

M-764516-01-2

OWNERSHIP STATEMENT

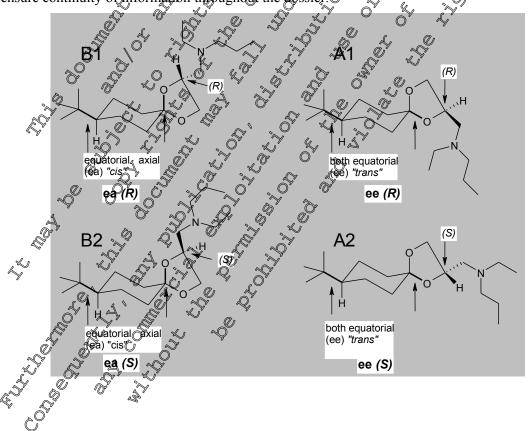
This document, the data contained in it and copyright therein are owned by Bayer A and/or affiliated entities. No part of the document or any information contained therein are a stand or to any third party without the area.

Age A in my best oriflinger. Relations with the basis of it in this document makes in the second of the basis of it in this document makes in the second of the basis of the second of the second of the second of the the second of the second of the second of the the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the the second of the second of the second of the second of the the second of the second of the second of the second of the the second of the the second of the second registration authorities should not grant, amend, or renew a registration of the basis of the The performance and while the transfer the owner while the own

	Version history	
Date [yyyy-mm-dd]	Data points containing amendments or additions ¹ and brief description	Document identifier and
It is suggested th SANCO/10180/2	at applicants adopt a similar approach to showing revision 2013 Chapter 4, 'How to revise an Assessment Report'	and version history as outlined in the second seco

Table of Contents

	Table of Contents
	Q° 🏷
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION
	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT
CP 10.1	Effects on birds and other terrestrial vertebrates
CP 10.1.1	Effects on birds
CP 10.1.1.1	Acute oral toxicity
CP 10.1.1.2	Higher tier data on birds
CP 10.1.2	Effects on terrestrial vertebrates other than birds
CP 10.1.2.1	Acute oral toxicity to mammals $\mathcal{Q}^{\mathcal{A}}$
CP 10.1.2.2	Higher tier data on mammals β
CP 10.1.3	Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)
CP 10.2	Effects on aquatic organisms. &
CP 10.2.1	Acute toxicity to fish, aquatic invertebrates, or offects on aquatic algae and
	macrophytes \mathcal{A} $$
CP 10.2.2	Additional long-term and chronic toxicity studies on fish, aquatic invertebrates
	and sediment dwelling organisms
CP 10.2.3	Further testing on aquatic organisms S
CP 10.3	Effects on arthropods
CP 10.3.1	Effects on bees 332
CP 10.3.1.1	Acute toxicity to bees 339
CP 10.3.1.1.1	Acute oral toxicity to bees 339
CP 10.3.1.1.2	Acute contact tox with to bees.
CP 10.3.1.2	Chronic texicity to bees 351
CP 10.3.1.3	Effects on honey bee development and other honey beglife stages
CP 10.3.1.4	Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)
CP 10.3.1.5	Cage and funnel lests . 2
CP 10.3.1.6	Field tests with honeybees
CP 10.3.2	Effects on non-targo arthropods other than bees
CP 10.3.2.1	Standard laboratory testing for non-target arthropode
CP 10.3.22	Extended laboratory testing, aged residue studies with non-target arthropods 438
CP 10.3 2.3	Semi-field stories with non-target orthropodsQ
CP 10.3.2.4	Semi-field studies with non-target arthropods
CP 10.3.2.5	() ther routes at an non-target arthronods (186
CP 10.4	Effects on postace for non-target and pools 486 Effects on non-target coil meso- and macrofauna 486 Earthworms sub terhal effects 490 Earthworms field studies 505
CP 10.4.1	@Earth@orms@
CP 10.4.1.1	Earthworms sub-Dethal offects &
	Earthworms field studies
CP 10.4	Earthworms field studies
CP 10.4.2.1	Species level testing
CP 10.4.2.2	Higher tier testing
CP 10.5	Effects on soil nitrogen transformation
CP 10.6	Effects on terrestria non-target higher plants
CP 10.6.1	Summary of screening data
CP 10.6.2	Testing on non-parget plants
CP 10.60	Extended laboratory studies on non-target plants
CP 10.6.4	Semp field and field tests on non-target plants
CP210.7	Effects on other terrestrial organisms (flora and fauna)
CP 10.8	Monitoring data
Ű	



CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT

Spiroxamine was included in Annex I to Council Directive 91/414/EEC in 1999 Directive 1999 73/EC, Entry into Force on 1 September 1999). This Supplementary Dossier contains data which were not submitted at the time of the Annex I inclusion and first renewal of Spiroxamine under Council Directive 91/414/EEC and which were therefore not evaluated during the first EU review and first renewal. However, all studies submitted for the first approval and subsequent first renewal of spiroxamine have also been summarised according to current ouidance and included in the dossier. Where studies meet relevant validity criteria hew robust study summaries have been provided in the appropriate dossier section. However, where studies do not deet relevant validity criteria and are not considered acceptable, less detailed summaries may have been provided alongside discussions of study deficiencies. All relied upon study reports are submitted in Document K for this second renewal of approval dossier or in Document K for the previous Annex I inclusion and first renewal submissions.

All data which were already submitted by Bayer AG (former Bayer CropScience) for the Annex I inclusion and first renewal under Council Directive 91/4 de/EEC are contained in the draft Re-Assessment Report (RAR) 2010 and if revised RAR 2017, and are included in the Baseline Dossier provided by Bayer AG.

Spiroxamine consists of four isomers (two diastereomers each with its corresponding two enantiomers which are in a 1:1 ratio) as shown in the schematic below. The A and B nomenolature presented may differ in some historical documentation as a result of a discrepancy in referencing, which is discussed in detail in position paper M-754468-04-1 (see CA01.7/01). It is recommended that the stereo assignments depicted here, together with the A and B notation should be used exclusively going forward to ensure continuity of information throughout the dessier.

CP 10.1 Effects on birds and other terrestrial vertebrates

CP 10.1.1 Effects on birds

The available avian toxicity data for spiroxamine and Spiroxamine EC 500 are sommarized in the table below.

Table CP 10.1.1-1 Summary of avian toxicity studies with Spiroxamine and Spiroxamine EQ

Organism	Test item	Test	Endpoints	Ő_	Reference
Bobwhite quail (Colinus virginianus)	Spiroxamine	Active oral	L10,50 565 mg (ass./kg.byt	DEU OEU	<u>N2008095-02-</u>
Canary (Serinus canarius)	Spiroxamine	Acute oral to reity	LD-250-500	SEU Ó	<u>M¢008100-01-</u>
Bobwhite quail (Colinus virginianus)	Spir@xaminex	Active obal toxicity	LD_{60} 971 O'	JEU EU	<u>1</u>
Bobwhite quail (<i>Colinus</i> virginianus)	Spiroxandine	Short-terkp (dietary, toxicity	L& ₄₀ >5000 mg s./kg diet (LDD30 >357 mg a./kg bw/day)	EUC	<u>M-008081-02-</u> <u>1</u>
Mallard duck (Anas platyrhynchos)	Spirovamine	Short term	LC_{50} 5000 mg a.s./kg diet (LDD ₅₀ 8 C mg LS./kg.bv/day)	EU	<u>M-008047-02-</u> <u>1</u>
Mallard dack (Andry platythynchos)	Spiroxamine	Sho@-term dietary Oxicity	LC ₅ 312 mg a.s. kg diet (LDD ₅₀ >81.4 mg a.s./kg bw/day)	EU	<u>M-008072-01-</u> <u>1</u>
Bobwhite quail (Coltous virginianus)	Spiroxamine	Reproductive	NOEC 29.3 mg a.s./kg diet NOEL 2.02 mg a.s./kg bw/day NOAEC 78.6 mg a.s./kg diet NOAEL 5.40 mg a.s./kg bw/day	EU	<u>M-007470-03-</u> <u>1</u>
Mallard duck (Artas platyphynchos)	, Spiroxamine	Reproductive test	NOEC 78.8 mg a.s./kg diet NOEL 10.6 mg a.s./kg bw/day	EU	<u>M-008186-01-</u> <u>1</u>

EUs previously evaluated as part of the original EU review and listed in EFSA conclusion and DAR Values in **Oold** have been used in the risk assessment

Toxicity endpoints for risk assessment

For the acute risk assessment the lowest reliable acute LD_{50} value for spiroxamine technical was determined to be 565 mg a.s./kg bw and for Spiroxamine EC 500 it was 477 mg a.s./kg bw. However, the short term dietary toxicity study with the bobwhite quail determined a lower LDD_{50} of >350 mg a.s./kg bw/day. Thus, the acute risk assessment has been conducted using the more conservative value of >357 mg a.s./kg bw/day.

An ecotoxicologically relevant NOAEL of 5.40 mg a.s./kg bw/day has been set and used in the risk assessment. Justification has been provided below.

The NOEC determined in the reproduction study with bobwhite quail (M-007470-02-1) was 29.3 mg a.s./kg diet (equivalent to 2.02 mg a.s./kg bw/day) and has been based on the statistically significant effects on 14-day survivor body weight at 78.6 mg a.s./kg diet. This NOEC is considered to be very conservative because there was only a 3.7% reduction in body weights relative to the control, at 78.6 mg a.s./kg diet. Whilst statistically significant, this reduction is not considered to be a true treatment related effect as the reduction is very minor and unlikely to cause an impact at the population level.

It may be a statistical anomaly or intrinsic variability instead of a substance related effect since over the weeks the body weights of 14 day survivors varied considerably. They were statistically reduced in three of the weeks but in two of the weeks they were reduced without statistical significance. In one of the weeks the body weights were equal to the control, but in three of the weeks they were higher than the control. In the last two weeks for example, the mean body weights of 14 days of survivors were 34.3 g and 33.7 g, at 78.8 mg a.s./kg diet, while the control chicks weights of 14 days of survivors were 34.3 g and 33.7 g, at 78.8 mg a.s./kg diet, while the control chicks weights of 14 days survivors compared to these slight and partially contradictory effects, the results at the next higher test concentration (204 mg a.s./kg diet) were reduced over the whole exposure period (6 times statistically significance). These findings indicate that at this test concentration (204 mg a.s./kg diet) the effects have to be considered to 8.8 %. This also is not a dramatic decline but the average body weights were reduced over the whole exposure period (6 times statistically significant, 3 times without statistically significance). These findings indicate that at this test concentration (204 mg a.s./kg diet) the effects have to be considered treatment related. If is therefore considered that the true LOEC is 204 mg a.s./kg diet and the NOAEC is 78.0 mg a.s./kg diet (equivalent to 5.40 mg a.s./kg bw/day).

To confirm this conclusion, additional statistical analyses of the reproduction data were conducted and presented in report (<u>M279402-01-1</u>) As part of the analyses, the data were re-evaluated using the mean body weight of all the 14-day old chicks which were produced by each single pair of adults. When the data were assessed in this way a NOEC of 78.6 mg a Q/kg food (5.40 mg a.s./kg bw/day) was determined. The analyses demonstrated how minor the body weight reductions at the 78.6 mg a.s./kg food dose group were in relation to the controls and that the NOEC could legitimately be increased from 29.3 mg a.s./kg diev (equivalent to 2.02 mg a.s./kg bw/day) to 78.6 mg a.s./kg food (5.40 mg a.s./kg bw/day).

Further supporting data has been provided in report M-304591-01-1 in the form of historical control data for 14 day old survivors to demonstrate that the mean body weight of 32.6 g achieved at the 78.6 mg a.s./kg diet dose group was well within the normal deviation of the historical control data from 59 regulatory studies and is not therefore a biologically relevant reduction.

In conclusion, the differences of the chick body weights between the 78.6 mg a.s./kg food dose group and the control were small (3, %) and the statistical significance of the difference varies according to the various methods used to analyse the data. Taking all of the above information into account it is considered justified to set an ecotoxicologically relevant NOAEL of 5.40 mg a.s./kg bw/day.

According to the outcome of the pesticides peer review meeting on recurring issues in ecotoxicology (EFSA PPR meeting 133, September 2015), an ecotoxicologically relevant endpoint should be set in collaboration with thammatian toxicologists, where required, and should be used in all the steps of the risk assessment. The NOAEL of 5.40 mg a.s./kg bw/day has therefore been used in all tiers of the avian risk assessment for spiroxamine.

Metabolites

Numerous metabolites of spiroxamine are formed in plants following application to crops. In the Toxicology and Residues sections of the dossier the spiroxamine metabolites have been categorised into three distinct groups (Group A, B and C, respectively). Toxicology dara are available for several of these metabolites. Metabolite M13 has been used to represent all Group B metabolites therefore the toxicology data generated using this metabolite is also considered to cover the plant metabolites M35 and M36. Likewise, M28 has been used to represent all Group C metabolites therefore the toxicology data generated using this metabolite is also considered to cover the plant metabolites M29, M36 and M31. It is also noted that Group A metabolites are considered to be covered by parent spiroxamine.

The table below presents each plant metabolite along with the percentage TRR and actual residue value from the crop metabolism studies. Available toxicology data have also been presented as well as an indication of whether or not each plant metabolite was also found on the animal metabolism studies of laying hen, rat and goat. Finally an assessment is prade regarding the relevance of each plant metabolite to the risk assessment. Only metabolites which were formed in plants at $\geq 10\%$ TRP, are considered to be potentially relevant to the bird and mamma fisk assessment.

Note that only metabolites which were found in the rop netabolism studies have been presented below, however M13 and M13-acetate have been included in the table below because there are toxicology data which are relevant to other Group B plant metabolites

Table CP 10.1.1-2	Assessment of pote	nitial exposure	e of birds to m	etabolites of	spiroxamine formed
in plants	Q 6	ĝ Ĉ	r S s'	° _s o ,	Ö 'Y

Plant	Maximum tosels of residue in plants	Metabolite	Mammalian Ö	Conclusion on
Metabolite	plants 🔌 🌾 🖓	found in 🔌	toxicity data	relevance for
		animal 🔬	ayadable?	avian risk
		animal studies?		assessment
Spiroxamine -	Printary crops	SNOT TOURNA IN (No data available.	Metabolite found
desethyl (M01)	Wereat S ~ ~	goat or rat.	0 4	in primary crops
[GROUP A]	Forage 3.1% TRR; 1.14 mg/kg	Found in 🖉		at <10% TRR
	Strate 2.0% TRR; \$70 mg/sg	Laying hen		therefore not
l l l l l l l l l l l l l l l l l l l	Gram: 0.5% TRR; <0.001 mg/kg	(21.3@rin 4	V Q.	considered
~	G_{partine} 0.2% TRR, <0.001 mg/kg	liver, 9.3%	×,	relevant for risk
	Grapes L T	in muscl	Ø	assessment.
	2.1 TRR: 27 mg kg	8.4% in fat	D [¥]	Metabolite found
«\Y		and 11.5%	o o	>10% TRR in
	Kanana 🗸 Ş	in eggs)		rotational crops
(Pulp: 11% TRR; 0.005/mg/kg			but actual residue
<i>Q</i> ₁	2.1% TRR 0.27 mg/kg Banana Pulp: A1% TRR; 0.005/mg/kg Peel 2.7% TRR; 0.06 mg/kg Rotational crops Leafy vegetable 12.6% TRR 0.026 mg/kg	S &		levels were very
	Rotation of crops 🔨 🚿	~		low.
L.	Leafy vegetables	.0		Metabolite found in hen
	Peel 2.7% TRR; 0 th mg/kg Rotational crops Leafy vegetables 12.6% TRR; 0.10 mg/kg Carvals 20:0% TKR; 0.10 mg/kg Root & tuber, vegetables 9.3% TRR; 0.083 ang/kg	\sim		metabolism study
	Certeals	₽″		therefore toxicity
A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	29.0% TREK: 0.1 9 mg/kg ~~~			data and
	Root & Tuber & getables			associated
"O	9.3% TRR 083 100 kg			assessment for
A A				parent considered
Į.				to cover this
				metabolite.
		<u> </u>		
	Root & tuber, vegetables 9.3% TRR: 0.083 ang/kg			
	O S			
in a	<i>e</i>			
e Y				

despropyl (M02) Wheat Forage: 4.6% TRR; 0.49 mg/kg goat or rat. in primary cropy at <10% TRR; User F1.3% [GROUP A] Grapes 1.5% TRR; 0.20 mg/kg goat or rat. Found in laying hen (21.7% cm in primary cropy at <10% TRR; Banana Pulp: 0.5% TRR; 0.20 mg/kg Banana Pulp: 0.5% TRR; 0.19 mg/kg Grapes 1.5% TRR; 0.190 mg/kg assessment Adv in fat Cereals S1.2% TRR; 0.190 mg/kg Metabolite found in peri sociated Metabolite found in peri sociated Spiroxamine - N-oxide (M03) Primary crops Sociated Wreat Store for found in peri sociated Spiroxamine - N-oxide (M03) Primary crops Store for found for age 0.2.7% TRR; 0.306 mg/kg Store for found for age 0.2.7% TRR; 0.306 mg/kg	Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine - N-oxide (M03) Primary crops Not found in Wreat Acute oral rat Wreat Metabolite found in wheat at >10% [GROUP A] Porage 2.7% PRR; 3.06 mg/kg Straw 22.0% TRR %68 mg/kg Straw 722.0% TRR %68 mg/kg Straw 722.0% TRR %68 mg/kg Straw 722.0% TRR %68 mg/kg Considered Grapes Grapes Found in 1/2%/TRR; 0.012 mg/kg Found in inwousts of Tox data are available and show that Pulp: A2% TRR; 0.01 mg/kg Found in 90-day rat oral dietary NOAEL Tox data are available and show that Pulp: A2% TRR; 0.23 mg/kg Found in 90-day rat oral dietary NOAEL Straw 100 mg/kg Pulp: A2% TRR; 0.23 mg/kg Found in 90-day rat oral dietary NOAEL Straw 100 mg/kg Rotational crops Found in 1/2%/TRR; 0.235 mg/kg Found in 1/2% Straw 100 mg/kg Not found in iyer at low Found in iyer at low Straw 100 mg/kg Straw 100 mg/kg Poulp: A2% TRR; 0.23 mg/kg Found in 1/2% Straw 100 mg/kg Straw 100 mg/kg Not found in iyer at low Straw 100 mg/kg Straw 100 mg/kg Straw 100 mg/kg Pulp: A2% TRR; 0.235 mg/kg Found in 1/2% Straw 100 mg/kg Straw 100 mg/kg Not found in iyer at low Found in 1/2% Straw 100 mg/kg St	despropyl (M02)	Wheat Forage: 4.6% TRR; 0.49 mg/kg Straw: 4.2% TRR; 3.48 mg/kg Grain: 3.0% TRR; 0.002 mg/kg <u>Grapes</u>	goat or rat. Found in laying hen (21.7% m liver, 11.3% in pruscle,		at < 10% TRR therefore not considered relevant for risk assessment Metabolite found 0% TRR in rotational cross but actual residue levels were very 0w. Metabolite found in her metabolism study therefore toxicity data and associated assessment for parent considered to cover this
assessment for spiroxamine covers the risk to this metabolite.	N-oxide (M03) [GROUP A]	Wheat Forage 2.7% FRR: 3.06 mg/kg	goat or laying her	LD ₅₀ 707 mg/kg bw 28-day rat oral dietay NOAEL 12 9/13.2 mg/kg bw/day for males/females 90-day rat oral dietary NOAEL 8.8/9.7 mg/kg bw/day for	Metabolite found in wheat at >10% TRR therefore considered relevant for risk assessment. Tox data are available and show that metabolite toxicity in the rat is comparable to that of spiroxamine. It is considered that this can also be extrapolated to birds therefore the avian reproductive risk assessment for spiroxamine covers the risk to

Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine - N-formyl- desethyl (M04) [GROUP A]	Primary crops Wheat Forage: 5.8% TRR; 1.40 mg/kg Straw: 9.7% TRR; 8.06 mg/kg Grain: 6.9% TRR; 0.005 mg/kg <u>Grapes</u> Not found <u>Banana</u>	Not found in goat, rat or laying hen	No data available.	Metabolife found in primary crops and relation crops at <10% TRR therefore not considered relevant for tisk assessment
	Rotational crops <u>Cereals</u> 6.4% TRR; 0.204 mg/kg			
Spiroxamine - hydroxyl (M05) [GROUP A]	Primary crops <u>Wheat</u> Forage: 7.1% TRR, 1.7 mg/kg Straw: 5.2% TRR; 0.001 mg/kg Grain: 1.6% TRR; 0.001 mg/kg <u>Grapes</u> 0.3% TRR; 0.04 mg/kg <u>Barana</u> Not found Rotational crops <u>Leaty vegetables</u> 1% TRR; 0.146 mg/kg <u>Cereals</u> 2.5% TRR; 0.49 mg/kg <u>Root & tuber vegetables</u> 3.6% TRR; 0.03 mg/kg <u>Primary crops</u> <u>Wheat</u> Example to the set of the set			Metabolite found for rotational crops at > 10% TRR in leafy vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.
Spiroxamine - hydroxy- despropyl (M09) [GROUEA]	2.5% (PRR; 0.49 mgAg <u>Root & tuber vegetables</u> 50% TRR; 0.03% mg/kg Primary crops <u>Wheat</u> Forage: not found Straw: 0.3% TRR; 0.0% mg/kg Grane: not found <u>Grapes</u> Not found <u>Banana</u> Not found	Not found in goat, fat or laying hen	No data available.	Metabolite found in primary crops and rotational crops at <10% TRR therefore not considered relevant for risk assessment.

Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine – cyclohexanol (M13) [Group B]	Primary crops Not found	Not found in goat, rat or laying hen	Acute oral rat LD ₅₀ 4200 mg/kg bw Acute dermal rabbit LD ₅₀ >5000 mg/kg bw 28-day rat oral (gavage) NOAEL 50 mg/kg by/day 15 was concluded that MD is less toxic than the patent, spiroxamine in the rat with a sa. 9-fold, 2-fold and 8-told inacease in Sub-acute, maternal and developmental NOAELS respectively when compared to the spiroxamine epaivalent studies	Metabolité not found in crop metabolism studies therefore not considered relevant for risk assessment fox data are a vallable ord confirm Mb to be less toxic than parent. M13 data used to represent the toxicity of all Group B motabolites.
Spiroxamine – O cyclohexanol acetate (M-13 acetate) [Group B]	Primary crops	Not found in a goat vat or laying hen	Rat dev@opmental NOAEL maternal toxicity 40 mg/kg bw/day Rat developmental NOAEL 160 mg/kg bw/day Group B metabolites considered to be covered by available data for M13 which confirm that this metabolite is less toxic than spiroxamine.	Metabolite not found in crop metabolism studies therefore not considered relevant to the risk assessment. Tox data are available and suggest lower toxicity than parent spiroxamine.

Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine- diol (M14) [Group B]	Primary crops Banana pulp (12.8% TRR; 0.057 mg/kg- hydrolysis product) Grapes (13.0% TRR; 0.44 mg/kg- hydrolysis product) Spring wheat straw (0.2% TRR; 0.070 mg/kg- hydrolysis product) Spring wheat grain (2.6% TRR; 0.002 mg/kg- hydrolysis product) Rotational crops Swiss chard leaves (8.8-13.2% TRR; 0.01 mg/kg- hydrolysis product) Wheat straw (3.5-4% TRR; 0.05% mg/kg- hydrolysis product)	Not found in goat, rat or laying hen	No data available.	Metabolife found in plants at >10% TRR but the actual residues
Spiroxamine- ketone (M15) [Group B]	Turnip tops (4.4-13 0% TRR 0.02 mg/kg- hydro ysis product) Primary crops Grapes (1.3% TRR- hydrolysis product) Spring wheat strav (5.5% TRR- hydrolysis product) Spring wheat grain (26% TRR- hydrolysis product)	Not found in goat, rat or laying hen		Metabolite found in plants at <10% TRR therefore not considered relevant for risk assessment.
\sim	Grape (0.5% TRR-hydrolysis product) Spring wheat straw (1.0% TRR- hydrolysis product) Spring wheat grain (5% TRR- hydrolysis product) Botational crops Swiss chard Laves (15.6-29.3% TRE 0.04 mg/kg- hydrolysis product)	Nor foundan goat, rat or laying hen	No data a ailable.	Metabolite found in plants at >10% TRR but the actual residues level is very low therefore not considered relevant for risk assessment. Toxicity would be covered by parent assessment as M13 data confirm this group of metabolites to be less toxic than parent.
	Wheat straw (\$9-11.63 TRR 5 0.15 mg/kg-hydrolysis product) Turnip tops (11.737.3% TRR; 617 mg/kg- hydrolysis product)			

Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine - hydroxy-N- oxide glucoside (M20) [Group A]	Primary crops <u>Wheat</u> Forage: 0.7% TRR; 0.08 mg/kg Straw: 2.0% TRR; 0.70 mg/kg Grain: not found	Not found in goat, rat or laying hen	No data available.	Metabolife found in primary crops at <10% TRR with the exception of furnip ops but the
	Grapes Not found			actual residues level is very low C Derefore this
	Banana Not found Rotational crops Swiss chard leaves (2.5% TRR; <0.01 mg/kg)) Wheat straw (2.1-2.6% TRR 0.03 mg/kg) Turnip tops (8.4-16.4% TRR; 0.04 mg/kg)		A A A A A A A A A A A A A A A A A A A	metabolite is for considered retevant for risk assessment.
Spiroxamine - hydroxy-N- oxide malonyl glucoside (M21) [Group A]	Straw: 3.1% TRR; 257 mg/kg			Metabolite found in plants at <10% TRR therefore not considered relevant for risk assessment.
	Stray: 3.1% TRR; 257 mg/c Grave: not found Grapes Not found Babana Not found Rotational crops Swiss chard leaves (1.6% FRR; 9.01 mg/kg)			
	Wheat straw (44% TKR; 0.06) mg/kg) Turhip tops (1.7-37% TRR; <0.01 mg/kg)			
	Not found Babana Not found Rotational grops Switss chard leaves (1.6% FRR; 9.01 mg/kg) Wheat straw (44% TKR; 0.06 mg/kg) Turnip tops (1.7-3.7% TRR; -0.01 mg/kg)			

		.		a 1 :
Plant Matabalita	Maximum levels of residue in	Metabolite	Mammalian	Conclusion on
Metabolite	plants	found in animal	toxicity data available?	relevance for or avian risk
		studies?	available:	
Spiroxamine-	Primary crops	Not found in	No data available.	Metabolite found
diol-diglycoside	Grapes (14.8% TRR – main	goat, rat or		in grapes at $>10\%$
(M24)	component of metabolite group	laying hen	1	TRR but the
[Group B]	12; 0.50 mg/kg)	A	st v	actual residues
	Rotational crops		Ũ	level is very low
	Swiss chard leaves (3.0% TRR;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Therefore not 4
	<0.01 mg/kg)	4Ú ^Y		confidered a start of the second start of the
	Wheat straw (1.9-2.2% TRR; 0.020 mg/kg-			assessment.
	Turnip roots (7.8% TRR; <0.01			Toxicity would be
	mg/kg)			covered by parent
	Turnip tops (2.0-4.3% TRR;	K Û	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	assessment as
	<0.01 mg/kg)		A 6 /	M13 data conform
			O X S	metabolites to be
				less toxic than
	L 0 ¹ 1			Sparent ?
Spiroxamine -	Primary crops	Found in 190	Acute orac rat 40^{+} 50^{-} 50^{+} 40^{-} $40^$	Metabolite found
aminodiol	Wheat N Y	a 2.2 - L	$4QD_{50} > 550 < 2000$	in grapes and
(M28)	Not found 🦋 🕵 🕺	5.7% of dose	mg/kg Bw	banana at >10%
[GROUP C]	Wheat Not found The second sec		28-day rateoral 🔬	TRR therefore relevant for the
	37.5% TRR; 31 mg/kg	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	dietary NOAEL	risk assessment.
			28.4/31.4 mg/kg	Tox data are
	Banana S	, Ž .0	bw/day for \checkmark males/females	available and
	Rulp: 352% TRR, 0.173 mg/kg			confirm that
	Peer 5/.2% IKK, 245 mg/kg		Develspmental rat of al (gavage)	toxicity is less
, Or	L of u vogotoblog	Ş Ö	N@AEL maternal	than parent. It is considered that
°∼	3 9% TR R: 0 014 mg/loo	"0"	toxicity 150	this can also be
Ê.S	Cerfals .	S ^T J ^T .	Omg/kg bw/day	extrapolated to
* ¥	0.6% TRR; 0.024 mg/kg	(& A	and	birds therefore the
	Root & tuber veretables	oʻ _S	developmental NOAEL 30	avian
~	4.9% (RR;) 905 mg/kg	S S	mg/kg bw/day	reproductive risk assessment for
			It was concluded	spiroxamine
, A	The set of	, Ø	that M28 is less	covers the risk to
Ū, Y			toxic than the	this metabolite.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		P	parent,	
			spiroxamine in	M28 data used to
n an			the rat with a <i>ca</i> . 15-fold, 9-fold	represent the toxicity of all
, s			and 2-fold	Group C
			increase in sub-	metabolites.
			acute, maternal	
			and	
			developmental	
E R	j j		NOAELs, respectively when	
Č, ^o v			compared to the	
$\checkmark$			spiroxamine	
	Banana Rulp: 3, 2% TRR: 0.173 mg/kg Peek 7.2% TRR: 2,45 mg/kg Rofational crops Leafy vegetables 3.9% TRR: 0.014 mg/kg Cerears 0.6% TRR: 0.024 mg/kg Root & tuber vegetables 4.9% TRR: 0.905 mg/kg		equivalent	
			studies.	



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine - aminodiol-N- oxide (M29) [GROUP C]	Primary crops <u>Wheat</u> Not found <u>Grapes</u> 0.1% TRR; 0.01 mg/kg <u>Banana</u> Not found <b>Rotational crops</b> <u>Leafy vegetables</u> 5.2% TRR; 0.021 mg/kg <u>Root &amp; tuber vegetables</u> 4.8% TRR; 0.005 mg/kg	Not found in goat, rat or laying hen	No data available. Group C metabolites considered to be covered by available data for M28 which onfirm that this metabolite is less toxic than spiroxamine.	Metabolife found in primary crops and rotational crops at <10% TRR therefore not considered relevant for tisk assessment Doxicits would be covered by pasent assessment as M28 data confirm this group of metabolites to be less toxic than parent.
Spiroxamine - desethyl- aminodiol (M30) [GROUP C]	Wheat         Not found         Grapes         1.1% TRR; 0.14 mg/kg         Banama         Pup: 0.6% TRR; 0.003 mg/kg         Seel: 0.0% TRR; 0.06 mg/kg	Not found up, goal, rat of howing hen	No data available. Group C Group C Considered to be covered by available data for M28 which confirm that this metabolite is less to zic that spirox aprine.	Metabolite found in primary crops at 40% TRR therefore not considered relevant for risk assessment. Toxicity would be covered by parent assessment as M28 data confirm this group of metabolites to be less toxic than parent.
Spiroxamine - despropyl- aminodiol (M31) [GROUP C]	Primary crops Wheat Not found Grapes 1.2% TRR; 0, 10 mg/kg Bañana Pulp: 0.6% TRR (0.003 mg/kg Peel: 0.9% TRB; 0.06 mg/kg	Noktound m goat, rater aying ken	No data available. Group C metabolites considered to be covered by available data for M28 which confirm that this metabolite is less toxic than spiroxamine.	Metabolite found in primary crops and rotational crops at <10% TRR therefore not considered relevant for risk assessment. Toxicity would be covered by parent assessment as M28 data confirm this group of metabolites to be less toxic than parent.



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine- cyclohexanol- glucopyranosyl- pentose (M33) [GROUP B]	Primary crops Grapes (19.1% TRR; 0.650 mg/kg)	Not found in goat, rat or laying hen	No data available.	Metabolite found in plants at >10% TRR but the actual residues level is very low therefore not considered relevant forrisk ossessment. Toxicity would be covered by parent assessment as M13 data confirm this group of metabolites to be less toxic than parent
[CDOUD B]		laying hen		Metabolite found in plants at <10% TRR therefore not considered relevant for risk assessment.
Spiroxamine docosanoic acid ester (M35) [GROUP B]	Frimars crops	No found in eval, rat or laying hen	No data or M35. Group B metabolites considered to be covered by available data for M13 which confirm that this metabolite is less toxic than spiroxamine.	Metabolite found in grapes at >10% TRR. Available data with M13 used to cover this Group B metabolite and confirms that the toxicity is lower than that of the parent. Thus, the risk to M35 is considered to be covered by the assessment for parent.



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for avian risk assessment
Spiroxamine tetracosanoic acid ester (M36) [GROUP B]	Primary crops <u>Wheat</u> Not found <u>Grapes</u> 4.2% TRR; 0.14 mg/kg	Not found in goat, rat or laying hen	No data on M26. Group B metabolites considered to be covered by available data for	Metaboline found in primary crops at <10% TRR therefore not considered relevant for risk assessment
	Banana Not found		MP which which that this metabolite is less toxic than spiroxamine.	Toxicity would be overect by parent assessment as M13 data confirm this group of
Spiroxamine- cyclohexenol (M37)	Primary crops Grapes (3.2% TRE 0.11 mg/kg- hydrolysis product)	Not found in goat, rat or laying her	No date available.	hetabolites to by less toxic that parent. Netabolite found in plants at <10% TRR therefore not
[GROUP B] Spiroxamine – N-formyl-	Primary crops	Not found in Groat, rat or		considered relevant for risk assessment. Metabolite found in rotational crops
despropyl (M38) [GROUP A]	Rotational crops	laying hen		only and at <10% TRR therefore not considered relevant for risk assessment.
Spiroxamine – hydroxy despropyl glycoside (M39) [GROUP A]	Rotational creps Leafy Vegetables 2.8% TRR 0.019 mg/kg S.9% PRR; 0.252 mg/kg Root tuber vegetables 21:3% TRR; 0.063 mg/kg	Not found in Boat, rator laying hen	No data available.	Metabolite found in rotational crops at >10% TRR in root and tuber vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.
Spírðxamine – hydroxy glycoside (M40) [GROUP 7]	Primary crops Not found Rotational crops Leafy Opetables 4.7% TRR; 0040 mg/kg Cereals 20% TRR; 0.088 mg/kg Root & tuber vegetables 7.6% TRR; 0.068 mg/kg	Not found in goat, rat or laying hen	No data available.	Metabolite found in rotational crops only and at <10% TRR therefore not considered relevant for risk assessment.



Plant Metabolite       Maximum levels of residue in plants       Metabolite found in animal studies?       Mammalian toxicity data available?       Conclusion on relevance for avian risk assessment/ avian risk assessment/ avian risk assessment/ avian risk assessment/ in rotational crops         Spiroxamine- hydroxy- deschyl glycoside (M42)       Primary crops Rotational crops       Not found in auticity data studies?       No data available?       Metabolife found in rotational crops at Ld% TRR; 0.129 mg/kg         GROUP A]       Early vegetables 0.5% TRR; 0.129 mg/kg       Not found avian risk assessment/ avian risk assessment/ avian risk assessment/ at Ld% TRR; 0.129 mg/kg       Metabolife found potiant upfor rotational crops at Ld% TRR; 0.129 mg/kg         Spiroxamine- deschyl acid glycoside (M43)       Primary crops Not found avian risk assessment/ avian risk assessment			T	I	I
Spiroxamine – hydroxy- desethyl glycoside (M42)     Primary crops Not found     Not found in goat, rat or laying hen     Not data available?     avian risk assessment       Brinary crops desethyl glycoside (M42)     Rotational crops Leafy vegetables     Not found in goat, rat or laying hen     No data available?     Metabolife foundo in rotational crops cereals       GROUP A]     Leafy vegetables 6.5% TRR; 0.129 mg/kg Root & tuber vegetables     Not found in rote; and uper cereals     Not found in rote; and uper relevant for risk assessment.       Spiroxamine – desethyl acid glycoside (M43)     Primary crops Not found     Not found in rote; and uper relevant for risk assessment.     Metabolife/foundo in rotational crops only and at \$10% TRR; 0.015 tw/kg       Spiroxamine – desethyl acid glycoside (M43)     Primary crops Not found     Not found in align hen assessment.     Metabolife/found in rotational crops only and at \$10% TRR; therefore not ensidered       Spiroxamine – acid glycoside (M44) [GROUP A]     Primary crops Not found     Not found in coat, rat/or laying hen assessment.     Not data available. Not found     Metabolife found in rotational crops assessment.       Spiroxamine – acid glycoside (M44) [GROUP A]     Primary crops Not found     Not found coat, rat/or laying hen assessment.     Not data available. Not found in rotational crops assessment.     Metabolite found in rotational crops a >10% TRR in root and tuber vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.		Maximum levels of residue in			
Spiroxamine – hydroxy- desethyl desethyl (M42)     Primary crops Not found     Not found in goat, rat or laying hen     No data available. Not found in rotational erops at >16% TRR; 0.005 mg/kg     Metabolife found in rotational erops at >16% TRR; 0.129 mg/kg       GROUP A]     Cereals 6.5% TRR; 0.129 mg/kg     Mot found in goat, rat or laying hen     No data available. Not found utfor rote and at 50% TRE therefore not efficience rote and at 50% TRE therefore not efficience rote and at 50% TRE therefore not efficience rote and the rote and the rote and the rote and the rote and the rote and rote and the rote and rote and the rote and rote and the rote and rote	Metabolite	plants			
Spiroxamine – hydroxy- desethyl glycoside (M42)       Primary crops Not found       Not found in goat, rat or laying hen       No data available.       Metabolite found in rotational crops at > 10% TRR; no roogand tuber vegetables but the actual Psidues.         GROUP A]       Cereals 6.5% TRR; 0.129 mg/kg Root & tuber vegetables 14.6% TRR; 0.044 mg/kg       Not found in goat cal or laying hen       No data available.       Metabolite found in rotational crops considered         Spiroxamine – desethyl acid glycoside (M43)       Primary crops Not found       Not found in goat cal or laying hen       Not data available.       Metabolite found, of in rotational crops 1.8% TRR; 0.015 fbg/kg         Spiroxamine – desethyl acid glycoside (M43)       Primary crops Not found       Not found in goat cal or laying hen, 1.8% TRR; 0.051 fbg/kg       Not found in goat cal or laying hen, 1.8% TRR; 0.051 fbg/kg       Not data available.       Metabolite found, of in rotational crops 3.4% TRR; 0.051 fbg/kg         Spiroxamine – acid glycoside (M44)       Primary crops Not found       Not found in rotational crops 5.7% TRR; 0.051 fbg/kg       Not found in rotational crops 1.8% TRR; 0.051 mg/kg       Not found in rotational crops 3.4% TRR; 0.051 mg/kg       Not found in rotational crops at >10% TRR in root and tuber vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.				available?	
hydroxy- desethyl glycoside (M42)       Not found       goat, rat or laying hen       in rotational erops at 2 B% TRR; or rot and tuber vegetables         IGROUP A]       Leafy vegetables 1.6% TRR; 0.129 mg/kg       rot and tuber vegetables       rot and tuber vegetables         Spiroxamine – desethyl acid glycoside (M43)       Primary crops       Not found       Not found         Rotational crops       Not found       goat, rat or laying hen       Not duter vegetables       rotational crops         Spiroxamine – desethyl acid glycoside (M43)       Primary crops       Not found       Not found       Not found       Metabolite/found in rotational crops         Spiroxamine – desethyl acid glycoside (M43)       Primary crops       Not found       Not found       Metabolite/found in rotational crops       Metabolite/found in rotational crops         Spiroxamine – acid glycoside (M44)       Primary crops       Not found       Not found       Not found       Not found         Rotational crops       Soft court tabor       Not found       Not found       Not found       Not found         Root & tuber vegetables       Soft court tabor       Not found       Not found       Not found       Not found         Root & tuber vegetables       Soft court tabor       Not found       Not found       Not found       Not found         Rotational crops       S			-	~	
desethyl       Rotational crops       laying hen       at >H0% TRR:n         (M42)       Leafy vegetables       not ions mg/kg       at >H0% TRR:n         [GROUP A]       Cereals       cereals       considered         6.5% TRR; 0.129 mg/kg       Cereals       considered       considered         6.5% TRR; 0.044 mg/kg       An top of the considered       considered       considered         Spiroxamine –       Primary crops       Not found       Not found       motational crops         (M43)       Rotational crops       Not found       motational crops       motational crops         Spiroxamine –       Rotational crops       Not found       motational crops       motational crops         (M43)       Rotational crops       Not found       goat cit or       motational crops         1.8% TRR; 0.015 trigg/g       Cereals       saseSment.       motational crops         3.4% TRR; 0.055 mg/kg       Cereals       Nof found       motational crops         Spiroxamine –       Primary crops       Nof found       No datavailable       Metabolite found in in totational crops         Spiroxamine –       Cereals       Soft cut trap or pick       Not found       motational crops         Spiroxamine –       Cereals       Soft cut treal or       m	1	• •		No data available.	
glycoside (M42)       Rotational crops       rote and tuber vsegetables         [GROUP A]       Leafy vegetables 1.6% TRR; 0.005 mg/kg       rote and tuber vsegetables         6.5% TRR; 0.129 mg/kg       Cereals         6.5% TRR; 0.044 mg/kg       Spiroxamine – desethyl acid glycoside       Primary crops         Mot found       goar call or goar call or lawing hen Leafy vegetables       Not found in goar call or goar call or lawing hen Leafy vegetables       Metabolite found in rotational crops         [GROUP A]       Primary crops       Not found       Sol found in goar call or goar call or lawing hen Leafy vegetables       Metabolite found in rotational crops         [GROUP A]       Rotational crops       Not found       Sol found in goar call or goar call or lawing hen Leafy vegetables       Not found in rotational crops       Metabolite found in rotational crops         [GROUP A]       Primary crops       Not found in sol found       No data vailable       Metabolite found in rotational crops         Spiroxamine – acid glycoside (M44)       Primary crops       Nof found in sol found       No data vailable       Metabolite found in rotational crops         [GROUP A]       Primary crops       Not found in sol found       No data vailable       Metabolite found in rotational crops         [GROUP A]       Primary crops       Not found in sol found       No data vailable       Metabolite found in rotational crops		Not found		. 0*	in rotational erops
(M42) [GROUP A]       Leafy vegetables 1.6% TR; 0.005 mg/kg       vegetables 1.6% TR; 0.129 mg/kg       vegetables 1.6% TR; 0.129 mg/kg       vegetables 1.6% TR; 0.129 mg/kg         Spiroxamine – desethyl acid glycoside (M43)       Primary crops       Not found       Not found in goats at or laxing her       Metabolitefound in rotational crops 1.8% TR; 0.015 fug/kg         Spiroxamine – acid glycoside (M43)       Primary crops       Not found in goats at or laxing her       Not found in goats at or laxing her       Metabolitefound in rotational crops is created in rotational crops         Spiroxamine – acid glycoside (M44)       Primary crops       Not found in goats at or laxing her       No data vailable.       Metabolitefound in rotational crops is created in rotational crops         Spiroxamine – acid glycoside (M44)       Primary crops       Not found in crops is created in rotational crops is		Rotational crops	laying nen		
[GROUP A]       1.6% TRR; 0.005 mg/kg       actual besidues         Cereals       6.5% TRR; 0.129 mg/kg       levels very low         Kot & tuber vegetables       14.6% TRR; 0.044 mg/kg       levels very low         Spiroxamine –       desethyl acid       glycoside       Mot found       goat call or       levels very low         (M43)       Rotational crops       Not found       goat call or       Metabolife found, in rotational crops         Leafy vegetables       1.8% TRR; 0.015 bg/kg       TRR; 0.688 mg/kg       only and at 90%         Spiroxamine –       Leafy vegetables       for sign and at 90%         [GROUP A]       Primary crops       Not found       Not found         [GROUP A]       Rotational crops       Not found/in goat call or       Not found/in rotational crops         [GROUP A]       Primary crops       Not found/in goat call or       Not data variable         [GROUP A]       Primary crops       Not found/in goat call or       not seesement.         Spiroxamine –       actid glycoside       Not found/in goat call or       not at a seesement.         (M44)       Frimary crops       Not found/in goat call or       not at a low or in rotational crops at >10% TRR in root and tuber         (GROUP A]       Cereals       Not found/in goat call or       not at low or in rotationa		Leafy vegetables	ð,	L.	vegetables but the
Cereals       6.5% TRR; 0.129 mg/kg       therefore not       therefore not         Spiroxamine -       4.6% TRR; 0.044 mg/kg       Not found in       Not data available.       Metabolite/found in         Spiroxamine -       Primary crops       Not found       goat at or       Not data available.       Metabolite/found in         [GROUP A]       Rotational crops       Not found       laving her       of therefore not       considered         Spiroxamine -       Leafy vegetables       1.8% TRR; 0.015 bg/kg       for found in       No data available.       Metabolite/found in         Spiroxamine -       Leafy vegetables       1.8% TRR; 0.05 bg/kg       for found in       No data available.       for fisk assessment.         Spiroxamine -       acid glycoside       Not found in       Not data available.       Metabolite found in rotational crops         (M44)       Frimary crops       Not found in rotational crops       Not found in rotational crops at >10% found in rotational crops at >10% TRR in root and tuber       vegetables but the actual residues         (GROUP A]       Rotational crops       Not found in rotational crops       at >10% TRR in root and tuber         (GROUP A]       Rotational crops       Not found in rotational crops       at >10% TRR in root and tuber         (GROUP A]       Rotational crops       Not found in rotational crops	· /	1.6% TRR; 0.005 mg/kg	- Au	Q.	actual pesidues
Root & tuber vegetables 14.6% TRR; 0.044 mg/kg       Softwarmine - (14.6% TRR; 0.044 mg/kg       Softwarmine - (14.6% TRR; 0.044 mg/kg       Softwarmine - (14.6% TRR; 0.044 mg/kg       Softwarmine - (18.6% TRR; 0.015 mg/kg       Softwarmine - (18.6% TRR; 0.019 mg/kg       Softwarmine - (18.6% TRR; 0.027 mg/kg					
Spiroxamine – desethyl acid glycoside (M43)       Primary crops Not found       Not found in goas cat or laving here       Not data available. goas cat or laving here       Metabolite found in rotational crops only and at \$10%         [GROUP A]       Rotational crops Leafy vegetables 3.4% TRR; 0.015 trg/kg       Not found found glycoside (M44)       Not found found in rotational crops Leafy vegetables 5.7% TRR; 0.055 trg/kg       Not found found glycoside (M44)       Metabolite found for risk assessment.         Spiroxamine – acid glycoside (M44)       Primary crops Not found       Not found found found found found found glycoside (M44)       Not found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found found			4	Q' 6° A	
Spiroxamine – desethyl acid glycoside (M43)       Primary crops Not found       Not found in goat at or laving hen Leafy vegetables 1.8% TRR; 0.015 bg/kg       Not found in goat at or laving hen 1.8% TRR; 0.015 bg/kg       Metabolice found in motatenal crops only and at \$10% TRP: therefore not eonsidered relevant or risk assessment.         Spiroxamine – acid glycoside (M44)       Primary crops 1.8% TRR; 0.05 mg/kg       Not found in motatenal crops 1.8% TRR; 0.05 mg/kg       Not found in motatenal crops 1.8% TRR; 0.015 bg/kg       Metabolice found eonsidered relevant or risk assessment.         Spiroxamine – acid glycoside (M44)       Primary crops 5.7% TRR; 0.05 mg/kg       Not found in goat, rat or laving hen 3.4% TRR; 0.019 mg/kg       Not found in motatenal crops at >10% TRR in root and tuber vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.					
Spiroxamine – desethyl acid glycoside (M43)       Primary crops Not found       Not found in goat stat or laving hen       Not data available. goat stat or laving hen       Metabolite found in rotational crops only and at \$0% TRR therefore not considered         (M43)       IGROUP A]       Leafy vegetables 1.8% TRR; 0.015 fbg/kg       Image and therefore not considered       Image and therefore not considered         Spiroxamine – acid glycoside (M44)       Primary crops Not found       Not found in goat stat or laving hen       Not data available.       Metabolite found relevant for risk assessment.         Spiroxamine – acid glycoside (M44)       Primary crops Not found       Not found in goat, tat or laving hen       Not data available.       Metabolite found in rotational crops at >10% TRR in root and tuber vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.		14.6% TRR; 0.044 mg/kg	6° 5°		assessment
desethyl acid       Not found       P goar tat of laying hen       In rotational crops         (M43)       Rotational crops       Iaying hen       only and at \$40%         [GROUP A]       Leafy vegetables       only and at \$40%         1.8% TRR; 0.015 hg/kg       relevant for risk         3.4% TRR; 0.05 hg/kg       relevant for risk         3.4% TRR; 0.05 hg/kg       relevant for risk         Spiroxamine –       s.7% TRB; 0.05 hg/kg       relevant for risk         Acid glycoside       Not found       goar, rat or         (M44)       Rotational crops       Not found in rotational crops         [GROUP A]       Primary crops       Not found in rotational crops         Spiroxamine –       c.ceals       Not found found in rotational crops         acid glycoside       Not found foun	Spirovamina		Not found in	No dato voilable	<i>c</i> 4
3.4% TRR; 0.088 mg/kg       3.4% TRR; 0.088 mg/kg         Root & tuber vegetables       5.7% TRB; 0.05 mg/kg         Spiroxamine –       acid glycoside         (M44)       Not found         [GROUP A]       Retational crops         Vegetables       acid glycoside         (M44)       Retational crops         [GROUP A]       Vegetables         Vegetables       10% TRR in	1		goaterat or		
3.4% TRR; 0.088 mg/kg       3.4% TRR; 0.088 mg/kg         Root & tuber vegetables       5.7% TRB; 0.05 mg/kg         Spiroxamine –       acid glycoside         (M44)       Not found         [GROUP A]       Retational crops         Vegetables       acid glycoside         (M44)       Retational crops         [GROUP A]       Vegetables         Vegetables       10% TRR in		l l l l l l l l l l l l l l l l l l l	laying hen		
3.4% TRR; 0.088 mg/kg       3.4% TRR; 0.088 mg/kg         Root & tuber vegetables       5.7% TRB; 0.05 mg/kg         Spiroxamine –       acid glycoside         (M44)       Not found         [GROUP A]       Retational crops         Vegetables       acid glycoside         (M44)       Retational crops         [GROUP A]       Vegetables         Vegetables       10% TRR in	•••				TRR therefore not
3.4% TRR; 0.088 mg/kg       3.4% TRR; 0.088 mg/kg         Root & tuber vegetables       5.7% TRB; 0.05 mg/kg         Spiroxamine –       acid glycoside         (M44)       Not found         [GROUP A]       Retational crops         Vegetables       acid glycoside         (M44)       Retational crops         [GROUP A]       Vegetables         Vegetables       10% TRR in	. ,	Leafy vegetables	S 2 ~		
3.4% TRR; 0.088 mg/kg       3.4% TRR; 0.088 mg/kg         Root & tuber vegetables       5.7% TRB; 0.05 mg/kg         Spiroxamine –       acid glycoside         (M44)       Not found         [GROUP A]       Retational crops         Vegetables       acid glycoside         (M44)       Retational crops         [GROUP A]       Vegetables         Vegetables       10% TRR in		1.8% IRR; 0.015 mg/kg			
Root & tuber/vegetables       Not found in       No data available       Metabolite found in rotational crops at >10% TRR in root and tuber         Spiroxamine – acid glycoside (M44)       Primary crops       Not found in goat, fat or laying hen       No data available       Metabolite found in rotational crops at >10% TRR in root and tuber         [GROUP A]       Pertational crops       Primary crops       Not found in goat, fat or laying hen       A = 10% TRR in root and tuber         [GROUP A]       Pertational crops       Primary crops       Primary crops       Primary crops       Primary crops         6.4% TRR; 0.019 mg/kg       Primary crops       Primary crops       Primary crops       Primary crops         6.4% TRR; 0.126 mg/kg       Primary crops       Primary crops       Primary crops       Primary crops         11/6% TRR; 0.027 mg/kg       Primary crops       Primary crops       Primary crops       Primary crops         11/6% TRR; 0.027 mg/kg       Primary crops       Primary crops       Primary crops       Primary crops         11/6% TRR; 0.027 mg/kg       Primary crops       Primary crops       Primary crops       Primary crops         11/6% TRR; 0.027 mg/kg       Primary crops       Primary crops       Primary crops       Primary crops         11/6% TRR; 0.027 mg/kg       Primary crops       Primary crops       Primary crops		<u>Cereals</u>	S.	A & ~	
Actional crops (M44) [GROUP A] Actional crops Actional cro		5.170 Hut, 9, 000 mg 46	,		0 [°]
Actional crops (M44) [GROUP A] Actional crops Actional cro		5.7% TRB; 0.05 b mg/kg			þ
(M44) [GROUP A] Refational crops <u>Leafy vegetables</u> 4.6% TRR; 0.019 mg/kg <u>Coreals</u> 6.4% TRR; 0.120 mg/kg <u>Rotot&amp; tuber vegetables</u> 11,6% TRR; 0.027 mg/kg	1		Not found in	No data available.	
[GROUP A]       Rotational crops       root and tuber <u>Leafweegetables</u> 4.6% TRR: 0.019 mg/kg       root and tuber         6.4% TRR; 0.126 mg/kg       root and tuber       regetables but the actual residues         Root & tuber vegetables       root and tuber       residues         11.6% TRR; 0.027 mg/kg       root and tuber       relevant for risk assessment.	•••	Not bound S 2	goat, fat or		
[GROUP A]       Leafweegetables         4.6% TRR: 0.019 mg/kg       4.6% TRR: 0.019 mg/kg         6.4% TRR: 0.126 mg/kg       4.6% TRR: 0.126 mg/kg         8.000 Kg       4.6% TRR: 0.126 mg/kg         11.6% TRR: 0.027 mg/kg       4.6% TRR: 0.027 mg/kg	· /	Rotational crops ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	laying hen	0 ~~	
4.6% TRR: 0.019 me/kg <u>Cecteals</u> 6.4% TRR; 0.126 mg/kg <u>Root &amp; tuber vegetables</u> 11,6% TRR 0.027 mg/kg	[GROUP A]				
6.4% TRR; 0.120 mg/kg     6.4% TRR; 0.120 mg/kg     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1	~ ( ⁽	4.6%TRR; 0.019 mg/kg			e
Root & tuber egetables 11.6% TRR 0.027 mg/kg	Ő	Céceals			
Root & tuber egetables 11.6% TRR 0.027 mg/kg		6.4% TRR; 0.120 mg/kg	°	. 6	
assessment.	ja se	Root & tuber vegetables	S 3	6 [×]	
Spiroxamine – despropyl acid glycoside (M45)       Primaty crops       Not found in goat, rafor       Not found in goat, rafor       No data available.       Metabolite found in rotational crops only and at <10%				,	
Spiroxamine –       Frimary crops       Not round in rotational crops         despropyl acid       Not bund       goat, rayor         glycoside       Rotational crops       laying hen         (M45)       Leafy vegetables       TRR therefore not considered relevant for risk assessment.	Cainomanina		Ngfauthin	No doto orgalable	
adsprop / adda     Not gaind     Solutional crops       glycoside     (M45)       [GROUPA]     Leafy vegetables       5.5% TRR; 0019 mg/kg     Solutional crops       assessment.	despronyl acid	Not Quind a C	anot report	ino data avallable.	
(M45) [GROUPA] <b>Rotational crops</b> [GROUPA] <b>Rotational crops</b> 5.5% TRR; 019 mg/kg <u>Ceteals</u> 3.7% TRP: 0.145 mg/kg			Daving hen		
[GROUPA] Leafy vegetables 5.5% TRR; 0019 mg/kg considered Cereals 3.7% TRP: 0.145 mg/kg considered 3.7% TRP: 0.145 mg/kg considered assessment.	W .	Rotational crops 2			
5.5% TRR; 6019 mg/kg     relevant for risk       37% TRP: 0 145 mg/kg     assessment.		Leafy vegetables	, K		
$\frac{Cereals}{3.0\%} = 0  (Intermediate on the second sec$		5.5% TRR; % 019 mg/kg	D _A		
y 5.170 mar, 0.149 mg/ Kg 04	L.	<u>Cereals</u> 3.7% TESR; 0.145 mg/kg	Ĩ		assessment.
Root & tuberty egetables	_©	Root & tuber yegetables			
9.1% TRR 0.002 mg/kg	Ô ⁵	9.1%0°1 KK %.002 jng/kg			

M01 and M02 were found in the rotational crop studies at >10% TRR (although at low absolute amounts) but these metabolites were also found in the hen metabolism study therefore the risk assessment of parent spiroxamine is considered to cover the risk to these metabolites. M03 was found in wheat at >10% TRR. Toxicology data for M03 demonstrate that this metabolite is of

M&S was found in wheat at >10% TRR. Toxicology data for M03 demonstrate that this metabolite is of similar of lower toxicity than spiroxamine. It is considered reasonable to assume that this would also be the case for birds therefore, assuming extrapolation from mammals to birds, the risk assessment of parent spiroxamine is considered to cover the risk to this metabolite.



