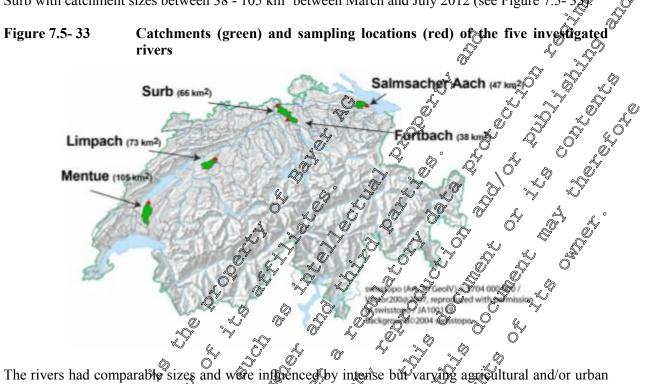
This publication provides information on the exposure values for fluopicolide in French surface water in 2008 to 2002 and shows no concerns. 0


M-01 (AE C653711, BAM)

The public monitoring data assessment KCA 7.5/01 included surface water monitoring data for M-01. A further four publications provide information on M-01 residues in surface water in Switzerland (KCA = 7.5/10), Denmark (KCA 7.5/11), Luxembourg (KCA 7.5/12) and Sweden (KCA 7.5/13). The Luxembourgian publication has additional information on M-01 residues in drinking water, tap and bottled).

	$A \overset{\sim}{\sim} $
Data Point:	KCA 7.5/10
Report Author:	Moschet, C.; Vermeirssen, E. L. N., Singer, H.; Stamm, C.; Hollender, D
Report Year:	
Report Title:	Evaluation of in-situ calibration of Chemcatcher passive samplers for 322
	micropollutants in agricultural and urban affected givers of a construction of the second sec
Report No:	$\underline{M-529707-01-1}$
Document No:	<u>M-529707-01-1</u>
Guideline(s) followed in	
study:	
Deviations from current	none is in the second s
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially	No, not previously submitted
recognised testing	
facilities:	
Acceptability/Reliability:	Yes a start for the second
0	

Executive Summary:


In a large field study, the in-situ catioration of the Chemcatcher passive sampler - styrenedivinylbenzene (SDB) covered by a polyether sulfone (PES) membrane - was evaluated for 322 polar organic micropollutants which included 2,6 tlichlorobenzamide (BAM), five rivers with different agricultural and urban influences were monitored from March to July 2052 with two methods i) two-week time proportional composite water samples and ii) two-week passive sampler deployment. All substances - from different substance classes with TogKow -3 to 5, and neutral, anionic, cationic, and zwitterionic species were analysed by figuid chromatography high-resolution tandem mass spectrometry. This study showed that SDB passive samplers are well-suited for the qualitative screening of polar micropollutants because the number of detected substances was similar (204 for SDB samples vs. 207 for composite water samples) fimits of quantification were comparable (median: 1.3 ng/L vs. 1.6 ng/L), and the handling in the field and tab. is tast and easy. Substances with moderately fluctuating river concentrations such as plarmacenticals howed much better correlations than substances with highly fluctuating concentrations such as plarmacenticals howed much better correlations than substances with highly fluctuating concentrations such as plarmacenticals howed much better correlations than substances with highly fluctuating concentrations such as plarmacenticals howed much better correlations than substances with highly fluctuating concentrations such as plarmacenticals howed much better correlations than substances with highly at heat with the samples at heat with 7.5 and 48 kg/l

I. Materials and Methods

The study investigated five medium-sized Swiss rivers (Furtbach, Limpach, Mentue, Salmsacher Aach, Surb with catchment sizes between 38 - 105 km² between March and July 2012 (see Figure 7.5- 329).

land use. In each catchment, from mid Marchoo mid July 2012, nine two-week composite water samples were taken and nine Shemcatchers (SDB-RPS disks covered by PES membranes) were deployed for two weeks. Composite water samples were taken time proportionally by automatic sampling devices

Conditioned SDB passive samplers were deployed at the same locations during approximately the same time intervals by attaching two disks to an iron rod (see Figure 7.5- 34). Both SDB disks were recovered after two weeks and each put in 6 mL of acetone. The samples were cooled on-site at 4 °C, transported

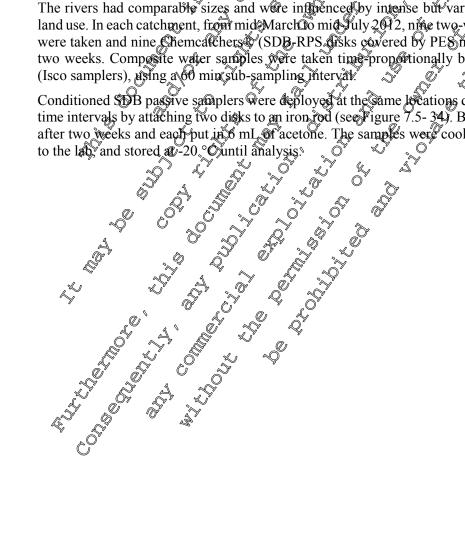
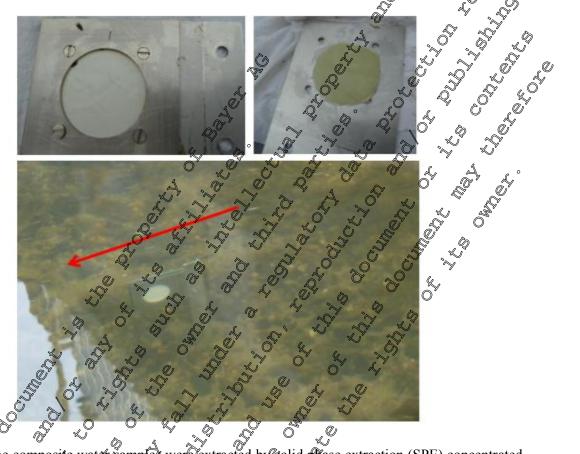
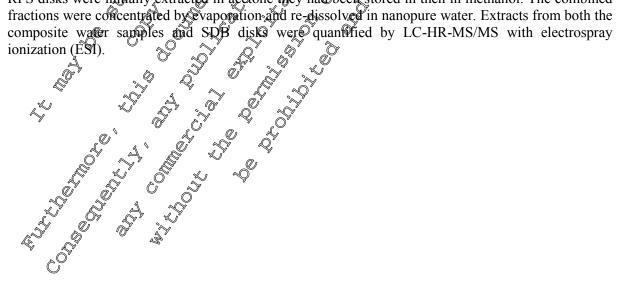




Figure 7.5-34 Top left: prepared and conditioned passive sampler (SDB-RPS disk covered by a PES membrane). Top right: recovered SDB-RPS disk (PES membrane already removed). Bottom: deployed passive sampler in the river (iron rod was hammered roughly 30 cm into the riverbed). The red arrow indicates the flow direction.

One litre of the composite water samples were extracted by solid phase extraction (SPE) concentrated on a multi-layer cartridge containing Oasis HLB Strata XAW, Strata XCW, and Isolute ENVb then evaporated to 0.1 mL under nitrogen stream and be-dissolved in nanopure water. The Empore[™] SDB-RPS disks were initially extracted in acctone they habbeen stored in then in methanol. The combined fractions were concentrated by evaporation and re-dissolved in nanopure water. Extracts from both the composite water samples and SDB disks were quantified by LC-HR-MS/MS with electrospray ionization (ESD)

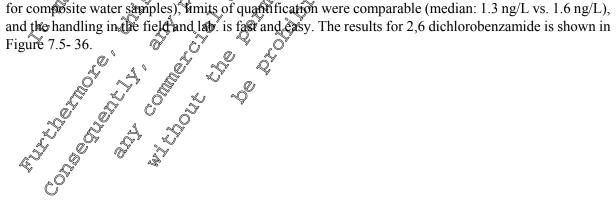
II. Results and Discussion

From the 322 investigated substances, 207 were detected at least once in a composite water sample and similar in both sampling types (181 overlapping substances), but not identical. On the one hand, 23 substances had no detection in the composite water sample but at locat one date. 204 were detected at least once on an SDB passive sampler. The range of substances detected was very sampler. 2,6-dichlorobenzamide (BAM) was one of the substances investigated and was detected in 44 samples at between 7.5 and 48 ng/L (see Table 7.5-49).

Table 7.5- 49:	Quantitative results for 2,6-	· dichlorôbenzamide »
	Quantitutive results for 290	ultillo go chizannae


Table 7.5- 49:	Quantitati	ve results	for 2,6- di	chlor ô benz	amide 🗳		
Compound name	Substance class ^a	LOQw (ng/L)	LOQ SDB (ng/SDB) ^b .	No. of Detection in water	No of defection mr SDB	Minipfal concertoration (rg/L) ^c کر	Maximal concentration (ng/L) °
2,6- dichlorobenzamide (BAM)	PE-TP	5			¥ 4		

^a Substance class: PE-TP: pesticide transformation product,


^a Substance class: PE-TP: pesticide transformation product. ^b Only substances detected in at least 10 water samples were quantitatively evaluated in the passive samples, ^c From the measurement of composite water samples were quantitatively evaluated in the passive samples, Quantitative correlation was established for 114 of the substances, a regression between water concentration from the composite water samples (rps/L) and sampled mass on SDB clisks (ng/d) was calculated (see Fig. 1). For the majority of the substances (SS out C114) wither a good or fair correlation concentration from the composite water samples (nPL) and sampled miks on SDB disks (ng/d) was calculated (see Fig. 1). For the majority of the substances (S8 out 67 114) perity a good fair correlation was found (R2 > 0.9 or R2 between 0.75 and 0.9 as pectively. The correlation for 2, edichlorobenzamide is shown in Figure 7.5 - 35 calculated (see Fig. 1). For the majority of the substances (88 out @ 114) either a good@r fair correlation

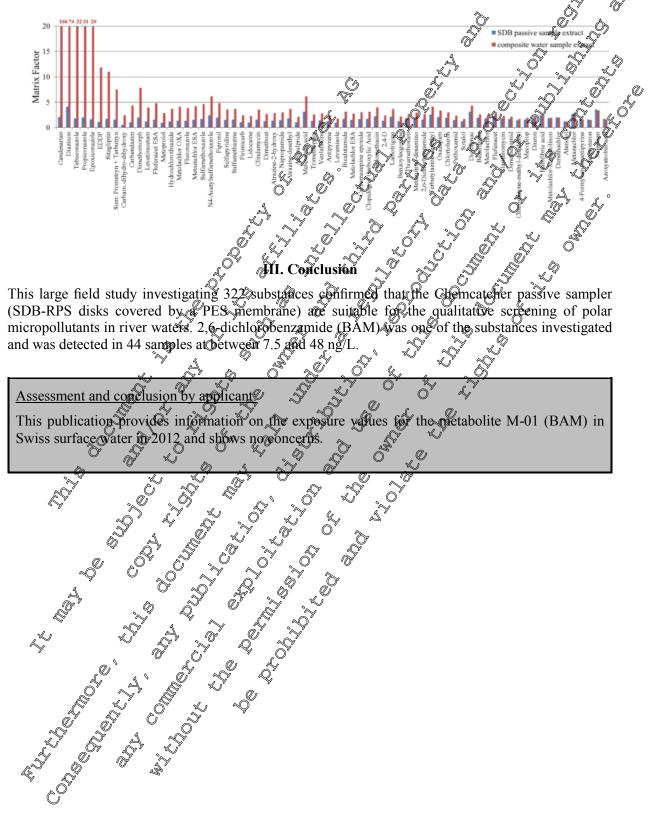

micropollutants because the number of detected substances was similar (204 for SDB samples vs. 207 for composite water samples), timits of quantification were comparable (median: 1.3 ng/L vs. 1.6 ng/L),

Figure 7.5-36

Comparison between matrix factor in the SDB passive sample extracts (blue) and in composite water sample extracts (red). Matrix factors were calculated by comparing the peak area of each substance in a calibration standard (in nanopure water) with the peak area in a spiked environmental sample

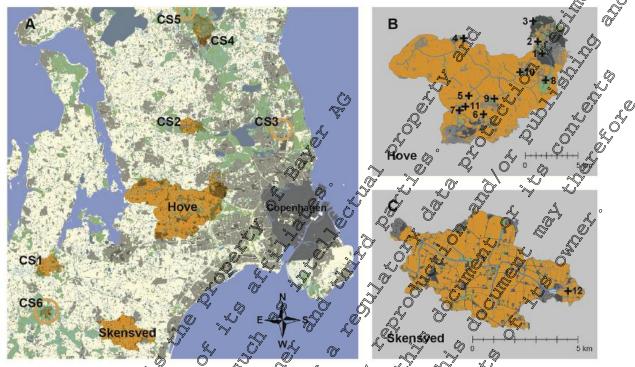
Data Point:	KCA 7.5/11	1
Report Author:	Mcknight, U.; Rasmussen, J.; Kronvang, B.; Binning, P.; Bjerg, P.	
Report Year:	2015	~
Report Title:	Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams	
Report No:	<u>M-557391-01-1</u>	_
Document No:	<u>M-557391-01-1</u>	
Guideline(s) followed in	not applicable	<i>R</i> o
study:		l I
Deviations from current		0
test guideline:		Ň
Previous evaluation:		N N
GLP/Officially	No, not conducted under GDP/Officially recognised testing facilities	
recognised testing	No, not conducted under GDP/Officially recognised testing facilities	
facilities:		
Acceptability/Reliability:		

Executive Summary:

Current findings of pesticides in surface and groundwater were linked to historical pesticide usage, focusing on the potential contribution of legacy pesticides to the predicted ebotoxicological impact on benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water.

A large number of pesticides and selected metabolites including 2,6-dickloroberzamide (BAM) were determined in samples collected from headwater streams in four catchments located in Sjaelland, Denmark. Sampling was conducted predominantly in May to June from 2016 to 2012 during the main pesticide application period in Denmark. 2,6-Dichlerobenzamide (BAM) was analysed for in water samples in 2010 and 2011. Sediment samples were analysed for selected compounds in 2011 and 2012 but did not include BAM.

BAM was one of the most prevalent compounds detected in the water samples. Maximum concentrations of BAM were 0.19 upL in storm-flow water samples, 1.7 ug/L in base-flow water samples and 2.1 ug/L in groundwater. The median concentration was 0.14 ug/L in storm-flow and 0.036 ug/L in groundwater


J. Materials and Methods

The main objective of this work was to link current findings of pesticides in Danish streams and groundwater to the history of pesticide page, tocusing on whether legacy pesticides contributed to the overall predicted toxicity impacting equatic benthic macroinvertebrates. Five decades of agricultural application data were used in combination with measured stream concentrations for a number of pesticides found in 14 Datish headwater stream. The publication evaluates whether groundwater, in addition to precipitation and surface runofo is possible source of pesticides (particularly legacy herbicides) entering surface water.