M28 was found in grapes and banana at >10% TRR. Toxicology data are available for M28 and confirm that this metabolite is 15-fold, 9-fold and 2-fold less toxic in sub-acute, maternal and developmental parameters than spiroxamine. It is considered reasonable to assume that this would also be the case for birds therefore, assuming extrapolation from mammals to birds, it is considered that this metabolite willow be less toxic to birds than spiroxamine therefore the risk from exposure to this metabolite is considered to be covered by the assessment for parent.

M35 was also found in grapes at >10%TRR. The toxicology data generated for M28 are considered to also cover this metabolite and confirm that the metabolite is less toxic than parent. Thus, the risk from exposure to this plant metabolite is considered to be covered by the assessment for parent.  $\bigcirc$ 

M04, M05, M09, M14, M15, M16, M20, M21, M24, M29, M30, M31, M33, M54, M38, M37, M38, M39, M40, M42, M43, M44 and M45 were found in the crop metabolism studies at either <10% TRR or very low absolute amounts and were therefore out considered to be relevant for risk assessment.

Specific dietary risk assessment for these plant metabolites of spiroxamine is therefore not considered to be necessary.

## Dietary risk assessment for birds

## Exposure

In order to present risk assessments which fully cover the range of options available in the GAP, the following six exposure regimes have been considered here with dictary risk assessments presented for each regime:

- 1 x 200 g a.s./ha BBCH 13-19
- 1 x 300 g a.s./ha BBCH 13 19
- 1 x 300 g a.s./ka BBC 7 53 \$5
- 2 x 300 g a. Tha BBCH 52 85 (O-day interval
- 1 x 200 g 5./ha BBCH 3- 19 and 1 x 300 g a.s./ha BBCH 20 (52) 85 (10-day interval)
- 1 x 300 gra.s./ha BBCH/13 -(19 and 1/x 300 g a.s./ha BBCH 20(53) 85 (10-day interval)

## Isomers

The risk assessments for birds & mammals involves potential chordic exposure of these organisms to residues in plants therefore it may be necessary to apply an uncertainty factor (UF) to the chronic avian and mammalian risk assessments. The acote risk assessment need not have an UF applied as exposure in this scenario is immediate. However, chronic risk assessment considers exposure over a prolonged period therefore potential charges in someric ratio needs to be considered. For the bird and mammal risk assessments the same approach taken in the residues section for the consumer risk assessment, with respect to isomers, has been followed. Based of the current residues data set for spiroxamine, there are no indications of a significant charge in isomer ratios therefore no additional factor need be applied to the risk assessments below (*i.e.* an UF of 1, that been used).

## Risk assessment

The risk assessments have been conducted in accordance with the EFSA (2009) Bird & Mammal Guidance doctment. Each assessment starts with a screening step followed by a Tier I assessment if required. Finally, refined risk assessments have been presented where required.

The acut@daily@ietary dose'fDDD) is calculated by multiplying the shortcut value (SV) based on the 90th percentile@esidues by the application rate in kg a.s/ha.

 $DDDX = application rate (kg a.s./ha) x SV_{90}$ 

The long term 'daily dietary dose' (DDD) is calculated by multiplying the SV based on the mean residues by the application rate in kg a.s./ha and (only for the long-term risk assessment) a time weighted average residue exposure ( $f_{twa}$ ). The  $f_{twa}$  based upon a default DT₅₀ of 10 days is 0.53, as given in EFSA guidance (2009).



 $DDD_{LT}$  = application rate (kg a.s./ha) x SV_m x  $f_{twa}$ 

Acute risk is assessed by comparing the relevant daily dietary dose (DDD) values with the appropriate  $D_{50}$  endpoint to give an acute Toxicity: Exposure Ratio (TER_A):

$$TER_A = \frac{LD_{50} \text{ (mg/kg bw)}}{\text{DDD}}$$

TERA values which exceed a trigger value of 10 indicate an acceptable acute risk.

Derivation of the short-term toxicity exposure ratio is no longer a requirement according to the FDSA Guidance Document (2009) so a short-term risk assessment has not been presented. Dowever, the endpoint from the short-term dietary study with the bobwhaite chail has been used in the acute risk assessment.

Long-term risk is assessed by comparing the long-term DDD values with the worst case NOAEL from the reproduction studies, expressed as daily dietary dose, to give a long-term toxicity exposure ratio (TER_{LT}):

$$TER_{LT} = \frac{NOAEL (mg/kg bw/day)}{DDD (mg/kg bw/day)_{\text{s}}}$$

TER_{LT} values which exceed a trigger value of 5 andicate acceptable chronic Fisk.

## <u>1 x 200 g a.s./ha BBCH 13 49</u>

The screening step assessments for the acute and reproductive risks are presented below.

Table CP 10.1.1-3 Screening step assessment for acute and long-term/reproductive risk to birds for the proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 19)

n

		<u>~~</u>		a	
Intended use		<u>.</u>		× ×	
Active substance/proc	hact O SpiroRamine/ Spirox	amine PC 500	2"		
Application Pate (g a.s	s./ha) 12 200 - 0	"O" (?)			
Acute toxicity (mg a.s	s/kg bw) \$357	Ś ^a w ^a ,	× ×		
TER criterion			<i>¥</i>		
Crop scenario	Indicator species	§V90	MAF ₉₀	DDD ₉₀	TERA
				(mg a.s./kg bw/d)	
Vineyard	Smallomnivorous burt	9505	1.0	19.1	>18.7
Reprod Sxicity	5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40				
		<i>"</i>			
TER criterion		1	1	1	
Crop scenario	Indicato@species Q	$SV_m$	$MAF_m \times$	$DDD_m$	TER _{LT}
Crop scenario	Indicato@species		TWA	(mg a.s./kg bw/d)	
Vineyard	Small omnivorous bird	38.9	1.0 x 0.53	4.12	1.31

SV: shortcut varie; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; DER: togacity sposure ratio. TER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 - 19) the acute risk to birds from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 10) but potential reproductive risks have been identified (TER <5). A Tier I reproductive risk assessment has therefore been conducted and presented below.



Table CP 10.1.1-4	Tier I assessment for reproductive risk to birds for the proposed use of
Spiroxamine EC 500 in	grapes (BBCH 13 - 19)

	8 1	( )	
Intended use		Grapes (BBCH 13 - 19)	
Active substance/pro	duct	Spiroxamine / Spiroxamine EC 500	
Application rate (g a.	s./ha)	1 × 200	
Reprod. toxicity (mg bw/d)	a.s./kg	5.40	
TER criterion			
Crop scenario Growth stage	Generic f	ocal species $MOF_m \times DDD_m$ (mg $rs./k$	TERIT OF
Vineyard BBCH 10-19	Small inse "redstart"		× × 4.43 ×
Vineyard BBCH 10-19	-	nivorous bird Tinch* 6.9 , 1.0 x 053 0.751	J.38 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Vineyard BBCH 10-19	Small om	nivorous Pird "tark" 6,5 1 bx 0.5 0.689	7.84 57 4 7.84

SV: shortcut value; MAF: multiple application factor; TWA: time weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure who. TER values shown in bold fall below the relevant rigger

For the proposed use of Spiroxanime EC 500 on grapes (1 x 200 c a.s./ha at BBCH 13 - 19) the reproductive risks to birds from dietary exposure to spiroxanime are considered to be acceptable (TER  $\geq$ 5) for the small granivorous bird "finch" and small ome vorous bird "lark" scenarios but potential reproductive risks have been dentified for the small insectivorous species "redstart" scenario. A refined risk assessment for this individual scenario has been presented below.

## <u>Refinement</u>

Small insectivorous Species "redstart" scenario

For the refined risk assessment for the small insectivorous precies redstart" scenario, the black redstart has been used as the local species. This is the default species in EFSA (2009) but is supported by the available focal species study M-22349-01-1. In this budy four vineyards in Germany were observed between early Appil and early July for the bird species that were present on the sites. The black redstart was found to be present in three of the four sites and was found to be breeding in two of the sites. In study M-29149-01-0 bird species in vineyards in France and Italy were observed in order to determine focal species. The black redstart was found to be present in the vineyards in France. Thus, the black redstart is considered to be a typical insectivorous bird that may be found in vineyards in both Central and Southern Europe

The Vier I risk assessment has assumed that byds obtain all of their food from within the treated area (*i.e.* a PT of 1.0) but in reality birds now also obtain food from outside of this area. In study <u>M-427241-01-1</u> the use of vineyards by the black redstart in Southern France was investigated using observation and radio-tracking. Mean PT values of 26.5% (0.285) were determined for the black redstart with a 90th percentile value 67.75% (0.75). A refined 90th percentile PT of 0.75 for black redstarts in vineyards has therefore been applied to the refined risk assessment.

The default diet in EFSA (2009) for this scenario is 50% ground invertebrates and 50% foliar invertebrates. In study <u>M487359-01-1</u> the foraging behavior of the black redstart was investigated in German ineyards and foraging events were observed, distinguishing between foraging on the ground, in vine rows and in the air. A total of 96.45% of all documented foraging events were located on the ground in vineyards, 0.75% on the vine plant and 2.75% were in-flight catches. These observations have been taken to provide a diet that consists of 96.45% ground invertebrates and 3.55% foliar invertebrates.



I .

This diet has therefore been used in the refined risk assessment as a more realistic diet for the focal species, black redstart.

The refined risk assessment for the small insectivorous bird scenario in vineyards at BBCH following application of Spiroxamine EC 500 at 1 x 200 g a.s./ha at BBCH 13 19 is presented using the refinement parameters outlined above.

### Table CP 10.1.1-5 Refinement of the small insectivorous bird scenario (BBCH 10-19) (or the proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 49) - black redstart

or opened and	or opinoxumin	20000		(220	Ċ	) ~~~	ch i curry	
App rate	Food type	FIR/bw a)	RUD b)	MAF c)	fyva ^{c)}	PT ^{d)}	Dep. factor	DDD [mg Total a.s./kg DDD ⁽¹⁾ b.y. (d)
1 x 0.200 kg a.s./ha	Invertebrates (ground dwelling)	0.778	7.5		Q 53	0.75	\$1.0 \$1.0	0.464 0 512 10.5 o
kg a.s./lia	Invertebrates (foliar dwelling)	0.0286	21.0		0.53	//		000477 000477

g used in the calculations a) Values calculated using focal species dietar data. The EFSA bodyweight of 195

- ^{b)} Default RUD values from EFSA (2009) Appendix F
- ^{c)} Default values from EFSA (2009)
- d) Refined 90th percentile PT value from Gocal species study
- e) Deposition from Appendix A (EFSA, 2009) m
- f) Sum of DDD values for individue diet components
- ^{g)} TER calculated based on reproductive andpoint of 5.40 mg a.s./kg bw/day

Using the refined parameters discussed above the reproductive risks to insectivorous birds following the proposed use of Spiroxamine EC 500 on grapes at 2 200 a.s. An at BBCH 1 2 19 are considered to

Ś

1 x 300 g a.s./ha DBCH 10 - 19 The screening step assessments for the acate and reproductive raks are presented below.



## Table CP 10.1.1-6Screening step assessment for acute and long-term/reproductive risk to birds forthe proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 19)

1 1	1	
Intended use		Grapes (BBCH 13 - 19)
Active substance/pro	duct	Grapes (BBCH 13 - 19) Spiroxamine / Spiroxamine EC 500
Application rate (g a	.s./ha)	
Acute toxicity (mg a	.s./kg bw)	>357
TER criterion		
Crop scenario	Indicator	species SV MAP ⁰ DDD ₉₀ TER T
Vineyard	Small om	mivorous bird $95.3$ $1.0$ $28.6$ $28.6$ $12.5$
Reprod. toxicity (mg a.s./kg bw/d)		
TER criterion		
Crop scenario	Indicator	species $\mathcal{S}_{w}$ $\mathcal$
Vineyard		mivorous bited 38 5 1.0 x 0.53 019 0 0.873
<b>NTT 1 1 T</b>	F A T 1.1	

SV: shortcut value; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity exposure ratio. TER values shown in bold fall below the relevant origger

For the proposed use of Spiroxamine EC 500 on grapes (1  $\times$  300 g a.s./ha at BBCH 13 - 19) the acute risk to birds from dietary exposure to spiroxamine are considered to be acceptable (TER  $\ge$ 10) but potential reproductive risks have been identified (TER  $\le$ 5). A Tier I oproductive risk assessment has therefore been conducted and presented below.

# Table CP 10.1.107 Tier Lassessment for reproductive risk to birds for the proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 19)

1	6-8-1	The second secon	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Intended use		27° 25° .	A COLORADO		
Active substance/pro	duşt 🥎 Spiroxamine Spirox	amine EC 500	×		
Application rate (gra?	s./ha) 1@'300x 7	O' 嶡	-		
Reprod. toxicity	5.40 C N C	5° 8			
(mg a.s./kg bwQd)		ð			
TER criterion	B B B S.	×			
Crop scenario	Generic focal species	$SV_m$	$MAF_m \ \times$	$DDD_m$	TER _{LT}
Growth stage			TWA	(mg a.s./kg bw/d)	
Vineyard	Small insectivoroes species	11.5	1.0 x 0.53	1.83	2.95
BBCH 10-19	redstart S				
Vineyard BBCH 1009	Small granivorous bind "finch"	6.9	1.0 x 0.53	1.10	4.92
BBCH 10 39					
Vineyate BBCT 10-190	Small opinivorous bird "lark"	6.5	1.0 x 0.53	1.03	5.22
BRCB 10-180 0	t Š				

SV. shorten value; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio. TER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine EC 500 on grapes (1 x 300 g a.s./ha at BBCH 13 - 19) the reproductive risk to birds from dietary exposure to spiroxamine are considered to be acceptable (TER



 $\geq$ 5) for the small omnivorous bird "lark" scenario but potential reproductive risks have been identified for the small insectivorous species "redstart" and the small granivorous bird "finch" scenarios. A refined risk assessment for these individual scenarios have been presented below.

## Refinement

## Small insectivorous species "redstart" scenario

For the refined risk assessment for the small insectivorous species "redstart" scenario, the black redstart has been used as the focal species. As discussed in the previous sub-section, a 90th percentile PT for the black redstart of 0.75 and a diet consisting of 96.45% ground prvertebrates and 355% foliar invertebrates has been used in the refined risk assessment.

The refined risk assessment for the small insectivorous bird scenario of vinegards of BBCH 10 29 following application of Spiroxamine EC 500 at 1x 300 g a.s. ba at BBCH 13 - 19 s presented below. Ò

### Refinement of the small insectivorous bird grenario BBC 10-19 for the Table CP 10.1.1-8 proposed use of Spiroxamine EC 500 in grapes (BBCH 13-49) – black redstart @

			- 30				O' v	· · · ·	
App rate	Food type	FIR/bw	S D C	ttwa C		Dep.	DDD [mg a.sc kg b.w./d]	Total PDD ¹ C	TER g)
1 x 0.300 kg a.s./ha	Invertebrates (ground dwelling) Invertebrates (foliar dwelling)	w w	21.00 21.00	0.53	0.7 <b>5</b>		0.696 0.0716	% 9.768	7.03

a) Values calculated using tocal species dietary data. The EFSA bodyweight of 16.5 gused in the calculations b) Default RUD values from EFSA (2009) Appendix F

^{c)} Default values from SFSA (2009)

^{d)} Refined 90th percentile PT value from focal species study ^{e)} Deposition from Appendix A (EFSA, 2009)

f) Sum of DDD alues for individual diet Components ¹⁾ Sum of DDD salues torindividual diet components ²⁾ TER calculated base@on reproductive endpoint of 5.40 mg a.s. by bw/day

Using the refined parameters discussed above the reproductive risks to insectivorous birds following the proposed use of Spiro amine DC 500 on grapes at x 300 g a.s. ha at BBCH 13 - 19 are considered to be acceptable (TER 3).

## Small granivorous bird finch scenario

For the refined fisk assessment for the small granivorous bird "finch" scenario, the linnet has been used as the focal species. In stody M29119201-1, & field survey program was carried out to identify and quantify bird species found in Mneyand's in France and Italy during different grapevine growth stages. The limit was found to be the most characteristic species present in vineyards in France and this species also featured at significant levels in vine wide in Southern Italy. As such the linnet was considered to be a suitable granivorous focal species for vineyands in Southern Europe.

This focal species is further supported by study M-291784-01-1 in which bird trapping, radio-tracking and visual observations of four bird species, including the linnet, took pace in a typical wine growing region in France for limets the mean PT value was determined to be 0.78 with a 90th percentile value of 0.97, thereby confirming the linnet to be a suitable focal species for vineyards. This study also analysed factors and or stom ach contents in order to determine typical diets of these species. For the ling the dist was @verwhamingly comprised of seeds, as expected for a granivorous species. Study M-516702-001 also supports this by demonstrating that the linnet obtains its diet predominantly from the ground vegetation. EFSA (2009) assumes a diet of 100% weed seeds for this scenario but for the refined risk assessment a diet of 97.3% weed seeds and 2.7% ground invertebrates has been considered. A 90th percentile PT of 0.97 has also been considered.



The refined risk assessment for the small granivorous bird scenario in vineyards at BBCH 10 - 19 following application of Spiroxamine EC 500 at 1 x 300 g a.s./ha at BBCH 13 - 19 is presented below.

Table CP 10.1.1-9Refinement of the small granivorous bird scenario for the proposed use of<br/>Spiroxamine EC 500 in grapes (BBCH 13 - 19) - Linnet

								L.Y	2		,
Application rate	Food type	FIR/bw a)	RUD b)	MAF c)	ftwa c)	PT ^{d)}	L	1999 (mg (a.s./kg b.w./d]	Total DDD ^{f)}	ER ^{g)}	
1 x 0.300	Weed seeds	0.282	40.2	1.0	0.53	Ø.		1.05			
kg a.s./ha	Invertebrates (ground dwelling)	0.00782	7.5	1.0	69.53	0.97		0.0 <b>000</b> 5			U ^V

a) Values calculated using focal species dietary data. The EFSA Godyweight of 159 g used in the carculations

^{b)} Default RUD values from EFSA (2009) Appendix D

^{c)} Default values from EFSA (2009)

d) Refined 90th percentile PT value from focal species study

e) Deposition value based on 40% crop interception (Appendix A; EFSA, 2009

^{f)} Sum of DDD values for individual diet components

g) TER calculated based on reproductive endowint of 5.40 mg a.s./kg b

Using the refined parameters discussed above the reproductive risks of granivorous Dirds following the proposed use of Spiroxamine E6 500 on grapes at 1  $\times$  300 g a.s./hg at BBOH 13 019 are considered to be acceptable (TER  $\geq$ 5).

## <u>1 x 300 g a.s./ha BBCH 53-85</u> C

The screening step assessments for the acute and reproductive risks are presented below.

Table CP 10.1.1-10 Screening tep assessment for acute and long-term/reproductive risk to birds for the proposed use of Spiro mine FC 500 in grapes (BBCH 53 35)

			8	
Intended use S Grapes (BBC 9 53 -	හි ල			
Active substance/product Storoxamine / Spirox	amine EC 500			
Application rate (g a.s./hg) $30 \times 300^{\circ}$	35) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Acute toxicity (mg a kg by) >357		ÿ		
Acute toxicity (mg a kg by) >357				
	SV ₉₀	MAF ₉₀	DDD ₉₀	TERA
			(mg a.s./kg bw/d)	
Vineyard Small om Vorous Bird	95.3	1.0	28.6	>12.5
Reprod. toxicity (mg as./kg A 5.46 )	Ĵ			
Crop scenarie Indicator/generic focat species	$SV_m$	$MAF_m \ \times$	DDD _m	TER _{LT}
		TWA	(mg a.s./kg bw/d)	
Vineyard Z Small convivorous bird	38.9	1.0 x 0.53	6.19	0.873

SV; shortcut value; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine EC 500 on grapes (1 x 300 g a.s./ha at BBCH 53 - 85) the acute risk to birds from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 10) but



potential reproductive risks have been identified (TER <5). A Tier I reproductive risk assessment has therefore been conducted and presented below.  $\mathbb{Q}_{a}^{\circ}$ 

Table CP 10.1.1-11Tier I assessment for reproductive risk to birds for the proposed use of<br/>Spiroxamine EC 500 in grapes (BBCH 53 - 85)

Spiroxainine EC 500	in grapes	(BBCH 55 - 65)	
Intended use		Grapes (BBCH 53 - 85)	
Active substance/pro	duct	Spiroxamine / Spiroxamine EC 500	
Application rate (g a.	s./ha)		
Reprod. toxicity (mg a.s./kg bw/d)			
TER criterion			
Crop scenario Growth stage	Generic fo	bocal species $MAT_m \times DDD_m$ $WAT_m \times DDD_m$ $WAT_m \times DDD_m$ $WAT_m \times DDD_m$ $WAT_m \times DDD_m$	TER _{LT}
Vineyard BBCH >20	"redstart"		3.43 (S S S O
Vineyard BBCH >40		nivorou bird "pinch" 3.4 2 10 x 0.54 0.54	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Vineyard BBCH >40	Small om		المربي 10.3 ۲
Vineyard Ripening	Frugiværo "Thrush/s		2.36

SV: shortcut value; MAF? multiple application factor; OWA: there-weighted average factor; DDD: daily dietary dose; TER: toxicity to prosure ratio CER values shown in bold fall below the relevant trigger

For the proposed rise of Spiroxamine EC 500 on grapes ( $1 \times 300$  g as /ha at BBCH 53 - 85) the reproductive risk to block from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 5) for the small granivorous bird "finch" and small ornnivorous bird "lark" scenarios but potential reproductive risks have been identified for the small infectivorous species "redstart" and the frugivorous bird "thrush/starling" scenarios. A refined risk assessment for these individual scenarios have been presented below.

## Refinement

## Small insectiv@ous species Fedstafe" scepario. O

For the refined risk assessment for the small insectivorous species "redstart" scenario, the black redstart has been used as the focal species. As discussed above, a 90th percentile PT for the black redstart of 0.75 and a diet consisting of 96.45% ground invertebrates and 3.55% foliar invertebrates has been used in the refined risk assessment.

The refined risk assessment for the small insectivorous bird scenario in vineyards at BBCH >20 following application of Spice amine EC 500 at 1 x 300 g a.s./ha at BBCH 53 - 85 is presented below.

## Table CP 10.1.1-12 Refinement of the small insectivorous bird scenario (BBCH >20) for the proposed use of Spiroxamine BO 500 in grapes (BBCH 53 - 85) – black redstart

App rat	Food type	¥ FIR/bw a)	RUD b)	MAF c)	f _{twa} ^{c)}	PT ^{d)}	Dep. factor e)	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
1 x 0.30 kg a.s./h		0.778	3.5	1.0	0.53	0.75	1.0	0.325	0.397	13.6



	Invertebrates (foliar dwelling)	0.0286	21.0	1.0	0.53		1.0	0.0716		<u> </u>	<b>\$</b> 0\$
--	---------------------------------------	--------	------	-----	------	--	-----	--------	--	----------	---------------

Values calculated using focal species dietary data. The EFSA bodyweight of 16.5 g used in the calculations

^{b)} Default RUD values from EFSA (2009) Appendix F

^{c)} Default values from EFSA (2009)

^{d)} Refined 90th percentile PT value from focal species study

^{e)} Deposition from Appendix A (EFSA, 2009)

f) Sum of DDD values for individual diet components

^{g)} TER calculated based on reproductive endpoint of 5.40 mg a.s./kg 6 // day

Using the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the reproductive risks to associate the refined parameters discussed above the refined parameters disc proposed use of Spiroxamine EC 500 on grapes at 1,2300 g a.s./ha/at BBCH 53,085 are considered be acceptable (TER  $\geq$ 5).

### Frugivorous bird scenario

For refinement of the frugivorous bird scenario reference is made to report M-414948-01-1. Data are available for a total of 54 studies in which initial residues of spinoxamine parent compound on grapes were either measured directly or were recalculated from total residue values determined immediately after the last application. The RUD degived for the total set of studies (n=54) is in line with the RUD derived only for those studies in which instial residues of spire amine parent itself in grapes were measured (n=24). Therefore, taking into account a dataset of 54 residues tudies for spiroxamine in total, it is proposed to replace the generic RUD of 8. 3 by a pore redistic RUD of 0.63 that can be used in the refined risk assessment for Spir Kamine EC 500. Here the refined for givorous bird scenatio is applicable to the frugivorous bird "song thrush" (Turdus philomelos) which according to EFSA (2009) presents a FIR/bw value of 1.73.

Refinement of the frigivorous bird scenario for the proposed use of Spiroxamine Table CP 10.1.1-13 EC 500 in grapes (BBSH 53 - 85) S  $\ll$ *(*])

		2		. ~	a T	° @.			
Application rate	Food type	FIR/bw	K I	MAXF	free a		actor c)	DDD [mg a.s./kg b.w./d]	TER ^{d)}
1 x 0.300 kg a.s./ha@	Grapes	1.73		1	0.53			0.448	12.1
a) Value tal	from AnnonAir	A (EDOA '	NAG		$\sim$				

a) Value taken from Appendix A (FESA, 2009)

b) Measured mean RUD Whe from 54 resides trials using piroxamine on grapes

^{c)} Default values from EF8A (2009)

d) TER calculated based on reproductive endpoint of 5.40 mg a. Okg bw/day

Using the refined RUP value discussed above the sproductive risks to frugivorous birds following the 500 on grapes at 1 x 300 g a.s./ha at BBCH 53 - 85 are considered to proposed use of Spiroxamine EC be acceptable (TER  $\geq$ 5).

- <u>A SUU g a.s./ha BBC 1 53 - 85</u> The screening step assessments for the soute and reproductive risks are presented below.



## Table CP 10.1.1-14Screening step assessment for acute and long-term/reproductive risk to birds forthe proposed use of Spiroxamine EC 500 in grapes (BBCH 53 - 85)

1 1	1	
Intended use		Grapes (BBCH 53 - 85)
Active substance/pro	oduct	Grapes (BBCH 53 - 85) Spiroxamine / Spiroxamine EC 500
Application rate (g a	.s./ha)	
Acute toxicity (mg a	.s./kg bw)	>357
TER criterion		
Crop scenario	Indicator	species System MAP DDD ₉₀ C TERS ( (mg æs /kg bw/d)
Vineyard	Small om	nivorous bird 95.3 7.2 37.2 37.2 9.64
Reprod. toxicity (mg a.s./kg bw/d)		
TER criterion		
Crop scenario	Indicator	species $W_{m}$ $W_{m}$ $W_{m}$ $DDD_{m}$ $DDD_{m}$ $TER_{LT}$ $WA \sim (mga.s./kg6w/d)$
Vineyard		nivorous bid 380 51.5 x 0.53 928 0 0.582
	<b>EAD</b> 1/2	

SV: shortcut value; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity exposure ratio. TER values shown in bold fall below the relevant gigger

For the proposed use of Spiroxamine EC 500 on grapes (2 \$300 g a.s./ha at BBCH 53 - 85) potential acute and reproductive risks have been identified. Dier I acute and reproductive risk assessments have therefore been conducted and presented below.

Table CP 10.1.1-15 500 in grapes (BBCH 59- 85)

O*			<u> </u>		
Intended us	Grapes (BBCH 53, 28	5) 🖓 🎧			
Active substance/pro	duce Spiroxamine / Spirox	amine EC 500	, OY		
Application rate (g a	s/ha) x 2 x 300 0 x x		×		
Acute toxicity (mga.	s./kg/w) 557 4 40 s./kg/w) 557 4 40 10 4 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7				
TER criterion		Š Ø			
Crop scenario	General focal species	SV00	MAF ₉₀	DDD ₉₀	TERA
Growth stage		× Y		(mg a.s./kg bw/d)	
Vineward BBCM >20	Small insectivorous species	25.7	1.3	10.0	35.6
Vineyard BBCH >40	Small grantvorous bird "Brich"	7.4	1.3	2.89	124
Vineyard BBCH	Small omnigerous bird "lark"	7.2	1.3	2.81	127
Vineyard Ripering	Frugivorous bird "Thrush/starling"	28.9	1.3	11.3	31.7

SV: shortoit value; MAF: multiple application factor; DDD: daily dietary dose; TER: toxicity to exposure ratio

For the proposed use of Spiroxamine EC 500 on grapes (2 x 300 g a.s./ha at BBCH 53 - 85) the acute risks to birds from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 10) for all relevant scenarios. No further acute risk assessment is necessary for this use of Spiroxamine EC 500.



0

Table CP 10.1.1-16	Tier I assessment for reproductive risk to birds for the proposed use of
Spiroxamine EC 500 in	grapes (BBCH 53 - 85)

Spiroxannie EC 5	oo in grupes								
Intended use		Grapes (BBCH 53 - 85)							
Active substance/p	roduct	Grapes (BBCH 53 - 85) Spiroxamine / Spiroxamine EC 500							
Application rate (g	a.s./ha)								
Reprod. toxicity (mg a.s./kg bw/d)		5.40 5.40 5 5							
TER criterion									
Crop scenario Growth stage	Generic f	focal species $SV_m$ $MOF_m > DDD_m$ $TER_{LT} > TWA = 0$ $(mg \ as s./kg \ Ow/d) > 0$							
Vineyard BBCH >20	Small ins "redstart"	sectivorous species $9.9$ $371.5 \times 0.53$ $2.36$ $372.29$							
Vineyard BBCH >40	Small gra	anivorous bird Tinch 3.4 1.5 x 0.53 0.801 56.66							
Vineyard BBCH >40	Small or	nnivorous Bird "tark" 3.3 15 x 0.53 0.787 6.86							
Vineyard Ripening	Frugivore "Thrush/s								

SV: shortcut value; MAF: multiple application factor, TWA; time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio

For the proposed use of Spiroxamine EC 500 on grapes 2 x 300 g a.s./ha at BBCH 53 - 85) the reproductive risks to birds from dictary exposure to spiroxamine are considered to be acceptable (TER  $\geq 5$ ) for the small granivorous bird "fined" and small omnivorous bird "lark" scenarios but potential reproductive risks (TER  $\leq 5$ ) have been identified for the small insectivorous species "redstart" and the frugivorous bird "thrust starling" scenarios. A refined risk assessment for these individual scenarios has been presented below.

Refinement

Small insectivorous pecies "redstart" scenario

For the refined risk assessment for the small infectivorous species "redstart" scenario, the black redstart has been used as the focal species. As discussed above, a 90th percentile PT for the black redstart of 0.75 and a diet consisting of 96,45% ground invertebrates and 3.55% foliar invertebrates has been used in the refined risk assessment.

The refined risk assessment for the small insectivorous bird scenario in vineyards at BBCH >20 following application of Spiroxamire EC 300 at 2x 300 g a.s./ha at BBCH 53 - 85 is presented below.

Table CP 10.1.1-17 Refinement of the small insectivorous bird scenario (BBCH >20) for the proposed use of Spiroxamine & 500% graps (BBCH 53 - 85) – black redstart

App rate	Bood type			MAF c)	f _{twa} ^{c)}	PT ^{d)}	Dep. factor e)	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300 kg as Dha	Invertebrates (ground & dwelling)	0.778	3.5	1.5	0.53	0.75	1.0	0.487	0.594	9.09
kg desidia	Invertebrates (foliar dwelling)	0.0286	21.0	1.5	0.53	0.75	1.0	0.107	0.394	9.09

^{a)} Values calculated using focal species dietary data. The EFSA bodyweight of 16.5 g used in the calculations



- ^{b)} Default RUD values from EFSA (2009) Appendix F
- ^{c)} Default values from EFSA (2009)
- ^{d)} Refined 90th percentile PT value from focal species study
- ^{e)} Deposition from Appendix A (EFSA, 2009)
- f) Sum of DDD values for individual diet components
- ^{g)} TER calculated based on reproductive endpoint of 5.40 mg a.s./kg bw/day

Using the refined parameters discussed above the reproductive risks to insectivorous birds following the proposed use of Spiroxamine EC 500 on grapes at 2 x 300 g a.s./ha at BBCH 53 - 85 are considered to be acceptable (TER  $\geq$ 5).

### Frugivorous bird scenario

For refinement of the frugivorous bird scenario reference is made to report <u>M-414948-01-1</u> in which the generic RUD of 8.3 has been replaced by a more realistic RUD of 1.63 that can be used in the refined risk assessment for spiroxamine. It is noted that this measured RUD was determined following multiple applications of Spiroxamine therefore a MAK-1.0 has been used in the refined risk assessment as multiple applications have already been accounted for. Here the refined frugivorous bird scenario is applicable to the frugivorous bird "song throsh" *flurdus philometos*) which according to EESA (2009) presents a FIR/bw value of 1.73.

The refined risk assessments for the Bugivorous bud scenario in vinevards following application of Spiroxamine EC 500 at 2 x 300 g as /ha at BBCH 33 – 85 is presented below

 Table CP 10.1.1-18
 Refinement of the frugivorous bird scenario for the proposed use of Spiroxamine

 EC 500 in grapes (BBCH 53 - \$5)
 Image: Compare the proposed use of Spiroxamine

Application rate	Food type	FIR/bw	RUD	MAG	ftwa	ČOČ (K	Dep. factor	BDD [mg as:/kg b.w./d]	TER ^{e)}
2 x 0.300 kg a.s./ha	Grapes	1.73	1.63 @	1.0	0.53		1.0	۶ ⁹ 0.448	12.1

a) Value taken from Dippendi A (EFSA, 2009)

^{b)} Measured mean WUD value from 34 residues trials using spiroxamine on grapes

^{c)}MAF of 1.0 applied as multiple opplications accounted for in the offined RPD

d) Default values from @FSA (2009)

e) TER calculated based on reproductive endpoint of 5 @ mg a.s.kg bwoday

Using the refined RUD value iscussed above the opposed use of Spiroxamine EC 500 on grapes at 2 x 300 g as 7/ha at BBCH 53 - 85 are considered to be acceptable (TER  $\geq$  5).

## 1 x 200 g a.s./fa BBCH 13 19 and 1 x 390 g a.s. ha BBCH 20 (53) - 85

In order to cover the GAP use of this mixed application rate the risk assessment has taken a conservative approach and assumed that two applications of 200 g a.s./ha could be made at BBCH 13-19 or that two applications of 300 g a.s./ha could be made at DBCH 20-85. It is noted that BBCH growth stages between 19 and 53 do not exist. However, for completeness the EFSA scenarios at BBCH 20-39 have been included in the risk assessment.

The risk assessment starts at Tier I which is presented below.



Table CP 10.1.1-19	Tier I assessment for acute risk to birds for the proposed use of Spiroxamine EC
500 in grapes	°

500 in grapes							_@°	
Intended use		Grapes					N.	S.
Active substance/p	oroduct	Spiroxamine / Spir	oxamine EC	C 500		Ô		0
Application rate (g	g a.s./ha)	2 × 200 (BBCH 13 2 × 300 (BBCH 53				r S		Ê)
Acute toxicity (m bw)	ng a.s./kg	>357	ſ	Č,				<u>s</u> e
TER criterion		10	, Ó	1 d	<u>_</u>	jõ 🤻		K .
Crop scenario Growth stage	Generic	focal species	App Rate (kg a.s./ha)		MATCO	$a s \ll k \sigma n w/n$		
Vineyard BBCH 10-19	Small ins "redstart"	sectivorous species	10.1	207.4 Q		7.12 O	<b>50</b> .1	
Vineyard BBCH 10-19	"finch"	anivorous bird		14.8	9.3 × 1		92®	
Vineyard BBCH 10-19	Small on "lark"	nnivorongbird		14.4		3.74	95.4	
Vineyard BBCH >20	Small ins	sectivorous species	*0.3	25.7 L		10.0	35.6	
Vineyard BBCH 20-39	Small gra "finch"	anivorous bird				434	73.8	
Vineyard BBCH 20-39	Sonall on Plark" O	nivoroos bird		12.0	1.3	4.68	76.3	
Vineyard BBCH >40	Small gra "fonch"	aniyorous fild			1.3	2.89	124	
Vineyard y BBCH 240	Small on "lank"	nniverous bir	0.3		<b>A</b> .3	2.81	127	
Vineyard Ripening	Trugivor Thrush/	bas bird		28.9 ⁽¹⁾	1.3	11.3	31.7	

SV: shortcut value; MAF multiple application actor; DDD: daily dietary dose; TER: toxicity to exposure ratio. Scenarios shaded may not be required as BBCH 20-39 does not exist for grapes

Scenarios snateri may not be required as BBCH 20-39 does not exist for grapes For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 – 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - \$5) the acute risks to birds from dietary exposure to spiroxamine are considered to be acceptable (TER 210) for all relevant scenarios. No further acute risk assessment is necessary for this use of Spiroxamine EC 500



Table CP 10.1.1-20	Tier I assessment for reproductive risk to birds for the proposed use of
Spiroxamine EC 500 in	grapes

Spiroxamine EC 5	00 in gra	pes					Ŵ	×
Intended use		Grapes						S.
Active substance/p	roduct	Spiroxamine / Spir	oxamine EC	C 500		Ô		
Application rate (g	a.s./ha)	2 × 200 g a.s./ha (I 2 × 300 g a.s./ha (I				r , ô		
Reprod. toxicity (mg a.s./kg bw/d)		5.40		Č,	Q.			
TER criterion		5	, A	1 d	\$	jõ 🧳		
Crop scenario Growth stage	Generic	focal species	App Frate (kg a.s./ha)	SV _m		QDD _m (mg a.s Kg bw/d)	JERLT OF	-
Vineyard BBCH 10-19	Small in: "redstart	sectivorous species	0.2	102.5 Q	1.5 x 0.53	1.83 O [¥]	2095 ⁴	
Vineyard BBCH 10-19	"finch"	anivorous bire		6.9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₽.5 x Ø.53		4.92 ©	
Vineyard BBCH 10-19	Small on "lark"	nnivoron	0.2 °C	6.5	15 x 0.53		5.22	
Vineyard BBCH >20	Small in: "redstart	sectivorous species	0.3	9.9 0	1.5 x 0.53	2.36 O	2.29	
Vineyard BBCH 20-39	"finch"	anivotous bird		5.76 ⁵⁷	× .	1256	3.97	
Vineyard BBCH 20-39	Sonall or Plark" O			5.4 0	1.5 x 0.53	1.29	4.19	
Vineyard BBCH >40	Small gr "forich"	aniyorous bird 🖑		34 5 ⁵	1.5 x 0.53	0.811	6.66	
Vineyard >> BBCH220	Small of "lark"	nnivorous bir	0.3		9.5 x 0.53	0.787	6.86	
Vineyard Ripening		ous bird		14.4 Å	1.5 x 0.53	3.43	1.57	

SV: shortcut value; MAC multiple application factor; WA: tone-weighted average factor; DDD: daily dietary dose; TER: to very to exposure ratio

TER values shown in bold fail below the referant trager

Scenarios shaded may not be required as BBCH 29-39 does not exist for vines

For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 – 19 and 1 x 300 g a.s./ha at BBCH 20 (53) 85) the reproductive risks to birds from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 5) for the small omnivorous bird "lark" at BBCH 10-19 and BBCH >40 and the small granivorous bird "finch" at BBCH >40 scenarios but potential reproductive risks (TER <5) have been identified for several of the other scenarios. Refined risk assessments for these individual scenarios have been presented below.

Refinement

## Small insectivorous species "redstart" scenario

For the refined risk assessment for the small insectivorous species "redstart" scenarios, the black redstart has been used as the focal species. As discussed above, a 90th percentile PT for the black redstart of 0.75 and a diet consisting of 96.45% ground invertebrates and 3.55% foliar invertebrates has been used in the refined risk assessment.



The refined risk assessments for the small insectivorous bird scenarios in vineyards at BBCH 10 - 19 and BBCH >20 following application of Spiroxamine EC 500 at 1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85 are presented below.

Refinement of the small insectivorous bird scenario (BBC@ 10 - 19) for @ Table CP 10.1.1-21 proposed use of Spiroxamine EC 500 in grapes - black redstart

							Dan	L DDD	- A	S .0	)
App rate	Food type	FIR/bw a)	RUD b)	MAF c)	f _{twa} c) T	PT ^{d)}	Dep. factor	a.s./kg	Total		S.
2 x 0.200 kg a.s./ha	Invertebrates (ground dwelling)	0.778	7.5	1.5	Q.53	0.75		, 0.690	ž Ž		)` ,
kg a.s./lia	Invertebrates (foliar dwelling)	0.0286	21.0	25	0.53	0.75 0 2 2 2	1.0 	<b>0</b> .0716	00.768 g	7.06	

^{a)} Values calculated using focal species dietary data. The EFSA bodyweight of 16.5 g used in the calculations

\$ 1

^{b)} Default RUD values from EFSA (2009) Appendix F

^{c)} Default values from EFSA (2009)

d) Refined 90th percentile PT value from focal reciesestudy

e) Deposition from Appendix A (EFSA, 2005)

f) Sum of DDD values for individual diet components

g) TER calculated based on reproductive endpoint of 5.40 mg a.s O

Refinement of the small insectivorous birdscenario (BBCH >20) for the Table CP 10.1.1-22 proposed use of Spiroxamine EC 50% in grapes - black redstart Ĉ'n

	07	2) (())	$\sim$					3	
App rate		F <b>LR/b</b> w		Í 1		Dep. * factor	DDD [mg a.\$%kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300	Invertebrates ground olwelling	0.178	3.5	A.5	× 0.53 × 0.7	¢ 1.0 ~	Ø 8 0.487	0.504	0.00
kg a.s./ha	Onvertebrates (foliar dwelling)		2140	Å.	0.125 053	\$4.0	0.107	0.594	9.09

a) Values zalculated using bocal species dietary data. The EIOA bodyweight of 16.5 g used in the calculations

^{b)} Default RUD values from EFSX (200%) Appendix F

^{c)} Default values from EFSA (2009)

^{d)} Refined 90th percentile PT-value from focal species study

e) Deposition from Appendix A (ECSA, 2009

^{f)} Sum of DDD values for individual dier components

g) TER calculated based on reproductive endpoint of 5.40mg a.s kg bw/day

Using the reproductive risks to insectivorous birds following the proposed use of Spire amine EC 500 on grapes of 1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20(53) - 85 are considered to be acceptable (TER  $\geq 5$ ).

## Small granivorous bird "finch" scen@io

For the refined risk assessment for the small granivorous bird "finch" scenario, the linnet has been used as the focal species. As already discussed, the refined risk assessment using the linnet has been conducte Cassuring a diet of \$7.3% weed seeds and 2.7% ground invertebrates and a 90th percentile PT of 0.9% By we of an additional refinement for this use, a DT₅₀ of 4 days to represent spiroxamine decline on weedheads has been applied to the risk assessment. In study M-090880-01-1 residues of spiroxamine were measured in or on potential avian food items including grapes, grape leaves, invertebates and weed heads associated with vineyards. A  $DT_{50}$  of ca. 4 days was determined for weedheads and has therefore been taken here as a suitable DT₅₀ to represent weed seeds. Using a moving time window approach and based on two applications with a 10-day interval, a combined MAF x  $f_{twa}$ 



value of 0.506 has been determined and replaces the default MAF and  $f_{twa}$  values of 1.5 and 0.53, respectively.

The refined risk assessments for the small granivorous bird scenarios in vineyards at BBCH 10 BBCH 20 - 39 following application of Spiroxamine EC 500 at 1 x 200 g a.s./ha at BBCH 13 1 x 300 g a.s./ha at BBCH 20 (53) - 85 are presented below.

Table CP 10.1.1-23 Refinement of the small granivorous bird scenario for the proposed is Spiroxamine EC 500 in grapes (BBCH 10 - 19) - Linnet Ĉ. L.

Application rate	Food type	FIR/bw a)	RUD b)	MAF	f	PT ^{d)}	Dep.	DDD [mg & a.s./kg b.w.d]	Tota DDD	TOR ^g	
2 x 0.200	Weed seeds	0.282	40.2	0.50	16 ° )	U.S.	$\hat{\underline{v}}$	10:668	n sa	- S	
kg a.s./ha	Invertebrates (ground dwelling)	0.00782	7.5		0.53	897 0 2 7 2		0.00905	0,677	7.98	þ

a) Values calculated using focal species dietary data. The EFSA body weight of 153 g used in the acculations

^{b)} Default RUD values from EFSA (2009) Appendix K

^{c)} A MAF×TWA value calculated using a moving three window and a DT₅₀ value of ^{d)} Refined 90th percentile PT value from the al species study

^{e)} Deposition value based on 40% crop interception (Appendix AOEFS. ^b Sum of DDD values for individual det components

f) Sum of DDD values for individual diet components ^{g)} TER calculated based on reproductive endpoint at 5.40 mg a.s./kg bw/day

Ø

Refinement of the small granivorous bird scenario for the proposed use of Table CP 10.1.1-24 Spiroxamine EC 500 in grapes (BBCH 20 - 39) Linn @

Application rate	Food type	FIR/bo	20 A		fina L	Sta C		DDD [mg @a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300	Weed Seeds	) (h)	40.2 [%]	0.50			0. <b>B</b> )	0.835		
kg a.s./ha	(ground	020782	Q.5	0° 1.5	<b>9</b> .53		× 1.0	0.00633	0.841	6.42

a) Values calculated using focal species frietary data. The EFSA bodyweight of 15.3 g used in the calculations
 b) Default RUD values from EFSA (2009) Appendix F
 c) A MAF×TWA value calculated using a moving time window and pot 50 value of 4 days
 d) Refined 90th percentile T value from focal species study
 e) Deposition value based on 50th control of 50th

e) Deposition value based on 50% crop interception (Appendix ACEFSA, 2009)

^{f)} Sum of DDD values for individual diet components

g) TER calculated based on geproductive endpoint of \$40 mg a.s./kg bw/day

Using the refined parameters discussed above the reproductive risks to granivorous birds following the proposed use of Spiroxappine EC/500 of grapes at 1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH₂20 (53) – 85 are considered to be acceptable (TER  $\geq$ 5).

## Small omniv Dous bird "lags" scendrio 🔊

To refine the small omnivorous bird "lark" scenario at BBCH 20 – 39, the woodlark has been selected as the focal species for the refined risk assessment. In study M-291784-01-1 a radio-tracking program was carried our in a pricate uropean wine growing region in France during the spring and summer to obtain measured data on PT and PD values for refined exposure assessment, including the woodlark. Bird trapping, radio-tracking, visual observations together with measurement of faecal and stomach contentwere methods used to characterise PT and PD in vineyards.