A large number of pesticides and selected metabolites including 2,6-dichlorobenzamide (BAM) were determined in the dissolved water phase (and for some compounds, but not BAM, also in the sedimentbound phase) of samples collected from headwater streams in four catchments located in Sjaelland, Denmark (Figure 7,5,37). Two streams were chosen as control sites, representing least disturbed (subtratchments with > 20% forested or natural lands (CS1-2; Figure 7.5- 37). Eleven streams were chosen in the Hove catchment (Figure 7.5- 37B), where agriculture represents 80% of the catchment land use. One stream was located in the Skensved catchment (Figure 7.5- 37C), where agriculture represents ca. 99% of the total land use. Tile drains, triggered by stormflow events and wet seasons, were present in agricultural fields in both catchments.

Figure 7.5-37: Location of the study catchments (A) on Sjaelland, Denmark, including the position of the six least disturbed control catchments (labelled CS1-6); the (B) Hove and (C) Skensved catchments together with their respective stream networks.

In (a), green and gray areas indicate natural and urban meas, respectively In (B) and (C), green Grange, light gray and dark gray areas indicate natural areas, cutivated lands, uncultivated lands and residential settlements, respectively. Black crosses indicate sampling locations within each carchment. Gote that streams QS1-2 were actionly sampled during this field campaign; all other control catchments was taken from the NOVANA database

Sampling to capture surface runoff and flow through tite drains during heavy precipitation events was conducted in May to June from 2010 to 2012 to sulting in 8 storm-flow event samples. One grab sample was additionally collected at each site in August 2000 after a period with little to no precipitation and restrictions on the application of pesticides (close to harvest), representing base-flow conditions.

Surface water samples collected in May to the 2000 and May-June 2011 were analysed for 2,6dichlorobenzamide (BAM) by EC-MS/MS after solid phase extraction. Suspended sediment and bed sediments were not analysed for BAM.

II. Results and Discussion

An overview of the concentrations of 2,6-dichlorobenzamide (BAM) detected in the storm-flow, baseflow and groundwater are given in Table 7.5- 50. Maximum concentrations of BAM were 0.19 ug U in storm-flow water samples, 1.7 ug/L in base-flow water samples and 2.1 ug/L in groundwater.

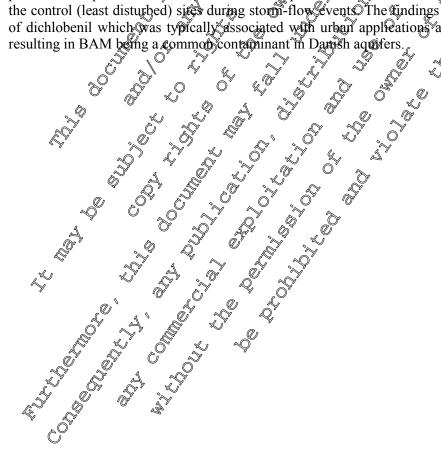
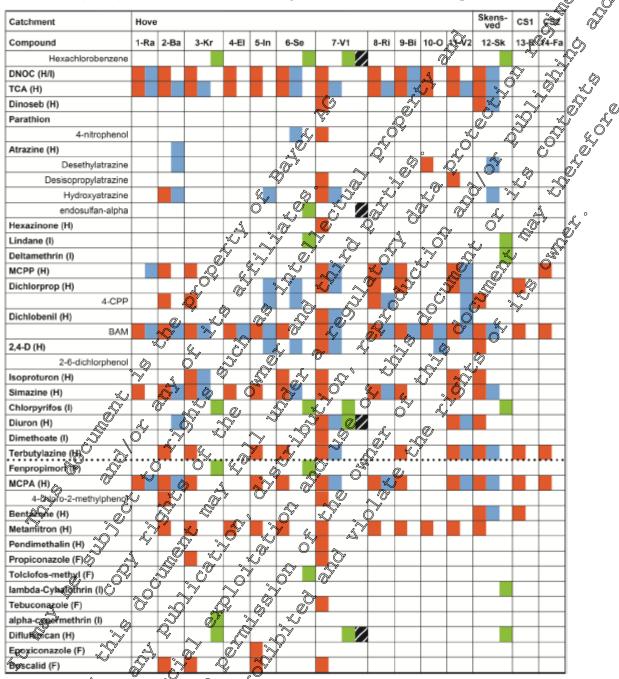

The median concentration of BAM was 0.14 ug/L in storm-flow events ($n \in 8$) and 0.036 ug/L on groundwater extraction well from the Hove catchment (n=63).

Table 7.5- 50: Overview for maximum and median pesticide concentrations of 2.6 dichlorobenzamide (BAM) detected in the storm-flow, base-flow and groundwater (Hove catchment only).

Maximu	m concentration (µg/L)	detected Q	Median concent	ration detected
Storm-flow	Base_flow	Groundwater	Stoom-flory	Groundwater
0.19			0.14 ⁵	0.036
	Storm-flow 0.19	(μg/L) % Storm-flow Base_flow 0.19 07	(μg/L) Ø [×] Storm-flow Base-flow Groun@water 0.19 Ø ⁷ Ø 2.1 Ø	(μg/L) Q (μg Storm-flow Base-flow Groundwater Storm-flow 0.19 0.7 2.1 0.14

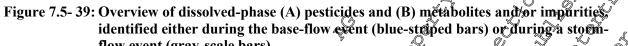

Note that median equals maximum for base-flow as this was only can pled once. The maximum concentration detected per pathway is highlighted to bold A

The number of compounds found per stream site ranged from to 240 or storm-flow samples, and from 1 to 10 for base-flow samples (Figure 7.5- 30). It was evident from this overview which compounds were most widespread (found in multiple streams) as well as which stream locations were the most impacted (most compounds present per site). 2 6-dichorobenzamide (BAM) was one of the most prevalent compounds detected in the water samples. BAM was also one of the compounds detected in the control (least disturbed) sites during storm-flow events. The findings are reported to be due to use of dichlobenil which was typically associated with urban applications and not with agricultural use, resulting in BAM being a common contaminant in Danish aquifers.

Figure 7.5- 38: Incidence of detection of pesticides (justified left) and their respective degradation products and/or impurities (justified right) including 2,6-dichlorobenzamide (BAM), with each column showing one of the 14 streams sampled.

Each cell can be populated with up to your colours, representing the different paths: orange squares indicate storm flow samples; blue indicates base flow; areen indicates used ended sediment (SPS); black-striped squares indicate bed sediment (BS). SPS samples were collected at four sites: 3-Kr, 6 & , 7-V1, 12-Sk;

BS samples were only collected at 7-VL


Stream site 23 and 24 are least disturbed controls (labelled as catchments CS1 and CS2).

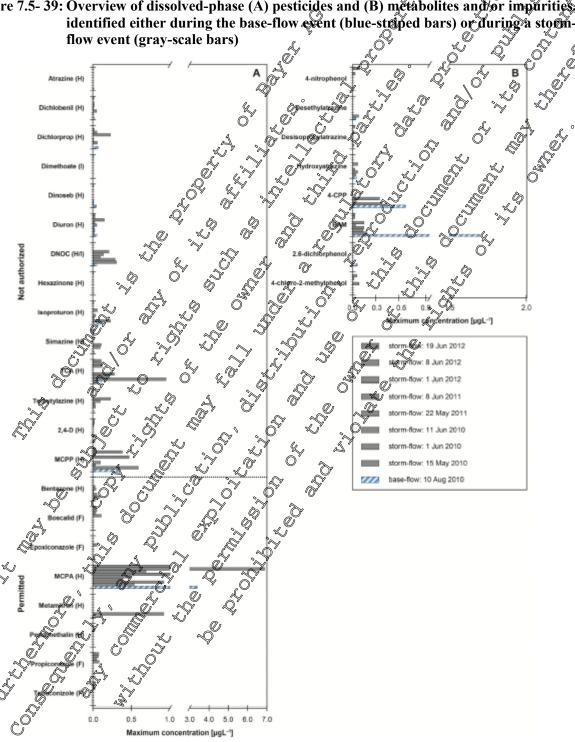

Note that pesticides listed below the dotted black line indicate pesticides that are still permitted for use in Denmark

Figure 75-39 separates the storm-flow and baseflow water samples for pesticides (Figure 7.5-39A) and detected metabolites and impurities (Figure 7.5-39B). It is proposed that groundwater, in addition to precipitation and surface runoff, is possible source of pesticides (particularly legacy herbicides) entering surface water. Almost all pesticides (17 from 22 detected) not authorized for use in Denmark,

and some metabolites including 2,6-dichlorobenzamide (BAM), were detected during base-flow conditions when groundwater discharge is expected to be the most dominant source of inflow to the streams. Maximum storm-flow and base-flow concentrations were detected at the same stream for compounds such as BAM (Site 5-In) indicating the importance of groundwater inflow to the stread for these compounds in addition to the inflow via surface run-off and tile-drains during storm-flow events. For BAM, the highest detected concentration was in the groundwater, with comparable concentrations in the base-flow (Table 7.5- 50).

Note the dotted black line that marks the transition from not authorized to permitted status according to Danish legislation.

Ò

Further details of the groundwater survey of the Hove catchment are provided in Table 7.5-51. In total 63 wells were sampled, and 457 samples were analysed. 2,6-dichlorobenzamide (BAM) was detected in 59 wells (out of 60 wells in which pesticides were detected) of which 20 wells exceeded the detection limit of 0.02 µg/L and 13 wells exceeded a concentration of 0.1 µg/L. The maximum concentration of BAM detected in the survey was 2.1 μ g/L.

Table 7.5- 51: Maximum concentration for 2,6-dichlorobenzamide (PAM) detected Ô groundwater extraction wells within the Hove catchment

Compound	limit	with		$c < DK MCL_{c}$	≫DK MCL O ^V (μg/L)	Nowwells > DK MCD (from fr)	
2,6-dichlorobenzamide (BAM)	0.01	59	0.090	20	2.1 Q	2 0 ³³ 2 2	45

DL = Detection limit

DL = Detection limit DK MCL = Danish maximum concentration limit (Danish drinking water limit (00.1

In a survey conducted in Danish headwater streams in four catchments located in Spelland, Denmark between 2010 and 2012, 2,6-dichorbenzamide (BAO) was one of the oost prevalent/compounds detected. The maximum concentrations of 2,6-dich probeptamide BAM detected in the storm-flow water samples, base-flow water samples and groundwater were 0.19 (g/L, 1, 7 ug/L and 2.1 ug/L in groundwater. The median concentration of BAMowas 0.14 ug/L in storm-flow events and 0.036 ug/L in groundwater.

This publication provides information on the exposure values for the metabolite M-01 (BAM) in

Data Point:	KCA 7.5/12	
Report Author:	Bohn, T.; Cocco, E.; Gourdol, L.; Guignard, C.; Hoffmann, L.	
Report Year:	2011	
Report Title:	Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides	9 9
Report No:	<u>M-597682-01-1</u>	
Document No:	<u>M-597682-01-1</u>	
Guideline(s) followed in	not applicable	2
study:		Q
Deviations from current		6
test guideline:		L
Previous evaluation:	No, not previously submitted $\sqrt{2}$	0° 1
GLP/Officially	No, not conducted under GPP/Officially recognized testing facilities	
recognised testing	No, not conducted under GCP/Officially recognised testing facilities	
facilities:		
Acceptability/Reliability:	$ Yes \qquad \bigcirc \qquad $	

Executive Summary:

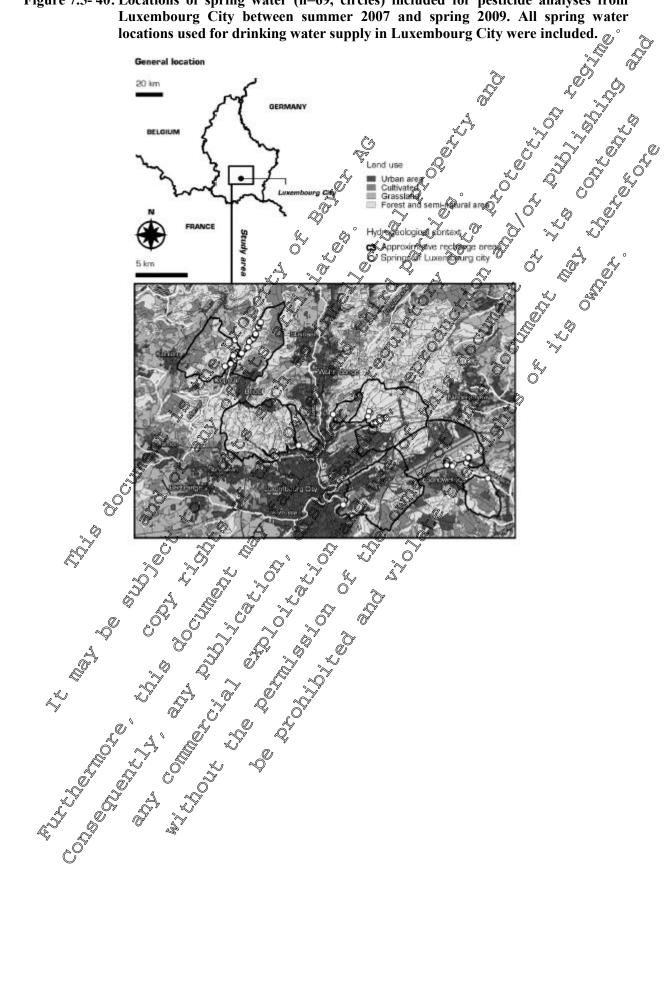
The aim of this investigation was to study concentrations of 9-triazine herbicides and their major degradation products in drinking water, including spring water, tap water and bottled water in Luxembourg. In addition, the monitoring included analysis for 2,6-thchlocobenzamide (BAM). Spring water (2007/2008/2009, n \approx 69/69/69), tap water (2008/2009, n \approx 19/26), and bottled water (2007/2008/2009, n = 5/13/7) were sampled at locations in Luxembourg and investigated for pesticides by LC-ESI-MS/MS.

2,6-dichlorobenzamide (BAM) was detected in 58 out of 69 samples of spring water (79.9% analyses) collected from summer 2007 to spring 2009. In S1 out of approximately 700 samples, concentrations slightly exceeded 05 ug/L. The maximum concentration of BAM in spring waters was 0.346 μ g/L and the mean concentration was 0.03 μ g/L. BAM was detected in tap water at concentration ranging from 0 to 0.096 μ g/L collected from spring 2008 and spring 2009. BAM was detected in 4 out of 25 samples of bottled water at average concentration of 0.002 μ g/L (range 0 to 0.014 μ g/L).

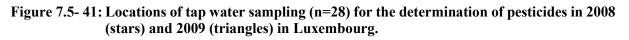
I. Materials and Methods

The aim of this story was to investigate pesticide contamination of individual spring water locations in Luxembourg and to determine concentrations in finished trinking water (tap water) and bottled water in Luxembourg. A total of 19 pesticides and their degradation products were analysed for with the main targets s-triazine herbicides and their major degradation products. The work included analysis of 2,6-dichlorobenzamide (BAM).

Spring water was monitored between sommer 2007 and spring 2009. 69 springs from the major sandstone aquifer in Luxenbourg located in the Luxembourg City area were monitored in ten collection campaigns (July/August 2007, November 2007; January 2008, March 2008, May 2008, June/July 2008, September 2008, October/N@ember 2008; Ganuary 2009, March 2009).