For woodlarks a mean PT value of 0.86 was determined with a 90th percentile value of 1.0. The diet of woodlarks consisted basically of invertebrates (PD of 0.921) with insect adults as the most important



food items. The remainder of the analysed diets consisted of seeds. The default EFSA diet for this scenario is 25% crop leaves, 25% weed seeds and 50% ground arthropods, however in the refined risk assessment this has been replaced with a diet of 92.1% ground arthropods and 7.9% weed seeds, as determined in study M-291784-01-1. A PT value of 1.0 continues to be used in the refined assessment, as confirmed by this study.

The refined risk assessment for the small omnivorous bird scenario in vinevards at BBCH 20following application of Spiroxamine EC 500 at 1 x 200 g a.s./ha at BBCH 3 - 19 and 1 300 g a.s./ha Se of S at BBCH 20 (53) - 85 is presented below.

Table CP 10.1.1-25	Refinement of the small	omniverous bire	l scenario :	for the	propose	ed ûse o
Spiroxamine EC 500 in	grapes (BBCH 20 - 39) -	woodlark	<u>á</u>	0		~~

Application rate	Food type	FIR/bw a)	RUD b)	MAF ftwa d d d d d d d d d	b 🔊	DDD Jmg A.s./kg b.w./Q	DDD L	THER "
2 x 0.300 kg a.s./ha	Invertebrates (ground dwelling)	0.541	7.5		().5 d)	0 ⁴⁸⁴	0.706	2 265
	Weed seeds	0.0464	6 ^{40.2}	1.5 0.53		0.222		0

Values calculated using focal species fietary data

^{b)} Default RUD values from EFSA (2009) Appendix F

^{c)} Default values from EFSA (2009)

d) 50% crop interception used (Appendix A: EFSA (2009) e) Sum of DDD values for individual dier components

1 al f) TER calculated based on reproductive endpoint of 5.40 mg a.s/kg bw/day

Using the refined parameters discussed above the reproductive risks to omnivorous birds following the proposed use of Spirexamin@EC 500 on grapes of 1 x 200 g a.S./ha a BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20(53) – \$5 are considered to be acceptable (TER  $\ge 5$ ).

## Frugivorous bird scenario

For refinement of the frugivorous bird scenario reference is made to report M-414948-01-1 in which the generic RUD of 8.3 has been replaced by a more realistic RJD of 63 that can be used in the refined risk assessment for spiroxamine. It is noted that this measured RUD was determined following multiple applications of Spirovamine, therefore a MAF 10 has been used in the refined risk assessment as multiple applications have already been accounted for? Here the refined frugivorous bird scenario is applicable to the augivatous bird "song thrush" (Turdus platomelos) which according to EFSA (2009) presents a FIR/bw value of 1, 93.

The refined risk assessments for the fragivorous bird scenario in vineyards following application of Spiroxamine EC 500 at 1 x 200 g a.s. ha at BBCH 23 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85 is presented below.

m Refinement of the frugivorous bird scenario for the proposed use of Spiroxamine Table/CP 10.1.1-26 EC 500 in grapes,

Application rate	Foodtype		RUD	MAF c)	f _{twa} d)	PT ^{d)}	Dep. factor	DDD [mg a.s./kg b.w./d]	TER ^{e)}
2 x 0 00 x kg as./ha	Grapas	Q1.73	1.63	1.0	0.53	1.0	1.0	0.448	12.1

Value taken from Appendix X (EFSA, 2009)

^bMeasure mean RUD value from 54 resides trials using spiroxamine on grapes

^{c)} MAE D1.0 applied as multiple applications accounted for in the refined RUD

^{d)} Default values from EFSA (2009)

e) TER calculated based on reproductive endpoint of 5.40 mg a.s./kg bw/day



Using the refined RUD value discussed above the reproductive risks to frugivorous birds following the proposed use of Spiroxamine EC 500 on grapes at 1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300° g a.s./ha at BBCH 20 (53) - 85 are considered to be acceptable (TER  $\geq$ 5).

## <u>1 x 300 g a.s./ha BBCH 13 - 19 and 1 x 300 g a.s./ha BBCH 20 (53) - 85</u>

In order to cover the GAP use of this mixed application rate the risk assessment has taken a conservative approach and assumed that two applications of 300 g a.s./ha could be made at BBCH 13 09 or that two applications of 300 g a.s./ha could be made at BBCH 20-85. It is noted that BBCH growth stages between 19 and 53 do not exist. However, for completeness the EFSA scenarios at BBCH 0-39 have been included in the risk assessment.

The risk assessment starts at Tier I which is presented below.

Table CP 10.1.1-27	7 Tie	er I assessment for	· acute riska	o birds for t	he proposed	l use of Spiro	xamine EC
500 in grapes		.4				O S	à s'
Intended use		Grapes			A Ó		
Active substance/p	roduct	Spiroxamine	roxamine FC				Ő
Application rate (g	a.s./ha)	2 × 300 (BBCH 4) 2 × 306 (BBCH 5)	3-85) 🐎				
Acute toxicity (m bw)	g a.s./kg	>350 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 7 4		4	O' _Y	
TER criterion	2		ký k				
Crop scenario Growth stage		focatspecies	App. Rate (kg (kg		MAF ₉₀	DD ₉₀ (mg a.s./kg bw/d)	TERA
Vineyard BBCH 10-19				27.4 0	1.3 2 0	10.7	33.4
Vineyard © BBCH 10-19	Small gra	anivorous bird-		14.8	ð3	5.77	61.9
Vineyard BBCH 10-19	Small on Stark"	htivorous bird		14.4	1.3	5.62	63.6
Vineyard BBCH >20	SmalDins "redstart	sectivorous vecies		25,7	1.3	10.0	35.6
Vineyard BBCH 2009	Small gr	anivorous bird		12.4	1.3	4.84	73.8
Vineyard BBCH 20-39	Small on "lark"	Aivorous bird	0.3	12.0	1.3	4.68	76.3
Vineyard BBCH >40	"finch"	anix brous bird	0.3	7.4	1.3	2.89	124
Vineyard BBCH >40	Small @	nivorous bird	0.3	7.2	1.3	2.81	127
Vineyard Ripcoing	Frugivor Othrusk		0.3	28.9	1.3	11.3	31.7

SV: shorten value; MAF: multiple application factor; DDD: daily dietary dose; TER: toxicity to exposure ratio. Scenarios shaded may not be required as BBCH 20-39 does not exist for grapes

For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85) the acute risks to birds from dietary exposure to spiroxamine are



considered to be acceptable (TER  $\geq 10$ ) for all relevant scenarios. No further acute risk assessment is necessary for this use of Spiroxamine EC 500.

Table CP 10.1.1-28	Tier I assessment for reproductive risk to bi	rds for the proposed use of	°r A
Spiroxamine EC 500 in			,¢

spiroxamme EC.	Joo in gi a	pes				Â.	
Intended use		Grapes			4	б ⁷	
Active substance/	product	Spiroxamine / Spir	roxamine EC	C 500	, st		
Application rate (g	g a.s./ha)	2 × 300 (BBCH 13 2 × 300 (BBCH 53		~~~ /~~	6 ⁹⁷		
Reprod. toxicity (mg a.s./kg bw/d)		5.40				S.	
TER criterion		5	y'g			, ^A	
Crop scenario Growth stage	Generic	focal species	App. <b>Rate</b> (kg	∑ ĵ>́	MAFC × TWA	DDD _m (mg a.s. (kg bw/d))	TERLT & °
Vineyard BBCH 10-19	Small in "redstart	sectivorous Becies	Ø.3 , , , , , , , , , , , , , , , , , , ,	HOS S	1.5 x 0.53		1.97
Vineyard BBCH 10-19	Small gr "finch"	anivorous bird	90° 5°	6.9 5 5	4,5 x 059		3.28
Vineyard BBCH 10-19	"lark" 🗞		0.3	<b>6</b> 7.5	1 5 x 0.53	A.55	3.48
Vineyard BBCH >20	"redstart				1.5 × 0.53	2,36 V	2.29
Vineyard BBCH 20-39	Small gr	anivorous bird		5.7 0	4.5 x 0 Ø	1.36	3.97
Vineyard BBCH 20-39	Spoall or "lark"	nonvorous bird		<b>9</b> .4	1.50x 0.53	1.29	4.19
Vineyard BBCH 40	"finch"	X 4 5			1.5 x 0.53	0.811	6.66
Vineyard BBCH >40	"lark	nnivorais bird		3.3	1.5 x 0.53	0.787	6.86
Vineyard ~	Frügivor	eus bird > > starling 2		14.4	1.5 x 0.53	3.43	1.57

SV: short of value; MAF@multime application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio.

TER values shown in bold fat below the relevant trigger

Scenarios shaded may not be required as BBCH 2039 does not exist for grapes

For the proposed use of Spir a amine EC 566 on grapes (1 x 300 g a.s./ha at BBCH 13 – 19 and 1 x 300 g a.s./ha at BBCH 20 (53) (53) (55) the reproductive risks to birds from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 5) for the small omnivorous bird "lark" at BBCH >40 and the small granivorous bird "finch" at BBCH >40 scenarios but potential reproductive risks (TER <5) have been identified for the remaining cenarios. Refined risk assessments for these individual scenarios have been presented befow.

### Refinement

Small insectivorous species "redstart" scenario



For the refined risk assessment for the small insectivorous species "redstart" scenarios, the black redstart has been used as the focal species. As discussed above, a 90th percentile PT for the black redstart of 0,75 and a diet consisting of 96.45% ground invertebrates and 3.55% foliar invertebrates has been used in the refined risk assessment.

The refined risk assessments for the small insectivorous bird scenarios in vinewards at BBC and BBCH >20 following application of Spiroxamine EC 500 at 1 x 300 g a.s. ha at BBCH 13  $1 \ge 300$  g a.s./ha at BBCH 20 (53) – 85 are presented below.

Table CP 10.1.1-29 Refinement of the small insectivorous bird scenario (BBCH 10 proposed use of Spiroxamine EC 500 in grapes - black redstart  $\bigcirc$ 

						$\sim$	$\cap$	$\sim$	`
App rate	Food type	FIR/bw a)	RUD b)	MAF c) ftwa	c) PTV	Dep factor	DDD [mg a.s./kg b.w./df	Total DDB	TERE
2 x 0.300	Invertebrates (ground dwelling)	0.778	7.5		3@Q		1.04	0 1.15	
kg a.s./ha	Invertebrates (foliar dwelling)	0.0286	20.0	\$1.5 D.5			0.100		, ⁷ () 4,70

a) Values calculated using focal species metary data. The EFSA bodyweight of 16,59 used with e calculations 

- ^{b)} Default RUD values from EFSA (2009) Appendix F
- ^{c)} Default values from EFSA (2009)
- d) Refined 90th percentile PT value from focal species study

^{e)} Deposition from Appendix A (EFSA, 2009)

f) Sum of DDD values for individual dist components

g) TER calculated based on reproductive endpoint of 500 mg

Values in **bold** are below the trigger value \$05

Table CP 10.1.1-30 Retinement of the small insectivorous Bard scenario (BBCH >20) for the proposed use of Spiroxamine EQ 500 in grapes - black yedstart Ø

App rate	Ô	FIR/bw	RUD	0 4	<b>f</b>		Dep. Factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300	Invertebrates (ground dworling)	0.778	3.50	1.5 [°]	0(53 0)	₹ 20.75	1.0	0.487	0.504	0.00
kg a.s./ha	In vertebrates, (foliar) dwel(ing)	6.9286 0	21.0	³ 7 1.5		0.75	1.0	0.107	0.594	9.09

a) Values calculated using focal species dietary data. The EFSA bodyweight of 16.5 g used in the calculations

- b) Default/ BUD values from EFSA (2009) Appendix F
- c) Defaut values from EPSA (2009)

d) Refined 90th percentile PT value from focal species study

e) Deposition from Appendix & (EFSA 2009) ¹ Sum of DDD values for individual thet components

g) TER calculated wased on reproductive empoint of 3.40 mg a.s./kg bw/day

Using the retried parameters discussed above the reproductive risks to insectivorous birds following the proposed use of Spiroxan me EC 500 at 1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53)  $\approx$  5 are considered to be acceptable (TER  $\geq$ 5) for the use in vineyards at BBCH >20. For the use at BBCHOP - 15 the TER value was 4.70 which is slightly below the trigger value of 5. However, the task assessment here has taken a conservative approach by assuming two applications at growth stages BBCH 10 - 19 [to account for the multiple exposure] but in reality the use is for only one application at this growth stage followed by a second application at higher growth stages. As the risk assessment for the two applications at the slightly higher growth stage of BBCH > 20 is acceptable, it is therefore considered that the risk to insectivorous birds at BBCH 10 - 19 is in fact acceptable.



### Small granivorous bird "finch" scenario

For the refined risk assessment for the small granivorous bird "finch" scenario, the linnet has been used as the focal species. As already discussed, the refined risk assessment using the linnet has been conducted assuming a diet of 97.3% weed seeds and 2.7% ground invertebrates and a 90th percentile PT of 0.97. By way of an additional refinement for this use, a  $DT_{50}$  of 4 days to represent spiroxample decline on weedheads has been applied to the risk assessment. In study M-090880-01-1 residues of spiroxamine were measured in or on potential avian food items including grapes, grape deaves, invertebrates and weed heads associated with vineyards A DT₅₀ of our 4 days was determined for weedheads and has therefore been taken here as a suitable DT50 to represent weed seeds. Using a moving time window approach and based on two applications with a 10-da  $\bigcirc$  interval, a combined MAE  $x f_{two}$ value of 0.506 has been determined and replaces the default MQF and  $f_{twa}$  values of 1.5 and 0.50 respectively. ()

The refined risk assessments for the small granivorous bird sconarios in vine ards a BBC 10 - W and BBCH 20 - 39 following application of Spirowamine EC 500 at 1 3300 gais./hat BBCH 135 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85 are presented below.

Table CP 10.1.1-31	Refinement of the	small granivo	rous bird	scenario	for the p	roposedus	e of
Spiroxamine EC 500 in	grapes (BBCH 般	- 19) ^y Linnet	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				e e

Application rate	Food type	FIR/bw Rup	Mar	free	B	factor	O[mg a.s./kg	Total DDD ¹	TER ^{g)}
2 x 0.300 kg a.s./ha	Weed seeds Invertebrates (ground dwellang)		0 1.5	6°)			b.w./d]	2 1.01	5.35

a) Values calculated asing for species dietary data. The EFSA Godyweight of 14,3 g used in the calculations

^{b)} Default RUD values from EFSA (\$009) Appendix F ^{c)} A MAF×TWA Galue calculated using a moving time window and a DT₅₀ value of 4 days ^{d)} Refined 90th percentife PT value from focal species study

e) Deposition value based on 40% crop interception (Appendix ADEFSA 2009)

f) Sum of DD values for inclividual diet components

g) TER calculated based on reproductive endpoint of \$.40 mga.s./kg40w/day

Table CP 10.1.1-32	Refinement of	the small granivo	rous bird scer	nario for the propose	d use of
Spiroxamine EC 500 in	grapes (BBCH	20 - 39) / Linnet			

Application rate	Food type	V AF %		PT ^{d)}	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 × 0.300 kg a.s./ha	Weed seeds 0.282	40.20 0.5	96°)		0.5 ^{e)}	0.835		
kg a.s./ha	Invertebrates @(ground 0,00782 \$\sqrt{dwelling} \sqrt{2}	3.5 A.5	0.53	0.97	1.0	0.00633	0.841	6.42

a) Values calculated using focal species, dietary data. The EFSA bodyweight of 15.3 g used in the calculations

^{b)} Default **RUD** values from FFSA (2009) Appendix F

c) A MARY TWA value calculated Wing a moving time window and a DT50 value of 4 days

d) Refined 90th percentile PT value from focal species study

e) Deposition alue based on 50% crop interception (Appendix A: EFSA, 2009)

¹Sum of DD values for individual diet components

g) TER calculated based on reproductive endpoint of 5.40 mg a.s./kg bw/day

Using the refined parameters discussed above the reproductive risks to granivorous birds following the proposed use of Spiroxamine EC 500 on grapes at 1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) – 85 are considered to be acceptable (TER  $\geq$ 5).



### Small omnivorous bird "lark" scenario

To refine the small omnivorous bird "lark" scenarios at BBCH 10 - 19 and BBCH 20 - 39, the wood ark has been selected as the focal species for the refined risk assessment. As discussed in the previous section, the refined risk assessment this has been conducted assuming a diet of 92.1% ground arthropods and 7.9% weed seeds, as determined in study <u>M-291784-01-1</u>. A PT value of 1.0 continues to be used in the refined assessment, as confirmed by this study.

The refined risk assessments for the small omnivorous bird scenario in vineyards at BBCH BBCH 20 - 39 following application of Spiroxamine EC 90 at 1 x 300 g a.s./ha at BBCH 1 x 300 g a.s./ha at BBCH 20 (53) - 85 are presented below.

C Refinement of the small omnivorous bird scenario for the proposed use of Table CP 10.1.1-33 0, Spiroxamine EC 500 in grapes (BBCH 10 - 19) - woodlark  $\square$ 

	01			Ý	,	an a	×~√		N KJ	~C×
Application rate	Food type	FIR/bw a)	RUD	MAF °	Fiwa c)	ÚPT	Dep factor		Total DDD ^{e)}	FER 1
2 x 0.300 kg a.s./ha	Invertebrates (ground dwelling)	0.541		\$1.5 \$1.5	\$ 53 \$	× 1.0	0.6 4	0.58	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6.37
	Weed seeds	0.046	40.2	1.5	0.53			Ø.267		e .
a) Values calcu	lated using focal	species die	tai y data		- F	,Ũ	10×	<u>a</u> %	<b>%</b> ,	
	values from EF				"0"	× .(	Ŭ ^V k	Ū,	O¥	

^{c)} Default values from EFSA (2009)

^{d)} 40% crop interception used (@ppendi©Å: EFSA, 2009

e) Sum of DDD values for individual diet components

^{f)} TER calculated based on reproductive endpoint of \$40 mg ss./kg.b

Refinement of the small omniverous biged scenario for the proposed use of Table CP 10.1.1-34 Spiroxamine EC 500 in gropes (BBCH 20- 39) - woodbark Ő,

Application rate	Food type	FIR/bw	RUD	8°	ftwa	Dep. Jactor	DDD [mg a.s./kg b.w./d]	Total DDD ^{e)}	TER ^{f)}
2 x 0.300 kg a.s./ha	Invertebrates (ground dwerling)	⁹ 0.54	7.50	× 1.5 ×	0.58	0.5 ^d )	0.484	0.706	7.65
	Weed sects	059464	Ø <b>4</b> 0.2	×1.5	<b>0</b> .53		0.222		

^{a)} Values calcutated using focal pecies dictary data ^{b)} Default RUD values from (58A (2009) Appendix F

c) Default values from EFSA (2009)

d) 50% crop interception used (Appendix A: EFSA, 2009)

e) Sum of DDD values for individual diet components

¹⁾ TER calculated based on reproductive endpoint of 5.40 mg a.s./kg bw/day

Using the refined parameters discussed above the reproductive risks to omnivorous birds following the proposed use of Spiroxamine EC 500 on grapes at 1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) – (53) are considered to be acceptable (TER  $\geq$ 5).

### Frugivor Qu's bird scenario

For refinement of the Trugivorous bird scenario reference is made to report M-414948-01-1 in which the genetic RUD of 8. That been replaced by a more realistic RUD of 1.63 that can be used in the refined risk assessment for spiroxamine. It is noted that this measured RUD was determined following multiple applications of Spiroxamine therefore a MAF 1.0 has been used in the refined risk assessment as multiple applications have already been accounted for. Here the refined frugivorous bird scenario is



applicable to the frugivorous bird "song thrush" (*Turdus philomelos*) which according to EFSA (2009) presents a FIR/bw value of 1.73.

The refined risk assessments for the frugivorous bird scenario in vineyards following application of Spiroxamine EC 500 at 1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (3) - 85 is presented below.

Table CP 10.1.1-35	Refinement of the frugivorous bird scenario	o for the proposed	l use ot Spirozamine 🖗 🛛
EC 500 in grapes	- Ĉa	L.	

0 000 8					,	S	a, ^y	
Application rate	Food type	FIR/bw a)	RUD b)	MAF c)	f _{twa}	PT ^{d)}	Dep. factor	[mg a.s. Kg b.w.?d]
2 x 0.300 kg a.s./ha	Grapes	1.73	1.63	1.0 Q	0.53	1.0~	1.C	Q 0.440 (12.10)

a) Value taken from Appendix A (EFSA, 2009)

^{b)} Measured mean RUD value from 54 resiudes trials using sphexamine on grap ^{c)} MAF of 1.0 applied as multiple applications accounted for in the regined RUD

^{d)} Default values from EFSA (2009)

e) TER calculated based on reproductive endpoints of 5.40 mg a.s. Rg bw/g

Using the refined RUD value discussed above the reproductive risks to fugivorous birds following the proposed use of Spiroxamine EC 500 on grapes at 1 x 300 g a.s./ha at BBCH 13 - 9 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85 are considered to be acceptable (FER  $\geq$  9).

### Risks for birds through drinking water S

In addition to dietary items birds may also be exposed to residues occurring or drinking water. The daily dietary dose (DDD) values used in the standard dietary risk assessments do not encompass drinking water and therefore the potential risk from this exposure route has not been covered in the dietary risk assessment. Two scenarios are considered

### Leaf scenario

This scenario assumes pooling of spray solution in leaf whorls following application and is relevant only for certain crops and growth stages *e.g.* leafy vegetables forming heads or with a morphology that might facilitate effection of spray and from BBCH principle growth stage 4 until harvest. This scenario is not considered to be applicable to the proposed use on grapes

### Puddle scenario

This scenario considers addles occurring on the sort surface following a rainfall event after application and is considered possible in all crap types

In accordance with the EFSA Godance Bocupent (2009), based on the characteristics of the exposure scenario and standard assumptions for water uptake by animals no specific requirement for drinking water exposure calculation and TER determination based on the puddle scenario is required:

- -> for substances with a Kov <500 k/kg dess sorptive); if the ratio of application rate (g a.s./ha) to effective endpoint mg a.s./kg bw/d does not exceed 50;
- for solution stances with Koc 2500 J/kg (more sorptive); if the ratio of application rate (g a.s./ha) to effective endpoint mg a.s./kg bw/d does not exceed 3000.

The geotrean Koc for spiroxamine is 4111 L/kg therefore spiroxamine belongs to the group of more sorptive substances. The ratio calculation is based on two applications of the highest rate at 300 g a.s./ha.



# Table CP 10.1.1-36Ratios of effective application rate (AReff) to acute and long-term endpoints for<br/>spiroxamine following the proposed use of Spiroxamine EC 500 on grapes - puddle scenario

Test substance	AReff (g/ha) ^a	Toxicological endpoint (mg a.s./kg bw/d)	Ratio (AR _{eff} /endpoint) న	Trigger
Acute				
Spiroxamine	390	LD ₅₀ >357	1.09	30000 200
Long-term				
Spiroxamine	450	NOAEL 5.40	83.3	¥3000, 5° × 0°

^a AR_{eff} = based on an application rate of 300 g a.s./ha with a MAF of 1.3 and 1.5 applied for acute and reproductive risk assessments, respectively

The ratios for both acute and reproductive risks are below the relevant trigger of 5000 for spiroxamine therefore a quantitative risk assessment is not necessary. Thus, there are no unacceptable risks to birds from exposure to spiroxamine *via* drinking water a spiroxamine the spiroxamine to spiroxamine *via* drinking water a spi

#### Secondary poisoning

Log Pow Pow

 $K_{\text{oc}}$ 

The Log P_{ow} of spiroxamine is 2.79 and 2.98 at pH 7 for diastoners A and B respectively, but at pH 9 these value are 4.88 and 5.08, respectively. Thus the regger value of 3 for 3 secondary poisoning risk assessment is met.

### Consideration of secondary poisoning risk due to metabolites

The Log  $P_{ow}$  of spiroxamine-desethyl (M01) is 2.41, 1.97 and >3.64 at pH 4, 7 and 9, respectively. The Log  $P_{ow}$  of spiroxamine-despropyl (M02) is (95, 1.44 at pH 4, 7 and 9, respectively. The Log  $P_{ow}$  of spiroxamine-Nexide (M03) is 2.82, 2.59 and 2.63 at pH 4, 7 and 9, respectively. The Log  $P_{ow}$  of spiroxamine-carboxylic acid (M05) is 945, -0.25 and 0.10 & pH 4, 7 and 9, respectively. Thus, an assessment of the potential risk from bioconcentration of spiroxamine-desethyl (M01) and spiroxamine-despropyl (M02) also freeds to be addressed in the risk assessment.

Risk assessment for earthworm eating birds vio secondary poisoning

According to EFSA (2009), the risk for vermivorous birds is assessed for a bird of 100 g body weight with a daily food consumption of 104.0 g. Bioaccumulation in earthworms is estimated based on predicted concentrations in soil

To achieve a concise risk as essment, the risk envelope approach is applied whereby the maximum application rate of  $2 \times 300$  g as the risk as essment as been considered. For spiroxamine, M01 and M02, the PEC_{soil accumulation} has been used in he risk assessment as these values are higher than the 21-day TWA PEC_{soil} values. There are no as an reproductive toxicity data available for M01 and M02 therefore the NOAEL of 5.40 mg/kg bw/day for spiroxamine has been used as a surrogate value.

The secondary poisoning fisk assessments for earthworm-eating birds from exposure to spiroxamine, KWG 4168-desethyl (M01) and KWG 4168-despropyl (M02) are presented in the tables below.

5	spiroxamine via bioaccumulation in earthworms (secondary poisoning)				
	Pacameter 2	Spiroxamine	Comments		
	PECsoil (meas/kg soil)	0.555	Accumulation PEC _{soil} used as worst-case		

Geoean

Mean value of 4.0 has been used based on the values for diastomers A and B at pH 7 and 9

Table CP 10. 1-37	Assessment of the risk for earthworm-eating birds due to exposure t	0
spirovamin via bidaccu	mulation in earthworms (secondary poisoning)	Ŭ
spirozanime via ospaccu	induation in cartinworms (secondary poisoning)	

4.0 / 10000

4111



f _{oc}	0.02	Default
BCF _{worm}	1.47	$BCF_{worm/soil} = (PEC_{worm,ww}/PEC_{soil,dw})$ = (0.84 + 0.12 × P _{ow} ) / f _{oc} × K _{oc}
PECworm	0.816	$PEC_{worm} = PEC_{soil} \times BCC_{worm/soil}$
Daily dietary dose (mg a.s./kg bw/d)	0.856	$DDD = PEC_{worm} \times 1.03$
NOAEL (mg a.s./kg bw/d)	5.40	(Drom study M 607470 02 1 1 1 1 1
TER _{LT}	6.30	Acceptable Asks (TER>5)

 Table CP 10.1.1-38
 Assessment of the risk for earthworm-eating birds due to exposure to spiroxamine-desethyl (M01) via bioaccumulation in earthworms (secondary poisoning)

Fable CP 10.1.1-38 Assess piroxamine-desethyl (M01) <i>via</i>	ment of the risk for earthw bioaccumulation in earthw	orm-eating birdedue to exposure to yorms (secondary poisoning)
Parameter	Spiroxaminodesetle	Compents
PEC _{soil} (mg/kg soil)	0.064	Accumulation PEC _{soik} used as worst-case
Log Pow / Pow	3.64 / 4365	
K _{oc}	3271 4 4 5	Geomean C C C
foc	0.02	
BCF _{worm}		$ \begin{array}{c} B & \mathcal{C} \\ B & \mathcal{C} \\ = (\text{PE} & \mathcal{C} \\ \text{worm} & \mathcal{C} \\ = (0.84 & \mathcal{O} \\ 0.12 & \mathcal{O} \\ \text{Pow}) / f_{oc} \times K_o \\ \end{array} $
PEC _{worm}	0.0521 5 0	PECworm = PCCsoil BCFwormSoil
Daily dietary dose (mg/kg bw/d)	40.0547 <b>3 3 3</b>	$\mathbf{D} \mathbf{D} = \mathbf{P} \mathbf{E} \mathbf{C}_{\text{worm}} \times 1.05$
NOAEL (mg/kg bwth)		Value determined for spiroxamine used as a suppogate
TERLT OF O	98.8 4 4 4 4 4	Acceptable risks (TER>5)

Table CP 10.1.1-39 Assessment of Gre risk for earthworn eating birds due to exposure to spiroxanine-despropy (M02) on bioaccumulation in earthworms (Secondary poisoning)

Parameter	Spiroxamine-despropy	Comments
PEC _{soil} (mg/kg soft)	0.040	Secumulation PEC _{soil} used as worst-case
Log Pow / Pong C	3,444/2754	-
K _{oc}		Geomean
foc & A	0.02	Default
BCAEworm	2, 829 Q ~	BCF _{worm/soil} = (PEC _{worm,ww} /PEC _{soil,dw} )
		$= (0.84 + 0.12 \times P_{ow}) / f_{oc} \times K_{oc}$
PECworm	0.0292	$PEC_{worm} = PEC_{soil} \times BCF_{worm/soil}$
Daily dietary dose (mg/kg)	£0264~Q	$DDD = PEC_{worm} \times 1.05$
	Ď	
NOABL (mg g bw/d)	5.40	Value determined for spiroxamine used as a
ST & P T		surrogate
TERLT	204	Acceptable risks (TER>5)

For the secondary poisoning risk assessments for earthworm-eating birds from exposure to spiroxamine, M01 and M02 the TER values are >5 thereby demonstrating an acceptable risk to birds via this route of



exposure. The Tier I secondary poisoning risk assessment has used the default parameters from the EFSA Bird & Mammal Guidance Document in order to determine the BCF_{worm} value. However, earthworm bioaccumulation data are available for spiroxamine (study <u>M-411910-01-1</u>). Which determined a BAF of 1.56. Although not required, an updated risk assessment for spiroxamine has been conducted and presented below using this BAF value in place of the Tier I BCF_{worm} value.

piroxamine <i>via</i> bioaccumulatio	n in earthworms (secondar	
Parameter	Spiroxamine	Commentes S S
PEC _{soil} (mg a.s./kg soil)		Accumulation PEC _{soil} used as worst-case
Log P _{ow} / P _{ow}	4.0 / 10000 00°	Mean value of 4.0 has been used based on the values for that stome A and B at pH 7 and 9
K _{oc}	4111	Alean of the and the second
f _{oc}	0.02	Default A C L L
BCF _{worm}	1.56 2 4 2	First study <u>M-44, 910-001</u>
PECworm	0.866	$PEC_{worm} = PEO_{soil} \times BCF_{worm} Soil$
Daily dietary dose (mg a.s./kg bw/d)	10.909 L 0 5	$\mathbf{D} \mathbf{D} \mathbf{D} = \mathbf{P} \mathbf{D} \mathbf{C}_{\text{worm}} \mathbf{D} 1.28 \mathbf{O} \mathbf{C}_{\text{worm}} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} $
NOAEL (mg a.s./kg bw/d)	5.90 5 9 1 5.90 5 9 1 \$7.94 6 5 6	From study <u>1-007</u> 0-03-1
TERLT	\$ .94 Q O Q	Acceptable risks (TER-5)

Table CP 10.1.1-40	Assessment of the risk for earthworm-eating birds due to	o exposure
spiroxamine via bioacc	umulation in earthworms (secondary poisoning)	

When the experimentally determined BAF value is applied to the risk assessment, the risk to earthwormeating birds from exposure to proximine has also been demonstrated to be acceptable with a TER value >5.

Risk assessment for fish-eating birds via secondary poisoning

According to EFSA (2009), the risk for piscivorous birds is assessed for a bird of 1000 g body weight with a daily food consumption of 159 ge Bioaccumulation in fish is estimated based on predicted concentrations in surface water.

To achieve a concise risk assessment, the risk envelope approach is applied whereby the maximum application rate of 2 x 900 g as./ha has been considered in the risk assessment. The highest Step 3 TWA PEC_{sw} of 2.627  $\mu$ g a.s./L for spirovamine has been used in the risk assessment. For M01 the highest Step 2 PEC_{sw} value of 1.084  $\mu$ g/L has been used and for M02 the highest Step 2 PEC_{sw} value of 0.917  $\mu$ g/L has been used. For M01 and M02 there are no BCF values available therefore the BCF value determined for spirovamine (87 L/kg) has been used. Furthermore, there are no avian reproductive toxicity data available for M01 and M02 therefore the NOAPL of 5.40 mg/kg bw/day for spirovamine has been used as a surrogate value.

The secondary poisoning risk assessments for fish-eating birds from exposure to spiroxamine, KWG 4168-desetfor (MOT) and KWG 4168-despropyl (M02) are presented in the tables below.

Table **(P**10.1, **P**41 Assessment of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the risk for fish-eating birds due to exposure to spiroxamine *via* bioaccumulation in the horizon of the horizon of

Parameter	Spiroxamine	Comments
PEC _{sw} (mg a.s./L)		FOCUS Step 3 TWA PEC _{sw} (calculated for vines: D6 ditch, 2 x 300 g a.s./ha, late application)



PEC _{water} (mg a.s./L)	0.002627	TWA PEC _{sw} value used
BCF _{fish}	87	From study <u>M-006479-01-1</u>
PEC _{fish}	0.229	$PEC_{fish} = PEC_{water} \times BCF_{fish}$
Daily dietary dose (mg a.s./kg bw/d)	0.0363	$DDD = PEC_{fish} \times 0.159$
NOAEL (mg a.s./kg bw/d)	5.40	From study <u>M-007770-03-1</u>
TER _{LT}	149	Acceptable risks (TER>5)

 Table CP 10.1.1-42
 Assessment of the risk for fish cating birds the to exposure to spiroxamine desethyl (M01) via bioaccumulation in fish (secondary poisoning)
 Image: Comparison of the risk for fish cating birds the to exposure to spiroxamine desethyl (M01) via bioaccumulation in fish (secondary poisoning)

(1.101) / W %104004111414		
Parameter	Spiroxamine _c desethy  °	
PEC _{sw} (mg/L)	0.001084	POCUS Step 2 maximum PEC (calculated for •
		Vines; 2 x 300 g a.s./ha
PEC _{water} (mg/L)	0.000575	$PEC_{water} = \max PEC_{wx} \times f_{two} \times f_{two} = 0.53; in$
		line with approach in EFSA (2069) $\bigcirc$
BCF _{fish}		Value determined for spiroxatione used as a
		surragate O O V
PEC _{fish}	0.0500	REC _{fish} REC _{water} × BCIQsh
Daily dietary dose (mg/kg	0.00795	$PDDD = PEC \times 1.159$
bw/d)		
NOAEL (mg/kg bw/d)	3.40 Q O O	Value determined for spitoxamine used as a
		surrogate
TER _{LT}	1479 J	Acceptable risks (@ER>5)

Table CP 10.1 43 Assessment of the kisk for fish-eating birds due to exposure to spiroxaminedespropyl (M02) via bioaccumulation in fish (secondary poisoning)

Parameter 0	Spiroxamine-despropyl	Comments
PEC _{sw} (mg/L)	0,0009170 27 %	
		vines; 2 x 300 g a.s./ha)
PEC _{water} (mg/L)	0.000486	$EC_{water} = max PEC_{sw} \times f_{twa}$ , where $f_{twa} = 0.53$ ; in line with approach in EFSA (2009)
		The with approach in ELISA (2007)
BCF _{fish}		Value determined for spiroxamine used as a surrogate
		sunogate
PECKS	0.0423	$PEC_{fish} = PEC_{water} \times BCF_{fish}$
Daily dietary dose (mg/kg	0.00672	$DDD = PEC_{fish} \times 0.159$
bw/d)		
NOAEL (mg kg bw k)	5.40 Ø	Value determined for spiroxamine used as a
	Dy x	surrogate
TERLE A	803	Acceptable risks (TER>5)

For the secondary poisoning risk assessments for fish-eating birds from exposure to spiroxamine, M01 and M02, the TER values are >5 thereby demonstrating an acceptable risk to birds *via* this route of exposure.

### Biodiversity



No relevant scientifically peer-reviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxicological perspective, on birds. Therefore, it is considered that the potential impact of the active substance on biodiversity and the ecosystem, including potential indirect effects via alteration of the food web, are covered by the risk assessment for birds in this section and in the ED? hazard assessment. 

#### **CP 10.1.1.1** Acute oral toxicity

A summary of the available avian formulation data is presented below.

Data Point:	KCP10111/01
Report Author:	
Report Year:	
Report Title:	KWG 4168 (EC, 500): Acute oral toxicity to bobwhite quail
Report No:	VB-032 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
Document No:	<u>M-008102-0</u> <u>M</u>
Guideline(s) followed in	U.S. EPA 671-1 (4982), 5 5 5 5 5 5
study:	
Deviations from current	
test guideline:	None · · · · · · · · · · · · · · · · · · ·
Previous evaluation:	yes evaluated and accepted
	DAR (1999), RAR (2010) O S S S S S S S S S S S S S S S S S S
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Acceptability/Reliabuty:	
× . (	

### Executive Summary >>

The acute oral toxicity of KWG 4168 EC 500 to 20-week old Bobwhile quail (Colinus virginianus) was assessed over 14 days. KWG 4k68 EC 500 was administered to five groups of 10 birds (5 per sex) in a single oral dose by gelatine capsules at 152, 289, 551, 1050 and 2000 mg/kg bw.

Birds dosed with 551, 1050 and 2000 mg/kg bw exhibited partly severe symptoms of intoxication including severe apathy laying on the side and convulsions. Slight reductions in body weight were observed in the male bigds at the higher dose conceptrations of 551 and 1050 mg/kg bw, however there were hardly perceivable differences in body weights in the female birds. A reduced feed intake was observed in the groups treated with 289 \$51 and 1050 mg/kg bw. Towards the end of the test period, females started laying eggs. Ì

Mortalities and symptoms of intoxication occurred only on the first three days after application.

The 14-day acute oral Los was 971 mg prodoct/kg bw. The 14-day NOEL of KWG 4168 EC 500 to Bobwhite quail based on symptoms of intoveration and, at the 551 mg/kg bw, one case of mortality was 289 mg/kg bw

### Materials and Methods

### Materiak

	L.Y
Test Material	KWG 4168 EC 500
LoOBatch #:	089A
Purity:	491.4 g/L
<b>Description:</b>	Clear yellow liquid



9

Reanalysis/Expiry date:	16 December 1994
Treatments	
Test rates:	151, 289, 551, 1050 and 2000 mg/kg bw
Analysis of test concentrations:	No State Sta
Test organisms	
Species:	Bobwhite quail (Colinus virginianus) 20-weeks old
Source:	Morris Quail Farm Inc. Florida 33179-5399°
Feeding:	16 December 1994 151, 289, 551, 1050 and 2000 mg/kg bw No Bobwhite quail ( <i>Colinus virginianus</i> ), 20-weeks old Morris Quail Farm Inc. Florida 33170-5399 Food and drinking water administered throughout the study with the exception of an 8-hour fast inimediately prior to dosing Stainless steel wire cages (18 x(23 x 15 cm)) One group of 40 birds per treatment. Birds individually loused Ten animals per dosage concentration (five of each set)
Test design	
Test vessel:	Stainless steel wire cages (18 x 23 x 13 cm) > 5
<b>Replication:</b>	One group of 40 birds per treatment, Birds Individually Roused
No. animals/vessel:	Ten mimals per dosage soncentration (five of each set)
Duration of test:	Adays to be a second se
Environmental test conditions	Ten animals per dosage concentration (rive of each set) 14 days $20 \pm 2$ $20$ $30 \pm 90\%$ 16 hours light 8 hours tark $3$ 40 16 hours light 8 hours tark $3$ 40 17 hours light 8 hours tark $3$ 40 18 hours tark $3$ 40 19 hours light 8 hours tark $3$ 40 4168 EC 500 on Bobwhite quail hours high test concentrations were selected based upon results
Temperature: 🔬	$2\overline{0}^{2} \pm 2 \overline{2} = 0$
Relative humidity:	
Photoperiod.	K hours light Shours dark S
Study Design	
This study was conducted in in an avian single dose LD505 from a previously conducted	order to assess the acute toxicity of KWG 4168 EC 500 on Bobwhite quail study over 14 days. The test concentrations were selected based upon results range finding study.
was an equal number of fem	or this study and were approximately 20 weeks old at test initiation. There are and males fords used in the study.
cage bedding and changes the	dualty into stainless steel wire cages of 18 x 23 x 13 cm. Paper was used as rectimes per week throughout the duration of the study. Single oral dosages

of the test substance were administered orally as golatine capsules at test initiation. The test vessels were maintained at a temperature of  $20 \pm 2^{\circ}$ C with a relative humidity of 30 to 90%. Daily light length corresponded with @16-hour light, 8- hour dark photoperiod.

Five groups of ten binds (five per sex) were given a single oral dose of 152, 289, 551, 1050 or 2000 mg/kg bw. One additional group of ten birds (five per sex) were similarly dosed with an empty capsule and main@ined as concornitant control.

Food and drifting water were available to the birds prior to and throughout the duration of the study with the exception of approximately 18 hours immediately prior to dosing, during which time the birds were fasted.

Body weights were obtained prior to test initiation, on study day 7 and at test termination. Feed consumptions for each group were recorded on study days 3, 7 and 14. Mortality and toxicity observations were made continuously for the first hour post-dosing, approximately hourly on the first



day and then once daily for 14 days (with the exception of weekends when no symptoms were noted the day prior). Necropsy examinations were conducted on all surviving birds in the treatment groups 551 and 1050 mg/kg bw as well as on all deceased birds during the in-life phase of the study.

The  $LD_{50}$  value with 95%-confidence intervals was calculated by using a computer program which estimated the  $LD_{50}$  using one of three statistical techniques: moving average, 6 mominal probability or probit. The appropriate method was determined on the basis of the data characteristics.

#### **Results and Discussion**

Validity criteria were not assessed as part of the study report.

Mortalities and symptoms of intoxication occurred only on the first three days after application. There were 10%, 50% and 100% morality observed at 551, 4050 and 2000 mg/kg bw, respectively. There were symptoms of intoxication observed at 551, 1050 and 2000 mg/kg bw.

	•	
Dose level (mg/kg bw)	No. of birds dosed	Novof mortalities Toxic symptoms
0		
152		
289		
551		4 (AP )
1050		5 9 (AF, CO)
2000		10, 0 [°] & 0 [°] (SA, LS, CO)

Table CP 10.1.1.1/01-1 Mortality and toxic observations at test termination

AP = apathy, SA = severe apathy, IS = laying on the side, SO = convulsions

### Table CP 10.1.1. 1/01-2 Mean body weights of birds during the study

Dose level	Male body y	eights (g)		Female body	weights (g)	
(mg/kg bx)		Day 7	Dary 14	Day-1	Day 7	Day 14
0	85.4	J86.6	≫87.6 €	°1992.4	198.0	208.0
152	19 <u>3</u> .4	1920		209.2	224.0	235.4
289	081.8	¥78.4	<b>\$</b> 2.0 <b>\$</b>	196.2	199.4	211.8
551	1810	170	180	215.6	213.0	232.2
1050	×190.2 Q	170.5		189.0	187.0	211.0
2000	192		y-	200.8	-	-

Table CP 10.1 4, 1/01-3 Mean food consumption per bird per day

Dose level (mg/kg/w)	Daily feed consumption	Daily feed consumption per bird (g)					
29 2 1	Days 0 - 3	Days 3 - 7	Days 7 - 14				
	13.5	12.7	14.5				
	14.7	18.1	16.9				
289	10.3	15.5	15.4				
551	3.6	16.8	17.9				



Dose level (mg/kg bw)	Daily feed consum	Daily feed consumption per bird (g)					
	Days 0 - 3	Days 3 - 7	Days 7 - 14				
1050	0.8	17.2	21.1				
2000	2.2	0.0	<b>9</b> .0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

### Conclusion

The acute oral LD₅₀ for bobwhite quail orally dosed with KWG 4168 Ex 500 was calculated to be @ mg/kg bw (equivalent to 477 mg a.s./kg bw). The NOEL was determined to be 289 mg/kg bw based on symptoms of intoxication and one case of mortality at the 551 mg/kg/bw level. Mortalities and symptom of intoxication occurred only on the first three days after application. No mortalities were observed either in the control, or in the groups dosed with \$2 and 289 mg/kg by?

### Assessment and conclusion by applicant: C

S The study was conducted to the U.S. EPA 71-1 (1982) test guideline but the test methodology used is considered to be consistent with the requirements of the current DECD 223 test guideline and is 4 therefore considered acceptable. Ľ

The study was assessed against the current OBCD test guideli vian acute oral C.C. Validity criteria according to DECD 223 were met. toxicity test", adopted 29 July 2016.

criteria according to DECD 223 were met? 4 2 Control mortality to not Sceed 30% at the end of the test (actual: DE Ő\$°

The study is therefore considered acceptable

The acute oral LD For boowhite quail grally tosed with KWG 4168 EC 500 was calculated to be 971 mg/kg bw (equivalent to 479 mg a.s./kg bw).

Ecological data are evailable and considered relevant to the proposed use of Spiroxamine EC 500 in grapes.



Data Point:	KCP 10.1.1.2/16
Report Author:	Le la construction de la constru
Report Year:	2003
Report Title:	Vogelcoenosen suedwestdeutscher Weinberge
Report No:	Lit. 8234
Document No:	<u>M-242340-01-1</u>
Guideline(s) followed in	None A OV A
study:	
Deviations from current	None
test guideline:	
Previous evaluation:	No, not previously submitted 2 2 0 2
GLP/Officially	not applicable
recognised testing	
facilities:	
Acceptability/Reliability:	Yes O Q & A A A

### Introduction

The species composition of birds in south-west German vineyards was investigated at four study sites from April to July 2002 using the territory mapping method. The selection of areas with different habitat elements allowed to investigate the influence of habitat elements on the bird species composition. Vineyards are used by a number of bird species as breeding or foraging habitat. Twenty-four of 44 species were confirmed breeding species and as were potentially breeding. The lunet proved to be the only characteristic breeding species for vineyards, while the other species were only associated with certain habitat elements. At the same, time structural diversity, encourages biological diversity. Compared with other habitat elements, the actual vineyards is only used to a limited amount by the different bird species.

### I. Material and methods

Four vineyards in the southwest of Germany were observed

in the vineyard region Baden, and two mineyards in the

and region (

Each study area was 15 S ha an Ocontained structural elements like vineyard area, forest, bushes, garden, meadow, field houses, path and hors.

For the bird specie pecording the territory mapping method as recommended by Erz *et al.* (1968) was used, whereby the evaluation of edge-inhabiting breeding birds was done according to Scherner (1981). From the early April to early July 2002 ten observations were performed; eight in the early mornings and two in the evening. All visual and acoustic observations were recorded

### II. 🖉 Results ू 🖗

Forty four bird species were recorded in the four study sites.

### Table CP 10.1.1.2/16-1 List of observed bird species in four vineyards in southwest Germany

	Katzenberg	Kuhberg	Fuchsen	Löhrer Berg
Common Buzzar	p N	Ν	N	Ν
Common Kesmel	N	Ν	N	Ν
Gree Partrigge				Р
Common Pheasant			Р	
Common Pigeon				Ν
Common Wood Pigeon	N	N	N	Ν



	Katzenberg	Kuhberg	Fuchsen	Löhrer Berg
European Turtle Dove		8	N	N Q
European Green Woodpecker	N	N		ja ka
Great Spotted Woodpecker	N		<u> </u>	Le la
Eurasian Skylark			B	S B S
Barn Swallow	N	Ĉ3	, K	X NY Q
Tree Pipit	В	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q	
White Wagtail	В	AO .		
Eurasian Wren	В		P Q P	ÓY & ØY
Dunnock	<u> </u>	¢°B S		
European Robin	B «	K BČ Q		& A L
Black Redstart	B	× ~B ~	A . 6 ×	N C
European Stonechat			A B O	
Song Thrush		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N N	
Fieldfare		P D	4° 8° 40	
Common Blackbird	B ACT	B B C	β B ⁽⁾	Ô N
Garden Warbler	O PAT	Ê B	BY BY	þ
Eurasian Blackcap		BOY BOY &	B B	
Common Whitethroat		S AB	O B K	
Common Chiffchat		· → B ↓	i i	
Common Firecest	P & P	L ~ L	N.	
Great Tit		B B	K B	
Eurasian Blue Tit	Cr AB	A BO A	0°	
Eurasian Nuthatch	& BO ST			
Red-backed Shrike			В	
Eurasian Magpie	ČN O	P D	N	
Eurasian Jay		Ň	N	
Western Wackdaw		No.	N	N
Carrion Crow	NO	y N	N	N
Common Starling	P O	N	N	N
Eurasian Golden Oriote			Ν	
House Sparrow &				
Eurasian free Sparrow	B	В		
Common Charffinch	В	В	В	
Common Sinnet European Goldfinch	В	В	В	В
European Goldfinch	Р	Р		
European Greenfinch	В	Р	В	N



	Katzenberg	Kuhberg	Fuchsen	Löhrer Berg
European Serin	В	В	В	N Q
Yellowhammer		В	В	B

B: breeding bird, P: potential breeding bird, N: food guest

In the following, the results are only presented for the black redstart as it is the focus of the risk assessment.

Table CP 10.1.1.2/16-2 Territories, abundance and dominance of the black redstart ju the four study sites

K	Katzenber	·g		Kuhberg			Fuchsen	. 🤍	ų, Ž	ohrer Bei	
R	А	D	R	А	R,	¢₽° ,	SA X	$\mathcal{T}_{\mathcal{L}}$	ř RÔ	°Ay	Ň
4.0	2.5	11.3	1.5	0.9	4.8 %	ر 0.0 گ	0.00	Ċ)	Ø.0	£∕0.0 €	0.0 °

R: territories, A: abundance [territories/10 ha]; D: Dominance [%]

### III. Conclusions

Vineyards provide a breeding or feeding flabitat for a number of bird species, a structural diversity promotes species richness. Only the limit was found to be the characteristic bird species in vineyards. All other bird species are dependent on certain habitat structures. The actual vineyard area is only used to a very limited amount. The actual vineyard serves only for a few bird species as territory, like the linnet, serin and yellowhammer, as they breed in the vine. The skylack is especially dominant in more open locations. The occurrence of the black resistant and tree sparrow depends on suitable nesting sites, such as huts. In the presence of field shrubs, a number of other species are present, like the blackbird, robin and great tit. Branch warbler species also occur here, but do not use the vineyard itself. As a foraging habitat, vineyards are important for some bird species. In addition to breeding birds, 14 other bird species - mainly piecons, revens and birds of prev havebeen fecorded - who visited the study sites as food guests

# Assessment and conclusion by applicant:

This ecological more regulatory was not conducted to GLP for was it conducted according to a specific test guideline. However, this is typical of studies of this type therefore the study is still considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Mammal risk assessment.

The results of this study have been used as part of the refined risk assessment of the small insectivorous species "redstart scenario, specifically to support the use of the black redstart as a suitable focal species in vine ards.

The second species in vineyards.



Data Point:	KCP 10.1.1.2/01
Report Author:	
Report Year:	2006
Report Title:	Bird species in vineyards in France and Italy field data for the determination of
-	focal species
Report No:	RA05-005
Document No:	<u>M-291192-01-1</u>
Guideline(s) followed in	EU Council Directive 91/414/EEC amended by the Commission Directive
study:	96/68/EC; SANCO 4145/2000
Deviations from current	None None
test guideline:	
Previous evaluation:	yes, evaluated and accepted Q Q Q A
	$  RAR(2010) \qquad \bigcirc \qquad $
GLP/Officially	No, not conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes A S & O

### **Executive Summary**

In this generic study, a field survey program was carried out to identify and quantify bud species found in vineyards in France and Italy during different grapevine growth stage. Investigated parameters included the qualitative composition of the bird community procurdered invineyards, the frequency of occurrence and dominance of species in vineyards, and the variation of these parameters in relation to seasonal changes. Finally, these species over assigned to foraging guilds *i.e.* ground-foraging or foliage-foraging, diet guilds and size classes. The aim was to propose a list of candidate bird species in selected vineyards that can be addressed as focal bird species in a refined risk assessment for plant protection products. The objectives of this generic study were to determine the qualitative and quantitative composition of the bird community employing the parameters, frequency of occurrence (FO_{field} and FO_{surv}) and dominance both as overall and as grapevine growth stage specific descriptors. Another objective was then to allocate the selected species to defined foraging guilds, diet guilds and size classes.