Tap water (\$4 samples) from 28 different locations were analysed in spring 2008 and spring 2009. Tap water wascollected from private households mainly in southern Luxembourg. 15 villages or cities, each with one to five sampling locations were tested.

Various bottled waters (25 samples in total, 15 from Luxembourg) were obtained in summer 2007, 2008 and 2009 A total of 10 brands were investigated including both sparkling (n=4) and still water (n=21).


The locations of the springs are shown in Figure 7.5-40 and tap water sampling sites in Figure 7.5-41.

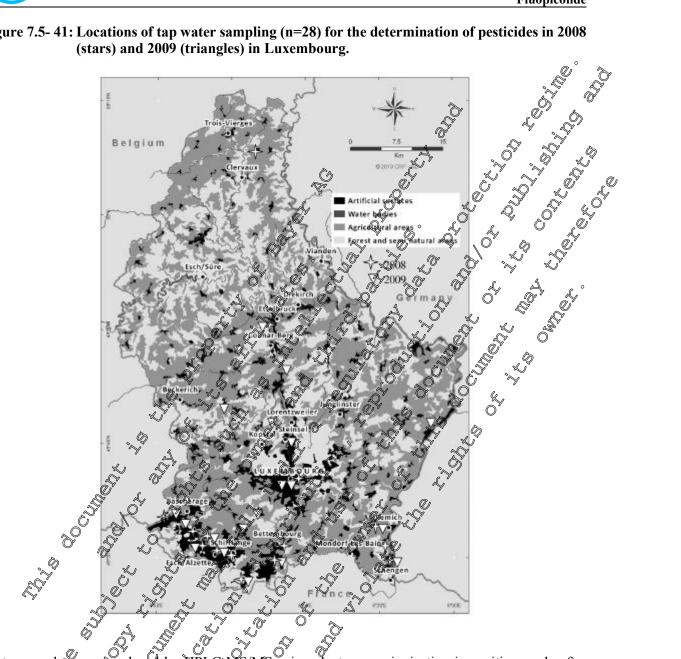


Figure 7.5-40: Locations of spring water (n=69, circles) included for pesticide analyses from Luxembourg City between summer 2007 and spring 2009. All spring water

Water samples were analysed by TPLC MS/MS using electrospray ionization in positive mode after solid phase extraction for 19 pesticides and their degradation products. Details of the analytical conditions for 2,6-dichlorobenzamide CBAMO are listed below.

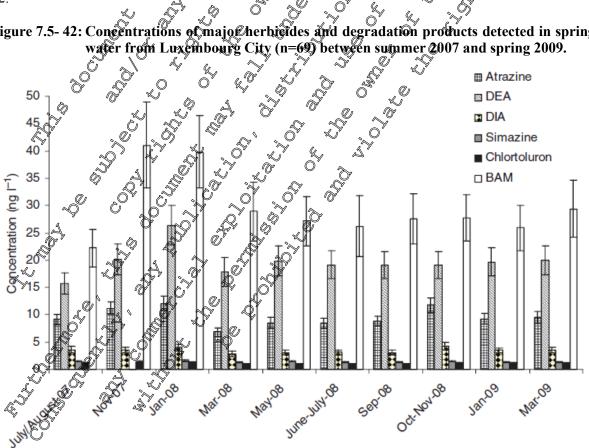
Table 7.5- 52: Summary of analytical conditions for 2,6-dichlorobenzamide (BAM) quantified by LC/MS/MS in positive mode

time (minutes)	Parent ion (m/z)	Declustering potential (V)	Transition 1 Collision energy (V)	Transition 2 Collision energy (V)
2,6-dichlorobenzamide (BAM) 3.30	190.0	44	109.0 (50)	172.9 (23)
		-		

II. Results and Discussion

The concentrations of 2,6-dichlorobenzamide (BAM) in Luxembourg spring water are given in Table 7.5-53. It was the most common compound detected in spring water, detectable in the majority of springs (79.9% of analyses). The maximum concentration of BAM was 0.346 µg/L and the mean concentration was 0.03 µg/L. BAM was found in 51 spring water samples (out of approximately 700) at concentrations above 0.1 µg/L. However, it is stated such concentrations were only forhad in dew individual springs, which were usually not consumed unpooled. Once water from various sources is pooled concentrations of BAM were predicted to be more likely below 0.1 mg/L.

Table 7.5- 53: Summary of analytical results for 2,6-dichlorobenzamide (BAM) quantified Luxembourg spring water (n=69) between summer 2007 and spring 2009.


·			Č¥		
	Locations* with	Analyses with	Minimum	Maximum	Mean 🗸
	detectable				concentration
	concentration (n)	concentrations (%)	(ngAL)	(ng/D) ·	√ (ng/L)
2,6-dichlorobenzamide	58	O´79,20° č		7 3 346 _L	<u>_</u> 30 °
(BAM)		ANT	Q° 4	<u> </u>	

* Number of locations with at least one finding apove the limit of detection of ng/L

The range of land usage varied from \$7 to \$8.8 cropland average=16.5%), and from \$2.2% to 26.6% (mean=15.4%) for urban usage. A high Firelation between FAM and urban land use was found (R=0.81, p<0.05) which suggests that exposure may not have been from agricultural use. Dichlobenil, one of the parent compounds of BAMA is reported to have been used mainly for Pawns and gardens in Luxembourg.

The results of the 10 different collection campaigns over the two year period are shown in Figure 7.5-0 42. L. Ø

\$ } Figure 7.5- 42: Concentrations of major herbieldes and degradation products detected in spring water from Luxenbourg City (n=69) between summer 2007 and spring 2009.

Values are the mean ±SE. BAM, 2,6 dichlorobenzamide; DEA, desethylatrazine; DIA, deisopropylatrazine

Tap water was collected at a number of locations (n=15 villages or cities, each with one to five sampling locations) in Luxembourg. 2,6-Dichlorobenzamide (BAM) was one of the few compounds detected in tap water at concentrations ranging from 0 to 0.096 μ g/L, with a mean concentration of 0.013 μ g/L At five of the 15 locations no BAM was detected.

Seven Luxembourgish bottled water varieties from two major areas were investigated. In addition, three French brands commonly sold in Luxembourg were investigated (Table 7.5- 54). BAM was detected in four out of 25 samples (all originating from Luxembourg), with average concentrations of 0.002 kg/L (range 0 to $0.014 \mu g/L$).

Table 7.5- 54:	Levels of 2,6-dichlorobenzamide	(BAM) i	n bottled water	sold	Lasembourg
	during spring 2008 and spring 200)94	$\downarrow 0^{\vee}$	× .	

ĈA

		"Q"	X	
Number	Origin	n Ø "	Type Type	dichlorobenzamite (BAM, ng/L)
1	Luxembourg, north (Canton Echternach)	<u>° 1 °</u>	Øparklung /	Not detected
2	Luxembourg, north (Canton Echternach)	, A	Weakly sparkling	Not detected
3	Luxembourg, north (Canton Echternach)	3	Non-sparkling	11.9 ± 2.4
4	Luxembourg, west (Canton Redingen	V 4 X	Non-sparkling	\$.3 ± 3.9
5	Luxembourg, west (Canton Redingen 📎	₩.	Non-sparkling	Not defected
6	Luxembourg, west (Canton Recongen 🖉	<u>01</u>	Non-sparkling	Not detected
7	Luxembourg, west Canton Redingen	° 2 √	Nen-sparkling	Not detected
8	France (Haute-Savole) &	Ŕ	Non-sparkling	Not detected
9	France (Alsace-Porraine)	£ 2	Non-sparkling	Not detected
10	France (Auvergne)	¢ 5,0°	Non-sparkling (0.1 ± 0.1

LUX Conclusion

A survey of spring waters, this heddrinking water (tap vater) and bottled water in Luxembourg was conducted between summer 2007 and spring 2009. Data was collected from a total of 69 spring waters in ten collection campaigns (approximately 700 samples) 34 tap water samples and 25 samples of bottled water.