The linnet and wood lark were the most characteristic and stable elements of the bird community in vineyards in France getoss all vine growth stages. The blackbird and chaffinch were the most characteristic and stable elements of the bird community in vineyards in Northern Italy ( ) across all vine growth stages. The goldfinch was the most characteristic and stable element of the bird community in vineyards in Southern Taly ( ) across all vine growth stages. All species listed can be considered as potential eandidates for focal bird species in a refined risk assessment for plant protection products in vineyards in France and taly.

### Study area

The study was conducted on the gradient of the regions of France and the gradient of the study o

regions of Italy, encompassing 30, 13 and 15 vineyards, respectively.

The total trapsect area across all fields was 87.1 ha, 39.7 ha and 49.4 ha, respectively.

### I. Method and parameters

The Field Phase of this study was carried out during spring / summer (March to July) 2005.

In order to cover different vine growth stages, three line transect surveys were conducted in 2005 for each vine vard during dormancy and/or bud development (survey 1), leaf development or inflorescence emergence (survey 2) and inflorescence emergence and/or development of fruits (survey 3). A standard line transect consisted of an 'in-crop transect band' (a 50 m wide recording band of 25 m to each side



of the observer moving along a longitudinal in-crop field transect). For the assessment of the bird community, frequency of occurrence (FO_{field} and FO_{survey}) and dominance were determined.

#### Data recording and analysis

Data were analysed using the "Ecology Research Database System" (ERDS). The ranking of species within the list of focal species candidates was carried out in decreasing order of importance *Le.* FO_{field}>FO_{survey}>dominance. This list of candidates of focal species was then used to allocate the respective species to defined foraging guilds, diet guilds and size classes

**FO**_{field}: denotes the number of vineyards in which a defined species was recorded, given as percentage of the total number of vineyards regardless of the number of individuals observed. This approach serves as a measure for the spatial frequency of occurrence A FO_{field} of 00% for one species indicates that this species was observed in all vineyards (*e.g.* n=20 in France) during a least-one surface.

**FO**_{survey}: denotes the number of surveys in which a defined species was recorded given as percentage of the total number of surveys. This approach give an approximation for the temporal evenness of occurrence throughout the complete study period  $\stackrel{\sim}{A}$  FO_{survey} of  $\stackrel{\sim}{Q0\%}$  means the species was recorded in each survey (e.g. n=90 in France) in every vincy and with a theast one individual.

Dominance is reported as the percentage number of individuals of the respective species compared to the total number of individuals throughout all species (calculated as arithmetic means over all vineyards).

### II. Results and Discussion

The study was deemed to be acceptable based on the criteria set out in Bibby *et al.* 1992, in the absence of an OECD guideline.

A total of 722, 739 and 184 individual bird contacts, comprising 36, 33 and 18 different species, was recorded throughout all surveys within the 'in-trop transect bands' in the Champagne-Ardenne/Bourgogne region of France, and the Tyreband Apulia regions of Italy, respectively. The following species listed in the tables below were recorded with a frequency of occurrence (FO_{field}) >20% and were thus determined as the main candidates for focal bird species in the respective country. In most cases the findings were supported by FQ_{survey} and dominance data (see tables below).

Species 5	TO field	Sourvey n=90 (%)	Dominance n=30 (%)
Linnet (Canduelis cannabina)	\$ \$ 76.7 ¢	42.2	23.3
Wood lack (Lullula arborea)	667	40	11.2
Skylark (Alauda artensis)	\$3.3	34.4	6
Carrion crow (Corvus corone)	م م م	22.2	5
Carrion crow (Corvus corone)	56.7	33.3	7.6
Chaffinch (Fringifta coeleos)	<b>9</b> 40	18.9	3.6
Cirl bunning (Emberize cirlus	36.7	25.6	8.9
Greatiti (Pourus major)	36.7	17.8	3.3
Greenfing (Carduelis chloris)	36.7	14.4	3.3
Black redstart (Phoenicurus ochruros)	30	12.2	2.5
Goldfinch (Carduelis carduelis)	20	6.7	1.4

Table CPO 0.1.1.2/01-1 Frequency of Sccurrence, dominance and list of candidates of focal species in vineyards in France (Champagne-Ardenne/Bourgogne)



**FO**_{field}: denotes the number of vineyards in which a defined species was recorded, given as percentage of the total number of vineyards, regardless of the number of individuals observed. This approach serves as a measure for the spatial frequency of occurrence

**FO**_{survey}: denotes the number of surveys in which a defined species was recorded, given as percentage of the total number of surveys. This approach gives an approximation for the temporal evenness of occurrence throughout the study period  $\sqrt{2}$ 

**Dominance**: denotes the relative occurrence of bird species within the bird community. It is percentage of individuals of the respective species compared to the total number of individuals of all species (calculated as a the metry means over all vineyards)

# Table CP 10.1.1.2/01-2 Frequency of occurrence, dominance and list of candidates of tocal species in vineyards in Northern Italy (Tyrol)

	a v	Á Ó	° ~ .0′ .5
Species	FOre		Dominance
Species	ي (%) ي°		× × (%) ×
Blackbird (Turdus merula)		6 ⁷ 989 °	م <u>36</u> .4 د
Chaffinch (Fringilla coelebs)	190.0	\$2.4 O	\$.2 ¢
Greenfinch (Carduelis chloris)	^م ر ^{کر ۲} 76.5 ^{کر ک} ر ک	39.2	5.3
Serin (Serinus serinus)	763 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L. J.
Tree sparrow (Passer montanus)	\$ \$70.6 C	39.20	\$≫8.5
Spotted flycatcher (Muscicapa Agiata)	64. P	27,5 °°	<b>4.6</b>
Song thrush (Turdus philomelos)		23.5	© 6.6
Fieldfare (Turdus pilaris)	41.20 5 [°]	17.6	3.1
Great tit (Parus major		O 3.7 5	1.2
Wryneck (Jynx torauilla)	35.3	l 11.80	0.8
Goldfinch (Carefielis carduelis) 💆 🍕		\$7 9.8 [°]	1.4
Wheatear (Oenanthe Jenanthe)	3.5 5	Õ <u>\$</u> 7.8	1.1
Hoopoe (Gpupa epops)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.1

FO_{field}: denotes the number of vincy ards in which defined species was recorded, given as percentage of the total number of vincy ards, regardless of the number of individuals observed. This approach serves as a measure for the spatial frequency of occurrence

FO_{survey}: denotes the number of surveys in which a defined decies was recorded, given as percentage of the total number of surveys. This approach gives an opproximation for the temporal evenness of occurrence throughout the study period

**Dominance** denotes the relative occurrence of bird species within the bird community. It is reported as the percentage of individuals of the respective species ompared to the total number of individuals of all species (calculated as arithmetic means over all vineyards)

# Table CP 10.1.1.2/01-3 Requency of occurrence, dominance and list of candidates of focal species in vineyards in Southern Italy (Apalia)

Species Species	FO _{field} n=30 (%)	FO _{survey} n=90 (%)	Dominance n=30 (%)
Sering Serings)	93.3	33.3	12.5
Geddfinch (Carduelis carduelis)	73.3	40	14.4
Crested Jark (Galerida cristata)	73.3	31.1	9.8
Tree sparrow (Passer montanus)	60	28.9	11.4



Species	FO _{field} n=30 (%)	FO _{survey} n=90 (%)	Dominance n=30 (%)
Linnet (Carduelis cannabina)	60	24.4	22.80
Magpie (Pica pica)	53.3	22.2	9.2 . S
House sparrow (Passer domesticus)	40	15.62	0 [*] 7.6 6 [*]
Hoopoe (Upupa epops)	20 🖉	67	

**FO**_{field}: denotes the number of vineyards in which a defined species was recorded, O is a specentage of the rotal number of  $\bigcirc$  vineyards, regardless of the number of individuals observed. The approach serves as a measure O the spatial frequency O occurrence

FO_{survey}: denotes the number of surveys in which a defined species was recorded, given as percentage of the total number of surveys. This approach gives an approximation for the temporal econness of occurrence throughout the study period w

**Dominance**: denotes the relative occurrence of bird species within the bird communic It is reported as the percentage of individuals of the respective species compared to the total number of individuals of all species (calculated as arithmetic means over all vineyards)

### Frequency of occurrence values during different vine stages of gravith

When analysing bird frequencies of occurrence during different vine stages the foral species, some variation regarding to their occurrence was observed over times

In France, the linnet showed high FO values throughout the season with a maximum of 50.0% during the first survey period; the skylark blackord and wood lark also showed high FO values during the third survey with peaks of 50.0%, 46.7% and 46.3%, respectively. FO values of the chaffinch, great tit, cirl bunting, carrion crow and excention showed small maxima (23.3 - 36.7%) during the first survey period, though levels in some cases were lower during the second and third survey periods.

In Northern Italy, the blackbird showed moderate to high FO values throughout the season with maxima of 100% during the second and third survey periods the chaffine calso showed high FO values with a peak of 88.2% during both the first and second surveys. FO values for the tree sparrow, serin, wryneck and great tit reached their maxima (23.5 to 52.9%) during the second survey period. The spotted flycatcher, greenfinch and song thrush showed increasing F@value@with peaks of 35.3 to 52.9% during the third curvey, whereas the fieldfare showed a high FO value (H) 2%) only during the first survey.

In Southern Italy, the goldfitch and tree sparrow showed homogeneous FO values throughout the season with maxima of 40.7% and 33 % during the first and second survey periods, respectively. The serin displayed high FO values during the first and third surveys with a peak of 53.3% during the first survey, whereas the linnet, crosted lark, maspie and house sparrow showed decreasing FO values with peaks of 20.0 to 60.0% during the first survey. The recorded candidates of focal bird species were assigned to the following guilds in accordance with the SANCO guidance document (ranked by their respective frequency of occurrence and dominance):

Françe $\mathcal{F}$ $\mathcal{F}$ $\mathcal{F}$ $\mathcal{F}$ $\mathcal{F}$
Small insectivor
Small insectivo@       great tit (ground Voliage) >black redstart (ground)         Small granivore       Finnet >goldfach (all ground/foliage)         Small omnivore       wood lark (ground) >skylark (ground) >chaffinch (ground/foliage) >cirl
branting (ground) > greenfinch (ground/foliage)
Mednim ongervore blackbird (ground/foliage)
Large opprivore carrion crow (ground)
Northern Italy
Small insectivore spotted flycatcher (foliage) > great tit (ground/foliage) > wryneck



	(ground/foliage) >wheatear (ground)
Small granivore	serin >goldfinch (all ground/foliage)
Small omnivore	serin >goldfinch (all ground/foliage) chaffinch >greenfinch >tree sparrow (all ground/foliage)
Medium insectivore	hoopoe (ground)
Medium omnivore	hoopoe (ground) blackbird >song thrush >fieldfare (all ground/foliage)
Southern Italy	
Small granivore	serin >goldfinch >linnet (all ground/foliage)
Small omnivore	crested lark (ground) >tree sparrow >house sparrow (all ground/for age)
Medium insectivore	hoopoe (ground)
Medium omnivore	magpie (ground/fotiage)
III Conclusion	

The linnet and wood lark were the most characteristic and stable elements of the bird community in vineyards in France across all vine growth stages. Analogous results were detected for the blackbird, cirl bunting and carrion crow, but with lower FOreid values. Other species, showing peak 60 values >20% for individual vine growth stages only were the skylark (for surveys 2 and 3). Chaffinch, great tit and greenfinch (for survey 1). The blackbird and chaffinch were the most characteristic and stable elements of the bird community in vineyards in Northern taly (Fyrol) across all vine growth stages. Similar results were obtained for the greenfinch and tree sparrow, but with lower EO field values. Other species, showing peak EO values >20% for individual vine growth stages only were the serin and spotted flycatcher (for survey 2 and 3), sore thrush (for surveys 1 and 3), fredfare (for survey 1), wryneck, great tit and wheaten (for survey 2).

The goldfinch was the most characteristic and stable element of the bird community in vineyards in Southern Italy (Apulia) across all vine growth stages. Analogous results were detected for the tree sparrow, but with lower FO_{field} values. Other species, showing peak FO values >20% for individual vine growth stages only were the serin (for surveys 1 and 3). Crested lark (for surveys 1 and 2), linnet, magpie and house sparrow (for survey ly All the species listed in the trables above can be considered as potential candidates for focal bird species in a defined risk assessment for plant protection products in vineyards in France and Italy, respectively.

## Assessment and conclusion by applicant:

This ecological monteoring study was not conducted to GLP but this is typical of studies of this type. Recognised bird census methodology was adopted ac part of this study. The study is therefore still considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Mamma risk assessment.

The results of this study have been fixed as part of the refined risk assessment of the small insectivorous species "redstard" scenario, specifically to support the use of the black redstart as a suitable focal species in vinovards

The results of this study have also been used as part of the refined risk assessment of the small granivorous bird finch cenaño, specifically to support the use of the linnet as a suitable granivorous focal species invineyards.



Data Point:	KCP 10.1.1.2/17
Report Author:	_Q° 🎘
Report Year:	2007
Report Title:	The use of vineyards by birds in Southern France: An ecological study to refine the risk assessment for insecticide use
Report No:	ER-07-KCB-277
Document No:	<u>M-427241-01-1</u>
Guideline(s) followed in study:	SANCO/4145/2000
Deviations from current test guideline:	Current Guideline: not applicable
Previous evaluation:	yes, evaluated and accepted in the Addendum No. 2 to the DAR (2012)
GLP/Officially recognised testing facilities:	No, not conducted under GLP/Official@recognised teering facilities
Acceptability/Reliability:	No A A A A

### **Executive Summary**

In this large-scale field study, a combination of visual observations and radio tracking was carried out to determine the species present in commercial vineyard habitats in Southern France. A specific aim of the study was to determine what proportion of the selected focal species spent "in crop" and "off-crop" and to generate data to show the distribution of PT.

Radio-tracking data showed that the proportion of the total number of readings for Black Redstarts taken that were in-crop ranged from 0% to 74.8%. Of the 20 birds tracked in this study, 1 individual (5%) spent more than 90% of its foraging time in the vine ards. Two birds (10%) spent 70-80% of their time in the vineyards and one (5%) spent 40-50% of its time in vineyards. Three birds (15%) spent 30-40% of their foraging time in vineyards, five birds (25%) spent 20/30% of their time and two birds (10%) spent 10-20% of their active time in vineyards. Four birds (29%) spent 1, 10% of their time in vineyards and only two individuals spent none of their time in the vineyards. The mean PT for Black Redstarts derived from a sample size of 20 birds was 28.5% with estandard deviation of 25.6% with a 90th centile value of 75%.

### Study area

The study was conducted in a block of eight mature commercial vineyards at

France with an area of approximately 9 ha., with every second row kept

short by mowing for fracto faccess. Each vineyard had grass between the rows and each row was 2.4 m apart. The off-crop areas of the study site were sarvey of on 21 June 207 and the details of the 22 different areas recorded. A habitat map of the site was loaded into Field Track Map Measure software (Charles Collinson, Co-ordinated Computer Integration, 1997), UK) to determine the proportion of the surface area of the site map made up of vineyards compared to non-crop habitat. The surface area taken up by the vineyards in 800m × 800 m square (62 ha in area).

### I. Alethods

A preliminary survey of the field site was carried out from 11 to 12 May 2007. The field phase of the study was carried out between 18 May and 21 June 2007.

An electron data togging weather station was established at the site to record maximum and minimum air temperature (1m above the ground) and daily rainfall.

### Crop growth stage and general health

The BBCH growth stage of the vines was recorded at the study site each week throughout the study. In order to maintain a healthy and commercially viable vine crop the grower applied fungicides to the crop



throughout the study period, particularly after periods of heavy or prolonged rainfall. Similar fungicide products were being applied to neighbouring vines, which were later used by birds being tracked in this study.

### Black redstarts catching, colour ringing and radio-tagging

Preliminary observation of the study site recorded Black Redstart as the insectivorous bird species spending the most time within the vine crop. At least twenty Black Redstart were caught and radiotracked to determine the proportion of time each bird spent in the-crop (3) birds were caught, with 20 being successfully tagged. One bird shed its tag before tracking could ake place). Birds were caught with mist-nets established at the site or in nearby farmland, within the one crop row or across the ends of the rows. Black Redstars on nests were also caught and radio-tagged by placing the mist-net close to the nest early morning or at dusk.

Radio tags were attached to the tail feathers using cyanoacrylate glue. Each bird was also ranged with a uniquely marked metal ring and colour ringer for visual identification. During ringing, each bird was aged, weighed, sexed and its wing length recorded. The transmitting life of the tags was approximately 12 days.

Tracking for each bird began at 06:00 and continued until 21:00 and its location was recorded every 5 minutes throughout the day. Bird behaviour, whether in-crop or off-crop and whether seen feeding was also recorded for each time point. Hothe bird was not detected aba given time point then that point was missed and the next 5 minute interval used. Time spen on the next, of conducting activities which were not foraging, such as singing or preening, were excluded from daily total before apportanting PT.

### Vantage point surveys

Vantage Point Surveys were conducted for while days (06:00 – 21:00) at twenty oneyards in the region of the main study site to record the extent of Oneyard bird activity over a wider area. Although the study site and vineyards used for the black-redstart work were mostly grassy both within and between rows, there were many vineyards in the area of Vaison la Romaine which comprised bare soil only or had only limited vegetation between the tows. Vineyards adjacent to the tracks were classified as being bare soil with virtually to vegetation (1), limited vegetation between rows (2) or long grass between at least 50% of the vines.

Suitable fields were those deemed to be small enough to see birds entering the crop from the vantage point but not so small as to be unlikely to have birds visiting them. Suitable sites had a vantage point high enough to enable the whole field to be seen. Vineyards for the vantage point surveys were chosen using a ratio based on the result of the round over surveys giving ten fields of bare soil vineyards (1), five fields of limited vegetation (2) and five of long grass on 50% or more of the rows (3).

Surveys were carried out to observe whole vineyards and record the species and number of birds seen or heard entering or leaving the vineyard under observation. In addition, a list of species seen or heard at that location but not in the oneyard was generated. These were the birds that could have entered the vineyard, because they were known to be or the vicinity but did not do so.

### II. Results an Discussion

The highest temperature during the study was 31.75°C and the lowest temperature recorded was 1.33°C during the study.

### Crop growth stage

The BBCH gowth stage of the vines ranged from 65 to 79 during the study.

### Radio-tracking

Ten may and ten female Black Redstarts were caught, fitted with radio-tags and tracked for one day from 06:00 to 21:00. Nine of these birds were caught and tracked on or near to the core study site at Put du Maupas and the remaining eleven were on neighbouring farms.



Bird No.	Age	Sex	Wing length (mm)	Body mass (g)	Nesting status
1	5	F	83	n.a	Nesting statue
2	6	М	89	16.3	Feeding fledglings
3	6	М	92	16.6	Chicks in nest
4	5	F	84 💍	16.7	Feeding fledglings
5	5	М	85	Q16.2	Chickson nest
6	6	F		م ب 14.2 (	Feeding fledgings
7	6	М	87	× 05.5 ~	Not nesting
8	5	F	6 Al N	× 15.4	Not nesting
9	5	M	× 85 0 0	0° 07.1	Chricks in prest of "
10	6	M K		A 16.9	Chicks in next
11	6	M	× × 89 ~ ×	15.5	Feeding fled Qings
12	5	F o	°∽y* 81°° ′ ∽y	\$ ^{75.1}	Eccding fledglings
13	5	F F	84 5 86 4	1550 A	Eggs in nest
14	6 ,	Ň N	r	∑ [™] _d ₂ 5.6	©ggs in nest
15	5 0	O'M S	\$ \$60 \$	~~ 16.4~~	Not nesting
16	5	F.	\$ 684 6 9	17:3	Eggs in nest
17	5 5 0 T	M Q	5 84 7 0	014.4 K	Eggs in nest
18	5 64	F C	× × × ×	√ 16®	Eggs in nest
19			× × 83	× 15.6	Chicks in nest
20	10°5 ×			× 13.3	Feeding fledglings
<u> </u>	Mean		×84.7~5°	y 15.6	-

	Table CP 10.1.1.2/17-1	Body weight and wing length of radio-tagged birds
--	------------------------	---------------------------------------------------

n.a. = not applicable Table CP 10.1.1.2/17-2 Summary of radio-tracking data

Bird No.	Total A Total Aumber of Frecordings		Number of Cecordings Off-Crop	Number of recordings vin "nest area"	Proportion of time spent In- Crop	Proportion of range that is vines (%)	Estimated PT (excluding "nest area")%
19	135	@ ⁷ 1010 ⁷	³⁴ ⁰	23	74.81	77.94	90.18 ²
15	48			100	43.15	43.15	77.08 ¹
12	140	85 😓	~\$ 55	26	75.44	75.44	74.56 ¹
4		30	103	53	50.32	50.32	43.82 ²
13	A159 S	× 12	147	122	25.24	25.24	32.43 ²
A B	\$ 147	33	114	40	46.61	46.61	30.84 ²
6 Õ	168	28	140	77	3.62	3.62	30.77 ²
9	146	35	111	27	62.20	62.20	29.41 ^{1,2}



								1
5	94	22	72	13	21.36	21.36	27.161	
11	135	27	108	32	40.92	40.92	26.21	Ô
2	143	23	120	54	20.14	20.14	25,841	Ø.
20	140	23	117	42	31.91	\$ 31.91	£23.472	
10	117	17	100	20	81.49	81.49	7 17.532	ĝ
14	154	10	144	74	0.00	0.00	×2.5 ²	
16	169	2	167	148	0.00	0.00	9.52	ő
17	174	10	164	25	5.47	<b>3</b> .47	6 ⁹¹²	
8	157	9	148 🗸	8	22.0	₽ [°] 22,10 ^{°°}	© 6.04 ² 0	
7	123	5	118 🌾	@24 , ~	¥6.52	10.52 °	5. <b>63</b> ²	
1	131	0	131	× 4 Č	0.00	0.00	$\int 0^2 \int 0^2$	
18	181	0	181		<u>0:00</u>	\$ 0,00	$\frac{\partial^2 \partial^2}{\partial z} = \frac{\partial^2 \partial^2}{\partial z}$	

¹Taken from visual observations that the bird ionot feeding, not foraging and not provisioning

²Taken from number of locations in the areas nominated as "nest area". May include ocations where a sual observation was not possible

### Vantage point survey data

Vantage point survey data from the additional typenty vineyards in the area showed that twenty-seven different bird species were recorded. Eight species were only seen on only one site and the number of birds seen on a single site ranged from one to thirteen. Whilst species diversity hay be enhanced with long grass the relationship is not straightforward as three bare soil site all had seven or more species seen during the period from 06:00 to 21:00 hours. Excluding the aerial feeders, which were deemed to have little exposure to readues. Black Kedstan was the insectivorous species with the highest recorded time in vines (2h 40 minutes) over 83 visits, and was seen in 9 of the 20 vineyards. Woodlark (*Lullula arborea*), although only seen in five of the 20 vineyards, had a total recorded time in-crop of 2h 11 minutes over 24 visits. Cirl Bunting (*Euberizo cirlus*) spent 1h 52 minutes in-crop over 16 visits.

### III Conclusion

Excluding aerial feeders, the insectivorous species observed spending the most time within vines were Black Redstart, Wood Lark, and Cirl Bunting. As the most frequently observed and abundant in-crop species over a Jandscape scale Black Redstart was considered to be a suitable focal species for small insectivorous birds in vines in Southern France.

When the etop represented approximately 50% of the land area the mean PT (proportion of diet taken from treated area) for Black Redstarts was 28.5 % with a standard deviation of 25.6% (after correction for time spent on non-foraging activity) with a 90th centile value of 75%.

Of the 20 birds tracked in this study, 1 individual (5%) spent more than 90% of its foraging time in the vineyards. Two birds (10%) spent 70,80% of their time in the vineyards and one (5%) spent 40-50% of it's time in vineyards. Three birds (15%) spent 30-40% of their foraging time in vineyards, five birds (25%) spent 20-30% of their time and two birds (10%) spent 10-20% of their active time in vineyards. Four birds (20%) spent 4-10% of their time in vineyards and only two individuals spent none of their time in vineyards.

The Black Bedstar's tracked in this study had territories ranging from 0.03 ha (for a female with eggs in the nest) of 1.74 ha for a female with chicks in the nest. Males and females of the same pair had clearly overlapping territories but did not always forage in the same places. The mean PT for Black Redstarts derived from a sample size of 20 birds was 28.5% with a standard deviation of 25.6% with a 90th centile value of 75%.



Vantage point survey data from the additional twenty vineyards in the area showed that twenty-seven different bird species were recorded. Eight species were only seen on only one site and the number of birds seen on a single site ranged from one to thirteen. Whilst species diversity may be enhanced with long grass the relationship is not straightforward as three bare soil sites all had seven or more species seen during the period from 06:00 to 21:00 hours.

Excluding the aerial feeders, which were deemed to have little exposure to residues, Black Redstart was the insectivorous species with the highest recorded time in vines (2h 40 minutes) over 83 Osits) and was seen in 9 of the 20 vineyards. Woodlark (*Lullula arb@nea*), although only seen in five of the 20 vineyards, had a total recorded time in-crop of 2h 11 minutes over 24 visits. Cirl Bunting *Emberiza cirlus*) spent 1h 52 minutes in-crop over 16 visits.

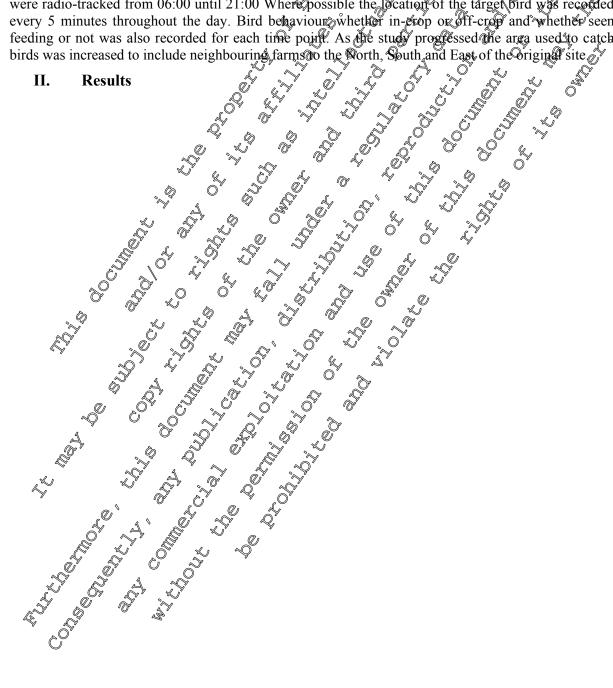
Values of PT derived in this study were generated from the area before treatment with chlorpyrifes. After insecticide treatment birds would be expected to obtain less of their diet from the treated crop due to the absence of suitable prey.

### Assessment and conclusion by applicant:

This ecological monitoring study was conducted to GLP and followed the principles set out in the previous Bird & Mammal Guidance Bocument (SANCO/4/45/2000). Thus, the study is considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Mammal risk assessment.

The results of this study have been used as part of the refined risk assessment of the small insectivorous species "redstart" scenario, specifically to justify a refined 90th percende PT value of 0.75 for the black redstart in vine ards.

Į, v	
Data Point:	KCP:10.1.1.2402 ~
Report Author:	
Report Year:	
Report Title	An ecological study of the use of vine yards by birds in Southern France
Report No.	Lit \$943
Document No:	M 904340-01-1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Guideline(s) followed in	Avone a solution of the soluti
study:	
Deviations from current	Current Guideline prot applicable
test guideline	
Previous evaluation:	ves, evaluated and accepted
On V A	
GLP/Ochicially	not applicable
recognised testing	
facilities:	
Acceptability/Reliability:	Yest
Introduction (	


A field study was conducted in **Example**, Southern France, during May and June 2007 to determine which bird species make use of commercial vineyard habitats and the proportion of their diet obtained within a treated crost (PT) for small insectivorous birds. The study site comprised 9.25 ha of vines, divided by mostly dry water course with deciduous woodland over part of its length. 49.5% of the surface area comprised vineyard with the remainder being scrub, woodland, gardens and grassed areas.



### I. Materials and Methods

Vantage Point Surveys were conducted (06.00 - 21.00) at twenty vineyards in the vicinity of the site. The proportion of the different ground cover types in 505 vineyards in the area of the study was surveyed to apportion the vantage point surveys to vineyards in a similar ratio. Surveys were carried out by pairs of ornithologists with binoculars and/or telescopes observing whole vineyards and recording the spectres and number of birds seen or heard entering or leaving the vineyard under observation.

Black Redstart (*Phoenicurus ochruros*) was the insectivorous bird spending the most time within the vine crop at the study site. Mist nets were established at the site or in nearby farmland, either within the vine crop rows or across the ends of rows to catch and radio-tag birds. Where condition and suitable feathers allowed a "Pip 3" tail-mounted radiotag is the frequency range 147050 MHz (Botrack Wareham, Dorset, U.K.) was fitted and birds were solour ringed before being released Black Redstarts were radio-tracked from 06:00 until 21:00 Where possible the location of the target bird was recorded every 5 minutes throughout the day. Bird behaviour, whether in-grop or off-crop and whether seen feeding or not was also recorded for each time point. As the study progressed the area used to catch birds was increased to include neighbouring farms to the Worth, South and East of the original site of the o