2,6-Dichlorobenzarode (BAM) was found in 51 spring water samples at concentrations above 0.1 μ g/L. The maximum concentration of BAM was 0.346 μ g/L and the mean concentration was 0.03 μ g/L. It was one of the few compounds detected in tap water at concentrations ranging from 0 to 0.096 μ g/L, with a mean concentration of 0.013 μ g/b. BAM was detected in four samples of bottle water with average concentrations of 0.002 μ g/L (range 0.00.012 μ g/L).

Assessment and conclusion by applicant:

This publication provides information on the exposure values for the metabolite M-01 (BAM) in Luxembourg spring waters, finished drinking water (tap water) and bottled water in 2007 to 2009 and shows to concerns.

Data Point:	KCA 7.5/13	
Report Author:	Ahrens, L.; Daneshvar, A.; Lau, A. E.; Kreuger, J.	
Report Year:	2018	
Report Title:	Concentrations, fluxes and field calibration of passive water samplers for pesticides and hazard-based risk assessment	
Report No:	<u>M-642713-01-1</u>	
Document No:	<u>M-642713-01-1</u>	
Guideline(s) followed in		Ĩ.a
study:		e) i
Deviations from current	none & & &	(
test guideline:		L.
Previous evaluation:	No, not previously submitted x	
GLP/Officially	not applicable	
recognised testing		
facilities:		
Acceptability/Reliability:	Yes O' V A A	

Executive Summary:

The performance of three passive sampler types; Chemcatcher® CI8, polar organic chemical integrative sampler-hydrophilic–lipophilic balance (POCIS-HLB) and siligone fubber (SR), based on polydimethylsiloxane (PDMS) was evaluated at two sampling locations in southern. Sweden over a period of 6 weeks and compared to time proportional composite active sampling. Analysis for 124 pesticides including 2,6-dichlorobenzamide (BAM) was performed.

In total 90 pesticides were detected in surface water. 22 using active sampling and 32, 58, and 69 using the passive samplers Chemcatcher® C18, POCIS-IDEB and SR, respectively. No concentrations of 2,6dichlorobenzamide (BAM) were detected by passive sampler Chemcatcher® C18 at either site over the six week period (LOD 14 hg/L). The compound was detected at both sites at mean concentrations of 14 and 35 ng/L using active sampling, 6.9 and 2.9 ng/L using passive POCIS-ILB samplers and 40 and 8.6 ng/L using passive SR samplers. The corresponding maximum concentration were 21 and 78 ng/L using active sampling, 11 and 4.4 ng/L using passive POCIS-ILB samplers and 74 and 13 ng/L using passive SR samplers.

In the week monitoring programme 2,6-dichlorobenzamide was one of the most frequently detected compounds in the two surface water streams in 2013 with detection frequencies of 100% by active sampling and two out of three presive sampling methods.

Fresh water samples were collected between 8 July to 19 August 2013 from two monitoring stations included in the Swedish national pesticide monitoring programme using three different passive samplers; Chemcatcher C18, polar organic, chemical integrative sampler-hydrophilic–lipophilic balance (POCIS-HLB) and silicone rabber (SR) based on polydimethylsiloxane. Active sampling, that is, time-proportional composite active samples (subsamples taken every ~90 minutes) were collected every week during the exposure period of the passive samplers. At site 2 the passive samplers were deployed 1 km further downstream of the active sampling point because of low water concentrations at the active sampling site.

The aim of the work was to compare the performance of the three passive samplers compared to active sampling and to compare *in situ* sampling rates (R_s) and passive sampler-water partition coefficients (K_{PW}) with those obtained under laboratory conditions.

Some details of the sampling sites are given below.

Table 7.5- 55: Details of the sampling sites

Parameter	Site 1	Site 2	e °
Catchment area	14 km ²	8 km ²	
Agricultural activities	85%	92%	
Average annual water flow	15540 m ³	§44 m ³	V D
Median flow during the sampling period	2900 m ³ d ⁻¹	⁰ 92 m ³ d ⁻¹	
		A. Or	

Six passive samplers of each type were deployed at each site for 7 days in total covering a period of six weeks (8 July to 19 August 2013). 2 x 4 additional samplers of each type were deployed in Duplicate for 7, 14, 28 and 42 days at Site 1.

In total 124 pesticides were analysed for using a variety of methods. 2,6 dichlorobenzanide (BAM) was analysed by liquid chromatography– tandem mass spectrometry (LC–MIS/MS). For this method the SR strips were extracted with methanol by Soxhlei extraction for 19h, the POCIS-HLB was extracted with methanol by solid-phase extraction (SPE) and the Chemcarcher C18 was sonicated with ethyl acetate. Extracts were concentrated under nitrogen and redissolved in acetanitrile prior to analysis by CC-MS/MS using electrospray ionisation in positive ion mode (ESI(+))

The LODs for the various methods were 2 for L for the active sampling bethod (see Table 7.5-56) and 14, 0.034 and 1.2 ng/L for the Chemcatcher® C18, POCIS-HLB and SR passive samplers (see Table 7.5-57).

Table 7.5- 56:	Details of	the active	sampling	method
----------------	------------	------------	----------	--------

	\$			-0 a	\sim \sim \sim	
Substance			tethod (, LOD (ng/L)≪	LOQ (ng/L)	Recovery (%)
2,6-dichlorobenza	mide (BAM)	[▶] LÇ 4 ŞSI	I(+)-ØS/MS	v0		94
	S O	2		× 0	o 4	

Table 7.5- 57: Calculated limit of detection (LOD) for passive sampler methods

	.~	\cap \cap	· 6.0	\mathbb{N}	r w		
Substance	ð.	🖉 🖉 Che	mcatcher®	C18 🛇	POCIS-HE	B	SR
	\swarrow	45	ng/L)	- 10°	(ng/10)		(ng/L)
2,6-dichorobenza	umide BA	M)	§ 14	Ő, ×	ي00034 €		1.2
· <i>v</i>				7 %	A		

J. Results and Discussion

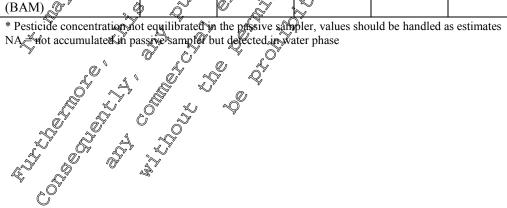
52 out of 124 pesticides analysed for were detected using active sampling at site 1 and site 2 over a period of six weeks, while 32, 58 and 69 individual posticides were detected using the passive samplers Chemcatcher® C18, POCIS-HPB and SR, respectively. No concentrations of 2,6-dichlorobenzamide (BAM) were detected by passive sampler Chemcatcher® C18 at either site over the six week period (LOD 44 ng/L). The compound was detected at both sites at mean concentrations of 14 and 35 ng/L using active sampling, 6.9 and 20 ng/L using passive POCIS-HLB samplers and 40 and 8.6 ng/L using passive SR samplers. The corresponding maximum concentration were 21 and 78 ng/L using active sampling, 11 and 4.4 ng/L using passive POCIS-HLB samplers and 74 and 13 ng/L using passive SR samplers.