site No.	3	4	8	10	11	12	14	15	18	1	2	13	19	20	5	6	7	9	16	17	Total	I_@
egetation type	-		-							-	-				Ĩ						0.	Ċ,
lay	•		•	•	•		•		•	٠		•		•	•	٠	٠		٠	٠	15	
Barn Swallow	٠	•	٠	•	•					٠	٠		٠	•	•	٠		<b>9</b> 5	٠	٠		6
Serin		•	٠	•		•	•		•		•			•		٠	Ô		٠	٠	13	
Black Redstart	•				•				•	٠					•	٠	Ű	٠	٠	•	5 9 A	
louse Martin		•		•	•			•				•		$\vdash$		×,		•	٠	~	80	
Bee Eater	٠			•	٠				•		Ĉ	>		•		10		٠	*	J		Ş
swift			•	•	•						V	•			Ø.	•			Ş	•		×,
Voodlark		•	-	-	-				•	A		•	•	•		-		×	J	Ĺ	5	\$~ U
Goldfinch		-	⊢	⊢	•				-	,®		-	-	ð		0		9	•	~		Î
Great Tit			⊢	•	-								Â	<b>P</b>			Â		Ć	۷.		A S
Voodpigeon	•	-	$\vdash$	-					Ŷ	-			ð						5	-		
Common Kestrel	-	-						×,	•	Q	<u>о</u>	n n n n n n n n n n n n n n n n n n n	0 [,]	L D			Ø	Ĩ.		->>>		J.
House Sparrow	•	-	$\vdash$	-	$\vdash$			OŸ		Ċ		$\langle \cdot \rangle$		S'		Ŷ		Ĩ	•	ſ.		
Aagple	-		⊢	⊢			A.							0								A
stone Chat			⊢	•	$\vdash$		Ĵ		Y		$\succ$	2		<b> </b>	A,	-	Â,	•		•		
		-	$\vdash$	•		Ô			1	. O		Ś		.0	ŕ		~	- AC	۲.	1		S.
White Wagtall Carrion Crow	•	-	⊢			D-	<u> </u>			$\bigtriangledown$	-	$\nearrow$		K		×,			F.	Ĩ		
Cirl Bunting	•		⊢	⊢	Ś	×	Ň	r <u> </u>	$\sim$	>	$\overline{\mathbb{Z}}$	»		<u>*</u>	ŝ	-	2	-		<u> </u>	1	{
todlog			-	•	Ď⊻_		ч <i>0</i> .		//	Ĉ	Ŭ		b≁		D°		Ô		Ň	- 9	× 2	{
Black Kits			⊢	<b>.</b>	¥						ř	Ö			╞		)			_	<u>× 2</u> 1	{
SIACK KILB				<b>V</b>	~	$\sim$		"U"		ð	~			<u>Q</u> ″				ð		<b>\$</b>		{
		-	Ŵ			ř—	~Q	<u> </u>	đ.		0	×		<u> </u>			Ĉ	-	(	2	1	{
Suzzard			┢				Y		ŬŸ.		107			┝∼┥	6×		Y		Ìą.		1	{
Domestic Dove			⊢	4	1-	Ŵ	<b>-</b>	S	-	Ś		<i>C</i>			ľ—		r <u> </u>		/		1	{
srey Partridge	-			₿.						<b>?</b>	٥.	þ×	l 🦕			$\sim$	0.	<u>م</u>			1	{
CODIN	õ	1	P	<b>I</b>	×,	<u> </u>	<u>,</u>	[						ľ—				Ľ			1	{
short-Toed Eagle	U ^V			Â	×.		Ç	Ģ	ď,			-0	_				۳¥		•		1	4
awny Pipit		Ó	<u> </u>	Ŋ	1	Ŵ				$\sim 0$	_	<i>Co</i>		La y			_		•	9	1	ł
Annon Crow		Vin Yin	Eyar Eyar Eyac		ith s lass	orae Orae	gra s vei		enex ass	ath ber	Nes Nes Nest				o rol	ws een i	rowa	5				
		4 4 7								% 0 >			57									
~~~ (		ð		j D			¥ ,		? ``	Ĵ	7											
		l Q	, ,),		~ ~	Q	, S	n S		1												
	<u>, 1</u>	"O"		0. 1	Ś		, Q	,0 ¥														
	, (ć	200		~Ç ^w																
\sim \sim \sim	S. 8	1	, Y																			

 Table CP 10.1.1.2/02-1
 Frequency of observation in field during vantage point surveys

Bird No.	Total Number of Recordings	Number of Recordings In-Crop	Number of Recordings Off-Crop	Number of recordings in 'Nest Area'	In-Crop (%)		Estimated PT (excluding 'Nest Area') &	NotQesting Chicks intrest
19	135	101	34	23	74.81	77.94	90.18	
15	148	37	111	100	25.00	43.15	90.18 77.08	
12	140	85	55	26	60.71	75.44	177 56°	
4	142	39	103	53	27.46	50.32	£ 43.82°	
13	159	12	147	122	7.55	25.24	32.43°	
3	147	33	114	40	22,45	46.61	≫ 30.84°	
б	168	28	140	77	X6 /67	3.62 ×	30.77° "C	
9	146	35	111	27	3.97	62.201	\$29.41°	
5	94	22	72	13 4	23.40	2)/36 	30.77° C 29.41° V 27.16°	L Eggs in hest
- 11	135	27	108	32 🐇	2020	%∺0.92 ≪ /	2010	
2	143	23	120	54 0		20.14	× 201 ~ 0 .84 ~ 0	
20	140	23	117	42	6.43	31 0 1		CYTICKS INTRAST
10	117	17	100		y 14,53 y	81.49 ~ 0.00	17	
14	154	10	144	A 74 .	6	L 0.00	<u></u> }}\$\$5" (Feeding fledgrings
16	169	2	167		5.75 5.23	81.49 0.00 0.08 0.08	ر ⁹ .52° ک	
17	174	10	164 O		5.75	29	5 6.715	Q, Ž
8	157	9	1460	1 ³ 2	5,23	<u>3111</u>	6.0	
7	123	5	118	24	572 20	016.52	17 67 17 7 17 7 17 17 17 17 17 17 17 17 17 17 17 17 17	Freeding fleagings
1	131	0		la 4	Ø.00 L	0.05	<u> </u>	
18	181	0			Ç 0.00			

 Table CP 10.1.1.2/02-2
 Frequency of observation in field during vantage point surveys

Figure CP 10.1.1.2/02

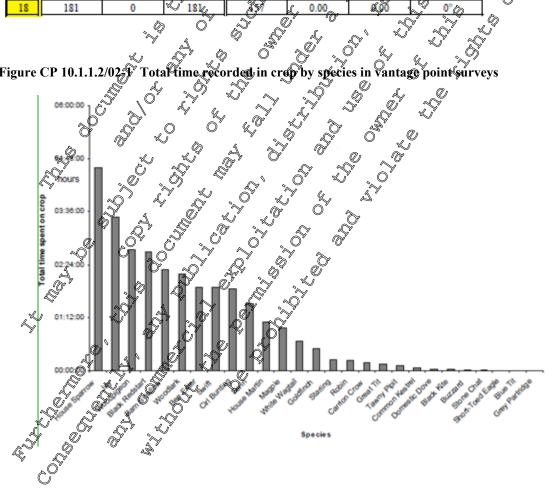
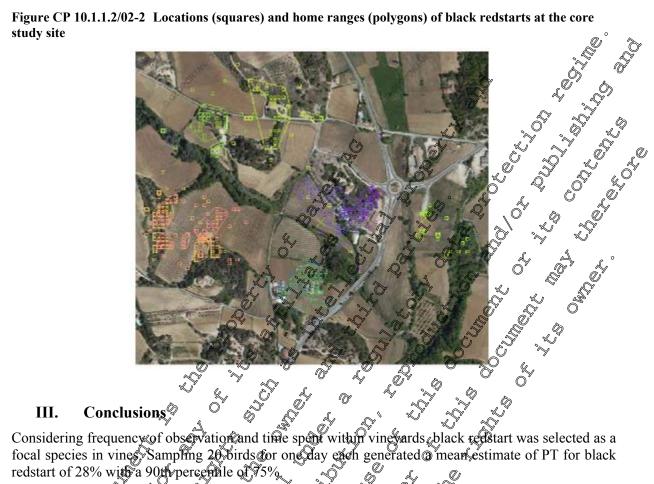
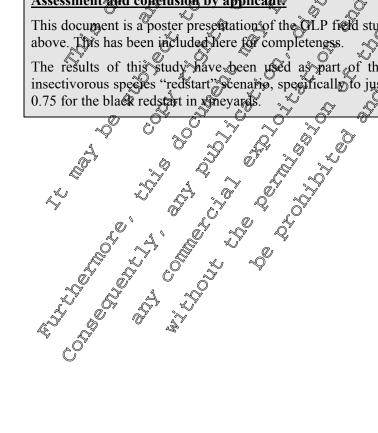



Figure CP 10.1.1.2/02-2 Locations (squares) and home ranges (polygons) of black redstarts at the core



focal species in vines, Sampling 20 birds for one day each generated mean estimate of PT for black redstart of 28% with a 90th percentile of \$75%

Assessment and conclusion by applicant

This document is a poster presentation of the GLP field study $M-\frac{427241-01-1}{2}$ which is summarised

The results of this study have been used as part of the defined risk assessment of the small insectivorous species "redstart" scenario, specifically to justify a refined 90th percentile PT value of 0.75 for the black redstart in sineyards.

Data Point:	KCP 10.1.1.2/18	
Report Author:	_Q°	~
Report Year:	2012	Ş
Report Title:	Foraging behaviour of the black redstart in vineyards in Germany	F
Report No:	423079	
Document No:	<u>M-487359-01-1</u>	
Guideline(s) followed in	None A O ^V A	2
study:		
Deviations from current	None a c c c c c c c c c c c c c c c c c c	©
test guideline:		Ő
Previous evaluation:	yes, evaluated and accepted y in the Addendum No. 4 to the DAR (rev 2007) of y	1
	in the Addendum No. 4 to the DAR (rev 2007) or 2007	
GLP/Officially	No, not conducted under SLP/Officially recognized testing facilities	
recognised testing		
facilities:		
Acceptability/Reliability:	Yes a compared of the state of	
Acceptability/Reliability:	Yes A C A A A A A A A A A A A A A A A A A	

Executive Summary

The foraging behaviour of the insectivorous black redstart (*Phoencurus ochurus*) was investigated in German vineyards. As a consequence of their relatively small body size (average weight = 16 g), feeding on prey exposed to plant protection products (PPPs) could particularly affect this bid species, which is a relevant indicator species for the risk assessment within oneyards. Visual observations of foraging behaviour of 20 black redstarts was recorded. Using fadio transmitters, 20 independent foraging events were recorded for each individual bird, distinguishing between foraging on the ground, in vine rows and in the air. Ground-foraging was further divided into foraging that took place either close to or distant from the vine rows. Other behaviours of each bird were also observed and classified into foraging-related behaviour. The height of the bird or the vegetation height if on the ground were also recorded.

Black redstarts for aged (requestly within the wine proving area. 96.45 % of all documented *foraging-events* were located or the ground in vineyards. There was no preference in whether the birds chose to forage close to or distant from the vine rows (close: 51,96%, distant; 48.04%), but birds preferred bare compared to overgrown ground when foraging (bare: 69,42%, overgrown: 30.57%). The structures within the vine rows, like the poles, wires and the vine plant itself were used as shelter, look-out and for general, *non-foraging-related* behaviour, e.g. preening and resting. The additional behavioural observations strongly support this result; the majority of *foraging-related* behaviour occurred on the ground, whereas the majority of *non-foraging-related* behaviour occurred above the ground.

In summary, the results support previous qualitative studies indicating that the black redstart forages mainly on the ground.

Study area

The study was conducted in wine winds in the Rhine-Hesse, part of the German province of Rhineland-Palantinate in southwest Germany.

I. Methods

The field phase of the study was carried out during summer (June to July) 2012.

Black redstarts papping, marking and radio-tagging

Two happing areas were established, both located in the North of the village within the vineyards and were about 150 m apart from each other. The study aimed at tracking at least 20 individuals of each species 25 were trapped but sufficient data was not obtained from 5 of the birds). Birds were trapped using common mist nets (polyester nets, 15 mm mesh wide, 7 m length, 2 m height), which were spanned between poles at a height of up to 3 m and placed into the flying routes of the birds. Captured birds were ringed with a foot ring displaying a unique identification number. Additional coloured rings allowed for

visual identification from a distance. Each black redstart was equipped with a radio transmitter, attached with medical skin adhesive to the back of the bird. The adhesive lasted for about 8 days, after which time the device dropped off. The transmitters were <5% of the bird's body weight (around 3.5% of body a weight). Morphological measurements were taken from all captured birds.

Tracking began no less than 3 hours after release to ensure the bird was recovered from treatment. In total, the behaviour of 20 black redstarts within vineyards was observed. Data recording was stopped when there was no movement for longer than 45 minutes observed. Tracking continued in another? tracking session once activity was resumed.

Foraging events (forging, pecking, diving, hovering and in-flight catches) were recorded with distinctions between three different locations being made (ground, air, vine rows). Observations of foraging events were taken at intervals of at least 5 minutes for ensure that recorded events were independent of each other. Additionally, ground foraging was recorded as either close (20 cm) or distant (\geq 30 m) from the vine row.

To assess whether foraging behaviour changed during the wacking period, tracking dass were grouped into four groups, each consisting of 4 - 5, successive tracking, with the proportion of ground and da∛s non-ground foraging events.

Additional behaviour data

Behavioural observations were taken at 10 minute intervals. Dypes Plocations were categorised in a similar manner to foraging data with ground, or and one row, in addition of other which incorporated all other locations (e.g. village garden, wood pile). L,

Behavioural data was classified as either for aging related behaviour or non-for aging related behaviour (foraging: see foraging-event, non-foraging; singing, flying, sitting, preening). The sampling of the additional behavioural data was also complemented by recording the height of the observations in intervals of 0.5 m, and if birds were observed on the ground vegetation height in intervals of 10 cm was estimated. It was tested whether the height observation of foraging-related behaviour differ significantly from the height of non-foraging-related behaviour using in R version 2.13.0.

Habitat mapping and sibility across the season

The grape-one's BBCH growth stage was recorded, given that the study was conducted over much of the growing season of the grape-vines and as the plants grew, visibility of birds was reduced.

For each individual of foraging-ground was mapped as minimum covex polygons (MCP) on a specific habitat map, with the habitat classified into six types;

- 1. Vineyards @
- 2. Hedgerows and frees
- 3. Ruderal areas
- 4. Cereal fields
- /illage 5. Area covered by the village
- 6. Buildings not connected to the

ts and Discussion II.

Foraging data

In total 400 for generative obtained (20 for each of the 20 tracked individuals). 96.5% of all observed for ging events occurred on the ground, 0.75% on the vine plant and 2.75% were in-flight catches. The height of observed foraging-events not on the ground was on average 0.67 m. Of the ground foraging vents 69.43% were on bare ground, 30.57% on overgrown ground with a mean vegetation height of 19 cm. Of the ground foraging-events, 51.96% were close to the vine rows and 48.04% were distant. Number of ground foraging-events and non-ground-foraging-events did not differ significantly

between individuals or among tracking groups, indicating that foraging behaviour did not change during the course of the study. Q_{p}°

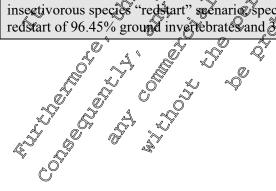
Behavioural data

In total, 411 behavioural observations (mean: 20.5 per bird, range 15 - 31 per ord) were recorded. In 401 cases, the position of the bird within the habitat was determined (*n*non-vineyard = 93, *n*vinyard = 308). In 306 out of the 401 cases, behavioural information was obtained (*n*non-vineyard = 94, *n*vinyard = 252). Classification of the behavioural observations resulted in 103 (33.66%) foraging related (*n*non-vineyard = 93, *n*vinyard = 10) and 203 (66.34%) *non foraging-related* data (*n*non-vineyard = 93, *n*vinyard = 10) and 203 (66.34%) *non foraging-related* and height of *non-foraging-related* behavioural observations (Wilcoxon two-sided signed-rank test: p < 0.005). 92.28% (all data 96.51% in vineyards) of *foraging-related* behaviour was observed on the ground whereas only 5.42% (all data, 5.42% in vineyards) of the *non-foraging-related* behaviour occurred on the ground

Classification into the location-types of behavioural observations (*foraging- & non-foraging-related* behaviour) from within the vineyard resulted in 35/10% *ground* 45.10% *vine fows* and 1980% *aif*. Notably, 95.35% of *foraging-related* behaviour, within the vineyards occurred on the ground and 96.34% of *non-foraging-related* behaviour occurred above the ground.

III. Conclusion

Black redstarts foraged frequently within the wine-growing area. 96 5% of all documented *foraging-events* were located on the ground in vineyards. Whereas no preference in whether the birds chose to forage close to or distant from the vine rows was detected (close: 51,96%, distant 48.04%), birds preferred bare compared to overgrown ground when foraging (bare: 69,43%, 6vergrown: 30.57%). The structures within the vine rows, like the poles, where and the wine plant itself were used as shelter, look-out and for general, *non-foraging-related* behaviour, c. preening and resting. The additional behavioural observations strongly support this result; the majority of *foraging-related* behaviour occurred above the ground.


Foraging behaviour was consistent throughout the study period, indicating that the growth stage of vine plants and weather conditions did not influence the birds' foraging strategy.

In summary, the results support previous qualitative studies indicating that the black redstart forages mainly of the ground a start for a studies indicating that the black redstart for a studies indicating the studies indicating that the black redstart for a studies indicating the studies in

Assessment and conclusion by applicant:

This ecological monitoring study was not conducted to GPP nor was it conducted to a specific method but this is typical of studies of this type. The study is therefore still considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Mammal risk assessment.

The results of this study have been used as part of the refined risk assessment of the small insectivorous species "redstart" scenario specifically to support the use of a refined diet of the black redstart of 96.45% ground invertebrates and 355% foliar invertebrates.

Data Point:	KCP 10.1.1.2/03
Report Author:	l l l l l l l l l l l l l l l l l l l
Report Year:	2007
Report Title:	Generic field monitoring of birds in vineyards in France
Report No:	RA05-223/2
Document No:	<u>M-291784-01-1</u>
Guideline(s) followed in	EU Council Directive 91/414/EEC amended by the Commission Directive
study:	, , , , , , , , , , , , , , , , , , ,
Deviations from current	None
test guideline:	
Previous evaluation:	yes, evaluated and accepted in the second seco
	RAR (2010)
GLP/Officially	Yes, conducted under Go Officially recognise desting Pacilities
recognised testing	Yes, conducted under Gb Officially recognise Desting Pacilities
facilities:	
Acceptability/Reliability:	Yes X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Executive Summary

In this generic study, a radio-tracking program was carried out in a typical European wine growing region in France during the spring and summer to obtain measured data on PT and PD values for refined exposure assessment. Four wild bud species were monitored in this study, the cirl Bunting (Emberiza cirlus), great tit (Parus major) linnet (Carductis counabing) and woodlock (LuQula grborea). In the present study bird trapping, racho-tracking, visual observations together with measurement of faecal and stomach content were methods used to characterise PT and PD in vine vards,

The study provided reliable refined parameters of F Plo for use in higher tio risk assessments for birds foraging in vinewards.

Study area

S. The study was conducted in the Burgundy region abound the musicipatives of Santenay, Dezize-lès-Maranges and Cheilly des-Maranges (France), a typical wine growing district, and encompassed a study area of 1220 ha.

[ethods

was carried out during spring and summer 2006 The study

Bird trapping, marking and radie tagging

The study aimed at tracking a least 20 ind idual of each species. A total of 21 cirl buntings, 23 great tits, 28 linnets and 24 woodlarks were actually trapped and tagged, to account for all birds not being successfully tracked afterwards Birds were trapped using mist nets (polyester nets, 16 mm mesh wide, 9 m length, 2.5 m height, 5 showes). For woodlarks a whoosh net was used.

All captured birds were marked with a pretal ring in order to enable recognition of individuals during subsequent visual contacts. Colour rings were used to mark birds selected to carry a telemetry transmitter. Transmitters were mounted on their backs and had a range of 0.8 to 3 km in open habitat with no obstacles and had an operational lifespan of two to three weeks.

Individual firds were tracked continuously over an entire activity period (from dawn till dusk). In the case of two cirl Guntings, on Qinnet and three woodlarks, individuals were tracked for 2 daily activity periods. For adalysis the respective sessions were pooled. The proportion of time foraging in vineyards (compared with the total potential foraging time) was estimated from the data obtained by radiotracking and visual observation. These values are regarded as equivalent to the proportion of diet obtained from the treated area (PT). To help interpret the PT values, the PT of each bird on the vineyard is compared with the proportion of vineyards in the home range. This comparison (calculated as the Jacobs' index

[D]) illustrates the preference or avoidance of the individual bird for vineyards as a feeding habitat during each tracking session. Q_{μ}°

To estimate the proportion of different food types in the diet (PD), faeces and/or stomach contents were sampled and analysed. Correction factors derived from the literature were applied to estimate the number of items actually ingested by the birds from the number of arthropods and seeds recognised within the food samples. Estimations of the prey length provided information on the food size selection of the birds. Length-weight regressions of invertebrates and seeds identified via the literature were used to calculate the proportion of dry weight of each food type in the diet actually ingested by the birds.

Individual PT was calculated as:

<u>Time potentially foreging in vinevards</u>. Time potentially foraging in all known habitats

Faeces sampling

To estimate the proportion of different food types in the chiet (PD), sampling of faces and stomach flushings were carried out.

Additional observations

The whole study area was mapped for habitat types and corps at least one during the study period.

The daily average temperature and daily precipitation data vere obtained from the nearest weather recording station.

II. Results and Discussion

The study was deemed to be acceptable.

The mean temperature during the study period was 13.8°C. Total precipitation was 432.3 mm, with a daily average of 2.8°C.

PT values

The combination of fadio-tracking with visual appraisal and the trapping scheme as presented here, allowed an accurate and representative assessment of potential for ging times in given home ranges, thus making it possible to calculate reliable PT values. All birds were closely associated with vineyards and had the opportunity to use these fields as a foraging habitat. The results can thus be considered a worst case in terms of potential exposure Based on the study results (Table, see below), the mean PT value derived for cirl buntings cas 0.43 (90th percentile=0.77), for great tits the mean PT value was 0.05 (90th percentile=0.08), for linner the mean PT was 0.78 (90th percentile=0.97) and for woodlarks 0.86 (90th percentile=1). It is important to emphasise that these values represent the total time spent potentially foraging in vite vards. These values include times when birds may not actually be foraging but information is not available to exclude this possibility. Therefore, the calculated PT values for all species can be regarded as a conservative assumption.

Table CP 10.1.1.2/03-1 Overview of PT values of vineyards

Overview of the PT A S R										
Proportion of the diet obtained in vine and determined by radio-tracking (PT) = 'potential foraging' time in vine as a proportion of the total 'potential foraging' time										
time in vineyards as a proportion of the total 'potential foraging' time										
Percentifies & A	Cirl bunting ¹	Great tit ¹	Linnet ¹	Woodlark ¹						
50% tile	0.39	0.02	0.85	0.96						
90% til	0.77	0.08	0.97	1.0						
Mean	0.43	0.05	0.78	0.86						

¹Based on 20 tracked individuals

PD values

Cirl buntings ingested invertebrate items and plant seeds in similar proportions (0.499 and 0.001, respectively) related to the total dry weight of their diet. Insect adults and Poaceae seeds were the most important taxa with PD values of 0.297 and 0.334, respectively. Great tits fed mainly on invertebrates (PD value of 0.955), whereas the PD value for seeds was only 0.045. Insect advits and larvae were the most important food items, providing together a PD of 0.788. In contrast, linnets ingested mainly seeds, with a PD of 0.973. Most important were Brassicaceae seeds, providing a PD value of 0.908. The dist of woodlarks consisted basically of invertebrates (PD of 0(921) with insect adults as the most important food items (PD of 0.527).

Overview of the PD	Å	ò ^	y . V							
Proportion of different	food types in the diet	D) = mvertebr	ates and plan	t items actua	fly eaten by					
individuals foraging in and around vineyards [propertion of dry weight] &										
Food type		Cirl bunting	Great tit ²	Linnet	Woodlark ³					
Invertebrate matter	Insecta* (aduly	£0.297	~0.405×	Ø.01 S	0327					
	Insecta* (larvae)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.383		£ 0.209					
	Araneida 🧳 🧔	Q.003 S	Q.165	6917	≫ 0.014					
	Gastropoda	0.048	0.002	° - °	0.172					
	TOTALO S	0.499	* 0 0755 *	0,027	0.921					
Plant matter (seeds)	Asteraceae	~0.002 ⁵	 - ¹ 	<u>8</u> .042	0.007					
	Brassicaceae	Ş z		¢ ⁹ 0.508	-					
	d'aryophyllaceae	<u>\$</u> 0.095	\$0004 @	0.146	0.0002					
	Chenopodiaceae	0.011	\$~- ^{\$}	0.023	-					
	Geraniageae			0.115	0.001					
	Pinaceae	Q 0.005	~ -	-	0.007					
	Poaceae C	y 0,334 🔬	¥ 0.016	0.084	0.03					
	Polygodaceae	9.053	-	-	0.006					
	Ranhoulace	<u> </u>	-	-	0.001					
~Q U	Besedaceae	<u> </u>	-	0.002	-					
	Violaceae	× 0.0001	-	0.004	-					
	Labiatae		-	-	0.026					
	Other Seeds	-	0.029	0.05	0.001					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TQTAL S	0.501	0.045	0.973	0.079					
in and around vine vards f	proportions of dry weight]	length of food it	ems actually ea	ten by individ	uals foraging					
P & A	Size class (mm)	Cirl bunting ¹	Great tit ²	Linnet ¹	Woodlark ³					
Length of tood item	\$75	0.472	0.151	1	0.422					
	>5-10	0.137	0.414		0.142					
$\mathbf{i}$	>10-15	0.024	0.050		0.035					
	>15-20	0.178	0.223		0.227					

### Table CP 10.1.1.2/03-2 Diet composition values in vineyards



	>20	0.188	0.162		0.174
¹ Based on 17 faeces and 3 flus	hing samples				0.174
² Based on 16 faeces and 4 flus				<u>^</u>	
³ Based on 20 faeces samples				Č,	
*Summarised values for all ins	sect taxa			O ^v	
			A A		) [*] . § [*] . §
III. Conclusion		Ú,	a start	L. T	S S
Overall this study prova assessments for birds for		rameters of P	Γ and PD fo	or use my hig	after tier risk
assessments for birds for	aging in vineyards.	A CY			\$ 6 [°] , [®] \$
Assessment and conclu	usion by applicant:		y . 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
This ecological monito	ring study was conducted	ad to GI D. Wh	A strudy is the	erefette cons	Marad to be
acceptable for regulate	bry purposes by suppor	ting various a	spects of the	e Bird & M	lammal risk°
assessment.				\$ 7	
The results of this study	have been used as part o	f the refined ris	sk assessment	of the small	granizorous
bird "finch" scenario, s	pecifically to support the	e use of a cefine	ed 90 th percer	tile PT volu	e of 0.97 for
the linnet and to suppo	ort the use of a dret for	The linnet of	97.3% weed	seeds and 2	.7% ground
invertebrates.		A S	$\sqrt{2}$		$\sim$
	ly have also been used				
	scenario, specifically to				
	ercentile Of value of 1.	and to suppor	t the use of a	diet for the	woodlark of
92.1% ground arthropo	ds and 1.9% weed seeds.		<u> </u>		
				Ç¥	
Data Point:	$\frac{0}{1} \times \frac{1}{2} \times \frac{1}$				
Report Author	KCF*10.1.3C,2/19				
Report Year	2015				
Report Title:	Generic field study (GLI		oraging strata	of linnets in v	inevards in
	Germany		Service Street		
Report No:	\$24069 S	," & A	<i>v</i>		
Document No:	<u>M-516/02-04-1</u>	<u>}</u>			
Guideline(s) followed in study:	not applicable	Ô ^y ở			
Deviations from current	Prone Q. Q.	× ò			<u> </u>
test guidetine:		<u> </u>			
Previous evaluation:	No, not previously Subm	niðtæd 🗌			
GL/R/Officially	Yes, conducte@under	/ LP/Officially rec	cognised testin	g facilities	
recognised testing			ognised testin	5 100111105	
facilities:					
Acceptability Reliability:	See a				
Executive Summary C					

The fotaging trata (i.e. on the ground (in vegetation or on bare soil), in the foliage or on upstanding herbaceous perennials) of the linnet (*Carduelis cannabina*) was investigated in two wine-growing regions of South-western Germany. Linnets were observed during two different periods, from mid-April until the beginning of May and the beginning of June until mid-July. For evaluations regarding foraging behaviour, observations were divided into two study periods according to BBCH stages (BBCH 13-19 and BBCH  $\geq$ 53). During each observation BBCH growth stage, ground vegetation, main plant species of ground vegetation and average ground vegetation height were also recorded.



The preferred foraging stratum of linnets in vineyards was the ground vegetation, followed by bare ground and the top of the ground vegetation. Linnets were never observed to use the vine canopy for foraging. Vineyard characteristics (*i.e.* management strategy and ground vegetation height) seemed to have an impact on the linnets' choice of foraging vineyards, with linnets preferring high ground vegetation followed by those with cut vegetation. The mean ground vegetation height preferred by linnets was 20 cm.

#### Study area

The study was conducted in vineyards in two wine-growing regions in South-western Germany (three study areas in a study areas in the study areas in the study areas in the study area of 1m flence, fallow and within the study area was excluded, even though fallow land is highly attractive for foraging limites. In total, an area of about 275 ha was searched for linnets.

#### I. Methods

The field phase of the study was carried out in two different time periods, from mid-April until beginning of May 2014 and beginning of June until mid-July 2014.

#### Linnet observations

Foraging behaviour observations were divided into two study periods according to BBCH stages (Period 1: BBCH 13-19 and Period 2: BBCH ≥53). Observations of oraging linners were done during periods when linnets are normally active and only during suitable weather conditions.

Most linnets were searched for by slowby walking through the study area and actively looking for individuals by using acoustic and visual signals to locate them in the area and then by following them to their foraging spot. Sometimes (when possible dinnets were searched for near known linnet nests. These methods of searching for linnets were independent of foraging strata, and it can therefore be assumed that the data collection (re. how linnets were searched for) had no influence on the probability of detecting and locating birds in specific strata. Once linnets were found they were observed using a pair of binoculars and of eye sight.

During each study period, about 400 data points were collected in each study region. A data point was defined as a single observation of one foraging individual. Each single observation started when an individual was observed foraging or potentially foraging and pook a maximum of about 5 minutes (depending on the time the bird could be followed). When linners were found foraging in flocks or pairs, then, a second and a third and secon the individual of the flock was observed until either all individuals of the flock were observed once or until the observer could not distinguish between observed and non-observed birds any more. Then, the observer searched for a different flock/pair/individual in the same study area. However, because of the high mobility of linnets it cannot be excluded that individuals in the new flock had been previously observed.

For each data point the following parameters were recorded (partly directly and partly after the observation at the spot the linnet was observed): vineyard ID, time start and end of observation, GPS coordinates of the bird's foraging location, strata of the bird foraging and potentially foraging in and estimated time spent foraging and potentially foraging in each stratum (*i.e.* on bare ground, in ground vegetation, or top of the ground cover (in 10% steps in the 1 m radius around the bird), height of ground vegetation (in 10m radius around the bird), where possible the plant species linnets were feeding on, estimated percentage of seed bearing herbs, ground vegetation of the vineyard (*e.g.* high, cut, bare soil; plus a note if different between several rows), ground vegetation height in the vineyard, and BBCH growth stage.

Data was analysed using Microsoft® Excel 2010.



#### II. **Results and Discussion**

For the first study period the mean daily temperature ranged between 7.4°C and 18.8°C with a mean of 12.9°C. On 12 out of 20 days rainfall was registered with a total of 55.6mm. Over this period the precipitation ranged from 0.0 mm to 21.0 mm.

For the second study period, the mean daily temperature ranged between 13.2° and 26.4°C with a mean of 19.3°C. On 16 out of 45 days rainfall was registered with a total of 9557mm. Over this period theon precipitation raged from 0.0 mm to 15.0 mm.

#### Foraging data

In total 399 foraging-events were observed. These included several events where to raging was radio ded in more than one stratum. Overall, most foraging togt place in the ground regetation (59/74%), followed by foraging events on the bare ground (21.68%) and on top of the vegetation (18.58%). Foraging in the vine canopy was never observed. This pattern was similar in both study regions with ground vegetation being the preferred stratum.

Table CP 10.1.1.2/19-1	Number of f	oraging eve	nts per stratum		oʻ 🔬 🚬	× K
	On the g	round &	In the ground	<u> </u>	On top of the	e ground
Region	Number of foraging events	for aging events	Number of for aging events	% foraging	Number of Foraging events	% foraging events
Bergstraße/Odenwald	<i>\$</i> \$86 O	25.83	153	45,95	× _94	28.23
Pfälzer Wald	33	¢15.28	Q475 0	≪ 81.02	8	3.70
Total	119	21.68	\$ ⁷ 32\$	59.04	^{الب} ري 102	18.58

During 165 foraging events one or more food plants were identified. In rotal, 14 different genera or species could be distinguished. Among those dandelion (40% Staraxacum officinale) and amaranth (32%, Amaranthus spec.) were the most used food plants. Mosolikely due to differences in availability, amaranth was the preferred food plant the region, while in the region dandelion was chosen thost of the times.

Table CP 10.1.1.2/19-2	Food plants of for aging h	anets a s		
Common name	Species A	Both study regions	• • • •	
Amaranth	Amaranthus spec.	31.98 (55)	50.47 (54)	1.54 (1)
Cockspur grass	DEchinochloa crus-ga	2.33 (4)	3.74 (4)	0.00 (0)
Common fumitory	Amaria officinatis	0.58 (1)	0.93 (1)	0.00 (0)
Corn salad	SValarjanelkOpec.	5.23 (9)	8.41 (9)	0.00 (0)
Daisy S	Bellis perennis	0.58 (1)	0.93 (1)	0.00 (0)
Dandelion	Haraxacum officinale	40.12 (69)	17.76 (19)	76.92 (50)
Dock of	Rumex spec.	0.58 (1)	0.00 (0)	1.54 (1)
Foxtation bristle grass	Setaria spec.	5.81 (10)	9.35 (10)	0.00 (0)
Grass spec.	Poales spec.	5.23 (9)	0.00 (0)	13.85 (9)



Species	Both study regions		
Cardamine hirsuta	1.16 (2)	1.87 🗭	0.00 (0)
Berteroa incana	1.74 (3)	0,00 (0)	Q4.62 g
Sonchus spec.	0.55 (1)	Ø.93 (1)	
Vicia spec.	<b>1</b> ,74 (3)	0 ⁹ 1.87 (2)	jP.54 (kg, 0)
Lactuca virosa	2.33 (4)	\$ 3,74 (4)	ی (0.00 ⁽⁰⁾ رو
	Cardamine hirsuta Berteroa incana Sonchus spec. Vicia spec.	SpeciesregionsCardamine hirsuta1.16 (2)Berteroa incana1.74 (3)Sonchus spec.0.5 (1)Vicia spec.74 (3)	Species         regions           Cardamine hirsuta         1.16 (2)           Berteroa incana         1.74 (3)           Sonchus spec.         0.55 (1)           Vicia spec.         1.87 (2)

#### Vegetation characteristics at foraging spot

The vegetation at the foraging spot (*i.e.* the Q m radius around the foraging brd) was characterised according to the percentage of ground cover, ground vegetation height and percentage of seed bearing herbs. The percentage of ground cover at foraging spots was very similar in both study regions and both study periods. Generally, it was around 69% with a range of Q-100%. Likewise, the ground vegetation height at foraging spots was very similar between study regions and periods with an average of 14 cm and a range of 0 - 50 cm. In contrast, the percentage of seed bearing mants was generally higher in the first study period, and even more in the **definition** region. This could have been due to differences in management practices and vegetation composition between the regions. The overall percentage of seed bearing plants at foraging spots was 43% with a range of 0 - 100%.

# Table CP 10.1.1.2/19-3 Vegetation characteristics at (praging spot (all foraging events)

		gion Total
Ground cover	Mear (SEM) 68,76 (2.18) 4. (8.28 (1.69)	68.52 (1.38)
	[©] Range 6 10-100 5 04100	0-100
Vegetation	Mean (SEM) (SEM) (Mean) (SEM) (Mean) (SEM) (Mean) (SEM) (Mean) (M	13.93 (0.44)
height (cm)	$\mathbb{R}$ ange $\mathbb{A}$ $\mathbb{A}$ $\mathbb{A}$ $\mathbb{A}$ $\mathbb{A}$ $\mathbb{A}$ $\mathbb{A}$ $0-40$	0-50
Seed plants	Mean (SEM)         34.15 (1.46)         51.57 (2.25)           Bange	42.79 (1.40)
(%) 	Bange & O-80. O O 0-100	0-100

32 (8%) of these 399 foraging events were exclusively on bare ground. These foraging events were excluded to calculate the vegetation characteristics for foraging events in the ground vegetation. This resulted in slightly higher ground cover (mean: 7%; range: 10 - 100%), vegetation height (mean: 15 cm; range: 5 - 50 cm) and percentage of seed hearing plants (mean: 45%; range: 0 - 100%).

# Table CP 10.1.1.2/19-4 Vegetation characteristics at foraging spot (excluding foraging events on bare ground)

		region	region	Total
Ground cover	Mean (SEM)	72.93 (2.11)	72.40 (1.44)	72.67 (1.28)
	Range	10-100	10-100	10-100
Vegetation	Mean (SEM)	16.74 (0.69)	12.27 (0.56)	14.51 (0.46)
height (cm)	Range	5-50	5-40	5-50



		region	region	Total 0
Seed plants	Mean (SEM)	35.35 (1.52)	53.77 (2.32)	44.54 (1.43)
(%)	Range	5-80	0-100	0-100

#### Vineyard characteristics

Linnets preferred vineyards with high ground vegetation 50%) followed by those with cut vegetation (20%). In both study regions the percentage of vineyards with high ground vegetation decreased from BBCH 13-19 to BBCH  $\geq$ 53 (Period 1 to 2). The mean ground vegetation height ovineyards preferred by linnets was quite uniform in both study regions and periods with an average of 20 cm.

The predominant management practices in neighbouring vineyards not chosen by foraging linnets were high or cut ground vegetation (36% or 33%) respectively. In the second study period alternating stripes of bare ground and cut vegetation were more dominant. In the second study period alternating both study periods the majority of vineyards had cut ground vegetation. The mean ground vegetation height was 16 cm. It was similar in both study regions but generally higher in period [19BCH 13-19].

## Table CP 10.1.1.2/19-5 Foraging vmeyards per management rategory (%)

Region	Bare Bare ground and ground and cut vegetation vegetation vegetation vegetation vegetation vegetation vegetation vegetation	High ground vegetation
region	5 12.80 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56	51.28
region	Ø4.76 ↔ 4.76 ↔ 28.57 ♀ O4.76 ♀ 9.52	47.62
Total	10,00 3,53 1,567 2,600 5.000	50.00

Table CP 10.1.1.2/19-6 Non-foraging vineyardsper management category (%)

Region	ground S cut	on vegotation	Cut ground vegetation	Cut ground vegetation and high ground vegetation	High ground vegetation
region		2.70	48.65	0.00	24.32
region	¥4.29	9.52	4.76	4.76	57.14
Total		5.17	32.76	1.72	36.21

Table CP 100.1.2/1977 Vineyard characteristics – ground vegetation height (cm) in foraging and nonforaging vineyards

C C	Foraging vineyards		Non-foraging vineyards	
Region	Mean (SEM) (cm)	Range (cm)	Mean (SEM) (cm)	Range (cm)



region	19.45 (1.31)	5.5-35.0	14.08 (1.71)	0.00-35.0
region	19.88 (2.52)	2.5-45.0	19.05 (2.25)	2.5-42
Total	19.60 (1.21)	2.5-45.0	15.88 (1.38)	0.00-42.5

Foraging behaviour in relation to vineyard management strategies

Linnets preferred foraging in the ground vegetation independent of vineyard characteristics. Overall and in both study regions as well as study periods, the ground vegetation was the favoured stratum throughout the different management strategies. For vineyards known to be under bare ground management the most frequented foraging stratum was the bare ground.

#### III. Conclusion

The preferred foraging stratum of linnets in Theyard's was the ground regetation, followed by bare ground and the top of the ground vegetation. Lingers were never observed to use the vine earlopy for foraging. The preference for foraging in the ground vegetation persisted throughout the different vineyard management strategies. Vineyard characteristics (i.e. management strategy and ground vegetation height) seemed to have an impact on the linnets choice of foraging vineyards.

#### Assessment and conclusion by applicant:

This ecological monitoring study was conducted to GLP. The guidy is therefore considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Mammal risk assessment. Q

The results of this study are considered to support the findings of the previous study (M-291784-01-1) by demonstrating that the linnet obtains its dist predominantly from the ground vegetation.

Data Point: $\bigcirc$ $\checkmark$
Report Autoor:
Report Fran: 2008 - C
Report Title: Seneric field monitorings of birds in vine ards in Spain
Report No: X091291 X 0
Document No: $\sqrt[3]{M-40,943-0,21}$
Guideline(s) followed in No official test grideline(s) available at present
study: $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
study:     V     V     V     V       Deviations from current     None     V     V     V       test guid@me:     V     V     V     V
test guid dime:
Previous evaluation: No, not previously submitted
test guid@me: Previous evaluation: No, not previous k subm@ied
GLP/Officially GYes, conducted und GLP/Officially recognised testing facilities
recognised testing
Acceptability Reliability: Ses

## Executive Summary

In this generie study a radio-tracking program was carried out in a typical southern European vine growing region in Spain during spring and summer, to obtain data on PT and PD values for refined exposure assessment. Two wild bird species were monitored in this study, the serin (Serinus serinus) and the rested lark (*Galerida cristata*). These species were identified as critical focal species based on their frequency of occurrence and hence high potential for exposure to plant protection products in



municipal

vineyards. In this study, bird trapping, radio-tracking, visual observations and analysis of faecal content were conducted to characterise PT and PD/diet estimations in vineyards.  $Q_{\mu}^{\circ}$ 

The study provided reliable refined parameters of PT for both focal species, PD values for crested larks and dietary estimates for serins for use in higher tier risk assessments for birds foraging in vine ards in southern Europe.

#### Study area

The study was conducted in vineyards in the vicinity of

in the **second second** region in north-eastern Spain, a typical area for vine cultivation in southern Europe, ( The final extent of the study area, determined by the fome ranges of all the tracked birds, was 92.8 he

#### I. Methods

The Field Phase of this study was carried out during spring (March to July) 2009.

#### Bird trapping, marking and radio-tagging

The study aimed at tracking at least 20 individuals of each species. A total of 61 individual series and 30 crested larks were trapped with mist nets (polyester nets, 16-20 mm mesh wide, 9 m length, 2.5 m height) inside of vineyards (26 series and 22 crested larks were tagged to account for all birds not being successfully tracked afterwards. 20 individuals of each species were successfully tracked). All captured birds were marked with a metal ring in order to enable recognition of individuals during subsequent visual contacts. Colour rings were used to mark birds selected to carry a telemetry transmitter. Transmitters were mounted on their backs and did not sceed 5% of the bird's body weight. Radio-transmitters had a range of 0.8 to 3 km (for series) and 2 to 6 km (for crested larks) in open habitat with no obstacles and had an operational lifespan of 9 days for sorin tags and 35 days for crested lark tags.

Birds were not tracked for at least 24 hours following trapping and tagging. Individual birds were tracked continuously over an entire activity period (from dawn till disk). The proportion of time potentially foraging in vine ards (compared to the total potential foraging time in all habitats) was estimated by means of data obtained by radio-tracking and visual observation. These values were regarded as conservative equivalents to the proportion of diet obtained from the treated area (PT).

Individual PT was calculated as

Time potentially foraging in vineyards Time potentially foraging of all known habitats

#### Faeces sampling

To estimate the proportion of different food types in the diet (PD), 18 faeces samples of crested larks and 20 faeces samples of sering were sampled and analysed. For the crested lark correction factors determined by Green (1978) for the related civilar (*Alauda arvensis*) were applied to take into account losses during the digestion process. For the serin no correction factors are available. Therefore, weightlength and weight-area relationships based on reference data for all food categories (*i.e.* invertebrates, seeds and green plant material), collected during the study, were used to calculate the proportion of dry weight of each food categor for the serin.

## Additional Observations

The whole study area was mapped for habitat types and crops and the vegetation status of the vineyards in the study area was determined by changes of BBCH principle growth stages during the study period. The temperature (daily minimum, maximum and average) and daily precipitation data were obtained from the pearest weather recording station.



#### II. Results and Discussion

The temperature during the study period ranged between 1.6 and 35.8°C. The mean daily temperature was 18.6°C. Precipitation ranged from 1.3 to 31.8 mm, with 30 rainy days in total.

#### PT values

The combination of radio-tracking with visual observations and the trapping scheme as presented here (*i.e.* trapping inside of vineyards), allowed an accurate and representative assessment of potential foraging times in given home ranges in order to calculate reliable PT values. All birds were closely associated with vineyards and had the opportunity to use these as foraging habitat. Therefore the results can be considered as conservative in terms of potential dietary exposure. PT values were calculated for individual birds and as overall PT values (*i.e.* 50% tile, 90% tile, and mean) for both bird species. Based on the study results, the mean PT values calculated for the series and the rested lark were 0.42 (90% tile = 0.73) and 0.52 (90% tile = 0.84), respectively.

#### Table CP 10.1.1.2/20-1 Overview of PT in vineyards

D (* 61* / 1 / *	ned in vineyards, determined by radio-thacking (PT)
Proportion of diet obtain	
'potential foraging' time proportion of diet obtain	e in vineyards as a proportion of the total potential for aging' the equals the
Serin ¹	50% the $g$
	90% tile ~ 0° ~ 0° ~ 0° ~ 0° ~ 0° ~ 0° ~ 0° ~ 0
	$Mean \overset{(k)}{\longrightarrow} \overset{(k)}{\longrightarrow}$
Crested lark ¹	50% tile 50%
	90% tile 0.84
	$\int Mean = 0.52$
Based on 20 individuals in a	tracking sessions

Diet estimate and Provalues

The analysis of the serie faeces followed the most evolved methodology for the granivorous diet guild, which is biomass dry weight determination by means of comparison with a reference data base. The dry weight proportions of the different food categories (*e.g.* invertebrates, seeds, green plant material, dry wood / bark) in the faeces samples are presented below.

## Table CP 10.1.2.2/20-2 Diet composition of the secon

Based on 29 faeces samples analysed for their dry weight proportions (% dry weight) of different food			
categories			
Food category	گ مرتقب کر گر	90% tile	mean
Invertebrates	´ ک ⁰ 0.00	18.92	11.76
Seeds A A	99.03	100.00	87.91
Green plant material (sten	0.00	0.00	0.10
Dry wood/bark	0.00	0.00	0.23

The crested fark faces analysis followed the most evolved methodology for larks. The fragment area of the different food categories (*e.g.* invertebrates, seeds, green plant material) in the faces was used to determine the composition of diet actually ingested. For this correction factors according to Green (1978) were applied to the total fragment area of categories in the samples in order to derive the proportion each category contributed to the actual ingested diet (PD). The PD values for the different food categories of the diet of crested larks are presented below.



Based on 18 faeces samples analysed for their area proportions of different food categories and subsequent use of correction factors according to Green (1978)			
Food category	50% tile	90% tile 🖉	mean 5
Invertebrates	0.62	0.96	0.60
Seeds	0.30	0.53	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Green plant material (dicots)	0.03	Ø25	
Green plant material (monocots)	0.00	2 ⁰ 0.00	Q<0.010 ⁴
	A		á <del>C</del>

#### III. Conclusion

Overall this study provides reliable refined parameters of PT for both focal species. (D) values for crested larks and dietary estimates for serins for use in higher ther risk assessments for birds foraging in vineyards in southern Europe.

#### Assessment and conclusion by applicant:

This ecological monitoring study was conducted to GLP. The study is therefore considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Manimal risk assessment.

The results of this study are considered to be valid but have not pecifically been relied upon for the refined avian risk assessments for the proposed uses of Spiroxamine PC 500 in grapes.

Data Point:	
Data Point:	KCP,107.1.229
	KCP,107.1.229
Report Year:	
Report Title:	Msectizorous mammats and bights in orchards and vineyards, a literature survey
Report No.	Lit. 8206 7 0 0
Document No:	<u>M 35688 491-1</u>
Guideline(s) followed in	
study:	
Deviations from corrent	Nones to the first of the first
test guideline:	
Previous evaluation: O	And not previously submitted a
GLP/Officially	No, no conducted under GLP Officially recognised testing facilities
recognised testing	Thes of U T
facilitie	
Acceptability/Reliability:	Ales of O joint
×	

#### Executive Summary

A literature survey has been conducted on the diet and the foraging behaviour of relevant insectivorous mammals and birds inhabiting European vineyards and orchards.

Wood mouse and common show have been identified as relevant insectivorous mammal species in orchards and oneyards. Insectivorous bird species predominating in orchards were chaffinch and great tit, while blockbird and y flowhammer prevail in vineyards.

The proportion of animal matter part in the diet of the wood mouse depends on the availability of seeds in respective habitat. In habitats with sufficient seeds the amount of animal matter in the diet of the wood mouse ranges between 10% and 20%. The diet basically consisted of a endogeic prey such as lumbricids and epigeic prey such as various taxa of arthropods. The animal matter proportion in the diet of the wood



mouse varies according to season. In central and northern Europe animal matter prevails in spring and early summer while in southern Europe during winter. The mean body weight of wood mice is about 20 g. The daily dietary demand wood mice is estimated to 5 g animal matter. The foraging time of food mice is largely nocturnal. The species predominantly forages on the ground. The daily distances govered can be up to more than 1.5 km.

The diet of common Sorex araneaus and Millet's shrew Sorex coronatus predominantly consists of animal matter throughout the year. The proportion of endogeic prey amounts to about 30%. The mean %body weight of common shrews ranges between 8.0 and 30 g. The daily dietary demand of common shrews is estimated to be about 90% to 100% of its body weight during summer, 150% when lactating and 80% of its body weight during winter. The foraging time of common shrews is both diurpar and nocturnal with a greater activity during darkness. The species predominantly for ages above and below the ground surface and is able to locate prey up to acoil depth of 12 cm. The diameter of the home range varied between 25m and 60m.

The diet of adult great tit largely consists of arthroped's from spring to summer Prespective of habitat the nestlings diet is predominantly composed of lepidop@ran lagae and spiders. The body@weight of adult great tits averages at 20 g. The daily energy consumption of adults during breeding season is about 95 kJ. The daily food intake of nestling@varied>between 30% and 40% of the body weight. The pecies is diurnal. The foraging distance is mostly less than 45 for from the nest. For ging for modern apple orchards is about 48% of total foraging. Ground foraging predominates from autump to spring while it decreases in the summer months. From March to August on the average 31 of for aging takes place on the ground.

During the breeding season the blackbird feeds postly on arthropods and earthworps. The proportion of animal matter in the diet of blackbirds has a peak in spring (60% to 90%) and decreases towards winter (7% - 40%). The diet of nestlings of blackbirds consists of endogeic invertebrates such as earthworms, isopods and mypapods and epigeic invertebrates. The proportion of endogeic prey varies between less than 10% to more than 80%, depending on availability. The average body weight of blackbirds in Central Europe is about 95 g. The daily food intake is estimated to be 35 g fresh weight. The blackbirds activity pattern is diutnal. The foraging territory panges between 0.18 ha and 0.34 ha. Blackbirds for age almost exclusively on the ground.

The chaffinch is considered to be omnisorous with a shift of being more carnivorous during the breeding season and consuming more vegetational food outside the breeding season. Between March and August appr. half to two thirds of the species die consists of animal matter. From March to July the species forages 53% (10% 76%) in tree gleaning folinge whole is forages 27% (0% - 100%) of its time on the ground in the same period of time. The mean foraging distance during the breeding season is 100 m or less. The body@weight@f adult chaffinches @verage@at about 20 g. Over the year the basal metabolic rate of caged chaffinches was 322-416 kJ per day. The maximum daily intake was 7 g fresh weight (138kJ).

The yellow hammer is considered to be a characteristic bird species of vineyards. While the diet of the adults consists of seed and animal matter the discoof the nestlings is composed almost exclusively of epigete invertebrates with dipterantand left dopter an larvae prevailing. The average body weight of adult yellowhammers is 28 g. The yellowhammer Gorages almost exclusively on the ground. The average foraging distance is mostly below 250 m from the nest.

## Materials and Methods & I.

#### Study Design

After spray applications of crop protection products mammal and birds may be exposed to residues by ingestion of contaminated food. Hence a risk assessment of crop protection products on mammals and birds requires thorough knowledge of those species inhabiting a certain crop, their foraging behaviour and the composition of their diet. The diet of the majority of small birds and mammals is known to consist at least partially of animal matter, *i.e.* invertebrates.



The arthropod residues used in the Guidance Document on Risk Assessment for Birds and Mammals Under Council Directive 91/414/EEC (Sanco 4145/2000, rev. 6, 25.09.02) are based on residues found on seeds or pods, which were proposed as surrogate values for arthropods by Kenaga in 1973.

Thus, especially the residue level for small insects represents a default value in order to cover the worst case. The Guidance Document sates that "the residue estimate for small insects appears unsatisfactory, and as soon as better information becomes available this surrogate should be replaced. Research is highly desirable to develop more robust data for residues in insects, also with regard to the temporal pattern." Currently a large part of the PPP's submitted for registration in the EU fail the existing risk assessment based on default values, requiring a depth refinement based on generic data and / or expensive and long-term compound specific studies.

In order to assess the risk of insectivorous mammals and birds feeding in orchards and vineyards genetic monitoring studies have been conducted in Central and southern Europe (1990), 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 200

monitoring studies a list of relevant species has been emerged for bords and manipulas in central European vineyards (2002, 2002, et al. 2003a, 2002, al. 2003b). Orchard monitoring studies on birds revealed lists of relevant bird species in central (2003, 2003), and southern Europe

In order to assess the risk of crop protection products for insectivorons mammals and birds a literature survey has been conducted on the dietary composition and the foraging behaviour of relevant insectivorous mammal and bird species foraging in vineyards and orchards.

The literature survey was organized in several steps:

- 1. Literature search through electronic that bases cited below and confection of additional citations from the reference dists of scientific articles which were already in our archive.
- 2. Screening of the articles for relevant data
- 3. Compilation of report

A number of electronic data bases were used to conduct the literature search. These included: ZOOLOGICAL RECORDS®, AGRIS®, SCIRUS®, BIOSIS®, AGRICOLA®. Additional citations were collected from the reference lists of scientific articles which were already archived.

The articles were screened to prelevant data on the Qiet and foraging behaviour on the species identified relevant for orchards and vineyards.

#### II. Results and Discussion

## Insectivorous mammals of vineyards and orchards

A survey on the small mammal bruna in three aneyards in south-western Germany was conducted from April to August 2002 by live rapping (2002, 2002, 2003). Two species, wood mouse *Apodemus sylvaticus* and common vole *Microtus arvalis*, were observed in small numbers in vineyards characterized by a grassy understorey. To populations were recorded in vineyards devoid of a green ground cover. The existence of a green understorey proved to be the determining factor for the occurrence of small mammals in yneyards in south-western Germany. No exclusively insectivorous species such as shrews were caught. Based on the results of this study the wood mouse was the only non-volatile mammal species which occurs in vineyards and regularly feeds at least partially on animal matter.

Componly too major types of orchards can be distinguished. Traditional orchards are characterized by large trees and a rich vegetation on the ground. From a vegetation structural point they resemble open woodland and hence characteristic woodland species such as the yellow-necked mouse *Apodemus flavicottis* are to be expected. The majority of orchards in contemporary agriculture are modern orchards which are characterized by dense rows of small trees approximately 2 m high. Normally there is no understorey at the base of the trees while grassy strips prevail between the tree rows. No mammalian



Ő^s

monitoring data has been available from modern orchards but their vegetation structure is expected to be more similar to vineyards than to traditional orchards. Hence the mammalian fauna is expected to more resemble the vineyard fauna than a woodland fauna. The wood mouse was chosen as characteristic species.

Figure CP 10.1.1.2/21-1 Schematical depiction of modern orchard or vineyards

Additionally the common shrew Sores Granens and its western European sibling species Millet's shrew Sorex coronatus were included to represent exclusively insectivorous small mammas. In the British Isles common shrews are found amost every where provider some vegetation cover is available (

1991) and in Central Europe the common Threwas most abundant in thick grass, bushy scrub 2000) In an analysis on the habitat of small mammals in Badenand deciduous woodland ( Württemberg, Germany, the compon shew proved to be the characteristic shrew species inhabiting arable land ( et al. 2003), Sorex araneus is one of the best studied European shrew species and a wealth of data has been collected from various parts of its range. In western Europe, i.e. France and Spain, the species in replaced by Willet Shrew Sorex coronatus which was discovered as a sibling species of Sorex argneus in 1964. Sorex coronatus has about the same ecological niche as Sorex araneus (Castien & Gosathez 1995). Sorex coronatus is apparently expanding its range to the detriment of the more coldadapted Sorex arapeus in Grecent times. This seems to be linked to climatic change (Andera 1999).

## Wood mouse (Apodemus sylvaticus, Muridae, Rodentia)

The wood mouse relies on concentrated food items such as animal matter or seeds beside less nutritious foliage matter. In seed rich habitats the bulk of the wood mouse diet is made up of seeds. In habitats characterized by allow sold availably the diet of the mood nouse is characterized by an increased amount of animal matter. The seed availability in modern orchards and vineyards is expected to be reduced compared to natural habitats such as deciduous foresto or grasslands. An increased amount of animal matter of at least 50% of the diet can be assumed for wood mice inhabiting vineyards and orchards. The animal det basically consisted of an endoger prexisuch as lumbricids and epigeic prey such as various taxa of arthropods. The animal matter proportion in the diet of the wood mouse shows varies according to season. In central and porthern Europe animal matter prevails in spring and early summer while in southern Europe during winter. The mean body weight of wood mice is about 20 g. The daily dietary demand wood mice is estimated to 5 g animal matter. The foraging time of wood mice is largely nocturnal. The species predominantly forages on the ground. The daily distances covered can be up to more than 1.5 km

## Common shrew Sorex arareus and Millet's shrew Sorex coronatus

The diet of common and Millet's shrew predominantly consists of animal matter throughout the year. The proportion of endogeic prey amounts to about 30%. The mean body weight of common shrews ranges between 8.0 and 9.0 g. The daily dietary demand of common shrews is estimated to be about 90% to 100% of its body weight during summer, 150% when lactating and 80% of its body weight during winter. The foraging time of common shrews is both diurnal and nocturnal with a greater activity



during darkness. The species predominantly forages above and below the ground surface and is able to locate prey up to a soil depth of 12 cm. The diameter of the home range varied between 25m and 60m.

#### Insectivorous birds of orchards and vineyards

Commonly two major types of orchards can be distinguished. Traditional orchards are characterized by large trees and a rich vegetation on the ground (**1997**). From a vegetation structural point they resemble open woodland or parkland and they are characterized by a great diversity of birds. The bird fauna of traditional orchards has been documented by various authors and concern has been expressed about the impoverishment of the bird fauna when traditional orchards are converted to modern orchards (**1985**, **1985**, **1975**, **1975**, **1983**).

A survey on the birds inhabiting vineyards in southwestern Germany has been conducted (2002, et al. 2003). Among the birds typically foraging within vineyards the linnet, the yellowhatomer and the blackbird were those species identified as characteristic, *i.e.* they are encountered regularly feeding in the vineyards. The linnets diet predominantly consists of seeds (2002, 1989), thus the yellowhammer was chosen as representative insectivorous birds species foraging in vineyards.

Chaffinch and great tit were the most common insectivorous biods inhabiting modern orchards in Switzerland (1983).

Table CP 10.1.1.2/21-1 Stead ness of relevant bird pecies observed in orchards and vineyards

Species	Orchards
Blackbird	$\Lambda \Lambda \Delta \Delta $
Chaffinch	
Great tit	VXX & O O O O O O
Yellownammer	

XXX: highest steadiness XX: high steadiness Xolow steadiness -: not encountered

#### Great tit (Parus major, Paridae), C

The diet of adult great tit argely consists of arthropoly from spring to summer. Irrespective of habitat the nestlings diet is predominably composed of lepidopteran larvae and spiders. The body weight of adult great tits averages at 20 g. The daily energy consumption of adults during breeding season is about 95 kJ. The daily food intake of nestings caried between 30% and 40% of the body weight. The species is durnal. The foraging distance is mostly less than 45 m from the nest. Foraging in modern apple orchards is about 48% of total foraging. Ground foraging predominates from autumn to spring while it decreases in the summer months. From March to August on the average 31% of foraging takes place on the ground

## Blackbird (Turdus merula, Turdidae)

During the breeding season the blackbird feeds mostly on arthropods and earthworms. The proportion of animal matter in the diet of blackbirds has a peak in spring (60% to 90%) and decreases towards winter ( $\frac{7}{60}$  - 40%). The diet of nestlings of blackbirds consists of endogeic invertebrates such as earthworms, isopods and myriapods and epigeic invertebrates. The proportion of endogeic prey varies between less than 10% to more than 80%, depending on availability. The average body weight of blackbirds in Central Europe is about 95 g. The daily food intake is estimated to be 35 g fresh weight.



The blackbirds activity pattern is diurnal. The foraging territory ranges between 0.18 ha and 0.34 ha. Blackbirds forage almost exclusively on the ground.

#### Chaffinch (Fringilla coelebs, Fringillidae)

The chaffinch is considered to be omnivorous with a shift of being more carnivorous during the breeding season and consuming more vegetational food outside the breeding season. Between March and August appr. half to two thirds of the species diet consists of animal matter. From March to Juby the species forages 53% (10% - 76%) in trees gleaning foliage while is forages 27% (0% - 100%) of its time on the ground in the same period of time. The mean foraging distance during the breeding season is 100 more less. The body weight of adult chaffinches averages at about 20 g. Over the year the basal metabolic fate of caged chaffinches was 32.2-41.6 kJ per day. The maximum daily intake was 7 goresh weight (D38kJ)

#### Yellowhammer (Emberiza citrinella, Emberizidae)

The yellowhammer is considered to be a characteristic Bird species of vineyards. While the diet of the adults consists of seed and animal matter the diet of the nestlings is composed almost exclusively of epigeic invertebrates with dipteran and lepidopteran larvae prevailing. The average body weight of adult yellowhammers is 28 g. The yellowhammer for ages almost exclusively on the ground. The average for aging distance is mostly below 250 m from the nest.

III. Conclusion

The proportion of animal matter parts in the diet of the wood mouse depend on the availability of seeds in respective habitat. In habitats with sufficient seeds the amount of animal matter in the diet of the wood mouse ranges between 10% and 20%. The the basically consisted of a endogeic prey such as lumbricids and epigeic prey such as various taxa of authropols. The animal matter proportion in the diet of the wood mouse shows varies according to season. In central and northern Europe animal matter prevails in spring and early summer while in southern Europe ouring onner. The mean body weight of wood mice is about 20 g. The daily dietary demand of wood mice is estimated to 5 g animal matter. The foraging time of wood mice is largely northrnal. The species predominantly forages on the ground. The daily distances covered can be up to more than 1.5 km.

The diet of common Sorex araneads and Millet's shrew Sore cormatus predominantly consists of animal matter throughout the year. The proportion of endogeic prey amounts to about 30%. The mean body weight of common shrews ranges between 8.0 and 9.0 g. The daily dietary demand of common shrews is estimated to be about 90% to 100% of its body weight during summer, 150% when lactating and 80% of its body weight during winter. The foraging time of common shrews is both diurnal and nocturnal with a greater activity during darkness. The species predominantly forages above and below the ground surface and 9 able b locate previop to a soil depth of 12 cm. The diameter of the home range varied between 25m and 60m.

The diet of adult great tit large b consists of arthroports from spring to summer. Irrespective of habitat the nestlings diet is predominantly composed of fepidopteran larvae and spiders. The body weight of adult great tits averages at 20 g. The daily energy consumption of adults during breeding season is about 95 kJ. The daily food intake of restlings varied between 30% and 40% of the body weight. The species is diurnal. The foraging distance is mostly less than 45 m from the nest. Foraging in modern apple orchards is about 48% of total foraging. Ground foraging predominates from autumn to spring while it decreases in the summer months. From March to August on the average 31% of foraging takes place on the ground.

During the breeding season the blackbird feeds mostly on arthropods and earthworms. The proportion of antinal matter in the diet of blackbirds has a peak in spring (60% to 90%) and decreases towards winter (7% - 40%). The diet of nestlings of blackbirds consists of endogeic invertebrates such as earthworms, isopods and myriapods and epigeic invertebrates. The proportion of endogeic prey varies between less than 10% to more than 80%, depending on availability. The average body weight of blackbirds in Central Europe is about 95 g. The daily food intake is estimated to be 35 g fresh weight.



The blackbirds activity pattern is diurnal. The foraging territory ranges between 0.18 ha and 0.34 ha. Blackbirds forage almost exclusively on the ground.

The chaffinch is considered to be omnivorous with a shift of being more carnivorous during the breeding season and consuming more vegetational food outside the breeding season. Between March and August appr. half to two thirds of the species diet consists of animal matter. From March to July the species forages 53% (10% - 76%) in trees gleaning foliage while is forages 27% (0% - 100%) of its time of the ground in the same period of time. The mean foraging distance during the breeding season is 100 m or less. The body weight of adult chaffinches averages at about 20 g. Over the year the basal metabolic rate of caged chaffinches was 32.2-41.6 kJ per day. The maximum daily intake was 7 g fresh weight (138kJ).

The yellowhammer is considered to be a characteristic bird species of vineyards. While the die of the adults consists of seed and animal matter the diet of the nestlings is composed almost exclusively of epigeic invertebrates with dipteran and lepidopteran larvae prevailing. The average body weight of adult yellowhammers is 28 g. The yellowhammer forages almost exclusively of the ground. The average foraging distance is mostly below 250 m from the nest.

#### Assessment and conclusion by applicant

This literature survey was conducted on order to provide supporting information for use in the Bird & Mammal risk assessment.

The results of this study are considered to be valid but have not specifically been relied upon for the refined avian risk assessments for the proposed uses of Spiroxample EC 500 in grapes.

#### **Residues studies**

The following residues data are available and considered relevant to the proposed use of Spiroxamine EC 500 in grapes.

Data Point:	KCP 10, 1.1.2/04
Report Author:	
Report Vear:	1998
Report Title:	KWG 4768: An evaluation of residues in environmental matrices after application
Report Title:	to Caldornia vineyards
Report No:	108068 2 2 2 2
Document No	<u>MC090880-01-1</u> 0 0
Guideline(ş) followed in	S EPA Pesticule Assessmen Guideline, Subdivision 71-5, US EPA Draft
study:	OPP \$\$ 850 2500 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	None State
test guideline:	
Previous evaluation:	yes, evoluated and accepted
	RAR(2010)
GLP/Officially	RAR (2010)     Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities: 🖉 🔬 🍈	ř _k v
Acceptability/Repability	Yes

#### Executive Summary

Residues of KWG 4168 were measured in or on potential avian food items including grapes, grape leaves, invertebrates and weed heads associated with vineyards in the cF4 s3x:7? wät?/0 of California. The study focused on measuring residues of spiroxamine immediately following a single application of 400 g a.s./ha and up to 28 days later.



Mean residues detected in grape foliage decreased over the study period from 43.4 µg a.s./g spiroxamine equivalents following application to 9.43 µg a.s./g spiroxamine equivalents (SD=1.31) twenty-eight days later. The half-life was calculated at 14.21 days. Residues in weed heads collected from the vineyards were slightly more than half as high as levels detected in grape foliage (26.9 µg a.s./g@ spiroxamine equivalents following application, decreasing to 11.6 µg a.s./g spiroxamine equivalents four days later) Residues appeared to dissipate more rapidly in weed heads as compared to grape foldage.

Residues detected in grapes and invertebrates were low, with a mean of  $0.857 \ \mu g a.s./0 \ spirovamine?$ equivalents in grapes and 0.689 µg a.s./g spiroxamine equivalents in invertebrates following apprication. Mean levels decreased to 0.529 µg a.s./g spiroxamine equivalents in grapes and 0.470 µg a.s./g spiroxamine equivalents in invertebrates four days later. Levels detected in invertebrates should be handled with caution since the high coefficient of variation of 84 25 indicates inconsistency among the samples. samples.

I. Materials **Test Material** KWG 4168 300 Lot/Batch #: **Purity:** conditions **Description:** Liquid Stability of test Stoble under compound: **Reanalysis/Expiry** Apr@1 date: stated **Density:** Treatments ngle application of 400 g a.s./ha Test rates carrier (200 gallons/acre) Water was used âs ă Solvent/vehicle gaschromarografty with mass selective detection Analysis of tes concentration Test design ineyard in Fresno Sounty Ealifornia (3 plots approximately 0.1 acre Test area: each, with 4 stations per plot. Each plot contained 20 pitfall traps) ~0 imposited for analysis from 4 stations on each plot on **Replication:** Qach samplu Duration of test: Environmental te conditions During application: 29.9 to 31.7 Maximum: 27 to 39 Minimum: 13 to 23 humidity During application: 47 to 51% 6.1 to 8.4 (soil pH) **Photoperiod:** Not stated



#### II. Study Design

The objective of this study was to measure residues of the test substance in or on potential avian food items including grapes, grape leaves, invertebrates and weed heads associated with vineyards in the San Joaquin Valley of California. The study focused on measuring residues of spiroxamine impediately following a single application and up to 28 days later. The applications were made to three plots of commercial grape vineyards approximately 0.1 acre in size. Single applications were made on June 17, 1997 to each test plot at the maximum use rate of approximately 400 g a.s./ha The equipment calibration was confirmed and the application was monitored.

A total of 156 samples were collected for residue analysis including 84 grape foliage samples and 24 samples each of grapes, invertebrates and weed head samples from each matrix were composited from the four stations on each plot for each sampling day. A total of 39 composited samples were analysed using GC-MSD.

Samples of grape foliage were collected prior to application, immediately following the application and on days 4, 7, 14, 21 and 28 following the application. Samples were composited from each of the plots on each sampling day resulting in a total of 21 grape foliage samples being analysed. Samples of grapes, invertebrates and weed heads (including the seed head, stem or stalk) were collected immediately following application and on day 4 after application. Samples were composited for analysis from four stations on each plot on each sampling day. Twenty pitfall traps at each residue station were used to capture ground dwelling invertebrates while sweep nets were used to capture insects that were in the vineyard vegetation or flying. Sweep netting was conducted for approximatel 10 minutes at each residue station using mesh nets and sweeping over the vineyard vegetation.

Observations of wildlife within the study area were made. Sixty-one observations of birds of 20 species were documented during wildlife observations in test vineyards. A total of 126 birds were recorded in the vineyards and adjacent habitat during the course of the study

Weather information was obtained from the National Greanic and Atmospheric Administration station located in Fresno, California for the duration of the study period.

#### Analytical method

Samples of grapes, grape foliage, weet heads and novertebrates were analysed using the validated analytical method M-090880-01-1, report reference M-090880-01-1 (see Doc MCP Section 5).

5°

## II. Results and Discussion

The study was deepned to be acceptable based on the criteria set out in the US EPA Pesticide Assessment Guideline, Subdivision 21-5 and US EPA Draft OPETS 850.2500, in the absence of an OECD guideline. The average application rate on the three plots was 398 g KWG 4168 equivalents/ha and ranged from 389.7 to 404.7 g KWG 4168 equivalents/ha.

The highest total residues were detected in grape foliage with a peak of 54.6  $\mu$ g a.s./g spiroxamine equivalents on Plot2 immediatel following the application. Mean residues detected in grape foliage decreased over the stud9 period from 43.4  $\mu$ g a.s./g spiroxamine equivalents (SD=14.2) following application to 943  $\mu$ g a.s./g spiroxamine equivalents (SD=1.31) twenty-eight days later. The half-life was calculated at 14.21 days. Residues in weed heads collected from the vineyards were slightly more than half as high as levels detected in grape foliage. A mean value of 26.9  $\mu$ g a.s./g spiroxamine equivalents (SD=3.10) was detected following the application with residues decreasing to a mean of 11.6  $\mu$ g a.s./g spiroxamine equivalents (SD=1.63) four days later. Residues appeared to dissipate more rapidly in weed heads as compared to grape foliage.

Residues detected in grapes and invertebrates were low, with a mean of 0.857  $\mu$ g a.s./g spiroxamine equivalents (SD=0.415) in grapes and 0.689  $\mu$ g a.s./g spiroxamine equivalents (SD=0.578) in invertebrates collected immediately following application. Mean levels decreased to 0.529  $\mu$ g a.s./g



spiroxamine equivalents (SD=0.215) in grapes and 0.474  $\mu$ g a.s./g spiroxamine equivalents (SD=0.113) in invertebrates four days later.

Table CP 10.1.1.2/04-1	Measured residues of KWG 4168 detected in grapes, weed heads and
invertebrates	

Compartment	Mean initial residues measured (µg a.s./g)	Mean residues measured (µg a.s./g)	Recalculated initial residues ¹ (mg/kg)	D050 (days)
Grape foliage	43.4	9.43 (day 28)	108.5 Q	\$7.21 \$7 \$ \$
Weed heads	26.9	11.6 (day 4)		ca. 4 %
Grapes	0.857	0.529 (439 4)	2,1425 0 2	NO ^Y Q Q ^Y
Invertebrates	0.689	0.474 (day 4)	91.7225 20 20 A	QNA ~ V

¹ recalculated for an application rate of 1.0 kg a.s./ha NA = Not Applicable

#### III. Conclusion

It is important to note that the mean residue value of 0.689 ug a.s. (spiroxamine) equivalents (sp=0.578) detected in invertebrates should be handled with caution since the high coefficient of variation of 84 % indicates inconsistency among the samples A more conservative approach would be to use the maximum residue value of 1,34 µg/g spirovamine equivalents detected in plot no. 2. Accordingly, the recalculated value for an application/rate QUI.0 kg/a.s./ha/would be 3.35/mg/kg? However, this deviation does not change the outcome of the risk assessment and was therefore not considered in the risk assessment. Besides the small sample size (10 sweep net complex vs. 12 pitfall trap samples) another noteworthy shortcoming was that data on the taxonomy of collected invertebrates were completely missing. In contrast to invertebrates sampling, mean residue values detected in grapes and weed heads showed less inconsistence among the samples and are therefore considered acceptable.

#### Assessment and conclusion by applicant:

Õ The study was conducted to the US EPA Pesticide Assessment Guideline, Subdivision 71-5 and US EPA Draft OPPTS 850.2500 in the absence of an OECD guideline, the study is considered valid according to the EPA guidefines followed

Ô

The study is relatively of and therefore does not take in to account some of issues which are now expected as part of a residues decline trial. For example these were relatively few sampling timepoints shortly after application (Day 0, 4, 7, 14, 27 and 28). That being said, this regime does appear to be adequate for the defined DO 50 on grape Poliage with avalue of 14 days. For weed heads an estimated DT₅₀ of ca. 4 days has been reported and this has been estimated based on the residues value being roughly 50% of the starting value at Day A and not determined via kinetic analysis). However, the value is still considered to be a reliable measurement and clearly demonstrates that the decline in spiroxamine residues on weed heads is approximately 50% after 4 days therefore a DT₅₀ of 4 days is considered to be suitable for use in the risk assessment.

It is also noted that although weather data are available, no information such as precipitation was collected at the study site is also noted that the study was conducted in the U.S. and not the EU but the chemical properties of spiroxamine are considered to be the same regardless of the continent in which the study was conducted.

The study is considered to be valid in its own right and the results of this study, particularly the DT₅₀ of 2a. 4 days on weed heads, has been used in the risk assessment of Spiroxamine EC 500 to refine the granivorous bird scenario.



Data Point:	KCP 10.1.1.2/05
Report Author:	
Report Year:	2006
Report Title:	Determination of Spiroxamine residues in the carabid beetle Poecilus cuprous L.
Report No:	31861007
Document No:	M-281566-01-1
Guideline(s) followed in	Auswirkungen von Pflanzenschutzmitteln auf Imagines von Poecifies cupreus L.
study:	als Vertreter der Familie Carabi dae (= Laufkäfed im Laboratorium, (
	1991); " A method for testing effects of plant protection products on the carafid
	beetle Poecilus cupreus (Colleoptera, Carabidae) under laboratory and semi-field
	conditions,
	(2000).; " SANCO/823/00 rev?7 guidance documention residue ang-lytical
	methods which gives guidance on requirements for residue methods suitable for
	post-registration intoring);
Deviations from current	
test guideline:	None None None None None None None None
Previous evaluation:	yes, evaluated and accepted V V V V V
	RAR (2010)
GLP/Officially	Yes, conducted under SLP/Quicially recognized testing faculties
recognised testing	
facilities:	
Acceptability/Reliability:	Øfes O' a a a a a a a a a a a a a a a a a a

#### Executive Summary _{**}

Executive Summary The purpose of this study was to determine the residues of spiroxamine after certain ageing intervals in the carabid beetles? cupieus. The test item was sprayed upon the beetles? the food for the first three days and the substrate (natural soil). After spray application of the lest iten, the beetles were maintained in the laboratory on mural soil substrate of ther defined time intervals, beetles were removed from the test units, deep frozen and were used for residue apalysis of spiroxamine in the beetles. Beetles maintained in separate test units were used as intreated blask controls.

The dry weight of 10 beetles (5 males and 5 females) was determined. The mean dry weight of one beetle *P. cupreus* was determined to be 45.6 mg/beetle During day 0 and day 4 the beetles consumed a mean of 0.55 test item contaminated fly pupae/beetle in the control group.

the test item goup compared to 0.5 funtreated fly pupae beetle in the control group.

Following the application of 1509 g Spipexamine EC 000 G/ha the total residues of spiroxamine in and on carabid beetles were determined after different ageing intervals. The residue analysis was done by Bayer CropScience after transfer of the deep frozen specimens.

# Materials

Test Materia	Bpirocamine QC 500
	Spirosamine 4C 500 PE90087683
Courent of a.s.:	WG 4168: 498.98 g/L, according to certificate of analysis
Description:	Clear brown liquid
Stability of test	Sufficient based on the expiry date
compound:	
Reanalysis/Expiry date:	11 January 2007
uatt.	



Density:	1.006 g/mL
Treatments	
Test rates:	1509 g Spiroxamine EC 500 g/ha, corresponding to 750 g a.s./ha
Solvent/vehicle:	The test item was applied in 300 L water/ha
Analysis of test concentrations:	Residue analysis of the test item in the beetles were conducted in 3 separate study at Bayer CronScience after transfer of the deep frozen specimen (beetles) from IBACON to Bayer CropScience. Carabid beetle ( <i>Poethus cupreus</i> D.), age: about 3 -4 weeks old source: Bio-Test Labor GmbH, Sagerheide, Germany. Plastic boxes (183 x 186 x 6cm), containing 250 sdry soil
Test design	
Test species:	Carabid beetle ( <i>Poethus cupreus</i> E), age: about 3 -4 weeks old source: Bio-Test Labor GmbH, Sagerheide, Germany. Plastic boxes (18 3 x 18 6 x 6 cm), containing 250 cdry soil (2 males and two females per replicate) 14 days 19-21°C 63-84% 6.1 to 8.44 soil play
Test units:	Plastic boxes (183 x 186 x 6cm), containing 250 stry soil
<b>Replication:</b>	Plastic boxes (18.3 x 18.6 x 6 cm), containing 250 sdry soil (2 males and two females per replicate)
<b>Duration of test:</b>	14 days & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Environmental test conditions	Plastic boxes (183 x 186 x 6cm), certaining 250 gdry soil (2 males and two females per replicate) 14 days $19-21^{\circ}$ 6.1 to 8.4 (soil plot) 810 - 1390 lux
Temperature:	
<b>Relative humidity:</b>	$\frac{1}{8} = 21$
pH:	$\begin{array}{c} 4 & 3 \\ 6 & 3 \\ 6 & 1 \\ 6 & 8 \\ 8 \\ 10 \\ 8 \\ 10 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $
Photoperiod: 🔬	\$10 - 1390 lux
I. Study Design	6.1 to 8.4 soil plot \$10 - 1390 lux as to determine the residues of spiroxaphine after certain ageing intervals in
The purpose of this study wa	as to determine the residues of spiroxaphine after certain ageing intervals in

The purpose of this study was to determine the residues of spiroxathine after certain ageing intervals in the carabid bestle *P. cupretto*. The test item was sprayed upon the beetles, the food for the first three days and the substrate (natural soil). After spray application of the test item, the beetles were maintained in the laboratory on natural soil substrate. After defined time intervals, beetles were removed from the test units, deep frozen and overe used for residue analysis of spiroxamine in the beetles. Beetles maintained in separate test units, were used as uniferted blank controls.

The test item was sprayed upon the beetles, the food for the first three days and the substrate (natural soil). After spray application of the test item, the beetles were maintained in the laboratory on natural soil substrate. After defined time intervals, beetles were removed from the test units, deep frozen and were used for residue analysis.

Two variants (determination of residues of spirovanine and untreated control); 4 individuals (2 males and 2 females)/test unit. 8 individuals (2 test units = one sample) were used for each sampling date. Sampling intervals: application day (1 - 2 hours after application [day 0]) and on day 1, 2, 3, 4, 6, 8, 10, 12 and 14 following the application day.

250 g air-dried, natural soil was filled in plastic boxes (18.3 cm x 13.6 cm x 6 cm; length, width, height; substrate surface of about 175 cm2) containing a layer of about 1 cm natural soil. At the beginning the soil was projected to about  $55\% \pm 5\%$  of its maximum water holding capacity (WHC = 37 %).

Natural soil collected from a field at a distance of *ca*. 100 m from the IBACON Building ("am Griinberg" Flur Ar. 420 The soil to be used as a substrate was collected on August 8, 2005 at a depth of 10 cm.

With pupctured deep frozen fly pupae (Calliphora spec.) (Grebenstein GmbH, Kiisterstr. 4, D-31180 Giesen) at a rate of one pupa per beetle per feeding date. Feeding was conducted as follows: application day (before application), day 1, 2, 4 for the first week and thereafter on day 7, 9, 11 after application (3 x per week). First food was sprayed with the test item solution.



#### **Analytical method**

Samples of insects were analysed using the validated analytical method 00721/M001, report reference M-283574-01-1 (see Doc MCP Section 5).

#### II. **Results and Discussion**

The dry weight of 10 organisms (5 untreated male and 5 untreated female beetles) was determine The O^S mean dry weight of the beetles was found to be 45.6 mg per beetle.

Ô

				<u>R</u>	
Sample	Wet weight [g]	Dry weight [g]	Water [g]	Water content [% beetle wet] ¹	Dry weight %
Female beetle	0.1158	0.0500	0.0658	°\$6.82 @	43.48
Female beetle	0.1114	0.0455	Ø.0659	59,10	40.84
Female beetle	0.1099	0.0477	0.0622	56.60	43.40
Female beetle	0.1015	0.0487	000528		
Female beetle	0.0963		0.0498	52.027 51.91	¥8.29
Male beetle		Q0.0516	020488	Ø¥8.61 €	51:39
Male beetle	0.0975	0:0444	@.0531 Q	54.46	<b>4</b> 5.54
Male beetle	0.0938	\$ <b>0</b> .0400	0.0538	3 <del>3</del> .36 , 9	42.64
Male beetle	0.0914 3	0.0356	Ø 0558 ×	61.059 56,00 ~	38.95
Male beetle	0.1044	Q.9458	0.0583	56,00	44.00
Mean		0.0456	Q.Q.3566 Q	55.38	44.62
SD (	0.0080	0,0047	( <b>0.0062</b> )	3.24	3.74

Table CP 10.1.1.2/05-1 Dry	weight of carabid beetles
----------------------------	---------------------------

The food consumption during the first 4 days was recorded in order to assess the food uptake of contaminated and uncontaminated fly pupae per beetle.

Mean Consumed Pupae over A days; Control: 0.5 pupa per beetle and test item: 0.55 pupa per beetle.

Table CP	10.1.1.209	ວ-2 <b>4</b> ≇¥	oa cousu	труют		g thể H	rst 4 Qa	lys
	<u>v</u>	,Ô¥		0 wamin	O Y	MC.	Ø	Control

Time	Spirðyamine EC 500 G	Control	
4	Pupae/ bertle # Consumption %	Pupae/ beetle #	Consumption %
Days 0 T	8,35 Q 100.0	0.55	100.0
Daxs 1-2	0.53	0.33	100.0
Days $2-4$	0.56 2 862	0.65	100.0
Mean 🖉 🔊	<b>9.55</b>	0.51	100.0

# III. Constusion

The dry weight of 10 beetles (5 males and 5 females) was determined. The mean dry weight of one beetle P. cupreus was determined to be 45.6 mg/beetle.

During day 0 and day 4 the beetles consumed a mean of 0.55 test item contaminated fly pupae/beetle in the test item group compared to 0.51 untreated fly pupae/ beetle in the control group.



Following the application of 1509 g Spiroxamine EC 500 G/ha the total residues of spiroxamine in and on carabid beetles were determined after different ageing intervals. The residue analysis was done by Bayer CropScience after transfer of the deep frozen specimens.

#### Assessment and conclusion by applicant:

The study was conducted to an old BBA guideline but it is recognised that there are no specific test guidelines for residues decline studies, just recommendations provided in the Guidance Documents (for example EFSA, 2009).

This study investigated residues on beetles which were sprayed within the laboratory and then from for analysis at timepoints of Day 0, 1, 2, 3, 4, 6, 8, 10, 12 and 14 following the application. The analytical results of the study have been conducted as part of a separate study, M-288174-01-which is summarised below.

The study was conducted within the laboratory and therefore the results achieved may not be representative of the 'field' situation. However, the tudy is considered to be valid and the analytical regime is considered to meet the current standards with a sufficient number of analytical timepoints to be able to derive reliable  $DT_{50}$  values

The study is considered acceptable but the results have not been alied on in the risk assessment of Spiroxamine EC 500.

CCP 104.1.2/06 2 2 2 2 2
Determination of the residues of spiroxamine (KWG 4168) in/on insects after
pplication with spiroxamine 750 g a.s./ha
$AR-04/224$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$
<u>1-288174601-2</u> 2 4 4 2
© 91/41@EEC amended by 96@8/EC 2U Annex II (part A, section 4) and
nnex JI (part A, section 5) of directive 91/414, SANCO/3029/99; US EPA:
DPP\$\$\$ 860, 5340 0 0 0
IQUE & S OF J O
es, expluated accepted
$\Delta \mathbf{P} = 010^{10}$
es conducted under GL Officially recognised testing facilities

#### Executive Summary

The purpose of the study was to determine the residues of spiroxamine in/on insects after applications with Spiroxamiae 750 g a.s./

Residue values of spiroxamine in/on insects on day 0 after application with Spiroxamine EC 500 G were 8.7 mg/kg and decreased to 0.27 mg/kg on day 18, calculated to dry material. All residue values in control samples were below the LOQ (0.01 mg/kg).

Based on the residue analysis a half-life period for Spiroxamine in/on insects of 1.28 days was calculated



#### I. Materials

Test Material	Spiroxamine (KWG 4168) M28197
Lot/Batch #:	M28197
Purity.:	97.4%
<b>Description:</b>	97.4% Not reported
Stability of test compound:	Sufficient based on the exploy date
Reanalysis/Expiry date:	22-10-2007 $\mathcal{A}$
Density:	
Study Dosign	

#### Study Design

The purpose of the study is to determine the residues of spiroxamine in an insects after applications with Spiroxamine 750 g a.s./ha.

All samples were deep-frozen directly after sampling by the test facility IBACON and then stored at around -18°C or below until dispatch with dry ice to the analytical laborator of R. Schöning (BCS-D-ROCS, D-40789 Monheim). All samples arrived in the laboratory in good condition.

The samples were stored in a deep-freezer at -18°C or below in dark conditions until analysis in the laboratory of R. Schöning.

Spiroxamine residues were extracted from bestles (approx fg) with a mixture of acetone/water. After filtration, an aliquot of the extract was concentrated to the aqueous remainder. The residues were transferred into a 10 mL volumetric flask with aceronitrite and filled up with water/acetic acid (9/1, v/v). The residues were quantified by reversed phase HPLC with electrospray and MS/MS-detection using stable labelled standard solutions as internal standard.

#### II. Results and Discussion

The individual recovery values for spiroxamine with method 00721/M001 (report reference M-283574-01-1 (see Doc MCP Section 9) ranged from 106 to 122% with ap overall recovery of 112% and with a relative standard deviation (RSD) of 50% ( $R \neq 6$ ) All results of the method validation were in accordance with the general requirements for residue analytical methods, therefore the method was validated successfully Q

R

The Limit of Quantitation (COQ), defined as the Towest validated fortification level, was 0.01 mg/kg for Spiroxamine in/on insects. Residue values of Spiroxamine in/on insects on day 0 after application with Spiroxamine EC 500. Were 8.7 mg/kg and decreased to 0.21 mg/kg on day 18, calculated to dry material. All residue values in control samples were below the LOQ (0.01 mg/kg).

		Kesults of Spiroxamine in/on beet	les		
Days after	Control	Treated beetles			
	beetles	Spiroxamine in [mg/kg] wet*	Spiroxamine in [mg/kg] dry		
	ADOQ X	3.8	8.7		
	<loq< td=""><td>1.5</td><td>3.3</td></loq<>	1.5	3.3		
2	<loq< td=""><td>1.4</td><td>3.2</td></loq<>	1.4	3.2		
3	<loq< td=""><td>1.0</td><td>2.2</td></loq<>	1.0	2.2		

Table CP 10.1.1.2/06-1 Residuc concentration of spiroxamine in the analysed samples



<b>Results of Spiroxamine in/on beetles</b>						
Days after	Control	Treat	ed beetles			
application	beetles	Spiroxamine in [mg/kg] wet*	Spiroxamine in [mg/kg] dry			
4	<loq< td=""><td>0.66</td><td>1.5</td></loq<>	0.66	1.5			
6	<loq< td=""><td>0.44</td><td>1.0 1.0 5 5</td></loq<>	0.44	1.0 1.0 5 5			
8	<loq< td=""><td>0.32</td><td>0.72</td></loq<>	0.32	0.72			
10	<loq< td=""><td>0.22</td><td></td></loq<>	0.22				
12	<loq< td=""><td>0.16</td><td>\$9.36 ° ° ° °</td></loq<>	0.16	\$9.36 ° ° ° °			
14	<loq< td=""><td>0.08</td><td></td></loq<>	0.08				
18	<loq< td=""><td>0.09 &amp; 3° 5° e 55.3% &amp; 5°</td><td>1021 2 2 m 2</td></loq<>	0.09 & 3° 5° e 55.3% & 5°	1021 2 2 m 2			

*= water content of the samples were 55.3%

#### Assessment and conclusion by applicant:

This study reports the analytical results achieved following analysis of the bestle samples taken in study <u>M-281566-01-1</u>. The study is considered to be valid and has followed the analytical Guidance in place at the time of conduct including SANCO/3029/99. S validated analytical method was used. The study is considered acceptable.

The residues data have been used to determine  $DT_{50}$  and an associated ftwa calue for use in the Bird & Mammal risk assessment in report  $M_{29362}^{-01-1}$ . This has been summarised below.

Data Point:	
Report Author	
Report Year:	2007 Spiroxamine (KWG 4198): Suprimary of an additional study that has been
Report Title:	Spiroxamine (KWG 4198): Suprimary of an additional study that has been
	conducted to determine dissipation of residues of Spiroxamine from insects plus
<u> </u>	an fulculation of the fTW $\beta$ values $\beta$ $\circ$
Report No:	<u>x1x293626-01-1</u> x x x x
Document No:	<u>M-293526-01</u>
Guideline(s) followed in	None of the formation o
study: 🔬 Ö ^ş	
Deviations from current	Sone A A A A
test guideline:	
Previous Waluation:	yes evaluated and accepted
GLP Officially	caot applacable
recognised testing	and applicable
facilities:	
Acceptability Reliability:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

#### Executive Summary

The purpose of this study was to determine the residues of spiroxamine after certain ageing intervals on insects based on the carabid beetle *P. cupreus*.

Residue values of spiroxamine in/on insects on day 0 after application with Spiroxamine EC 500 were 8.7 mg/kg and decreased to 0.21 mg/kg on day 18, calculated to dry material. All residue values in control samples were below the LOQ (0.01 mg/kg). Based on the residue analysis a half-life period for



Spiroxamine in/on insects of 1.28 days can be calculated, by function of 1.5st order (3.38 days by an exponential function of 1st order).

An evaluation of the f_{TWA} value based on the area under the curve method resulted for a TWA interva of 14 days in an  $f_{TWA}$  value of 0.21 and for an TWA interval of 21 days in an  $f_{TWA}$  value of 0.15 (Further  $f_{TWA}$  values for TWA periods of 2 to 21 days were also calculated.

corresponding to 750 g a.1./ha. I. Materials Ô **Test Material** Spiroxamine EC 500 G PF90087683 Lot/Batch #: 498.98 g/L (according to C of A) Content of a.s.: **Description:** Not reported Stability of test Not reported compound: **Reanalysis/Expiry** Not reported date: Not reported 500/ha, c **Density:** Treatments g Spiroxamine EC **Test rates:** Solvent/vehicle: Analysis of test concentrations **Test organisms** Carabid beetle Poectius cupreus Lo **Species** Bio-Test Labor GurbH, Sagerheide, Germany Source: reported Acclimatisatio period: **Feeding:** Treatment for disease Test design Test units: Mastic boxes (13.6 x 6 cm) containing 250 g dry soil Ś **Replication:** Duration of Environmental tes conditions 21°C lemperature: tive humidity 63 - 84%ҏӉ҈ѽ Not reported **Photoperiod:** 16 hour light : 8 hour dark



#### Study Design

The purpose of this study was to determine the residues of Spiroxamine after certain ageing intervals on insects based on the carabid beetle *P. cupreus*. The test item Spiroxamine EC 500 (at a rate corresponding to 750 g a.s./ha) was sprayed upon the beetles, the food for the first three day, and the substrate (natural soil). After defined time intervals (1 - 2 hours after application [day 0], and on day P, 2, 3, 4, 6, 8, 10, 12 and 14 following the application day), beetles were deep frozen and then were used for residue analysis. Untreated beetles were used as a blank control.

Test units were plastic boxes (18.3 x 13.6 x 6 cm), containing 250 g dry soil.

1509 g Spiroxamine EC 500/ha, corresponding to 750 g a.s./ha. The test item was applied in 500 L water/ha. The test item was sprayed upon the substrate, the beetles and the first offered food via laboratory spray applicator (a sufficient additional amount of food was sprayed as well and given as treated food for the following 2 days). Untreated beetles were used as control beetles.

Following the application of 1509 g Spiroxamine EC 300/ha the total residues of Spiroxamine in and on carabid beetles were determined after different ageing intervals. The residue analysis was done by Bayer CropScience after transfer of the deep frozen speciment.

Residues of spiroxamine in/on insects were determined according to method 00720/M000. Spiroxamine residues were extracted from beetles (approx. 1 g wet weight) with a tinxture of according to method 00720/M000. Spiroxamine filtration, an aliquot of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the aqueous remainded of the extract was concentrated to the extract was concentr

The residues were transferred into a 10 mL volumetric flask and filed up with acconitrite. The residues were quantified by reversed phase HPLC with electrospray and MS/MS detection using stable labelled standard solutions as internal standard.

#### II. Results and Discussion

The individual recovery values for Spiroxamine with method 00721/01001 ranged from 106 to 122% with an overall recovery of 112% and with a relative standard deviation (RSD) of 5.0% (n = 6). All results of the method valuation were in accordance with the general requirements for residue analytical methods, therefore the method was validated successfully.

The Limit of Quantitation (LOQ) defined as the lowest validated for fification level, was 0.01 mg/kg for Spiroxample in/on inseets.

Residue values of spiroxamine in/on insects on day 0 after application with Spiroxamine EC 500 G were 8.7 mg/kg and decreased to 0.24 mg/kg on day 18, calculated to dry material. All residue values in control samples were below the LOQ (0.01 mg/kg)

Based on the fesidue analysis a half-life period for spiroxamine in/on insects of 1.28 days can be calculated, by function of 5st order or 3.38 days by an exponential function of 1st order.

To calculate the average concentration over a specific exposure period based on the maximum concentration the Time-Weighted-Average factor ( $f_{TWA}$ ) values are used. Assuming an exponential 1st order dissipation the  $f_{TWA}$  value can be calculated based on the exponential 1st order DT₅₀ value.

The initial dissipation between day 1% o day 18 is well described by an exponential 1st order function with and corresponding DTs of 3.38 days, but this function does not reflect the fast dissipation during the first day of the exposure. Therefore using tha  $DT_{50}$  value of 3.38 days as the basis to calculate an  $f_{TWA}$  value will overestimates the  $f_{TWA}$  value and in consequence overestimate the average exposure. As recommended by the EU Guidance Document on Risk Assessment for Birds and Mammals (SANCO/4145/2006, Sep. 2002), the mean concentration and correspondingly an  $f_{TWA}$  value can also be determined by the area under the curve method. In the case of spiroxamine this second approach will give an more realistic estimate of the  $f_{TWA}$  values.

To conduct such an evaluation the area under the curve has been calculated by multiplying the residue value measured on each day by the duration of the time period that is represented by this value (1 day).



For days for which no value was available the residue value from the last measurement before this day was used. Summing up these values for the appropriate period of time and dividing the cumulative area by the duration (days) of the period gives the average concentration during this time period. Dividing this average concentration by the initial concentration on day 0 gives the corresponding  $f_{TWA}$  value.

		Turk	I beetles Jo Jo
Days after application	Control beetles	Spireramine in [mg/kg] wet	I beetles
0	<loq< th=""><th>\$<u>\$</u></th><th>8.70 ⁽²⁾ ⁽²⁾</th></loq<>	\$ <u>\$</u>	8.70 ⁽²⁾ ⁽²⁾
1	<loq< td=""><td>* 1 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td><td>8,70</td></loq<>	* 1 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	8,70
2	<loq (%)<="" td=""><td>104 5 5 1</td><td>3.2</td></loq>	104 5 5 1	3.2
3	<loq< td=""><td></td><td></td></loq<>		
4	<loq< td=""><td>0.66 ~ ~</td><td>1.5 🔬 🕺</td></loq<>	0.66 ~ ~	1.5 🔬 🕺
6	<loq< td=""><td></td><td></td></loq<>		
8		0.32 ~ ~ ~	9.72 J J
10	<loq 2<="" td=""><td>\$²² 0 5 5</td><td>0.48</td></loq>	\$ ²² 0 5 5	0.48
12		0.16	.0.36 O
14		0.08	0.18
18			003

The  $f_{TWA}$  values are given in table 2 for  $f_{WA}$  periods of 2 to 21 days. When reading this table it has to be considered that the analytical measurements refer to the first day as day 9. Therefore, the  $f_{TWA}$  factor for a TWA period of 14 days refers to the measured values between day 6 and day 13 and the  $f_{TWA}$  values is found in the fine for day 10 (i.e.  $f_{WA} = 21\%$ ).

Table CP 19.1.1.2/07-2 Calculation of two values (residue data in italics are extrapolated from the last measurement point before this day)

Day	Residine (mg/kg)	Cumuntive area (my kg*day)	Average residue (mg/kg)	TWA period (counted in days from day 0)	f _{TWA} (% of intimal)
0	8.9 C		- 27 0	-	-
1	<b>3</b> .3	12.00	<b>%</b> .00 , <i>K</i>	2	69
2	3.2	15.20	5.02	3	58
3 🖉	2.2	7.40	<b>A3</b> 5	4	50
4	1.5	18,00 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.78	5	43
5		20.40	3.40	6	39
6		21.4	3.06	7	35
7		<u>2</u> 240	2.80	8	32
842	<b>9</b> .72 A	23.12	2.57	9	30
9 °	0.72	23.84	2.38	10	27
10	0.48	24.32	2.21	11	25



Day	Residue (mg/kg)	Cumulative area (mg/kg*day)	Average residue (mg/kg)	TWA period (counted in days from day 0)	frwa (% of intimal)
11	0.36	24.80	2.07	12	24
12	0.36	25.16	1.94	13	22
13	0.18	25.52	1.82	14	
14	0.18	25.70	1.71	15	
15	0.18	25.88	1.62	16	
16	0.18	26.06	1.53	17 Q ~ ~	
17	0.18	26.24	1.460		N° 2° Q°
18	0.21	26.45	1539 0° ×	P19 2 2 2	\$16 × ×
19	0.21	26.66			150 0 0
20	0.21	26.87	1.28		445 <u>5</u> 69

#### Assessment and conclusion by applicant:

This reports presents the outcome of an assessment of the DT value determined in the beetles residues decline study (biological report: M-281566-01-1, analytical report: M-28817@01-2) in order to determine f_{TWA} values for use in a refined risk assessment. The results are considered acceptable but have not been used in the refined ask assessment for

Spiroxamine EC 500,

Data Point: 0 KGP 10.102/22.0 27 20 27
Data Point: 0 KGP 10.10.2/22 0 5
Report Author.
Report Year: 2011 201
Report Title: Retinement of mean RUIO for spitoxamine in grapes
Report No:
Document No: $\sqrt{M-41}$
Guideline(s) followed in Norte
Deviations from current None Concerning Conc
test guideline:
Previous Evaluation: . Q Noonot previously submitted
GLP/Officially not applicable
GLP/Officially not applicable of a final sector of the sec
facilities:
Acceptability/R@iability: Y&
Acceptability/R@nability: Yes C

#### Executive Summary

Refined reproductive risk assessment (TER_{LT}) may be required for frugivorous birds that could be exposed to regetues of spirovamine on grape berries after application in vineyards. Therefore, a more realistic evoluation of the mean RUD was performed, based on compound-specific residue measurements (RUD) on grapes. Data are available for a total of 54 studies in which initial residues of spiroxan@ne parent compound on grapes were either measured directly or were recalculated from total residue values determined immediately after the last application. The RUD derived for the total set of studies (n=54) is in line with the RUD derived only for those studies in which initial residues of spiroxamine parent itself on grapes were measured (n=24).



Therefore, taking into account a dataset of 54 residue studies for spiroxamine in total, it is proposed to replace the generic RUD of 8.3 by a more realistic RUD of 1.63 that can be used in the refined risk assessment for spiroxamine.

#### I. Methods

#### Refinement of RUD for spiroxamine in grapes

The Tier 1 risk assessment for frugivorous birds eating grape berries in vinevards is base on the R provided by the EFSA GD (2009, Appendix F). Unlike the BUDs recommended for food categories like "grass & cereals" (n = 132 studies) or "nongrass weeds" (n = 230 studies), the database behind this recommended RUDs for grape berries (the destempted grapes themselves) is poor (m = 8 studies according to EFSA GD 2009). Furthermore, the data were taken from a published review of North American residue studies (Baril et al 2005) comprising residue and thus of unclear relevance for the FU. With regard to using measured residue data for higher tier refinements, the oFSA OD (2009) requires justification "why new measured residue data will override the existing residue values presented ..., as several studies were used to generate these generic RUDs. Therefore it is anlikely that one study will the appropriate to replace the generic RUD value (2009, Appendix F). Taking into account this requirement, a large number of regulatory residue studies (n=54) in grapevines with late season applications of spiroxamine was evaluated in order to present compound-specific measured residue data that can be considered fully appropriate to replace the generic mean RUD \$ 8.3 for grape berries. Residue trials were conducted in Southern and northern Europe. In some earlier trails (1994-96), only the total residue of spiroxaming (determined as aminodiol and expressed on spiroxamine equivalents) was determined. For trials such as these, parent-compound residue levels were derived a recalculation from total residue determinations. The reason for this recalculation is the change in the regulatory evaluation of spiroxamine in Europe during the original EU review process. The residue definition as proposed originally by Bayer for grapes was the total residue of spiroxamine, determined as aminodiol and expressed in spirovamino equivalents. The EU apporteur member state for spiroxamine (Germany) decided to change the residue definition to spiroxamine parent only, which is reflected in the EU MRLs published in 2000 At the time of publishing Commission Directive 2000/81/EC, all residue data submitted had presented results only for the total residue of spin Xamine. Using a factor derived from the metabolism studies, the parent-compound resolue levels and, from them, MRLs were calculated by the rapportour from the total residue results. Since that time, "pew" studies have generally been conducted using both the old and new residue definitions However, some "older" studies (reporting total residues only) are also included in this evaluation in order to further support the proposal for a refined RUD for spipoxamine after application in grape

#### Results and Discussion II.

Ĩ The table below represents a comparison between all data residue available for spiroxamine residues on grape berries to only those new estudies in which initial spiroxamine parent compound residues were measured The average number of applications made in the new trials was 4.0. A DT₅₀ was not determined.

#### Summary of residues @ spiroxamine on grapes for compound specific RUD Table CP 10.1.1.2/22-1 derivation

n	Locations	year	Last AR (kg a.s./ha)	Mean # of applications (± SD)	Mean RUD (± SD)
541	N & SEU	1994-2007	0.16-0.64	3.48 (± 0.97)	1.44 (± 0.86)
248	N & S EU	1997-2007	0.16-0.64	4.0 (± 1.25)	1.63 (± 0.87)

¹ all: complete data set based on studies both with measured residues of spiroxamine itself and on recalculated

residues from total residue determinations



² new: subset of data set comprising of only studies with measurement of initial residues of spiroxamine itself

n = number of studies; AR = application rate

The RUD derived for the totality of studies (RUD=1.44) is in line with the RUD derived for the subset of the database which only considers initial measured residues of spiroxamine (RUD=1.63). As a conservative approach, the residues measured directly after the last application can be used as refinement for  $C = AR \times MAF$ . The average RUD was 1.63.

#### III. Conclusion

Taking into account a dataset of 54 residue studies for spiroxamine on total, the compound-specific RUD_m of 1.63 can replace the generic RUD presented for the EFSA GP (only 8 data sets) in a higher tiet risk assessment for spiroxamine.

#### Assessment and conclusion by applicant:

This report is a review of available residues studies using pirox aprine (44 studies).

m

The dataset is considered to be sufficiently large to replace the default RUD values used for the Brid & Mammal Guidance Document (EFSA, 2009). It is also noted that these studies, unlike the BFSA values, are specific to spiroxamine and therefore considered to be more relevant.

The study is considered acceptable