Table 7.5- 58: Concentration of 2,6-dichlorobenzamide (BAM) in samples collected over 6 week sampling period (8 July to 19 August 2013)

		Conce						
		Site	l			A 10		
Method	Active sampling	Chemcatcher® C18	POCIS- HLB	SR	Active sampling	Chemcatcher® C18	POCIS-	SR
DF	100%	-	100%	100%	100%	A	100%	100%
Mean	14	-	6.9	40	ra 35	<u> </u>	229	× 8.6
Median	11	-	5.6	38 🚿	22		Q 2.8 Q	86° 1
Min	7.0	-	4.0	15	11		1 AQ	A.9 \$
Max	21	-	11	7.Av	78	2°- 2	Å#.4	
DF = Dete	ction frequence	2V		- W				~~~~

Detection frequency

Laboratory sampling rates (R_s) in L/day and sampler-water partitioning coefficients (K_{PW}) are summarised for 2,6-dichlorobenzamide (BAM) in Table 7.5-59. In Stru Rs and Key were estimated for BAM with two of the three passive saropling methods, POCIS-HLB and SR, although the values should be treated with caution as the systems were not at equilibrium (see Table 7.5-60). Ô Q,


Table 7.5- 59: Laboratory sampling cates (Bs, L/day) and sampler-water partitioning coefficients (KPW, L/ kg) applied for the calculation of TWA concentrations

Substance	َ ڳُ OSR		POCIS	S-HLB		her® C18
	Rs (Latay)	log Kyw (L/kg)	Rs (L/day)	≪log K _{Pw} yy (L/kg)	Rs (L/day)	log K _{PW} (L/kg)
2,6-dichlorobenzami (BAM)	0.005	× 0.3 * ×		3.8	≫ 0.005	0.7

* Pesticide concentration not equilibrated in the passive sampler, values should be handled as estimates

Table 7:5 60:	In	situ ^C samplin	g rates	(R ₈ ,	L/daw)	and	sampler-water	partitioning	coefficients
	(K	Pŵ, L/ kĝ	₹. ≪J	S,		~~	A M	1 8	

Substance		5.	R	O POCIS	S-HLB	Chemcatc	her® C18
		Âs (€/dax)^>		Ros (L/day)	log K _{PW} (L/kg)	Rs (L/day)	log K _{PW} (L/kg)
2,6-dichloro (BAM)	benzamide	0.010 0.0		Ø.046	3.6 *	NA	NA

III. Conclusion

In the monitoring programme 2,6-dichlorobenzamide (BAM) was one of the most frequently detected compounds in the two surface water streams with detection frequencies of 100% by active sampling and two out of three passive sampling methods, POCIS-HLB and SR. No concentrations of 2,6-dichlorobenzamide (BAM) were reported for the passive sampler Chemcatcher® C18. Over a week period in the summer of 2013 the concentrations of 2,6-dichlorobenzamide (BAM) reported ranged from 1.4 to 78 ng/L.

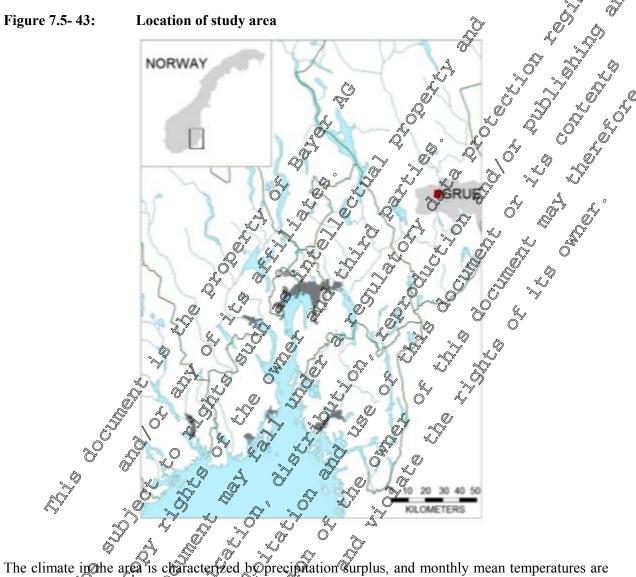
Assessment and conclusion by applicant: This publication provides information on the exposure values for the metabolite M-01 (BAM) in Swedish specific water in 2013 and shows no concerns.

B.3 Drinking Water

No public monitoring data or peer reviewed published data is available in drinking water for fluopicolide.

No public monitoring data is available in drinking water for M-06. Two peer reviewed publications reported analysis of drinking water for M.04. KCA 7.5/12 is summarised earlier as the publication describes analysis of surface water and drinking water. KCA 7.5/14 provides information on M-01 residues in Norwegian drinking water between 1999 and 2000 due to historic dichlobenil applications.

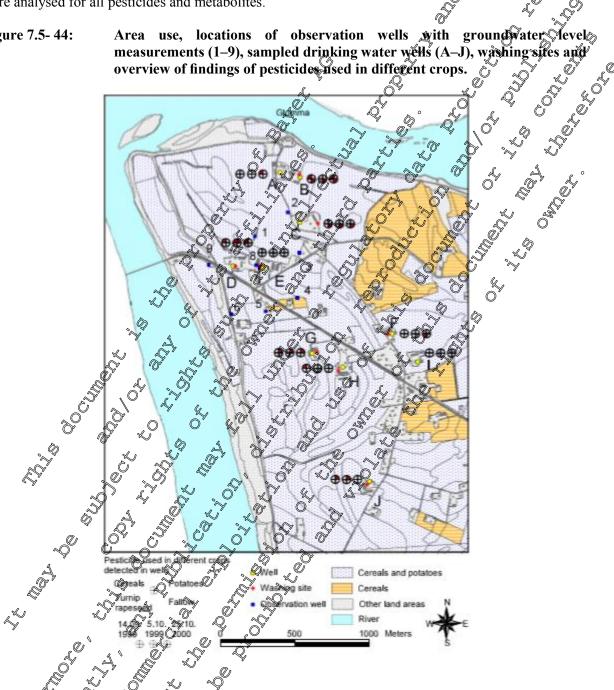
Data Point:	KCA 7.5/14 6 4 6 5 10
Report Author:	Kvaern (J.; Ekto, O. N., Solbakken, E.; Solberg, I.; Sorknes, S.
Report Year:	2014 An Aproach for assessing influence of agricultural activities on
Report Title:	An aptegrated approach for assessing influence of agricultural activities on pesticide in a shallow apprifer in south-eastern for way a
Report No:	M-532496-017 M-532496-01-1
Document No:	₩M_5322496-01-1 × × × × ~ ~ ~
Guideline(s) followed in study:	
study:	
Deviations from current	
test guideline:	
Previous evaluation:	No not previously submitted
~ ~ ~	
GLP/Officially recognised testing facilities:	not applicable 7 0 0 0
recognised testing	not applicable
facilities:	
Acceptability/Reliability:	Ves N Q Q D
	Pes v Q Q V


Executive Summary.

This work examined the effect of agricultural activity on pesticide occurrence in groundwater in an area with fluvial sand deposits with a top layer of sandy silt and silt, intensive potato and cereal cultivation, and drinking water withdrawal for households from local wells in south-eastern Norway. Information about local agricultural practice and wash sites for pesticide spray equipment, soil and deeper deposit properties hydrogeology. and groundwater flow, simulated pesticide leaching, and groundwater well pesticides and NO₃-content was used to examine extensions and causes of pesticide groundwater pollution. Pesticide occurred in a majority of sampled wells; 8 pesticides and metabolites were detected in groundwater samples. This summary focuses on the results for 2,6-dichlorobenzamide (BAM) a metabolite of dichlobenil which was detected in six samples at between 0.04 and 0.39 μ g/L. As fluopicolide has never been registered in Norway, the residues of M-01 can be attributed to use of dichlobenil.