The determined RUD of 1.63 has been used in the risk assessment to refine the fugivorous bird and mammal scenarios by replacing the default RUD values specified in EFSA (2009).

For procedural reasons studies is the Table CD10.1:12-1 below are included in the current dossier as available data or information previously submitted but not necessarily evaluated. However, these reports have been fully superseded by newer studies. Consequently, no summaries of the reports have been included in the dossier.

Data Point	Document	Date	Title & A A
<i>K</i>	No. 🔊	, <i>Ó</i>	
КСР	<u>M-285084-</u>	\$006	Bekanntmachung Nr. 06/92/26 treber die Umsetzung des EU-Guidance
10.1.1.2/08	<u>01-15 A</u>		Document fuer Voegel und Stouger
КСР	<u>M-26324</u>	2065	Review on initial residue levels of pesticides in arthropods sampled in field
10.1.1.2/09 *	<u> ¶-1</u> 0 ,	O O	studies a a a
KCP	<u>M-305599-</u>	₽Ĩ965 <b>^</b>	Pur Kenntnis des Sameröffnens und der Struktur des hörnernen Gaumens
10.1.1.2	<u>01-1</u>	Ŵ	bei körnerfressenden Öscines
KCP	<u>M-108401-</u>	2002	AGROBIRD - Database 2002 - Turdus merula
10.1.1.2/11	<u>01-1</u>		
КСР	<u>M291198-</u>	2006	Bird species in modern pome fruit orchards in Germany: field data for the
10.1.1.2/12			determination of focal species
KCP	<u>M-291)94-</u>		Bird species in pome fruit orchards in Poland and Italy: field data for the
10.1.1.2/10	<u>01-5</u>		determination of focal species
KCP	<u>X0291211-</u>	2007	Generic field monitoring of selected bird species in orchards in Southern
	<u> 1-1</u>		Germany
K	<u>M-266856-</u>	1988	Handbuch der Voegel Mitteleuropas - Turdus merula (Linnaeus 1758) -
10.1.1 <i>2</i> /95	<u>01-1</u>		Amsel

#### Table CP 10.1.1.2-1: Findles previously submitted and not relied upon for the risk assessment



#### **CP 10.1.2** Effects on terrestrial vertebrates other than birds

The available mammalian toxicity data for spiroxamine and Spiroxamine EC 500 are summarised in the table below.

# Table CP 10.1.2-1 Summary of mammalian toxicity studies with spiroxamine and Spiroxamine I 500 Summary of mammalian toxicity studies with spiroxamine I

500		[			<u> </u>
Organism	Test item	Test type	Endpoints		<b>Reference</b>
Rat	Spiroxamine	Acute oral toxicity	$LD_{50} 595 mg$ a.s./kg bw (male) $LD_{50} > 500 < 560 \circ$ mg a s./kg bw (female)	E S S S S S S S S S S S S S S S S S S S	<b>Reference</b> <u>M-00779</u> -01-1
Mouse	Spiroxamine	Active oral	ED ₅₀ 469 mg 2a.s./kgbw (male) LDG 561 mg a \$%kg by	EU	M-007804-00-1
Rat	Spiroxathine	g Chrones, 2- generation	NOAEL (parental) 3 = 25.5 / 6.7  mg 4 = 5.5 / 6.7  mg 4 = 5.5 / 6.7  mg 4 = 5.5 / 6.7  mg 4 = 21.0 / 21.2  mg 4 = 3.5 / 6.7  mg NOAEL ( $00$ spring) $3/9$ 65 / 6.7  mg		
Rat	Spiroxanine EG	Acute oral toocity	LD ₅₀ ~1000 mg/kg w (males) LD ₅ >200<1000 mg/kg bw (comales) Equivalent to LD ₅₀ ~500 mg a.s./kg bw (males) LD ₅₀ >100<500 mg a.s./kg bw (females)	EU	<u>M-016267-01-1</u>
	Spinoxamike EC ~	Acute oral toxicity	LD ₅₀ >500 mg/kg bw (males and females)	EU	<u>M-016680-01-1</u>

EU: prevously evaluated as part of the original EU review and listed in EFSA conclusion and DAR Values in **bold** have been used in the risk assessment

#### Toxicity endpoints for risk assessment



The acute risk assessment for spiroxamine has used the lowest available  $LD_{50}$  value which is 460 mg a.s./kg bw which was determined in male mice.

For the reproductive risk assessment of spiroxamine, an ecotoxicologically relevant endpoint has been determined. According to the outcome of the pesticides peer review meeting on recurring issues in ecotoxicology (EFSA PPR meeting 133, September 2015), an ecotoxicologically relevant endpoint should be set in collaboration with mammalian toxicologists and should be used in all the steps of the risk assessment.

Report M-762441-01-1 presents an assessment of the available mammalian toxicology data with spiroxamine along with a summary of the specific effects seen for various parameters for each study. A NOAEL of 21.0 mg a.s./kg bw/day has been determined from the rat two generation study and considered suitable for ecotoxicological risk assessment of wild mammads. The refinement is based on the assumption that the effects reported at the 300 ppm top dose level to not influence the population success and the total reproductive outcome of mammals in treated ateas. At this dose parental atimals showed slight decreases of body weight (up @ 8.3 %) or body weight gam (up % 14,2 %) as well as irritation induced hyperkeratosis of the ocsophages epithelium. There were delays @ developmental milestones of reaching puberty, *i.e.* preparation (PPS) in matters an Ovaginal opening (VO) in females, in the F1 offspring only which were apparently treatment related, but these were relatively small and are not considered to have an adverse effect at the population fevel. It's noter that with same study the reproductive parameters (mating, fertility, oestrous cycling, sperin motility, sperin count, sperm morphology, pregnancy, natural delivery, litter observations mean ovarian follieles, corpora lutea) were unaffected at the highest dose therefore it has been demonstrated that these small delays in PPS and VO do not have an adverse effect of the parameters that are considered to be relevant at the population level.

Thus, the lowest ecotoxicologically relevant NOAEC, suitable for use in the maximalian reproductive risk assessment, was considered to be 21.0 mg a skg bw day. Details of the assessment can be found in report M-762441 which has been summarized on the end of this section.

Literature paper <u>M-669216-014</u> presents the results of population modelling conducted in order to assess the impact of body weight effects on the population development of the common vole. The study revealed that there was no detectable influence of common vole body weight on the reproductive success and survival during most times of the year and that reproductive success was mainly influenced by the date of birth. This study supports the position that the relatively small reductions in body weight recorded in the rat two-generation study are unlikely to have an adverse effect at the population level and are therefore not ecotoxicologically relevant.

The NOAEL of 21.0 mg a.s./kp bw/day has been used in affitiers of the reproductive risk assessment for spiroxamine.

#### Metabolités

Numerous metabolites of spiroxamine are formed in plants following application to crops. In the Toxicology and Residues sections of the dossier the spiroxamine metabolites have been categorised into three distinct groups (Group A, B and C, respectively). Toxicology dara are available for several of these metabolites. Metabolite M13 has been used to represent all Group B metabolites therefore the toxicology data generated using this metabolite is also considered to cover the plant metabolites M35 and M36. Likewise, M28 has been used to represent all Group C metabolites therefore the toxicology data generated using this metabolite is also considered to cover the plant metabolites M29, M30 and M31. It is also noted that Group A metabolites are considered to be covered by parent spiroxamine.

The table befow presents each plant metabolite along with the percentage TRR and actual residue value from the from metabolism studies. Available toxicology data have also been presented as well as an indication of whether or not each plant metabolite was also found in the animal metabolism studies on laying hen, rat and goat. Finally, an assessment is made regarding the relevance of each plant metabolite



to the risk assessment. Only metabolites which were formed in plants at  $\geq 10\%$  TRR are considered to be potentially relevant to the bird and mammal risk assessment.

Note that only metabolites which were found in the crop metabolism studies have been presented below, which are relevant to other Group B plant metabolites.

Table CP 10.1.2-2	Assessment of potential exposure of mammals	to metabolites	of spicoxamine
formed in plants	Č4	A C	

ormed in plants		<u>_</u> Cs	a. Y	
Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal	Manalian toxicity data ayailable?	Conclusion on relevance for mammalian risk
	Q	Studies? 🔨		Obsessment
Spiroxamine - desethyl (M01) [GROUP A]	Primary crops Wheat Forage: 5.1% TRR; 1.11 mg/kg Straw: 2.0% TRR; 0.70 mg/kg Grain: 0.5% TRR; 0.001 mg/kg Grapes 2.1 % TRR; 0.27 mg/kg Banana Pulp: 1.1% PRR; 0.005 mg/kg Peel: 2.7% TRR; 0.005 mg/kg Rotational crops Leats/vegetables 12% TRR; 0.026 mg/kg Straws and the second s	Not found in goat or rat Found in laying hen (20,3% in ther, 9,3% In musole, 8.4% in fat and 11.5% for eggs	No data av Hable C	therefore not considered s retorant for risk
Spiroxamitize - despropy1 (M02) [GROUP A]	Primary craps <u>Wheat</u> Forage: 4,6% TRR; 0.49 mg/kg Straw: 4.2% TRR; 0.49 mg/kg Grain 3.0% TRR; 0.002 mg/kg <u>Grapes</u> 1.5% TRR; 0.29 mg/kg <u>Banana</u> Pup: 0.5% TRR; 0.002 mg/kg	Not found in goat of rat. Found in laying hen (21.7% on liver, 11.3% in mascle, 3.4% in fat and 10.2% in eggs)	No data available.	Metabolite found in primary crops at <10% TRR therefore not considered relevant for risk assessment. Metabolite found >10% TRR in rotational crops but actual residue levels were very low therefore not considered relevant for risk assessment.



Dlamt	Manimum lands for data	Matak - Pt-	Manunaltar	Conclusion
Plant Metabolite	Maximum levels of residue in plants	Metabolite found in	Mammalian toxicity data	Conclusion on relevance for <i>m</i> [°]
metabolite	prants	animal	available?	mammalian (isk
		studies?		assessment
Spiroxamine -	Primary crops	Not found in	Acute oral rat	Metabolite foun
N-oxide (M03)	Wheat	goat or	LD ₅₀ 707 mg/kg	in wheat at >10%
[GROUP A]	Forage: 12.7% TRR; 3.06 mg/kg	laying hen	bw A	TRR therefore
	Straw: 22.0% TRR; 7.68 mg/kg	Found in rat	28-day rat oral	refevant før risk
	Grain: 17.8% TRR; 0.012 mg/kg	(found in	dietar∜NOAEL 12€¥3.2 mg/kg √	assessment. V
	Grapes	liver at low	by/day for	Tox data are
	4.7% TRR; 0.61 mg/kg	amounts of		ayailable and
	Banana	0.11%)	90-dayy rat oxal 😞	Show that The second se
	Pulp: 1.2% TRR; 0.007 mg/kg		dietary NOAEL	toxicity is
	Peel: 4.9% TRR; 0.23 mg/kg	X Ö	8:8/9.7 mg/kg 0	comparably to
	Rotational crops		bw/day for	that of
	Cereals			spiroxamine S Matabolite Jound
	7.4% TRR; 0.235 mg/g			in the rat
				Snetąbolism study
			aretary INCALL & 8/9.7 bag/kg bw/day for males/females	therefore toxicity
		O' L		data and associated
				bassessment for
	·~~	A Q		parent considered
				to cover this metabolite.
Suinonomino	A.7% TRR, 0.01 mg/kg Banana Pulp: 1.2% TRR; 0.007 mg/kg Peel: 4.9% TRR; 0.23 mg/kg Rotational crops Cereals 7.4% TRR; 0.235 mg/kg A fill a fil	Nachanda	No data ayailable.	
Spiroxamine - N-formyl-	Wheat Wheat	goat, rat or	No data available.	Metabolite found in primary crops
desetbyl (M04)		dawing hon		and rotational
[GROUP A]	Sonw: 9.4% TRR; 8.06 mg/kg			crops at <10%
, Q	Grain: 6,9% TRR; 0.005 mg/kg	° O	, Ø	TRR therefore not considered
<u>z</u>	Graßes	5° 5° .	6 ^y	relevant for risk
**	Not found ~ ~ . O *		, P	assessment.
	Bonomia O L /	O [×] ~		
	Notorind 2 0 2	\$ \$		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Regation Crocks			
A	Cereals			
	6.4% TRR; @204 mg/kg	×		
.~		, ^y	·	
Q L				
	Forage: 5.8% TRR 740 mg/kg Sonw: 9.%% TRR; 8.06 mg/kg Grain: 6.9% TRR; 0.005 mg/kg Granes Not found Baname Not found Rotational crops Cereals 6.4% TRR; 0204 mg/kg			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
A A				
$\checkmark$				



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in	Mammalian toxicity data	Conclusion on relevance for <i>Q</i> [°]
		animal studies?	available?	mammalian fisk assessment
Spiroxamine - hydroxyl (M05)	Primary crops	Not found in goat, rat or	No data available.	Metabolile found
[GROUP A]	Wheat Forage: 7.1% TRR; 1.71 mg/kg	laying hen	<u>A</u>	at >19% TRAVIN
	Straw: 5.2% TRR; 4.32 mg/kg	Ò		leasty vegetables
	Grain: 1.6% TRR; 0.001 mg/kg	e a construction of the second		zresidue levelas
	<u>Grapes</u> 0.3% TRR; 0.04 mg/kg	JOY I		therefore for
	Banana			ornsidered relevant for risk
	Not found			assessment.
	Rotational crops			
	Leafy vegetables 17.2% TRR; 0.146 mg/kg			
	<u>Cereals</u>		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	
	2.5% TRR; 0.49 mg Rg			S. S.
	3.6% TRR; 0.032 mg/kg			
Spiroxamine - hydroxy-	Primary crops	Not found in		
despropyl	Wheat Forage≫pot found ♥	laying hen		in primary crops and rotational
(M09) [GROUP A]	Forage sot found Straw; 0.3% GRR; 0.41 mg/lQ Gran: not found Q			crops at <10% TRR therefore not
[GROUP A]	Gravn: not found			considered
(	Srapes V V V			relevant for risk assessment.
- S	Bayana			
	Strapes A A A A A A A A A A A A A A A A A A A	Ô, O		
Ê,	Not found g g g	67 57 <u>,</u>	, ,	
			,	
		5 S		
~Q [®]		) ' %		
Å		L.		
, Q		) N		
L.C.				
	Ş. 0 3 Y			
	Not found 2 A Bailana 2 Not found 2 A Bailana 2 Not found 2 A B Bailana			
AL A				
$\mathcal{O}^{\mathbf{v}}$				



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for mammalian fisk assessment
Spiroxamine – cyclohexanol (M13) [Group B]	Primary crops Not found	Not found in goat, rat or laying hen	Acute oral rat LD ₅₀ 4200 mg/kg bw Acute dermal rabbit LD ₅₀ >5000 mg/kg bw 28-day rat oral (gavage) NOAEL 50 mg/kg bw/day It was concluded that M 3 is less toxic than the patent, parent, parent, parent, parent, parent, parent, sub-acute, maternal and developmental NOAELS, respectively when compared to the spiroxamine explicitle of the explicitle	Metabolite not found in crop metabolism studies therefore for considered relevant for risk assessment box data are available mid confirm M
Spiroxamine – C cyclohexanol C acetate (M-13 acefate) [Group B]	Primary crops	Not found in a goat at or of laying hen	Rat dev Copmental NOAEL maternal toxicity 40 mg/kg bw/day Rat developmental NOAEL 160 mg/kg bw/day Group B metabolites considered to be covered by available data for M13 which confirm that this metabolite is less toxic than spiroxamine.	Metabolite not found in crop metabolism studies therefore not considered relevant to the risk assessment. Tox data are available and suggest lower toxicity than parent spiroxamine.



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for o mammalian (isk assessment of o
Spiroxamine- diol (M14) [Group B] Spiroxamine- ketone	Orapes (1.570 Tree injuries) sis	Not found in goat, rat or laying hen	No data available.	Metabolife found in plants at >10% TRR but the actual residues
(M15) [Group B]	product) Spring wheat straw (5.5% TRR- hydrolysis product) Spring wheat grain (4.6% SRR- bydrolysis product)	laying hen	Wo data available.	[*] TRR therefore not considered relevant for risk assessment.
Spiroxamine- hydroxy-ketory (M16) [Group B)	Primary crops Grapes (0, % TRR hydrolysis product) Spring wheat straw (1/% TRR hydrolysis product) Spring wheat grain (7.6% VRR- hydrolysis product)	goat sat or of laying hen	Wo data available.	Metabolite found in plants at >10% TRR but the actual residues level is very low therefore not considered
	0.15 mg/kg- hydrotysis product)			relevant for risk assessment. Toxicity would be covered by parent assessment as M13 data confirm this group of metabolites to be less toxic than parent.
	Turnip tops (14.7-37.42%) TRR; 0.17 mg/kg- hydrolysis product)			



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for mammalian fisk assessment
Spiroxamine - hydroxy-N- oxide glucoside (M20) [Group A]	Primary crops <u>Wheat</u> Forage: 0.7% TRR; 0.08 mg/kg Straw: 2.0% TRR; 0.70 mg/kg Grain: not found	Not found in goat, rat or laying hen	No data available.	Metabolite found in primary crops at <10% TRR with the exception of furnin ops but the
	Grapes Not found			actual residues () level is very low () Otherefore this ()
	Banana Not found Rotational crops Swiss chard leaves (2.5% TRR; <0.01 mg/kg)) Wheat straw (2.1-2.6% TRR& 0.03 mg/kg)		No data available.	metabolite is not considered retevant for risk assessment.
	Turnip tops (8.4510.4% TRR: 0.04 mg/kg)			
Spiroxamine - hydroxy-N- oxide malonyl glucoside (M21) [Group A]	Straw; 3.1% (RRR; 2057 mg/k)			Metabolite found in plants at <10% TRR therefore not considered relevant for risk assessment.
	Gran: not found <u>Granes</u> Not found <u>Barana</u> Not found <u>Rotational crops</u> Swiss chard leaves (1.6% PRR: 9.01 mg/kg) Wheat traw (3.4% TRR; 0.06 mg/kg) Turnip tops (1.7, 3.7% PRR; <0.01 mg/kg)			
	Swiths chard leaves (1.6% PRR: 9.01 mg/kg) Wheat straw (9.4% TRR; 0.06 mg/kg)		~ ?	
	<pre></pre>			
	Not found Banana Not found Rotational crops Swiss chard leaves (1.6% PRR; 9.01 mg/kg) Wheat straw (9.4% TRR; 0.06 mg/kg) Turnip (ops (1.7, 3.7% PRR; <0.01 mg/kg)	₽.		



				<b>1</b>
Plant Metabolite	Maximum levels of residue in	Metabolite	Mammalian	Conclusion on
Metadonte	plants	found in animal	toxicity data available?	relevance for or mammalian (Ssk
		studies?	available.	assessment
Spiroxamine-	Primary crops	Not found in	No data available.	Metabolite found
diol-diglycoside	Grapes (14.8% TRR – main	goat, rat or		in grapes at $>10\%$
(M24)	component of metabolite group	laying hen	1	TRR but the
[Group B]	12; 0.50 mg/kg)	Ĉa	L ×	actual residues
	Rotational crops		<u> </u>	tevel is very low Therefore not ↓
	Swiss chard leaves (3.0% TRR;	L.	O ^V K	
	<0.01 mg/kg) Wheat straw (1.9-2.2% TRR;			relevant for risk
	0.020  mg/kg-	Ö ⁷ ~		assessment.
	Turnip roots (7.8% TRR; $<0.01$			Toxicity would be
	mg/kg)		1 N N	covered by parent
	Turnip tops (2.0-4.3% TRR; <0.01 mg/kg)			assessment as ° ° M13 data confign
	<0.01 mg/kg)		A.O «	this group of
	Û ^y ÇY			metabolites to be
		\$~\$ ^{\$}		less toxic than
				parent 7
Spiroxamine -	Primary crops	Found in 190	Acute oral rat $30^{-5}$ $550 < 2000$ $10^{-5}$ $10^{-5}$ $10^{-5}$	Metabolite found
aminodiol (M28)	Wheat ~~ ~~ ~~	80°2.2 - C	$m_{2} = 2000$	in grapes and banana at >10%
[GROUP C]	Not found the second se			TRR therefore
	<u>Orapes</u>	A Q	28-day ratoral 📣	relevant for the
	37.5% TRR: 4.91 mg/kg		28.4/321.4  mg/kg	risk assessment.
	Bana S S		bw/day for	Tox data are
	TRR, 0.173 mg/kg		males/females	available and confirm that
	Peek 37.2% TRR; 2,45 mg/kg	L S	Developmental	toxicity is less
S S	Rotational Crops O' &		rat of al (gavage)	than parent.
, Ôj	Leafy vegetables A	Ô,	N@AEL maternal	Furthermore,
	3.9% JRR; 0 014 mg/0g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	toxicity 150 mg/kg bw/day	M28 was found in
K.Y	<u>Certeals</u>		and	the rat metabolism study
	0.6% IRK: 0.022 mg/kgO		developmental	therefore the
(	4.9% R R · $(4.9005  molton)$		NOAEL 30	toxicity and the
Ø		p or	mg/kg bw/day	associated risk
~Q ^		) þ	It was concluded	assessment is considered to be
Â		, K	that M28 is less	covered by the
L.		57	toxic than the parent,	assessment of
A CONTRACTOR		1	spiroxamine in	parent
· ¥			the rat with a <i>ca</i> .	spiroxamine.
Q ₂			15-fold, 9-fold	
Q [*]			and 2-fold increase in sub-	M28 data used to represent the
j,			acute, maternal	toxicity of all
			and	Group C
	A A		developmental	metabolites.
G. Q			NOAELs,	
			respectively when compared to the	
$\bigcirc$			spiroxamine	
	Peek 7.2% TRR, 0.173 mg/kg Peek 7.2% TRR; 2,45 mg/kg Rotational crops Leafy vegetables 3.9% TRR; 0.024 mg/kg Cerears 0,6% TRR; 0.024 mg/kg 4.9% TRR; 0.024 mg/kg		equivalent	
			studies.	



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for mammalian fisk assessment
Spiroxamine - aminodiol-N- oxide (M29) [GROUP C]	Primary crops Wheat Not found Grapes 0.1% TRR; 0.01 mg/kg Banana Not found Rotational crops Leafy vegetables 5.2% TRR; 0.021 mg/kg Root & tuber vegetables 4.8% TRR; 0.005 mg/kg	Not found in goat, rat or laying hen	M28 which Onfirm that this metabolite is less toxic than spiroxamiae.	Metabolité found in primary crops and rotational crops at <10% FRR therefore not considered relevant for 5sk assessment Doxicite would be covered by parent assessment as M28 data confirm this group of metabolites to be less toxic than parent.
Spiroxamine - desethyl- aminodiol (M30) [GROUP C]	Wheat Not found Grapes 1.1% TRR; 0.14 mg/kg Banama Prop: 0.6% TRR; 0.003 mg/kg Seel: 0.0% TRR; 0.06 mg/kg	goat, rat or hoving hen	Group Considered to be	Metabolite found in primary crops al \$10% TRR therefore not considered relevant for risk assessment. Toxicity would be covered by parent assessment as M28 data confirm this group of metabolites to be less toxic than parent.
Spiroxamine - despropyl- aminodiol (M31) [GROUP C] C C C C C C C C C C C C C C C C C C	Wheat Not bound S <u>Grapes</u> 1.2% TRR; 0, 10 mg/kg <u>Bañana</u> Pup: 0.6% TRR (0.003 mg/kg Peel: 0.0% TRB; 0.06 mg/kg	Not found in goat, rat or any ing then	No data available. Group C metabolites considered to be covered by available data for M28 which confirm that this metabolite is less toxic than spiroxamine.	Metabolite found in primary crops and rotational crops at <10% TRR therefore not considered relevant for risk assessment. Toxicity would be covered by parent assessment as M28 data confirm this group of metabolites to be less toxic than parent.



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for mammalian cisk assessment
Spiroxamine- cyclohexanol- glucopyranosyl- pentose (M33) [GROUP B]	Primary crops Grapes (19.1% TRR; 0.650 mg/kg) Primary crops Grapes (3.5% FRR; 0, 130 mg/kg)	Not found in goat, rat or laying hen	No data available.	Metabolite found in plants at >10% TRR but the actual residues level is very low therefore not considered relevant for risk assessment. Toxicity would be covered by parent assessment as M13 data confirm this group ot metabolite to be less toxic than parent
Spiroxamine- cyclohexanol- glucopyranosyl- glucopyranosyl- pentose (M34) [GROUP B]		laying hén		Metabolite found in plants at <10% TRR therefore not considered relevant for risk assessment.
Spiroxamine docosanoic acid ester (M35) [GROUP B]	Frimar scrops	Notification of the second sec	No data on M35. Group B metabolites considered to be covered by available data for M13 which confirm that this metabolite is less toxic than spiroxamine.	Metabolite found in grapes at >10% TRR. Available data with M13 used to cover this Group B metabolite and confirms that the toxicity is lower than that of the parent. Thus, the risk to M35 is considered to be covered by the assessment for parent.



Plant Metabolite	Maximum levels of residue in plants	Metabolite found in animal studies?	Mammalian toxicity data available?	Conclusion on relevance for mammalian fisk assessment
Spiroxamine tetracosanoic acid ester (M36) [GROUP B]	Primary crops <u>Wheat</u> Not found <u>Grapes</u> 4.2% TRR; 0.14 mg/kg <u>Banana</u> Not found	Not found in goat, rat or laying hen	metabolite is less	Metabolite found in primary crops at < 10% TRR therefore not considered relevant for risk assessment Toxicity would be Covered by parent assessment as
Spiroxamine- cyclohexenol (M37) [GROUP B]	Primary crops Grapes (3.2% TRB 0.11 mg/kg- hydrolysis produce)		toxie than spiroxamiae.	M13 data confirm this group of metabotites to be less toxic than parent. Netabolite found in plants at <10% TRR therefore not considered relevant for risk assessment.
Spiroxamine – N-formyl- despropyl (M38) [GROUP A]	Primary crops Not found Rotational crops Cereals 7.6% TRR: 0.243 mg/kg	Not found in Goat, fat or laying hen		Metabolite found in rotational crops only and at <10% TRR therefore not considered relevant for risk assessment.
Spiroxamine – hydroxy despropyl glycoside (M39) [GROUP A]	Rotational crops Leafy-vegetables 2.8% TRR 0.019 mg/kg 5.9% FRR; 0.252 mg/kg <u>Root &amp; tuber vegetables</u> 21.3% TRR; 0.063 mg/kg Primacy crops Not found Rotational crops	Not found in goat, râ Sr laying hen	No data available.	Metabolite found in rotational crops at >10% TRR in root and tuber vegetables but the actual residues level is very low therefore not considered relevant for risk assessment.
Spirøxamine – hydroxy glycoside (M40) [GROUP A]	Primary crops Not found Rotational crops Leafy Ogetables 4.7% TRR; 6040 mg/kg Cereals 29% TRR; 0.088 mg/kg Root & tuber vegetables 7.6% TRR; 0.068 mg/kg	Not found in goat, rat or laying hen	No data available.	Metabolite found in rotational crops only and at <10% TRR therefore not considered relevant for risk assessment.



[	Γ	1	1	
Plant	Maximum levels of residue in	Metabolite	Mammalian	Conclusion on
Metabolite	plants	found in	toxicity data	relevance for $\mathcal{Q}^\circ$
		animal	available?	mammalian <b>fis</b> k
~		studies?		assessment Y
Spiroxamine –	Primary crops	Not found in	No data available.	Metabolite foun
hydroxy- desethyl	Not found	goat, rat or laying hen	0	in rotational crops at >10% TRR in
glycoside	Rotational crops	idying nen	L.	root and tuber
(M42)	Leafy vegetables	Ó		vegetables but the
[GROUP A]	1.6% TRR; 0.005 mg/kg	- Vr	Q.	zactual residues
[]	Cereals			leveois very bow
	6.5% TRR; 0.129 mg/kg	4	Q' 6° A	therefore for O
	Root & tuber vegetables			ornsidered relevant for risk
	14.6% TRR; 0.044 mg/kg	6,5		assessment.
Spiroxamine –	Primary crops	Not found in	No dat@available.	Metabolite found °
desethyl acid	Not found	Not found in goat, cat or		in rotational crops
glycoside	$\mathcal{L}$	laying hen		only and at \$0%
(M43)	Rotational crops			TRON there Ore not
[GROUP A]	Leafy vegetables			considered
. ,	1.8% TRR; 0.015 mg/kg		A c c c c c c c c c c c c c c c c c c c	Felevant for risk assessment.
	Cereals 3.4% TRR; 0.688 mg/sg	S. O	A & ~	
			Ŭ [¥] ĝ	0 [°]
	Root & tuber vegetables 5.7% TRB; 0.05 mg/kg			þ
Spiroxamine –		Not found in	No data available.	Metabolite found
acid glycoside	Not found S	goat, fat or		in rotational crops
(M44)	Retational crops	laying hen	0 *	at >10% TRR in root and tuber
[GROUP A]	Leafy vegetables			vegetables but the
			Ç ^o V	actual residues
^o	Cépéals			level is very low
, Q	<u>Cepteals</u> 6.4% TRR; 0.120 mg/kg	r a	. ~	therefore not
	Root & tuber vegetaktes	\$ \$		considered
	11,6% TRR 0.027 mg/kg ~			relevant for risk assessment.
Sainomonius	Primaty crop		No. doto corr 11-1-1	
Spiroxamine – despropyl acid	Primaty crops	Not found in	No data available.	Metabolite found in rotational crops
glycoside	Inorderind ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	laving hen		only and at <10%
(M45)	Rotational crops 2			TRR therefore not
[GROUPA	Leafy vegetables			considered
	5.5% TRR; 0019 mg/kg	DA .		relevant for risk
	Primaty crop Not bund Rotational crops Leafy vegetables 5.5% TRR; 0.019 mg/kg Ceseals 3.7% TRR; 0.145 mg/kg Root & tuber vegetables 9.1% TRR; 0.002 mg/kg	*		assessment.
_@	Root & tuber yegetables			
	9.1% TRK 4.002 mg/kg 🔧			

M01 and M02 were found in the rotational crop studies at >10% TRR however the absolute residue values were very low therefore these metabolites are not considered to be relevant to the mammalian risk assessment. M03 was found in wheat at >10% TRR. Toxicology data for M03 demonstrate that this metabolite is of

M03 was found in wheat at >10% TRR. Toxicology data for M03 demonstrate that this metabolite is of similar of lower toxicity than spiroxamine. Furthermore, this metabolite was found in the rat metabolism study. W is therefore considered that the risk assessment of parent spiroxamine covers the risk from exposure to this metabolite.



M28 was found in grapes and banana at >10% TRR. Toxicology data are available for M28 and confirm that this metabolite is 15-fold, 9-fold and 2-fold less toxic in sub-acute, maternal and developmental parameters than spiroxamine. Furthermore, this metabolite was found in the rat metabolism and y. Therefore the risk from exposure to this metabolite is considered to be covered by the assessment for parent.

M35 was also found in grapes at >10%TRR. The toxicology data generated for M28 are considered to also cover this metabolite and confirm that the metabolite is less toxic that parent. Thus the risk from exposure to this plant metabolite is considered to be covered by the assessment for parent.

M04, M05, M09, M14, M15, M16, M20, M21, M24, M29, M30, M34, M33, M34, M36, M37, M38, M39, M40, M42, M43, M44 and M45 were found in the crop metabolism studies at either <100 TRB or very low absolute amounts and were therefore not considered to be relevant for risk assessment.

Specific dietary risk assessment for these plant metabolites of piroxamine is therefore not considered to be necessary.

## Dietary risk assessment for mammals

## Exposure

In order to present risk assessments which fully cover the range of options available in the GAP, the following six exposure regimes have been considered here with dietary risk assessments presented for each regime:

- 1 x 200 g a.s./ha BBCH 13-19
- 1 x 300 g a.s./ha BBCH 10-19
- 1 x 300 g a.s./ha BBCH 53 85
- 2 x 300 g a.s./ka BBC 7 53 85 (10-day interval)
- 1 x 200 g a cha BBCH 12 19 and 1 x 390 g as /ha BBCH 20 (53) 85 (10-day interval)
- 1 x 300 g s./ha BBCH 3 19 and 1 x 300 g a.s./ha BBCH 20 (529 85 (10-day interval)

## Isomers

The risk assessments for birds & mammals involves potential chronic exposure of these organisms to residues in plants therefore it may be necessary to apply an uncertainty factor (UF) to the chronic avian and mammalian risk assessments. The acutevisk assessment need not have an UF applied as exposure in this scenario is immediate. However, the chronic risk assessment considers exposure over a prolonged period therefore potential changes in isomeric ratio needs to be considered. For the bird and mammal risk assessments the same approach taken in the residues section for the consumer risk assessment, with respect to isomers, has been followed. Based on the current residues data set for spiroxamine, there are no indications of a significant charge in some ratios therefore no additional factor need be applied to the risk assessments below (*i.e.* an UF of 1.0 has been used).

## Risk assessment

The visk assessments have been conducted in accordance with the EFSA (2009) Bird & Mammal Guidance document. Each assessment starts with a screening step followed by a Tier I assessment if required. Finally, refined risk assessments have been presented where required.

The acute faily dietary (Se' (PDD) is calculated by multiplying the shortcut value (SV) based on the 90th percentile residues by the application rate in kg a.s./ha.

## DDD = application rate (kg/a.s/ha) x SV90

The long term 'daily dietary dose' (DDD) is calculated by multiplying the SV based on the mean residues by the application rate in kg a.s./ha and (only for the long-term risk assessment) a time weighted average residue exposure ( $f_{twa}$ ). The  $f_{twa}$  based upon a default DT₅₀ of 10 days is 0.53, as given in EFSA guidance (2009).



 $DDD_{LT}$  = application rate (kg a.s./ha) x SV_m x  $f_{twa}$ 

Acute risk is assessed by comparing the relevant daily dietary dose (DDD) values with the appropriate  $\sum_{A=0}^{\infty} LD_{50}$  endpoint to give an acute Toxicity: Exposure Ratio (TER_A):

$$TER_A = \frac{LD_{50} \text{ (mg/kg bw)}}{\text{DDD}}$$

TERA values which exceed a trigger value of 10 indicate an acceptable acute risk.

Derivation of the short-term toxicity exposure ratio is no longer a requirement according to the F Guidance Document (2009) so a short-term risk assessment has not been presented.

Long-term risk is assessed by comparing the long form DDD values with the worst case NOAEL from the reproduction studies, expressed as daily dietary dose, to give a long-term toxicity exposure ratio  $(TER_{LT})$ :

$$TER_{LT} = \frac{NOAEL \text{ (mg/kg bw/day)}}{\text{DDD} \text{ (mg/kg bw/day)}}$$

TER_{LT} values which exceed a trigger alue of 5 indicate acceptable chropic risk

## <u>1 x 200 g a.s./ha BBCH 13 - 19</u>

The screening step assessments for the acute and reproductive risks are presented below.

6

Table CP 10.1.2-3 Screening step assessment for acute and long term/reproductive risk to mammals for the proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 19)

	P	<u> </u>	<u>, 9</u>	
Intended use Grapes (BBCH 13	99) 5 ¹⁷ 0			
Active substance/product of Spiroxamine / Spiro	xamine EC \$00		Ø	
Application rate $0$ a.s. (a) $1 \times 20^{\circ}$	Ś 🔊		V	
Acute toxicity (mg a.9./kg bw) 460				
	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>			
TER criterson		MAF ₉₀	DDD ₉₀	TERA
	O' ô		(mg a.s./kg bw/d)	
Vinevard Savall herbivorous mampal	Å¥364 Å	1.0	27.3	16.9
Reprod. toxicity (mg a.s./kg 210 bw/d) TER criterion Crop scenario	Z, Contraction of the second s			
TER criterion				
IER criterion	Ŷ.			
Crop scenario	SV _m	$MAF_m \ \times$	$DDD_m$	TER _{LT}
		TWA	(mg a.s./kg bw/d)	
Vineyard Small herbivorous mammal	72.3	1.0 x 0.53	7.66	2.74

SV: shortcut value: MAF: miltiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER toxicity exposure ratio. TER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 - 19) the acute risks to manimals from dictary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 10) but potential reproductive risks have been identified (TER <5). A Tier I reproductive risk assessment has therefore been conducted and presented below.



Table CP 10.1.2-4	Tier I assessment for reproductive risk to mammals for the proposed use of
Spiroxamine EC 500 in	grapes (BBCH 13 - 19)

	m grupes	
Intended use		Grapes (BBCH 13 - 19) Spiroxamine / Spiroxamine EC 500
Active substance/product		Spiroxamine / Spiroxamine EC 500
Application rate (g a.	s./ha)	Spiroxamine / Spiroxamine EC 500 $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$
Reprod. toxicity (mg a.s./kg bw/d)		
TER criterion		
Crop scenario Growth stage	Generic fo	bcal species $SV_m$ $MOF_m \times DDD_k$ $TER_{LT}$ $(mg^2 a.s./kg^{Ow}/d)$
Vineyard BBCH 10-19	Large her "lagomor	
Vineyard BBCH 10-19	"shrew"	ectivorous matrimal $4.2$ $4.2$ $1.0 \times 0.53$ $0.443$ $47.2$ $0.443$
Vineyard BBCH 10-19	Small her "vole"	bivorous hammal 43.4 19 x 0.50 4.60 5 4.57
Vineyard BBCH 10-19	Small om "mouse"	nivorðus mæmmal $\begin{array}{c} 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$

SV: shortcut value; MAF: multiple application factor TWA; time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio ER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine EC 500 on grapes  $1 \times 200$  g a.s./ha a BBCH 13 - 19) the reproductive risks to mamma from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq 5$ ) for all of the relevant scharios with the exception of the small herbivorous mammal "vole" scenario. A refined risk assessment for this individual scenario has been presented below.

# Refinement of the spall herbivorous mammal "vole" scenario

The relevance of the wole in agricultural areas has frequently been discussed and its use in risk assessment questioned. In the literature paper  $M_{\odot}$  (6622,01-1  $\oplus$  is stated that the preferred primary habitat of common voles is steppe, which comprises grassland, pasture and meadow with mixed grassland, herbs and weeds that provide appropriate cover to avoid predation. It is also stated that although the common vole is indicated as the representative generic focal species in screening and tier 1 risk assessments under EFSA (2009), population dynamics and habitat preferences indicate that in the period between population outbreaks the likelthood of significant numbers of common voles being found in secondary habitats is low. Thus, it is considered that the common vole is not necessarily a good choice of focal species to represent small manmals in vineyards.

It is therefore proposed to use the wood prouse as a more representantive focal species to represent small mammals in vineyards. Study <u>M2291785-01-1</u> was a generic monitoring study of mammals in vineyards in which a radie tracking program was carried out in a typical wine growing region of France during Spring and Sommer Trapping, radie-tracking and visual observations together with analyses of stomach content were carried out for the wood house. The study showed that the wood mouse was far more prevalent in vineyards and the surrounding areas when compared to other small mammals such as the vole or shrew. It is therefore considered to be a highly relevant small mammal focal species, far more so that the vole which was seen in very low numbers. The study also found that, whilst the wood mouse did spend time within the vineyards, they found the surrounding areas more attractive. A 90th percentile PT value for the wood mouse of 0.41 was determined in this study and has been applied to the refined risk assessment. The study also analysed stomach contents which confirmed that the diet was almost exclusively plant matter with seeds being the primary component. The study is considered to support



the default EFSA (2009) diet for omnivorous mammals of 25% weeds, 50% weed seeds and 25% ground arthropods therefore this EFSA (2009) diet has been considered in the refined risk assessment below.

Study M-405593-01-1 is also a generic field monitoring study of mammals in vineyards but this time in Spain. The study can be used as supporting evidence that the wood mouse is a suitable focal species to represet small mammals in vineyards. A 90th percentile PT value of 0.17 was determined in this study but the refined risk assessment below has used the more conservative PT value of 0.41. Study M-237095 provides further supporting data for the presence of the wood mouse in vine and in Germany.

Table CP 10.1.2-5 Refinement of the small herbivorous mammal vale scenario (BBCH 1019) for the proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 19) - Wood mouse Ŵ

App rate	Food type	FIR/bw a)	RUD b)		○	Total DDB	TERE
	Weeds	0.0667	28.7	9.0 0.53	<b>0.0499</b>	4	
1 x 0.200	Weed seeds	0.133	40.2	1.0 0.53	£\$*39	0.202 0	
kg a.s./ha	Invertebrates (ground dwelling)	0.0667		¢170 9.53			

^{a)} Values calculated using default dietary data from EFSA (2009)

^{b)} Default RUD values from EFSA (2009) Appendix F

c) Default EFSA values

^{e)} Deposition value based on 40% crop interception (Appendix A: FESA, 2009) ^{f)} Sum of DDD values for individual dit compositor

¹⁾ Sum of DDD values for interstatial discomponents, ²⁾ TER calculated based on reproductive endpoint of 2 00 mg a 5/kg bwgaay

Using the refined parameters discussed above, the reproductive risks to small mammals following application of Spiro amine EC 500 to grapes at Dx 2005 a.s. that at BBCH 10- 19 are considered to be C. S. acceptable (TER 🔊).  $\bigcirc$ 

Alternative refinement of the small herbivorous mammal "vole" scenario

As an alternative refinement the vole has been used as the focal species. This is the generic focal species from EFSA (2009) and atthough it is not considered to be as prevalent in vineyards as the wood mouse, its presence in vineyards has been confirmed by monitoring study M-291785-01-1, as discussed above. A vole diet of 76.6% grass & cereals, 110% non-grass herbs and 11.5% weed seeds has been used in the refined risk assessment below. This diet has been taken from study M-439777-01-1 which reports the outcome of an analogis of sole dieds from different habitats. The evidence suggests that voles do not feed exclusively on grasses and that other plant material such as dicots and seeds also made up part of the diet.

Several residues declinestudies are available in which the residues of spiroxamine have been determined at frequent intervals following application of spiroxamine containing formulations to cereals. Report M-759383-01-1 summarises the kinetic analyses of all 24 available trials which have been conducted as part of five separate studies (<u>M-301585-01, M-574326-01-1</u>, <u>M-578235-01-1</u>, <u>M-628347-02-1</u> and M-684671-01 Covering Wheat and barley plants in both Northern and Southern Europe. The individual validity of each study has been discussed in the evaluation section after each study summary but all of the trials used in this assessment were considered to be valid and suitable for use in the derivation of an overall crop dissipation half-life (DT₅₀) value. It was found that spiroxamine residues dissipated relatively quickly on cereals with an overall geomean  $DT_{50}$  of 3.03 days determined. A geomean DF₅₀ value of 2.74 days was determined for Northern EU and a DT₅₀ of 3.83 days for Southern EU. The overall geomean  $DT_{50}$  of 3.03 days has been applied to the refined risk assessment below and is considered to be suitably representative of the decline of spiroxamine residues throughout Europe. Note that the refined  $DT_{50}$  has only been applied to the grass/cereals component of the diet as this is the matrix upon which the residues were determined. The DT₅₀ of 3.03 days has been used in place of the default value of 10 days to refine the  $f_{twa}$  value from 0.53 to 0.206.



Table CP 10.1.2-6Refinement of the small herbivorous mammal vole scenario (BBCH 10-19) for<br/>the proposed use of Spiroxamine EC 500 in grapes (BBCH 13 - 19) – Vole

App rate	Food type	FIR/bw a)	RUD b)	MAF	f _{twa}	PT d)	Dep. factor	DDD [mg a.s. (Cg b. w. /d]	Total DDD ¹ COER g)	
1 x 0.200	Grass/ cereals	0.558	54.2	1.0	0.206 °)			0.748		þ
kg a.s./ha	Non-grass herbs	0.0866	28.7	1.0	0.50	1.0	0.6 °)	0.158	1.12 7 18.8	,O
	Weed seeds	0.0837	40.2	1.0	Q.53			0.214		Ő

^{a)} Values calculated using focal species dietary data

^{b)} Default RUD values from EFSA (2009) Appendix F

^{c)} A  $f_{twa}$  value calculated using a DT₅₀ value of 3.03 days  $\swarrow$ 

d) Default PT of 1.0 used

e) Deposition value based on 40% crop interception (Appendix DEFSA

^{f)} Sum of DDD values for individual diet components

g) TER calculated based on reproductive endpoint of 21.0 mga.s./kg@w/day

Using the refined parameters discussed above, the reproductive risks to small herbivorous materials, following application of Spiroxamine EC 500 to stapes at 1 x 200 g as /ha a BBCH 13 -99, are considered to be acceptable (TER  $\geq 59$ .

## <u>1 x 300 g a.s./ha BBCH 13 - 19</u>

The screening step assessments for the acute and reproductive risks are presented below.

Table CP 10.1.2-7 Seveening step assessment for acute and long-term/reproductive risk to mammals for the proposed use of Spiroxamine EG 500 in grapes (BBC 10 13 - 19)

			N N	
Intended use Grapes (BBCH 13-5	(9) S	Ŭ 0'	4	
Active substance/product Spiroxamine / Spirox	ajnine EC 500		1	
Application rates (g a.s. tha) O 1 × 300 &		S'a,		
Acute toxicity (mg a.s./kg bw) 469	(Construction of the second se			
	5 ⁴ 2 ⁵ .			
Crop scenario Ondicator species	SV&	MAF ₉₀	DDD ₉₀	TERA
TER criterion			(mg a.s./kg bw/d)	
Vinevard Small Gerbivorous manimal	1201	1.0	40.9	11.2
Reprod. topicity (mg a.s. & g bw/d)				
Crop scenario	$SV_m$	$MAF_m  \times $	DDD _m	TER _{LT}
		TWA	(mg/kg bw/d)	
Vineyard Smatcherbiterous mammal	72.3	1.0 x 0.53	11.5	1.83

SV: shortcut value, MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: to the structure rando. TER values shown in bold fall below the relevant trigger

For the proposed use of spiroxamine EC 500 on grapes (1 x 300 g a.s./ha at BBCH 13 - 19) the acute risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 10) but potential reproductive risks have been identified (TER <5). A Tier I reproductive risk assessment has therefore been conducted and presented below.



## Table CP 10.1.2-8Tier I assessment for reproductive risk to mammals for the proposed use ofSpiroxamine EC 500 in grapes (BBCH 13 - 19)

Spiroxannine EC 500	in grapes		ž s
Intended use		Grapes (BBCH 13 - 19)	
Active substance/prod	duct	Grapes (BBCH 13 - 19) Spiroxamine / Spiroxamine EC 500	6)
Application rate (g a.	s./ha)		N. A.
Reprod. toxicity (mg a.s./kg bw/d)			7 7 7
TER criterion			Ő
Crop scenario Growth stage	Generic fo	$\begin{array}{ccc} \hline \label{eq:cocal} \mbox{species} & \begin{tabular}{c} & \end{tabular} & tabular$	
Vineyard BBCH 10-19	Large her "lagomor	rbivorous mammal $\begin{pmatrix} 6.75 \\ ph'' \end{pmatrix}$ $\begin{pmatrix} 5.75 \\ ph$	( °
Vineyard BBCH 10-19	Small inse "shrew"	ectivorous mathemat $4.2$ $10 \times 0.53$ $0.668$ $31.5$	X
Vineyard BBCH 10-19	Small her "vole"	rbivorous mammal 43.4 7 1.6 x 0.5 t 6.90 7 3.04	
Vineyard BBCH 10-19	Small om "mouse"	miyorðus mæmmal 3 4,7 5 1.0 x 0.53 9747 28.1	

SV: shortcut value; MAF: multiple application factor; TWA; time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio TER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine EC 500 on grapes  $1 \times 200$  g a.s./ha at BBCH 13 - 19) the reproductive risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq 5$ ) for all of the relevant scenarios with the exception of the small herbivorous mammal "vole" scenario. A refined risk assessment for this individual scenario has been presented below.

Refinement of the suppli herbivorous mammal "vole" scenario

For the first refined risk assessment the wood nouse has been used as a focal species. As discussed in the previous section, this species is considered to be a suitable representative of small mammals in and around vineyards. As presented above, a refined PP value of 0.4. This been applied to the risk assessment below.

Table CP 10.1.29 Refinement of the small herbivorous mammal vole scenario (BBCH 10-19) for the proposed use of Spiroxamine EC 500 in graps (BBCH 13 - 19) – Wood mouse

App Fate	Food type				f _{twa} c)	PT ^{d)}	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
V	Weeds O	0.0667	28.7	$\mathcal{P}_{.0}$	0.53			0.0749		
1 x 0.300	Weed seeds	@133	¥40.2 ¢	<b>♀</b> ′1.0	0.53	0.41	0 ( 0)	0.209	0.004	(0.1
kg a.s./ha	Invertebrates &		<u> </u>	1.0	0.53	0.41	0.6 ^{e)}	0.0196	0.304	69.1

^{a)} Values calculated using defaul dietary data from EFSA (2009)

^{b)} Default RUD values from EFSA (2009) Appendix F

° Default ECSA values

d) Refined 90th percentile PT value from focal species study

e) Deposition value based on 40% crop interception (Appendix A: EFSA, 2009)

^{f)} Sum of DDD values for individual diet components

^{g)} TER calculated based on reproductive endpoint of 21.0 mg a.s./kg bw/day



Using the refined parameters discussed above, the reproductive risks to small mammals following application of Spiroxamine EC 500 to grapes at 1 x 300 g a.s./ha at BBCH 10 - 19 are considered to be acceptable (TER  $\geq$ 5).

Alternative refinement of the small herbivorous mammal "vole" scenario

As an alternative refinement the vole has been used as the focal species. This is the generic focal species from EFSA (2009) and, although it is not considered to be as prevalent in vineyards as the wood wouse, its presence in vineyards has been confirmed by a monitoring study, as already discussed. A sole digty of 76.6% grass & cereals, 11.9% non-grass herbs and 11, % weed seeds has been used in the refused risk assessment below. As presented before, a geomean DT₅₀ of 3, 12 days, from a suite of residues decline trials on cereals, has been applied to refine the two value from 0.53 to 0.206 on the grass @ereal part of the diet in the refined risk assessment below

Refinement of the small herbivorous mammak vole scenario (BBCH 10-19) for Table CP 10.1.2-10 the proposed use of Spiroxamine EC 500 in grapes (BBCH 13×19) - Nole

e proposeu e	ise of Spiroza		<b>و و 000</b>					j iĝi jegod		
App rate	Food type	FIR/bw a)	RUD	MAF	Jiwa 2	1 🕺			, Total DDD ^{f)}	TER g)
1 x 0.300	Grass/ cereals	0.558	54.2	× 1.0 ×	0.200	2	Nov.	A.12		
kg a.s./ha	Non-grass herbs	0.0866	387 ×	<i>6</i> 0	\$0.53 ¢		$\leq$	0.220	1.68	12.5
	Weed seeds	6.0837 _{(k}	40.2	§ 1.0	0.53	L.		0,321	0	

a) Values calculated using focal species dietary data

^{b)} Default RUD values from EFSA (2009) Appendix FS

^{c)} A  $f_{twa}$  value calculated using a DT  $\phi$  walue  $\phi$  f 3.03  $\phi$  ys 2

d) Default PT of 1.0 used Ŵ

0⁸ 2009) e) Deposition value based on 40% crop interception (Appendix A: FSA, ¹⁾ Sum of DDD values for ind value dep components

^{g)} TER calculated based on reproductive endpoint of 21.0 mg a x./kg based av

Using the refined parameter discussed above, the reproductive risks to small herbivorous mammals, following application of Spiroxannine EC 500 to grapes at 1 x 300 g a.s./ha at BBCH 10 - 19, are <u>I x 300 g a.s./ha BBCH 53 285</u> The screening step assessments for the acute and reproductive risks are presented below. considered to be acceptable (TER  $\geq 5$ )



## Table CP 10.1.2-11Screening step assessment for acute and long-term/reproductive risk to mammalsfor the proposed use of Spiroxamine EC 500 in grapes (BBCH 53 - 85)

	-		ð,
Intended use		Grapes (BBCH 53 - 85)	Ĩ,
Active substance/proc	duct	Grapes (BBCH 53 - 85) Spiroxamine / Spiroxamine EC 500	
Application rate (g a.s	s./ha)		
Acute toxicity (mg a.s	s./kg bw)	460	
TER criterion			Ľ
Crop scenario	Indicator	species SV MAP DDD ₉₀ TER ( (mg a s./kg btv/d)	»″
Vineyard	Small her	bivorous mammal $3136.4$ $37.0$ $40.9$ $311.2$	
Reprod. toxicity (mg a.s./kg bw/d)			
TER criterion			
Crop scenario	Indicator	$\mathcal{O}^{\vee} \mathcal{O}^{\vee} \mathcal$	
Vineyard	Small her	bivorous mammal 2 72 0 1.0 x 9.53 0.5 7 1.83	

SV: shortcut value; MAF: multiple application factor; TWA: time-weighted average factor; IDD: daily dietary dose; TER: toxicity exposure ratio. TER: values shown in bol fall below the plevant frigger

For the proposed use of Spiroxamine EC 500 on grapes (1  $\times$  300 g a.s./ha at BBCH 53 - 85) the acute risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER  $\ge$ 10) but potential reproductive risks have been identified (TER  $\le$ 5). A Tier I oproductive risk assessment has therefore been conducted and presented below.

Table CP 10.1.202 Tier J assessment for reproductive risk to mammals for the proposed use of Spiroxamine EC 500 in grapes (BBCH 53 - 85)

(à	G. g. pes (Decencer ac)	- A			
Intended use	Grapes BBCH 53 - 8	\$ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ô ^y		
Active substance/pro		amine EC 500	X		
Application rate (g a?	s./ha)	O ^x Or	-		
Reprod. toxicity (mg a.s./kg byod) TER criterton					
Crop scenario	Generic focal species 🔏 🔍	ŠV _m	$MAF_m \ \times$	DDD _m	TER _{LT}
Growth stage			TWA	(mg a.s./kg bw/d)	
Vineyard BBCH >20	Small insectivoro mammal	1.9	1.0 x 0.53	0.302	69.5
Vineyard BBCH >46	Large herbivorous mammal "lagomorph"	3.3	1.0 x 0.53	0.525	40.0
Vineyard BBCH >40 Vineyard BBCH >40 Vineyard BBCH >40	Small herbivorous mammal	21.7	1.0 x 0.53	3.45	6.09
Vineyard BBCH©40	Small omnivorous mammal "mouse"	2.3	1.0 x 0.53	0.366	57.4

SV: shortcut value; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio



For the proposed use of Spiroxamine EC 500 on grapes (1 x 300 g a.s./ha at BBCH 53 - 85) the reproductive risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER  $\geq$ 5) for all of the relevant scenarios. No further risk assessment is necessary for this proposed use of Spiroxamine EC 500.

## 2 x 300 g a.s./ha BBCH 53 - 85

The screening step assessments for the acute and reproductive risks are presented below

 Table CP 10.1.2-13
 Screening step assessment for active and long-term/reproductive risk to mampals for the proposed use of Spiroxamine EC 500 in grapes (BBCH 53 - 85)

			^V
Intended use		Grapes (BBCH 53 - 85)	
Active substance/pro	duct	Spiroxamine / Spiroxamine EC 500	
Application rate (g a.	s./ha)	$2 \times 300$ $0^{\vee}$ $0^{\vee}$ $2^{\vee}$ $2^{\vee}$ $2^{\vee}$ $2^{\vee}$	4
Acute toxicity (mg a.			
TER criterion			
Crop scenario	Indicator	nig a.s./kgbw/d	TERA
Vineyard	Small her	bioorous mammal 150.4 0 1.25 33.2 0 4	8.65
Reprod. toxicity (mg a.s./kg bw/d) TER criterion			
Crop scenario	Indicator	$\frac{1}{2} \sum_{n=1}^{\infty} \sum_{n=1}^$	TER _{LT}
Vineyard	Small her	bivorous mammal $\sqrt{22.3}$ $\sqrt{5} \times 0.53$ 17.2	1.22

SV: shortcut value; MAF: multiple application factor, TWA, fime-weighted average factor; DDD: daily dietary dose; TER: toxicity exposure ratio. TER values shown in bod fall below the relevant trigger

For the proposed use of Spirovamine EC 500 on grapes  $(2 \times 300)$  g a.s./ha at BBCH 53 - 85) potential acute and reproductive risks to manmals from dietary exposure to spiroxamine have been identified (TER <5). A Tier facute and reproductive risk assessment has therefore been conducted and presented below.

## Table CP 10.12-14 Ticol assessment for acute risk to mammals for the proposed use of Spiroxamine EC 500 in grapes (BBCH 59 - 85)

Intendeduse		<b>\$</b> \$7)						
Active substance/product Spuroxamine / Spuroxamine EC 500								
	Application rate $g_2$ a.s./ha) $\sqrt{2} \times 300^{\circ}$							
Acute toxicityQmg as	kg by 460 ⁴							
TED aritarian	V VI V	-						
Crop scenario	Deneric Bocal species	$SV_{90}$	MAF ₉₀	DDD ₉₀	TERA			
Growth stage				(mg a.s./kg bw/d)				
Growth stage	Small insectivorous mammal "shrew"	5.4	1.3	2.11	218			
Vineyard BBCH >40	Large herbivorous mammal "lagomorph"	8.1	1.3	3.16	146			



Intended use		Grapes (BBCH 53 - 8	Grapes (BBCH 53 - 85)					
Active substance/product Spiroxamine / Spirox			amine EC 500	)				
Application rate (g a.	s./ha)	$2 \times 300$		<b>~</b> .				
Acute toxicity (mg a.	s./kg bw)	460		S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
TER criterion		10						
Crop scenario Growth stage	Generic fo	ocal species	SV ₉₀	MAF ₉₀ DDD ₉₀ (mg a.s./kg	Jw/d)			
Vineyard BBCH >40	Small her "vole"	bivorous mammal	40.9	1.34 16.0				
Vineyard BBCH >40	Small om "mouse"	nivorous mammal	5.2	X.3 ~ 2.03	× 227 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

SV: shortcut value; MAF: multiple application factor; DDD: daily dietary dose, TER: toxicity for exposure ratio,

For the proposed use of Spiroxamine EC 500 on grapes (2 x 500 g a s) ha a BBCH 53 - 85) the ocute risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER 50) for all of the relevant scenarios.

Table CP 10.1.2-15	Tier I assessment	for reprod	uctive risk	to mamma	ls for th	e proposed use of
Spiroxamine EC 500 in	grapes (BBCH 53	- 85) 🦉 🛛	Î L	Q.	O* 4	8 4

Intended use	Grades (BBCH 53 55) @ Grades (BBCH 53 55) @	
Active substance/proc	duct Spiroxamme / Spiroxamme EC 500	
Application rate (g a.s	$s_{\mu}$ $(2 \times 30)$ $($	
Reprod. toxicity (mg a.s./kg bw/d)		
Crop scenario	Generic focal species $SV_{m}^{2}$ $MAE_{m}^{2} \times DDD_{m}$	TER _{LT}
Growth stage	(mg a.s./kg bw/d)	
Vineyard BBCH >20	Small insectiverous manimal 1.9 1.5 x 0.53 0.453	46.3
Vineyard BBCH >40	Lage herby orous mammal 3.3 5 1.5 x 0.53 0.787	26.7
Vineyard A BBCH > 40	Small herbitorous mammal     2107     1.5 x 0.53     5.18	4.06
Vinevard BBC VI >40	Small omnivorous macomal 2.3 1.5 x 0.53 0.549	38.3

SV: shortcut value; MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure ratio. TER values shown in bold fall below the relevant trigger

For the proposed use of Spiroxamine  $\mathbb{PC}$  500 on grapes (2 x 300 g a.s./ha at BBCH 53 - 85) the reproductive risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER  $\gtrsim$ 5) for all of the relevant scenarios with the exception of the small herbivorous mammal "vole" scenario. A contract result assessment for this individual scenario has been presented below.

Refinement of the small herbivorous mammal "vole" scenario

For the first refined risk assessment the wood mouse has been used as a focal species. As discussed in the previous section, this species is considered to be a suitable representative of small mammals in and



around vineyards. As presented above, a refined PT value of 0.41 has been applied to the risk assessment below.

Table CP 10.1.2-16 Refinement of the small herbivorous mammal vole scenario (BBCH >40) for proposed use of Spiroxamine EC 500 in grapes (BBCH 53 - 85) - Wood mouse Ď 0

								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Å	
App rate	Food type	FIR/bw a)	RUD b)	MAF c)	f _{twa} c)	PT ^{d)}	Dep. factor	100ĎD [mg a.s./kg b.w./d]	Total BUD ⁽⁾	JER ^g
	Weeds	0.0667	28.7	1.5	0.53		Q	0.0562	2 3	
2 x 0.300	Weed seeds	0.133	40.2	1.5	0.53	0.41	6 1 3 e)	0.157		92.1 @
kg a.s./ha	Invertebrates (ground dwelling)	0.0667	7.5	1.5	0.53	0.41		0.0147		<u> </u>