I. Materials and Methods It

The study area is located along the eastern side of the river Glomma in Gruein south-eastern Norway (see Figure 7.5-43).


The climate in the area is characterized bo precipitation surplus, and monthly mean temperatures are below zero in November. December, January, February and March. Annual mean air temperature and precipitation in the normal period 1961–1990 at the nearest meteorological station Vinger were 3.3 °C and 664 mm, respectively. The study area is situated in a deep basin filled with sediments. In an early stage of the ice retreat after the last claciation epoch the basin was a narrow fjord. Later the basin became a lake. The basin has been filled up with ediments brought in with river Glomma. The upper part of the basin is characterized by thick fluvial sediments, consisting of layers of sand with a 0.4 - 1.8 m thick top layer of floodplain deposits with sandy sit and silt filled with sediments.

Spatial distribution of crops, location and use of washing sites for pesticide spraying equipment, and location of drinking water wells were provided by the local agricultural administration in Grue Kommune. The soils were surveyed by the Norwegian Forest and Landscape Institute according to the Soil Survey Staff (1993) guidelines. Groundwater levels were measured in nine observation wells (Fig. 2). The water level of river Glomma at Grue was measured at selected moments of time and later estimated from data from Glommen and Laagen Brukseierforening's gauge station at Norsfoss.

Groundwater samples were collected from ten selected drinking water wells (see Figure 7.5-44) within the study area at three occasions: June 14, 1999, October 06, 1999 and May 25, 2000. The water samples were analysed for contents of 59 different pesticides and pesticide metabolites with GC or GC-MS which included the dichlobenil metabolite BAM (2,6-dichlorobenzamide). Except the pesticides isoprotion, diquat and glyphosate, which were analysed only in the samples collected in June 1999, all samples were analysed for all pesticides and metabolites.

Figure 7.5-44: Area use, locations of observation wells with groundwater measurements (1-9), sampled drinking water wells (A-J), washing overview of findings of pesticides used in different crops.

Average ground ater levels were estimated by steady state simulations with the modelling software Feflow, 6.1 using average values for the water level in Glomma and average annual recharge as hydrological model mput. To provide a spatial overview of the thickness of the unsaturated zone, contours for the simulated average groundwater level were combined with Lidar based data for terrain altitudes on a map using the software Arcview GIS 3.2. Simulations of groundwater flow around a washing site for spraying equipment were performed with the model codes Visual Modflow and Mod Path (Waterloo Hydrogeologic Inc, 2001).

The aquifer parameters used in groundwater modelling were based on results from field investigations carried out by Norges Geotekniske Institutt (1968) and von der Lippe (1998). Model simulations of pesticide leaching were performed with the model MACRO_DB version 2.0, running version 4.2 of MACRO (Jarvis et al., 1997). Soil input data for the modelling were based on the performed soil servey of the area and the soil at a base at Norwegian Forest and Landscape Institute. In the modelling the soil profiles were extended down to a depth of 4.2 m.

Mean concentrations of pesticides in leachates were calculated for a 10-year simulation period. Pesticide concentrations were calculated without any dilution from groundwater. By simulating pesticide leaching to a depth of 4.2 m, representing the bottom of the unsaturated zone and recharging groundwater, comparison of simulated pesticide concentrations with actual concentrations in groundwater from wells in the uppermost groundwater zone was feasible. Risk maps showing the spatial distribution of potential pesticide leaching were made by coupling results from MACRO_QB simulations

II. Results and Discussion

Pesticides were found in groundwater samples in eight & the ten sampled drinking water wells, and concentrations of single pesticides above $0.1 \mu g/L$ occurred in six of ten wells. Considering average values for the three sampling times, concentrations of individual pesticides above $0.1 \mu g/L$ occurred in four of ten wells. Eight different pesticides or pesticide metabolites were found in the groundwater samples, six herbicides (metribuzin, bentazon, MCPA, 2,4D, propablic, the dichobenit metabolite BAM (2,6-dichlorobenzamide), the fungacide metalax of and the mancozet metabolite ethylenethiourea (ETU)). 2,6-dichlorobenzamide (BAM) was detected in six samples at between 0.04 and 0.39 μ g/L in two of the wells over the sampling period (see Table 7.5-49).

Table 7.5- 61:	Ouantitative	results for	2.6-	dichlorol	e nzamide	BÂM	metabolite of
	dichloben	° O (Ô) k		

	alca		K ^Y Q.		× O [×]	×	
	Well	4	Sampling			Concen	tration (μg/L)
	Well			999	N ⁴ R		0.06
			October 6		Ó.	_@	0.04
			May 25 2	000		2 7	0.15
Ķ			June 14 1	9990 ×			0.15
	C S		October 6	1999 °			0.09
			May 25,2	000			0.39
				à à	,		
	A	° N	AN AL	Ň, Ū.			

IH. Conclusion

Pesticides were found in groundwater samples in eight of the ten sampled drinking water wells, and concentrations of single pesticides above 0.1 tent occurred in six of ten wells. 2,6-dichlorobenzamide (BAM) was detected in six samples at between 0.04 and 0.39 μ g/L. As fluopicolide has never been registered in Norway the residues of M-01 are attributed to use of dichlobenil.

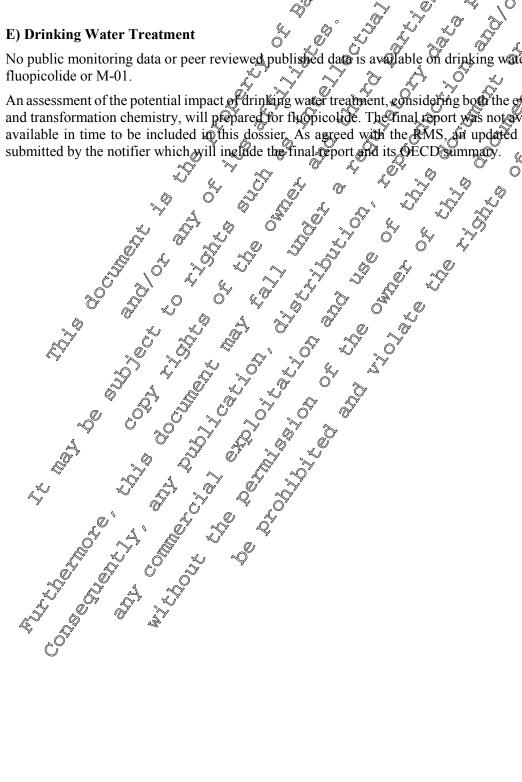
Assessment and conclusion by applicant:

This publication provides information on the exposure values for the metabolite M-01 (BAM) in Norwegian drinking water in 1999 to 2000. Fluopicolide has never been registered in Norway and so these residues of M-01 are attributed to use of dichlobenil.

C) Sediment

No public monitoring data or peer reviewed published data is available in sediment for fluopicolide.

The public monitoring data assessment KCA 7.5/01 summarised earlier includes a small amount of sediment data on the metabolite M-01. No peer reviewed published data in sediment is available for M-01 residues.


D) Air

The public monitoring data assessment KCA 7.5/01 summarised earlier includes a very small amount of air data on fluopicolide and M-01. No peer reviewed published data is available for fluopicolide or M-01.

E) Drinking Water Treatment

available on drinking water treatment for J.

fluopicolide or M-01. An assessment of the potential impact of drinking water treatment, considering both the exposure aspects and transformation chemistry, will prepared for fluopicolide. The final report was not available was not available in time to be included in this dossier. As agreed with the RMS, an updated dossier will be submitted by the notifier which will include the final port and its OECD summary. \$ 0