^{a)} Values calcu ^{b)} Default RUI	lated using defa D values from EF	ult dietary d FSA (2009)	lata from Append	ix F			Å. S	5 F		4 00
c) Default EFS.	A values			4 . 0	r "V	° R	A	S.	Ô Â	
a) Refined 90 th	percentile PT va	lue from to	cal speci	es stady	"	°,O	Ś,	\sim		
^{e)} Deposition v	 ^{e)} Default EFSA values ^{d)} Refined 90th percentile PT value from focal species stady ^{e)} Deposition value based on 70% crop interception (Appendix & EFSA; 2009) ^{f)} Sum of DDD values for individual diet components ^{g)} TER calculated based on reproductive empoint of 21.0 mg/a.s./kg/bw/day 									
¹⁾ Sum of DDL	values for indiv	/idual diet c	ompone	nts V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥., @	v "O	L.	U ^V	0
^{g)} TER calculat	ted based on rep	roductive e	ndpoint g	£21.0 mg	∛a.s./k g(b ∛	w/day		, S)

g) TER calculated based on reproductive enepoint at 21.0 mg a.s./kg/bw/day

Using the refined parameters discussed above the reproductive risks to Small mammals following application of Spiroxamine EC 500 to grapes at 2 x 500 g a s./ha aOBBCH 53 - 85 are considered to be acceptable (TER \geq 5).

Alternative refinement of the small herbivorous mammal "vole" scenario *

As an alternative refinement the vole has been used as the focal species. This is the generic focal species from EFSA (2009) and, although it is not considered to be as prevalent on vineyards as the wood mouse, its presence in vines and has been confirmed by a monitoring study, as already discussed. A vole diet of 76.6% grass & cereals, 11.9% non-grass berbs and 11.5% weed seeds has been used in the refined risk assessmen below A geomean DT_{50} of T.03 days, from a suffe of residues decline trials on cereals, has been applied to be fine the f_{two} value from 0.53 to 0.402 on the grass/cereals part of the diet in the refined risk assessment below. As multiple applications have been considered, a combined MAF and f_{twa} value values using a moving time window approach, has been used to give a MAF x TWA of 0.402.

Table CP 10.1.2-17	Refinement of t	the small herbiverou	ıs mammal vole scenar	io (BBCH >40) for the
proposed use of Spirova	mine EG 300 in	wranes (BBCH 53 -	80 – Vole	
proposed use of spiroza		Stubes and a se	us inc	

and the second sec	* Food type 🏷	2		ÐŰ. Ø	Frwa Giwa	PT d)	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
 2, ≭.ø .300	Grass// cereals	A 0.558	ار 54.2 م	\$ 	(02 °)			1.09		
kg⁄a.s./ha	Non-grass herbs	0.0866	28.7	0.5	0.53	1.0	0.3 ^{e)}	0.178	1.51	13.9
	Weed seeds	Ø0837 ~	¥40.2 '	Q 1.5	0.53			0.241		

^{a)} Values calculated using focal species dietary (bta

^{b)} Default ROD values from OFSA (2009) Appendix F

c) A MAF WA where calculated using a moving time window and a DT50 value of 3.03 days

d) Default PT of DO used

e) Deposition value based on 70% crop interception (Appendix A: EFSA, 2009)

f) Sun of DDD value for individual diet components

gr DER calculated based on reproductive endpoint of 21.0 mg a.s./kg bw/day

Using the refined parameters discussed above, the reproductive risks to small herbivorous mammals, following application of Spiroxamine EC 500 to grapes at 2 x 300 g a.s./ha at BBCH 53 - 85, are considered to be acceptable (TER \geq 5).

1 x 200 g a.s./ha BBCH 13 - 19 and 1 x 300 g a.s./ha BBCH 20 (53) - 85

In order to cover the GAP use of this mixed application rate the risk assessment has taken a conservative approach and assumed that two applications of 200 g a.s./ha could be made at BBCH 13-19 or that two applications of 300 g a.s./ha could be made at BBCH 20-85. It is noted that BBCH growth stages between 19 and 53 do not exist. However, for completeness the EFSA scenarios at BBCH 20-39 have been included in the risk assessment.

The risk assessment starts at Tier I which is presented below.

Table CP 10.1.2-18	Tier I assessment for acute ri	sk to mammals	for the prope	sed@rse of	Spiroxamir	ie 🚿
EC 500 in grapes		Ô,	\$°'''	õ q		×,

EC 500 III grapes			"O"	ć	\$Y	O Y	
Intended use		Grapes		~		\$ ⁷ , 6 ⁷	6
Active substance/p	roduct	Spiroxamine / Spir	oxamine EC	500 5			
Application rate (g	a.s./ha)	2 × 200 (BBCH 13 2 × 300 (BBCH 53	-19) or -85), 0 ~				
Acute toxicity (m bw)	g a.s./kg	460					
TER criterion		10 5 0			ð ð		, Ç
Crop scenario Growth stage	Generic	focal species of	App. Rate (kg a.s./ha)	SV C	MAF ₉	DDD ₉₀ (mg O a.s./kg bw/d)	TERA
Vineyard BBCH 10-19	Large he "lagomo	rbivorous manimal rph?		16.2	4Y.3 25	424	109
Vineyard BBCH 10-19	Small in mammal	sectivorous *shrex		7.6 2		1.98	233
Vineyard BBCH 10-19	"vole"	rbivorous mammal	. ¢ .	81.9 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	1.3	21.3	21.6
Vineyard BBCH 10,19	Small or "mouse"	nnivorous marimal	De de	$\tilde{\mathcal{S}}$	ðr.3	2.68	172
Vineyard BBCH 20-39	Stagomo		M O	,13.6 Å	1.3	5.30	86.7
Vineyard BBCH 20-39	"vote"	rbizorous mammal	10.3 5 ⁵⁷	68.2 2	1.3	26.6	17.3
Vineyard A BBCH 20039	Small on "mouse"	nnivorous mannhal	603	8.6	1.3	3.35	137
Vineward BBCM >20	mamma	(<i>)</i> /	O^{\vee}	5.4	1.3	2.11	218
Vineyard BBCH >40	"lagomo			8.1	1.3	3.16	146
Vineyard BBCH	Small he	rbivoious mammal	0.3	40.9	1.3	16.0	28.8
Vinestard BBCH >400	Stall on mouse	invorous mammal	0.3	5.2	1.3	2.03	227

SV: shortoit value; MAF: multiple application factor; DDD: daily dietary dose; TER: toxicity to exposure ratio. Scenarios shaded may not be required as BBCH 20-39 does not exist for grapes

For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85) the acute risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER \geq 10) for all of the relevant scenarios.

Table CP 10.1.2-19	Tier I assessment for reproductive risk to mammals	for the proposed	uş@of
Spiroxamine EC 500 in		Ĩ	≪ .

spiroxamme EC 3	oo in gra	pes			1) ^r	
Intended use		Grapes			A.	^^	
Active substance/p	roduct	Spiroxamine / Spiro	oxamine EC	590	Ő	Å,	
Application rate (g	a.s./ha)	2 × 200 (BBCH 13 2 × 300 (BBCH 53		Č			
Reprod. toxicity (mg a.s./kg bw/d)		21.0		。			
TER criterion		5	O ^Y U ^Y	Č Č	× ~	ô 4	Aco
Crop scenario Growth stage	Generic	focal species	App Rate ~ (Kg a, s./ha)	₩m, ^Q	MAF _m	DDDm (mgy & a@/kg byyd)	EFERLT OF
Vineyard BBCH 10-19	"lagomo	1	0.2 7	8.7	1.5 x 0.53	1.07	J 9.7
Vineyard BBCH 10-19	mammal	sectivorous \sim	0.2		1.5 x 0.53	0.668	31.5
Vineyard BBCH 10-19	"vole"			43.4 N	425 x 055	6.92 6	3.04
Vineyard BBCH 10-19	Small or "onouse"		0.2,59 ž	44.7 6	1.5x 0.53	0.747	28.1
Vineyard BBCH 20-39	Large he "lagomo	rbivõrous mammal		5.5 ³	1.5 x 9.53	1.31	16.0
Vineyard 🖉 BBCH 20539	"vole	rbivorous mammal		36.1	5.5 x 0.53	8.61	2.44
Vineyard BBCH 20-39	Small or "Inouse"	ninivorous mammar		3.9	1.5 x 0.53	0.930	22.6
Vineyard BBCH >20	Smatoin manimal	"Chrew" 0		1497	1.5 x 0.53	0.453	46.3
Vineyard BBCH >40	Large he "lagoono	rbivorous martinal		3.3	1.5 x 0.53	0.787	26.7
Vineyard BB©H >40		rbivorous mammal	0.3	21.7	1.5 x 0.53	5.17	4.06
Vineyard BBCH >40	Small or "mouse"	nniverous plamma	0.3	2.3	1.5 x 0.53	0.549	38.3
						C DDD	1 11 11 1

SV: shortcut value: MAF: multiple application factor; TWA: time-weighted average factor; DDD: daily dietary dose; TER foxicity to exposure ratio. TER values shown in bold fall below the relevant trigger Scenarios, shaded may not be required as BBCH 20-39 does not exist for vines

For the proposed use of Spiroxamine EC 500 on grapes (1 x 200 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85) the reproductive risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER \geq 5) for all of the relevant scenarios with the exception of the small herbivorous mammal "vole" scenarios. Refined risk assessments for these scenarios have been presented below.

Refinement of the small herbivorous mammal "vole" scenario

For the first refined risk assessment the wood mouse has been used as a focal species. As discussed in the previous section, this species is considered to be a suitable representative of small mammals in and around vineyards. As presented above, a refined PT value of 0.41 has been applied to the risk assessment below. Three refined assessments have been presented which relate to the grow stages of the scenarios that required refinement; BBCH 10 - 19, BBCH 20 - 39 and BBCH >40.

		*			
Table CP 10.1.2-20	Refinement of the small herbivorous mamma	l volg scenario	(BBCH	10,-19)	for
the proposed use of Spi	roxamine EC 500 in grapes – Wood mouse	<u>v</u>	Õ	~07	Ű

App rate	Food type	FIR/bw a)	RUD b)		Jf _{twa} c)	PT d)	Dep.	DDD [mg a.sQkg b.w./d]	Total DDD ¹	CTER P
	Weeds	0.0667	28.7	\$\$.5	<i>0</i> 553	No.	K .	6.074	``~~~	Ś
2 x 0.200	Weed seeds	0.133	40.2	9.5	(j 0.53 (0.6 e)	0.209	S.	
kg a.s./ha	Invertebrates (ground dwelling)	0.0667	7.5	1:55	0.53	0.41Q		9.0196×	00.304	

^{a)} Values calculated using default dietary data from *EFSA* (2009)

- ^{b)} Default RUD values from EFSA (2009 Appendix F
- c) Default EFSA values

^{d)} Refined 90th percentile PT value from focal-species sordy

^{e)} Deposition value based on 40% cop interception (AppendixA: EFSA, 200%)

f) Sum of DDD values for individual diet components

g) TER calculated based on reproductive hdpoint of 21.0 mg a.s./kg bw/day

Refinement of the small her vorous mammal vole scenar (BBCH 20 - 39) for Table CP 10.1.2-21 the proposed use of Sporoxamme EC 500 in grapes. Wood mouse \bigcirc

App rate	Food type	FIR/bw	RUD b)	0° ° L ' . G	🖌 Itwa 🖓	PT d	Dep. factor	∅ DDD ^۶ [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
, Ø	Weeds	0.0667	287	B.F	0053	 	d A	0.0936		
2 x 0 300 kg acs ha	Weed seeds	0.933	2 0.2	1.5	©°0.53 [™]		Y	0.261	0.270	55.4
kg assyna))	\$ \$ 0.06675	Ĺ		Č ⁵³ .	0.41 A	0.5 ^{e)}	0.0245	0.379	55.4

a) Values calculated using default Detary data from (SFSA (2009)

b) Default RUD alues from EFSQ (2009) Appendix F

c) Default EFSA values

^a Refined 90th percentile PT value from focal species study

e) Deposition value based of 50% (pop interception (Appendix A: EFSA, 2009)

^{f)} Sum of DDD values for individual diet components ~Q

Ŵ

g) TFR/calculated based on reproductive@ndpoinfof 21 0 mg a.s./kg bw/day ð.

Table CP 10.1.2*2* Refinement of the speal herbivorous mammal vole scenario (BBCH >40) for the proposed use of Spirovamine C 500 m grapes - Wood mouse

C

App rate	Cood type		RUD b)	MAF c)	f _{twa} ^{c)}	PT ^{d)}	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
£ x 0.300	Weeds	0.0667	28.7	1.5	0.53			0.0562		
2 x 0.300	Weed seeds	0.133	40.2	1.5	0.53	0.41	0.2.6)	0.157	0.229	02.1
kg að Fha	Invertebrates (ground dwelling)	0.0667	7.5	1.5	0.53	0.41	0.3 ^{e)}	0.0147	0.228	92.1

^{a)} Values calculated using default dietary data from EFSA (2009)

- ^{b)} Default RUD values from EFSA (2009) Appendix F
- c) Default EFSA values
- ^{d)} Refined 90th percentile PT value from focal species study
- e) Deposition value based on 70% crop interception (Appendix A: EFSA, 2009)
- f) Sum of DDD values for individual diet components
- g) TER calculated based on reproductive endpoint of 21.0 mg a.s./kg bw/day

Using the refined parameters discussed above, the reproductive risks to small mammals following application of Spiroxamine EC 500 to grapes at 1 x 200 g a.s./ha at BBCH 43 - 19 and 1 $\otimes 300$ g a.s./ha at BBCH 20 (53) - 85 are considered to be acceptable (TER ≥ 5).

Alternative refinement of the small herbivorous mammal "vole" scenario

As an alternative refinement the vole has been used as the focal species. This is the generic focal species from EFSA (2009) and, although it is not considered to be as prevalent invineyards as the wood morse, its presence in vineyards has been confirmed by a monitoring study, as already discussed. A vole diet of 76.6% grass & cereals, 11.9% non-grass herbs and 11.5% weed seeds has been used in the refined risk assessment below. As presented before, a gennean DT_{50} of 3.03 days, from a suite of tesidues decline trials on cereals, has been applied to refine the f_{100} value from 0.53 to 0.402 on the grass/cereals part of the diet in the refined risk assessment below. As multiple applications have been considered, a combined MAF and f_{twa} value, using a moving time window approach, has been used to give a MAF x TWA of 0.402. Three refined assessments have been presented which relate to the gravth stages of the scenarios that required refinement BBCH 10 - 19, BBCH 20, 39 and BBCH 40.

Table CP 10.1.2-23 Refinement of the small herbivorous mammal vole scenario (BBCH 10 - 19) for the proposed use of Spiroxamme EC 500 in grapes Vole

App rate	Food type	bw RUD		^d factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.200	Grass/ 0.5	542	≏ 0.40°°©° /		Ø 1.46		
kg a.s./ha	Non-grass heres	366 0 ¹ 28.7	0 1.5 2 0.55		0.237	2.02	10.4
Ô.	Weed seeds 0.08	330 4002	A. 5	×.	0.321		

L

a) Values carculated using focal species dietate data

^{b)} Defatir RUD values from EFSA02009) Appendix F

^{c)} A MAF×TWA value calculated using a moving time window and a DT walue of 3.03 days

^{d)} Default PT of 1.0 used

^{e)} Deposition value based on 40% crop interception (sppendix A: EFSQ 2009)

^{f)} Sum of DDD values for undividual diet components

g) TER calculated based on reproductive sydpoint of 21.0 mg a.s./kg bw/day

Table CP 10.1.2-24Refinement of the small herbivorous mammal vole scenario (BBCH 20 - 39) forthe proposed use of Spiroxamine EC 500 in grapes – Vole

		FIRADW		MAF Q	f _{twa}	PT d)	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300 kg a.s. 6a) Grass/ gereals	0.558	546	0.4	02 °)			1.82		
kg a.s. Sta	herbs	00866	28.7	1.5	0.53	1.0	0.5 ^{e)}	0.296	2.52	8.33
		0.0837	40.2	1.5	0.53			0.401		

a) A alues calculated using focal species dietary data

^{b)} Default RUD values from EFSA (2009) Appendix F

c) A MarxTWA value calculated using a moving time window and a DT50 value of 3.03 days

d) Default PT of 1.0 used

^{e)} Deposition value based on 50% crop interception (Appendix A: EFSA, 2009)

^{f)} Sum of DDD values for individual diet components

g) TER calculated based on reproductive endpoint of 21.0 mg a.s./kg bw/day

Table CP 10.1.2-25	Refinement of the small herbivorous mammal vole scenario (BBCH >4 amine EC 500 in grapes – Vole	40) for the	
proposed use of Spiroxa	amine EC 500 in grapes – Vole		

	-								0
App rate	Food type	FIR/bw a)	RUD b)	MAF	f _{twa}	PT d)	Dep. factor	DDD fong a.s./kg b.w./d]	Total DDD S
2 x 0.300	Grass/ cereals	0.558	54.2	0.4	402 °) 🚫			1.09	
kg a.s./ha	Non-grass herbs	0.0866	28.7	1.5	0,53	1.0	(j. 35.0)	0.178	
	Weed seeds	0.0837	40.2	1.5	0.53	6	R' Ø	0.24	
 ^{a)} Values calcu ^{b)} Default RUI ^{c)} A MAF×TW 	lated using foca D values from El A value calcula f 1.0 used	1 species die FSA (2009) ted using a	etary data Append moving t	a 🔊 ix F ime Windo	owand a Da	al val	ue of 3.03	gays S	
d) Default PT o	f 1.0 used	0	0	O s	J D		r ~	p d'	& A C
^{e)} Deposition v	alue based on 70	J% crop into	erception	ң Appendi	ìx A: ERSA,	, 200%	» « «	<i>C</i>	
¹⁾ Sum of DDL	values for indiv	vidual diet c	compone	nts	\sim	٥,	A	~ ⁰ ′	
g) TER calculat	ted based on ren	roductive e	ndnænt (\f`2¶⊾0∥ma	a @ Ka hw	May	@¥	"¥ .~	XI AS

g) TER calculated based on reproductive endpoint of 21 0 mg a @kg bw/

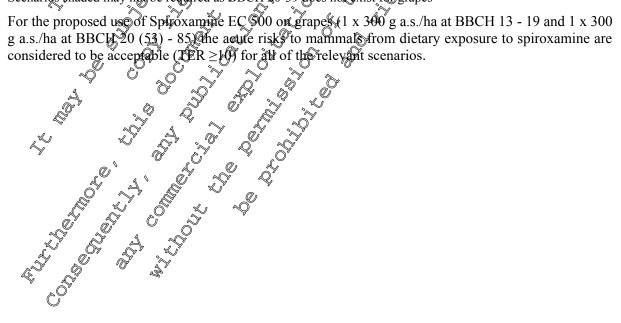
Using the refined parameters discussed above, the reproductive risks to small manimals following application of Spiroxamine EC 506 to grapes at 1 x 200 g a.s./ha at BBCH 12-19 and 1 x 300 g a.s./ha at BBCH 20 (53) - 85 are considered to be acceptable TER SM)

1 x 300 g a.s./ha BBCH 19 and 1 x 300 g a.s./ha BBCH 20(53)

In order to cover the GAP use of this mixed application rate the risk assessment has taken a conservative approach and assumed that two applications of 300 ga.s./hocould be made at BBCH 13-19 or that two applications of 300 ga.s./h@couldbe made at BBCH 20-85. It is poted that BBCH growth stages between 19 and 53 to not exist. However, for completeness the EFSA scenarios at BBCH 20-39 have been included in the risk assessment.

The risk assessment starts at Tier I which is presented below. Ş

Table CP 10.1.2-26	Tier I assessment for	acute risk to manmals for t	the proposed use of Spiroxamine
EC 500 in grapes			


		<u> </u>				
Intended use	Graper O					
Active substance/	roduct Spiroxamine / Spir	oxamine, EC	500			
Application rate (g	a.scha) 2 300 BBCH 3					
.1	2 × 300 (BBCQ, 53	-89 0	*			
Acute to acity (m	g a.s. 🕸 g 460 🖤 🖉					
bw)						
TER criterion	-0 ()	Ô [°]				
Crop scenario	Generic focal species	App. Rate	SV ₉₀	MAF ₉₀	DDD ₉₀	TERA
Growth stage		(kg a.s./ha)			(mg a.s./kg bw/d)	
Vineyard BBCLF40-19	Large herbitorous mammal	0.3	16.3	1.3	6.36	72.4
Vineyard BBCH 16-19	Small assectivorous mammal "shrew"	0.3	7.6	1.3	2.96	155
Vineyard BBCH 10-19	Small herbivorous mammal "vole"	0.3	81.9	1.3	31.9	14.4

Intended use		Grapes					
Active substance/p	roduct	Spiroxamine / Spire	oxamine EC	500			
Application rate (g	a.s./ha)	2 × 300 (BBCH 13 2 × 300 (BBCH 53				Č.	
Acute toxicity (m bw)	g a.s./kg	460					
TER criterion		10		Ö	<i>a</i>	×.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Crop scenario Growth stage	Generic	focal species	App. Rate (kg a.s./hat)	ŠV ₉₀	MAYF90	DDD (prg a.s./kg.&w/d)	TER
Vineyard BBCH 10-19	Small on "mouse"		ŏ .¢	•10.3 °		4.02	115
Vineyard BBCH 20-39	Large he "lagomo	rbivorous mammat rph"	0.3	103.6 Q	1.3	5.30 O	86 .7
Vineyard BBCH 20-39	Small he "vole"	rbivorous marmal		68:34 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			17.9
Vineyard BBCH 20-39	Small on "mouse"	nnivorodymammal		8.6		3.35 ⁰ ~	137
Vineyard BBCH >20		sectivorous S Shrew S	⁷ 0.3	5.4 L		2.11	218
Vineyard BBCH >40	Large he	rbiv@rous mammal		8.15 ⁹ (4)	1.3 ⁽¹⁾	3 96	146
Vineyard BBCH >40	Sonall he Svole"	tbivoroos mamoral		740.9 C		16.0	28.8
Vineyard BBCH >40	Small on "mouse"	nn iy orous@amna@			1.3	2.03	227

SV: shortcut value; MAF: soultiple application factor; DDD: daily dietary dose; TER: toxicity to exposure ratio. Scenarios shaded may not be required as BBCH 20-39 does not exist for grapes

For the proposed use of Spiroxamine EC 00 or grapes (1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300

Spiroxamine EC 5	500 in gra	pes					_©°	
Intended use		Grapes						<u></u>
Active substance/p	product	Spiroxamine / Spir	oxamine EC	C 500	<i>S</i>			
Application rate (g	g a.s./ha)	2 × 300 (BBCH 13 2 × 300 (BBCH 53				ð S		2
Reprod. toxicity (mg a.s./kg bw/d)		21.0		C.	Q.			Å
TER criterion		5	, Ô	1 d	÷.	jõ 🤻		,
Crop scenario Growth stage	Generic	focal species	App Rate (kg a.s./ha)	SVm SVm		DDDm (mg) a.s. Kg bw/d)	TER _{LT}	
Vineyard BBCH 10-19	Large he "lagomo	rbivorous mamma rph"	0.3		1.5 x 0.53	1.60 O'		
Vineyard BBCH 10-19	Small ins mammal	sectivorous "shrew"		4.2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.5 x 0.93		210 210	
Vineyard BBCH 10-19	Small he "vole"	rbivororemammal		A3.4 2	10 x 0.53		2.03	
Vineyard BBCH 10-19	Small on "mouse"	nnikorous mammal	*0.3	4.7 &	1.5 x 0.53	1.12 O	18.7	
Vineyard BBCH 20-39	"lagorno			5.5 ⁵			16.0	
Vineyard BBCH 20-39	Sonall he Ovole"	tbivoroos mampal		36.1 @	1.5 x 0.53	8.61	2.44	
Vineyard BBCH 20-39	Small on "noouse"	nniyorous mammal			1.5 x 0.53	0.930	22.6	
Vineyard 🏹 BBCH 🔊	Small in mananal	sectivorous T			1.5 x 0.53	0.453	46.3	
Vineyard BBCH >40	19rge he lagomo	fivivoroos mammal		×3.3	1.5 x 0.53	0.787	26.7	
Vineyard BBCH >40	"vole" 👌	rbiyorous brammat		200 [°] .7 7	1.5 x 0.53	5.17	4.06	
Vineyard BBCH 🔊 0	Small on "mouse"	nnivoidous manimal		2.3	1.5 x 0.53	0.549	38.3	

Table CP 10.1.2-27Tier I assessment for reproductive risk to mammals for the proposed use ofSpiroxamine EC 500 in grapes

SV: shortcut value; MAF: multiple application factor, TWA: time-weighted average factor; DDD: daily dietary dose; TER: toxicity to exposure rand. TER values from in bold fall below the relevant trigger Scenarios shaded may not be required as BBCH 20-39 does not exist for grapes

For the proposed use of Spiroxamine EC 500 on grapes (1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300 g a.s./ha at BBCH 20 (53) 85) the reproductive risks to mammals from dietary exposure to spiroxamine are considered to be acceptable (TER \geq 5) for all of the relevant scenarios with the exception of the small herbiverous mammal wole cenarios. Refined risk assessments for these scenarios have been presented below

Refinement of the small herbivorous mammal "vole" scenario

For the first refined risk assessment the wood mouse has been used as a focal species. As discussed in the previous section, this species is considered to be a suitable representative of small mammals in and around vineyards. As presented above, a refined PT value of 0.41 has been applied to the risk assessment

below. Three refined assessments have been presented which relate to the growth stages of the scenarios that required refinement; BBCH 10 - 19, BBCH 20 - 39 and BBCH >40.

Refinement of the small herbivorous mammal vole scenario (BBCH 10 Table CP 10.1.2-28 the proposed use of Spiroxamine EC 500 in grapes - Wood mouse ð

									A.		_
App rate	Food type	FIR/bw a)	RUD b)	MAF c)	f _{twa} ^{c)}	PT ^{d)}	Dep. factor	ØĎD [mg a.s./kg b.w./d]	Total BUD ^{f)}	ÖFER ^g	
	Weeds	0.0667	28.7	1.5	0.53		R	0.112			Ś
2 x 0.300	Weed seeds	0.133	40.2	1.5	0.53	0.41	4	0.314	<i>A</i> (<i>)</i>)	0 46.2 ¢	
kg a.s./ha	Invertebrates (ground dwelling)	0.0667	7.5	1.5		0.41	0,0.6 °)	0.0294	Ô ^Y , Ø	© 46.2 ©	

^{a)} Values calculated using default dietary data from EFSA (2009)

^{b)} Default RUD values from EFSA (2009) Appendix H

c) Default EFSA values

d) Refined 90th percentile PT value from focal species stady

e) Deposition value based on 40% crop interce from (Appendix &

f) Sum of DDD values for individual diet components

g) TER calculated based on reproductive energoint at 21.0 mg a.s./kgb

Lor Lor Cr Refinement of the small herbixorous mammal vole scenario BBCH 20 - 39) for Table CP 10.1.2-29 the proposed use of Spiroxamine EC 509 in grapes - Wood mouse Ô

App rate	Food type			Dep. [mg factor a.s. kg b.w. d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300 kg a.s./ha	Weeds 0.0667 Weed seeds 0.133 Invertebrates (ground 0.0667 dwelding)	28.7@ 1.55	0.59 0.53 0.41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.379	55.4

a) Values calculated using default dietary data from EFSA (2009)

- b) Defaut (RUD values from EFSA (2009) Appendix F
- c) Default EFSA values

^{c)} Default EFSA values ^{d)} Refined 90th percentine PT value from tocal species study

^{e)} Deposition value based on 50% crog interception (Afriendix A: EFSA, 2009) ^{f)} Sum of DDD values for individual diet components ^{g)} TER calculated based @ reproductive endpoint @ 21.0 m@ a.s./kg@w/day

Refinement of the small herbit grous mammal vole scenario (BBCH >40) for the Table CP **10**.1.2-30 proposed use of Spiroxamine E6 500 in grapes Wood mouse

App rate	Food type	b) ^v		f _{twa} c)	PT ^{d)}	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
	Weeds 0.0667	28.7	♥ 1.5	0.53			0.0562		
2 x 0.300	Weed seeds 0.133	46,2	1.5	0.53	0.41	0.2.6)	0.157	0.229	02.1
		7.5	1.5	0.53	0.41	0.3 ^{e)}	0.0147	0.228	92.1

^a Values calculated using default dietary data from EFSA (2009)

^{b)} Default RUD values from EFSA (2009) Appendix F

c) Default EFSA values

^{d)} Refined 90th percentile PT value from focal species study

e) Deposition value based on 70% crop interception (Appendix A: EFSA, 2009)

f) Sum of DDD values for individual diet components

^{g)} TER calculated based on reproductive endpoint of 21.0 mg a.s./kg bw/day

Using the refined parameters discussed above, the reproductive risks to small mammals following application of Spiroxamine EC 500 to grapes at 1 x 300 g a.s./ha at BBCH 13 - 19 and 1 x 300 g as./ha at BBCH 20 (53) - 85 are considered to be acceptable (TER \geq 5).

Alternative refinement of the small herbivorous mammal "vole" scenario

As an alternative refinement the vole has been used as the focal species. This is the generic focal species from EFSA (2009) and, although it is not considered to be as prevalent in vineyards as the wood mouse, its presence in vineyards has been confirmed by a monitoring study, a value discussed A vole Wet of 76.6% grass & cereals, 11.9% non-grass herbs and 11.5% weed weed has been used in the refined O risk assessment below. As presented before, a georgean DT₅₀ of 3.03 days, from a suite of residues decline trials on cereals, has been applied to refine f_{twa} value from 0.59 to 0.402 on the grass/cereals part of the diet in the refined risk assessment below. As multiple applications have been considered, a combined MAF and ftwa value, using a moving time window approach, has been used to give a MAF x TWA of 0.402. Three refined assessments have been presented which refate to the growth stages of the scenarios that required refinement; BBCH 40 - 19 BBCH 20 - 39 and BBCH 240. Ô

Refinement of the small herbivorous gramma vole scenario BBCH 10 19) for Table CP 10.1.2-31 the proposed use of Spiroxamine EC 500 in grapes - Vole Ø Ò

App rate	Food type	FIRAW	RUD	NA F	S'ftwa ge		Dep.	(PDD) [mgo] a.s./(Cg b.gy./d]	Total DDD ¹	TER ^{g)}
2 x 0.300 kg a.s./ha	Grass/ cereals Non-grass herb Weed@eeds	0.5580	54 a) (38.7 40.2	Ö1.5	02 c) 0.53 0.53	1.0%	, 0.6 ^{e)}	2.19	3.03	6.93

a) Values calculated wing for species dietars data

100 B ^{b)} Default RUD values from EFSA (\$009) Appendix F ^{c)} A MAF×TWA Qalue calculated using a moving three window and a DT₅₀ value ^{d)} Default PT of 1.0 used 03 days

e) Deposition value based on 40% crop interception (Appendix ADEFSA,

^{f)} Sum of DD values for individual diet components

g) TER calculated based of reproductive endpoint of 21.0 mga.s./kgdw

a()				vole scenario (BBCH 20 - 39) for
Tabla CD 10 1 2 228	Dofinoment of	the cmalt have his @	ious mommol	volo cooporio (DDCU 20, 20) for
1 able CF 10.1.2-34		ule sillan ner di von	ousanannna	vole scenario (DDCH 20 - 39) ior
A-	4 2 5		\bigcirc	· · · · · · · · · · · · · · · · · · ·
the proposed use of Spin	rtanina C 50	in grandes Volo		
the proposed use of spin	A A A A A A A A A A A A A A A A A A A	y III grapes – Apie		
	() <u>~</u> ~ ~0		· · · ·	

App rate	Food type	RUD MAF	Atwa	PT d)	Dep. factor	DDD [mg a.s./kg b.w./d]	Total DDD ^{f)}	TER ^{g)}
2 x 0.300	Grass ceteals	54.2	.02 °)			1.82		
kg a.s./ha	Non-grass 0.0866	28.7 9.5	0.53	1.0	0.5 ^{e)}	0.296	2.52	8.33
	Weed steds 0.0837	¥40.2 ¥ 1.5	0.53			0.401		

a) Values calculated using focal species dietary data

^{b)} Default RVD values from EFSA (3009) Appendix F ^{c)} A MARY TWA value calculated Ging a moving time window and a DT₅₀ value of 3.03 days

d) Default PT of P.0 used

e) Departition galue based on 50% crop interception (Appendix A: EFSA, 2009)

^{f)}Sum of DD values for individual diet components

gi TER capulated based on reproductive endpoint of 21.0 mg a.s./kg bw/day

Refinement of the small herbivorous mammal vole scenario (BBCH >40) for the Table CP 10.1.2-33 proposed use of Spiroxamine EC 500 in grapes - Vole

App rate	Food type	FIR/bw a)	RUD b)	MAF	f _{twa}	PT d)	Dep. factor	DDD [mg a.s. (Cg b. w. /d]		DER ^g
2 x 0.300	Grass/ cereals	0.558	54.2	0.4	402 °)			1.09	, ô ^s	
kg a.s./ha	Non-grass herbs	0.0866	28.7	1.5	0.50	1.0	0.3 °)	0.178	×J ^{%51} ~	¥ 13.9
	Weed seeds	0.0837	40.2	1.5	0.53		68	0.241		

a) Values calculated using focal species dietary data

^{b)} Default RUD values from EFSA (2009) Appendix F

c) A MAF×TWA value calculated using a moving time window and a DT50 value of 200

^{d)} Default PT of 1.0 used

e) Deposition value based on 70% crop interception (Appendix SeFSA;

f) Sum of DDD values for individual diet components Ľ

g) TER calculated based on reproductive endpoint at 21.0 mg a.s./kg@w/day

to small mammals following H 13 - 10 and 1 x 300 g a.s./ha Using the refined parameters discussed above, the reproductive risks application of Spiroxamine EC 500 to grapes at 1 x 300 g a st ha at BBC at BBCH 20 (53) - 85 are considered to be acceptable (TER \geq 5).

Risks for mammals through drinking water

In addition to dietary items, mammals may also be exposed to residues occurring in drinking water. The daily dietary dose (DDD) values used in the standard dietary risk assessments do not encompass drinking water and therefore the potential risk from this exposure route has not been covered in the dietary risk assessment.

The puddle scenarie is relevant for marginals and considers, puddles occurring on the soil surface following a rainfall event after application and is considered possible in all grop types.

In accordance, with the EFSA Guidance Document (2009), based on the characteristics of the exposure scenario and standard assumptions for water uptake by animals no specific requirement for drinking water exposure calculation and TER determination based on the putile scenario is required:

- (dor substances@with advice <500 L/kg (less@orptive); if the ratio of application rate (g a.s./ha) to effective endpoint mg as /kg to//d does not exceed \$0;
- for substances with a Koc \geq 500 L/kg (more sorptive); if the ratio of application rate (g a.s./ha) to effective enopoint mg a sckg by d doe not exceed 3000.

The geomean Koc for sprexamine is 4011 L/kg therefore spiroxamine belongs to the group of more sorptive substances. The ratio calculation is based on two applications of the highest rate at 300 g a.s./ha.

Table/CP 10.1.2-34 Ratios of effective application rate (AReff) to acute and long-term endpoints for spiroxamine following the proposed use of Spiroxamine EC 500 - puddle scenario

Test substance	ARef (g/ha)	Toxicological endpoint (mg a.s./kg bw/d)	Ratio	Trigger
		(mg a.s./kg bw/d)	(AR _{eff} /endpoint)	
Acute		~Q		
Spiroxanine Z	390	LD ₅₀ 460	0.848	3000
Long term	E.			
Spirox	450	NOAEL 21.0	21.4	3000

^a AR_{eff} = based on an application rate of 300 g a.s./ha with a MAF of 1.3 and 1.5 applied for acute and reproductive risk assessments, respectively

The ratios for both acute and reproductive risks are below the relevant trigger of 3000 for spiroxamine therefore a quantitative risk assessment is not necessary. Thus, there are no unacceptable risks to mammals from exposure to spiroxamine *via* drinking water.

Secondary poisoning

The Log P_{ow} of spiroxamine is 2.79 and 2.98 at pH 7 for diastomers A and Borespectively but at pH 9 these value are 4.88 and 5.08, respectively. Thus the trigger value of 3 for a secondary poisoning risk assessment is met.

Consideration of secondary poisoning risk due to metabolites

The Log P_{ow} of spiroxamine-desethyl (M01) is 2.41, 1, 97 and >3.64 at pH 4, 7 and 9, respectively. The Log P_{ow} of spiroxamine-despropyl (M02) is 1.95, 1, 41 and >3.44 at pH 4, 7 and 9, respectively. The Log P_{ow} of spiroxamine-N-oxide (M03) is 2.82, 2.59 and 2.63 at pH 4, 7 and 9, respectively. The Log P_{ow} of spiroxamine-carboxylic acid (M06) is 0.45, -0.25 and 0.10 at pH 4, 7 and 9, respectively. Thus, an assessment of the potential risk from bioconcentration of spiroxamine-desethyl (M01) and spiroxamine-despropyl (M02) also needs to be addressed in the risk assessment.

Risk assessment for earthworm-eating mammals via secondar poisoning

According to EFSA (2009), the risk for vertor vorots manufals is assessed for a small manual of 10 g body weight with a daily food consumption of 12.8 g. Bioaccumulation in earthworms is estimated based on predicted concentrations in soil

To achieve a concise risk assessment, the risk envelope approach is applied wherely the maximum application rate of 2 x 300 g as/ha has been considered. For sproxamme, M01 and M02, the $PEC_{soil\ accumulation}$ has been used in he risk assessment as these values are higher than the 21-day TWA $PEC_{soil\ values}$. There are no manufalian reproductive toxicity data available for N01 and M02 therefore the NOAEL of 21.0 mg/kg bw/day for spiroxamine has been used as a surrogate value.

The secondary possoning risk assessments for earthworm-eating mammals from exposure to spiroxamine, KWG 4168-desetbyl (M01) and KWG 4168-desproyed (M02) are presented in the tables below.

Table CP 10A.2-35	Assessment of the	ne risk før earti	wormeeating mami	nals due to exposure to
spiroxamine via bioacc	undulation in and	worme (cooper	lam Niconint)	
spiroxamune via bioacc		iwoi ilis (second	iai y poisonaig)	

Parameto 4	Spieoxamine &	Comments
PEC _{soil} (mg a.s./k@ soil)	9.555 × ×	Accumulation PEC _{soil} used as worst-case
Log Pow / Pox V	4.0 10000	Mean value of 4.0 has been used based on the values for diastomers A and B at pH 7 and 9
Koc Strand	4111	Geomean
foc Ly Ly		Default
BCFworm	H.47 0 4	$BCF_{worm/soil} = (PEC_{worm,ww}/PEC_{soil,dw})$ $= (0.84 + 0.012 \times P_{ow}) / f_{oc} \times K_{oc}$
PECworm	Q.816 ~Ç	$PEC_{worm} = PEC_{soil} \times BCF_{worm/soil}$
Daily dictary dese (mg a.s./kg O bw/dg	1.04	$DDD = PEC_{worm} \times 1.28$
NGEL (mg a.s./kg bw/d)	21.0	<u>M-762441-01-1</u>
TERLO	20.1	Acceptable risks (TER>5)

Table CP 10.1.2-36	Assessment of the risk for earthworm-eating mammals due to exposure to
spiroxamine-desethyl (M	M01) <i>via</i> bioaccumulation in earthworms (secondary poisoning)

Parameter	Spiroxamine-desethyl	Comments
PEC _{soil} (mg/kg soil)	0.064	Accumulation PEC _{soil} used as worst-case
Log P _{ow} / P _{ow}	3.64 / 4365	- 3 2 2
K _{oc}	3271	Geomean
f _{oc}	0.02	Default
BCFworm	0.814	$BCF_{worm/sol} = (PEC_{worm,ws} OPEC_{soil,dw})$ $= (0.84 + 0.0120, P_{ow}) foc \times Ks$
PECworm	0.0521	$PEC_{rm} = PEC_{soil} \times OCF_{wom soil} $
Daily dietary dose (mg/kg bw/d)	0.0666	$\mathbf{P} \mathbf{D} \mathbf{D} = \mathbf{P} \mathbf{F} \mathbf{C}_{\text{work}} \mathbf{F} 1.28 \mathbf{\mathcal{T}} \mathcal{T$
NOEL (mg/kg bw/d)	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	Value determined for spiroxamine used as a
TER _{LT}	315 0 0	Acceptable risks (TEB>5)

 Table CP 10.1.2-37
 Assessment of the risk for earthworks-eating mammals due to exposure to spiroxamine-despropyl (M02) via bitaccum ation in earthworks (secondary poisoning)

Parameter	Spiroxamine-despropyl	Comments
PEC _{soil} (mg/kg soil)		Accumolation REC soil used as worst-case
Log Pow / Pow	3.44 / 2.754	
K _{oc}	2695	Geometry 2
foc		Default
BCFworm C	0.629 (C)	SCF _{worn} , w/PEC _{soil,dw})
		$= (0.84 + 0.012 \times P_{ow}) / f_{oc} \times K_{oc}$
PECworm		$PEC_{worm} = PEC_{soil} \times BCF_{worm/soil}$
Daily dietary dose (mg Rg		$DDD = PEC_{worm} \times 1.28$
bw/d) ~ V V	N N N N	
NOEL (mg/kg bw/d)		Value determined for spiroxamine used as a
		surrogate
TERT	\$ 9 7 Q 39	Acceptable risks (TER>5)

For the secondary poisoning risk assessments for earthworm-eating mammals from exposure to spiroxamine 0.01 and M02 the TER values are >5 thereby demonstrating an acceptable risk to mammals *via* this route of exposure 5

Risk assessment for fish-eating mammals via secondary poisoning

According to EFSA (2009), the risk for piscivorous mammals is assessed for a mammal of 3000 g body weight with a daily food consumption of 425 g. Bioaccumulation in fish is estimated based on predicted concentrations in surface water.

To achieve a concise risk assessment, the risk envelope approach is applied whereby the maximum application rate of 2 x 300 g a.s./ha has been considered. The highest Step 3 TWA PEC_{sw} of 2.627 μ g

a.s./L for spiroxamine has been used in the risk assessment. For M01 the highest Step 2 PEC_{sw} value of 1.084 μ g/L has been used and for M02 the highest Step 2 PEC_{sw} value of 0.917 μ g/L has been used. For M01 and M02 there are no BCF values available therefore the BCF value determined for spiroxamine (87 L/kg) has been used. Furthermore, there are no mammalian reproductive toxicity data available for M01 and M02 therefore the NOAEL of 21.0 mg/kg bw/day for spiroxamine has been used as a carrogate value.

The secondary poisoning risk assessments for fish-eating mammals from exposure to spiror mine, KWG 4168-desethyl (M01) and KWG 4168-despropyl (M02) are presented in the tables below.

<i>ia</i> bioaccumulation in fish (sec	ondary poisoning)	
Parameter	Spiroxamino	Comments 2
PEC _{sw} (mg a.s./L)		FOCUS Step 3 TWA PEC, (calculated for vines: Doditch X 300 g a.s./ha late application)
PEC _{water}	0.00262	TWA PEC value used 5 2
BCF _{fish}	87 O & ~ ~ ~	From study M. 006479591-1
PEC _{fish}		
Daily dietary dose (mg a.s./kg bw/d)		$ \mathbf{B} \mathbf{D} \mathbf{D} = \mathbf{P} \mathbf{E} \mathbf{C}_{\text{fish}} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} $
NOEL (mg a.s./kg bw/d) 📎	21.0 2 2 2	Mc362441-91-1
TERLT		Acceptable risks (TER >5)

 Table CP 10.1.2-38
 Assessment of the risk for fish-cating mammalodue to exposure to spiroxamine via bioaccumulation in fish (secondary poisoning)
 Image: Comparison of the risk for fish-cating mammalodue to exposure to spiroxamine via bioaccumulation in fish (secondary poisoning)

Table CP 10.1.2-39 Assessment of the risk for fish eating mammals due to exposure to spiroxaminedesethyl (M01) ea bioaccumulation in fish (secondary poisoning)

Barameter	spiroxamine-desethy	Comments
PEC _{sw} (mg/L)	0.001084	FOCUS Step 2 maximum PEC _{sw} (calculated for vines 2 x 300 g a.s./ha)
PECwater		PEC _{water} = max PEC _{sw} × f_{twa} , where f_{twa} = 0.53; in the with approach in EFSA (2009)
BCF _{fish}		Value determined for spiroxamine used as a surrogate
PEC fish	0.0500	$PEC_{fish} = PEC_{water} \times BCF_{fish}$
Daily dietary dose (mg/kg)	0.90710 ° °	$DDD = PEC_{fish} \times 0.142$
NOEL (mg/kg/w/d)		Value determined for spiroxamine used as a surrogate
TERLT OF CO	2959	Acceptable risks (TER>5)

 Table CP 10 1.2-40 Assessment of the risk for fish-eating mammals due to exposure to spiroxaminedespropy (20102) via bioaccumulation in fish (secondary poisoning)

Parameter	Spiroxamine-despropyl	Comments
PEC _{sw} (mg/L)	0.000917	FOCUS Step 2 maximum PEC _{sw} (calculated for

		vines; 2 x 300 g a.s./ha)
PEC _{water}	0.000486	$PEC_{water} = \max PEC_{sw} \times f_{twa}, \text{ where } f_{twa} = 0$, in line with approach in EFSA (2009)
BCF _{fish}	87	Value determined for sproxamine used as a surrogate
PEC _{fish}	0.0423	PEC _{fish} = PEC _{wate} BCF _{fish}
Daily dietary dose (mg/kg bw/d)	0.00600	$\frac{1}{\sqrt{2}} DDD = PEC_{field} \times 0.142$
NOEL (mg/kg bw/d)	21.0	Value determined for spiroxamine used as a surrogate
TER _{LT}	3498	Acceptable risks (%ER>5)

For the secondary poisoning risk assessments for fish-earing mammals from Exposure to sproxartine, M01 and M02, the TER values are >5 thereby demonstrating an acceptable risk to manumals we this route of exposure.

Biodiversity No relevant scientifically peer peviewed operative could be found on spiroxamine or its major metabolities from an acotoxic formation of the spiroxamine or its major metabolites, from an ecotoxicological perspective, on mammal@Therefore, it is considered that the potential impact of the active substance of biodifersity and the ecosystem, including potential indirect effects via alteration of the food web, are covered by the risk assessment for mathemals in this section and in the ED hazard assessment. Ô

CP 10.1.2.1 Acute oral toxicity to mammals Please refer to Document M-CR Section 7 Poxicology for a summary of the acute oral rat studies using O Charles Spiroxamine Se 500 <u>1-01667-061</u> and <u>M-016680-061</u>).

Higher tier data on manmals CP 10.1.2.2

, , , , The following summary relates to a report which has been submitted in order to justify the selection of

The following summary relates to a report which has been subpatted in order to justify the ectoxicologically relevant NOAEL used in the chronic mammalian risk assessment.

Data Point:	KCP 10.1.2.2/08
Report Author:	
Report Year:	2021
Report Title:	Spiroxamine: Consideration of long term mammalian toxicology endpoint for
1	the bird and mammal risk assessment
Report No:	0471836-TOX3
Document No:	<u>M-762441-01-1</u>
Guideline(s) followed in	None
study:	
Deviations from current	None S S S
test guideline:	
Previous evaluation:	No, not previously submitted Q & L
GLP/Officially	not applicable
recognised testing	
facilities:	
Acceptability/Reliability:	Yes A A A A A
Executive Summary	

Executive Summary

The available long-term Toxicology data has been reviewed in order to determine an ecotoxicologically relevant endpoint for the mammalian risk assessment A NOAEL of 21.0, 10g a.s. Aug bw/day has been selected and considered to be appropriate.

I. Methods

The EFSA 2009 Bird & Mammal Guidance Document1 sets out a different approach to determining ecotoxicologically relevant toricity and points for wild birds and mammal ask assessments. The philosophy of these guidelines is to set adoxicity endpoint which would protect the dynamics of the population, rather fran protecting any individual against an effect, perhaps inconsequential, to their health, survival of reproduction According to the Statcoms of the pesticides peer review meeting on recurring issue in ecotoxicology (FSA PR meeting 33 September 20152), an ecotoxicologically relevant endpoint should be set in collaboration with manmalian toxicologists and should be used in all the steps of the risk assessment The available doing-term date were assessed and considered in the table below.

Resultoand Discussion. II.

The table below presents the results achieved in the long-term Toxicology studies. Ø \bigcirc

O Table CP 10.12.2/08-4 Consideration of Toxicology data for derivation of an ecotoxicologically relevant Ż endpoint for risk assessment

				9		
Endpoint						
Body weight ch	ange, behavi	oural effect	and systemi	e toxicity :		
NOAEL 1	2,5∿ppm (equiv	valent 3/2	1.9/2.4 mg/kg	bw/day) based or	n systemic toxicity	(hyperkeratosi

- sis of oesophagus and forestophich) and clinical chemistry paratmeters (1 total cholesterol) [90 day oral (dietars) toxicity study in the rat, with the LOAEL of 625 ppm (3/2: 9.3/13.2 mg/kg bw/day).
- EL 800pm (equivalent to 3/2: 5.5/6.7 mg/kg bw/day) based on ↓ parental body weight gain in the 2008 two-generation stud with evidence of systemic toxicity (hyperkeratosis of oesophagus).

¹ European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA. EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438

² EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp

Endpoint Indices of gestation, litter size, pup and litter weight NOAEL 80 ppm (F₁/F₂: 6.5/6.7 mg/kg bw/day) based on ↓ pup body weights in the 2008 two-generation study Indices of viability, pre- and post-implantation loss: NOAEL of 300 ppm (\mathcal{O}/\mathcal{Q} : 21.0/21.2 mg/kg bw/day), the highest dose tested in the 2008 two-generation study, with no effects on viability index or reproduction endpoints In the rat developmental dose range finder toxicity study amplantations for pora lutea were and decreased, pre- and post implantation loss were increased with litter vability decreased with DAEK 150 mg/kg bw/day, with an NOAEL of 100 mg/kg bw/day. Ľ In a further rat developmental toxicity study confirmed no effect of implantations, *corpora luted* pre post implantation loss or litter viability, with a NOAEL 100 mg/kg bw/day. -Qʻ \bigcirc Pre- and post implantation loss was increased in the rabbit developmental dose range. Inder study NOAEL of 75 mg/kg bw/day (LOAEL 100 mg/kg bw/day), without any effect on three viability. These effects occured in the presence of maternal toxicity (reduced bod oweight, body weight, food consumption, gastric ulceration, reduced facecal output In the rabbit developmental main toxicity study no effect on implantations, corpora Autea, pre- or post implantation loss or litter viability were observed with a NOAEL O mg/kg bw/day. \bigcirc Embryo/fetal toxicity including teratological effects? NOAEL (Embryo/foetal toxicito) of 80 mg/kg bw/day based on no embryo/fetal toxicity in the rabbit main study with a NOAEL 80 mg/kg, bw/day. In the at an DOAEL of 100 mg/kg bv/day was obtained Ø in the presence of reduced tetal body weight. L, Ŵ NOAEL (teratological effects) of 30 mg/kg by days dincreased increased incre palate) in the rat in the presence of maternal toxicty (body weight, and body weight, food consumption, clinical signs In the rabbit, a NOAEL of 20 mg/kg bw/day was observed based on intreased incidence of spontaneous malformations conjoined stemebrae, sudal displacement of ears) in the presence of maternal toxicity. These malformations observed at 80 mg/kg bw/dav a dose evel deemed to exceed the maximum tolerated dose) were deemed both incidental and occurred in the presence of overt maternal toxicity, rather the pevidence of direct teratogenic@ffect of the compound. Unlike the rat, palatoschisis (cleft palate) was not bserved. Number aborting and number delivering early: No evidence of abortions on to doses of 100 mg/bg bw/day in the rat (where examined at the highest dose level) or 80 mg/kg bw/day in the mobil Å" Systemic toxicity and effects on adult body weight: NOAEL 125 ppm (equivalent 3/4? 1.9/27 mg/ke/bw/day) based on systemic toxicity (hyperkeratosis of oesophagus and forestomach) and clinical chemistry paratmeters (\downarrow total cholesterol) [90 day oral (dietary) toxicity study in the rat (1) (with the LOAPE of 625 ppm (3/2: 9.3/13.2 mg/kg bw/day). NOAPE 80 ppm (equivalent to 3/2: 5.5/6, mg/kg/bw/day) based on \downarrow parental body weight gain in the 2008 two-generation study with evidence of systemic toxicity (hyperkeratosis of oesophagus). Indices of post-natal growth, indices of lactation and data on physical landmarks: Evidence of effects on developmental landmarks were observed in the 2008 two-generation study. Both prepuptial Geparation and Faginal Spening were delayed in F1 offspring, with no effect on anogenital distancen F2 Developmental handmarks were independent of offspring weight reductions, not endorme driven but secured in the mesence or maternal toxicity (1 body weight gain, hyperkeratosis of the pesophage so berved a precropsy due to irritation of the digestive tract causing chronic maternal stress). A NOAEL of 80 ppm (F₁/F₂: 6.5/6.7 mg/kg bw/day) based on \downarrow pup bodyweights in the 2008 two-generation study. «

Survival and general toxicity up to sexual maturity:

NOAEL of 80 ppm (F₁/F₂: 6.5/6.7 mg/kg bw/day) based on ↓ pup bodyweights in the 2008 two-generation study, with no on survival up to the top dose of 300 ppm (F₁/F₂: 22.2/27.7 mg/kg bw/day) 2008 two-generation study.

Endpoint

NOAEL 125 ppm (equivalent ∂/♀: 1.9/2.7 mg/kg bw/day) based on systemic toxicity (hyperkeratosi oesophagus and forestomach) and clinical chemistry paratmeters (↓ total cholesterol) [90 day oral (dietary) toxicity study in the rat], with the LOAEL of 625 ppm (∂/♀: 9.3/13.2 mg/kg bw/day).

With regard to the selection of endpoints for the long-term assessment, it is considered that effects on populations will not occur if the survival rate, reproduction rate and development of individuals are not affected. Therefore, in principle, only endpoints in toxicity tests which are related to these key factors of population dynamics are ecotoxicologically relevant.

The refinement for the two-generation study (M-304231-01-1) is based on the assumption that the effects reported at highest dose level, 300 ppm do not influence the population success and the total reproductive outcome of mammals in treated areas. At this dose parental animats showed slight decreases of body weight (up to $\downarrow 8.3$ %) or body weight gain (up to $\downarrow 142$ %) as well as irritation induced hyperkeratosis of the oesophagus epithelium. However there were delays to developmental milestones of reaching puberty, i.e. preputial separation (PPSY in males and vaginal opening (VG) in females, in the F1 offspring only which were appatently treatment related. These effects occurred only in the presence of maternal toxicity (reduced body weight gain and hyperkeratosis of the oesophagus observed at necropsy due to irritation of the digestive tract causing chronic maternal stress.

The mean time of attainment of PPS was 420, 42.3, 42.8 and 44 6 day on 0, 20, 80 and 300 ppm groups, respectively, the delay at 300 ppm being statistically significant (p < 0.01). The mean time of attainment of VO was 34.3, 34.6, 35.2 and 38.4 days in 0, 20, 80 and 300 ppm groups, respectively, the delay at 300 ppm being statistically significant (p < 0.01). To understand it these delays in attainment of VO and PPS at 300 ppm were attributed to the marginal decreases in body weight effects, an analysis of covariance for the day of attainment of PPS and VO versus male and female purpody weight on postnatal day (PND 21), respectively, was undertaken.

Analysis of covariance for the day of attainment of PPS versus male pup body weight on PND 21 confirmed that the relay in PPS could not account for differences in PND 24 pup body weight. A similar conclusion was also reached for the day of attainment of VO versus female pup body weight on PND 21. Therefore, it cannot be concluded that differences in PSD 21 pup body weight accounts for differences in PSD of VO.

III Conclusion

In conclusion, the most plausible explanation of the effects observed in the two-generation study is that they are all directly caused by or are secondary to, the sostemic toxicity of spiroxamine in parental females. As the effects are relatively small compared to the control, these are considered to have no effect at the population level and are therefore not considered to be ecologically relevant.

The resultant long-term effects and chronic endpoint is addressed with the NOAEL for reproductive toxicity assessment of A.0 mg/kg bw/day.

Assessment and conclusion by applicant:

This report presents an assessment of the available mammalian toxicology data with spiroxamine along with a summary of the specific effects seen for various parameters for each study. A NOAEL of 21.0 mg a.s./kg bw/day has been determined from the rat two generation study and considered suitable for ecctoxicological risk assessment of wild mammals. The refinement is based on the assumption that the effects reported at the 300 ppm top dose level do not influence the population success and the total reproductive outcome of mammals in treated areas. At this dose parental animals showed slight decreases of body weight (up to 8.3 %) or body weight gain (up to 14.2 %) as well as irritation induced hyperkeratosis of the oesophagus epithelium. There were delays to developmental milestones of reaching puberty, *i.e.* preputial separation (PPS) in males and vaginal opening (VO) in females, in the F_1 offspring only which were apparently treatment related, but these were relatively small and are not considered to have an adverse effect at the population level. It is noted that in the

same study the reproductive parameters (mating, fertility, oestrous cycling, sperm motility, sperm count, sperm morphology, pregnancy, natural delivery, litter observations, mean ovarian follicles; *corpora lutea*) were unaffected at the highest dose therefore it has been demonstrated that these small delays in PPS and VO do not have an adverse effect on the parameters that are considered to be relevant at the population level. Thus, the lowest ecotoxicologically relevant NOAEL, suitable for use in the mammalian repro risk assessment, was considered to be 21.0 mg a.s./kg bw/day. The report is considered to be acceptable. **Ecological data** Data Point: KCP 10.1.2.2/01 Report Author: Report Year: 2007 Generic field monitoring of many als in Wheyards in France Report Title: Report No: RA05-223/1 M-291785-01 Document No: EU Council Directive 91/4 4/EEC by the commission Directive 86/68/EC; Guideline(s) followed in SANCO(4145/2000 study: Deviations from current Ødone C test guideline: Previous evaluation: yes valuated and accepted \bigcirc RAR (2010) es, conducted under GLP Qfrcially recognised testing facilities GLP/Officially recognised testing facilities: Acceptability/Reliability

Executive Summary

In this generic study, a radio tracking program was carried out in a typical wine growing region of France during spring and summer to obtain date on PT values for refined exposure assessment. Special emphasis was placed on the word monse (*Anodemus sylvaticus*), the focal species in vineyards. In the present study trapping vadio tracking, visual observations together with analyses of stomach content were method used to characterise PT in vineyards.

The wood mouse was the dominant for a species in the vineyard, however only a minor part of their time potentially foraging within the vineyards, with its preferred habitat was the surrounding areas. Stomach samples indicated wood price consumed mainly plant matter, with seeds as the dominant food (80%).

Study area

The study was conducted in and around four different vineyards in the Burgundy region around the municipality of France), a typical wine growing district, and encompassed a study area of 487 ha.

I. Methods ~

The study was carried out during spring and summer 2006.

Mamma trapping, marking and radio-tagging

Small mammals were trapped in four vineyards and the adjacent surroundings to identify the species present and to define the focal species for further study. Regular trapping was performed on each study

plot on two consecutive trap nights every week. Each captured animal >10g body weight was individually marked with a passive integrated transponder, injected subcutaneously. \mathbb{R}°

Adult individuals of the dominant species (wood mouse) were equipped with radio-collars. The weight of the collar did not exceed 10% of the animal's body mass.

In order to collect data on their time budget, habitat selection and home range sizes, 20 individuals (7 females, 13 males) of the focal species, the wood mouse (*Apodemus sylvaticus*), were radio tracked over their whole activity period (from dusk till dawn). From the radio-tracking data, the proportion of time potentially foraging was compared for vineyards and all babitats in the individuals home range. These values were used for deriving reliable values of the proportion of div obtained from the reated area (PT).

Individual PT was calculated as:

Time potentially foraging in wheyards

All trapped and radio-tracked wood mice were closely associated with vineyards and had the opportunity to use them as a foraging habitat. The results can therefore be considered to provide a worst case estimate of dietary exposure.

The spatial portion of vineyards within the nome range of the individual wood mice was calculated for each tracking session and compared to the corresponding PT alue. This comparison (calculated as the Jacobs' index [D]) illustrates the preference of avoidance of the individual wood mouse for vineyards as a feeding habitat during each tracking session.

To estimate the proportion of different food types in the diet, stomach contents of wood mice were sampled and analysed. For each sample the proportions of different food items contributing to the volume of the diet samples were estimated.

Stomach sampling

Snap traps were set within the Mneyerd at night and checked early in the morning throughout the study period. Stomach samples were evaluated by microscopic observations.

Additional observations

The whole study area was mapped for habitat types and crops at wast once during the study period.

The temperature (daily minimum maximum and average) and daily precipitation data were obtained from the nearest weather recording station.

II. Results and Discussion

The study was deemed to be acceptable

The temperature during the study period ranged between -1.9 and 26.5°C. The mean daily temperature was 12.8°C. Total precipitation was 432 2 mm, with a daily average of 2.8 mm.

The results of trapping indicate that the wood mouse (*Apodemus sylvaticus*) is the only species observed to regularly use vineyards and as such can be considered to be the focal species. Besides a few exceptions, value nocked ance (*Apodemus flavicollis*) and bank voles (*Clethrionomys glareolus*) were confined to hedgerows and wood and only. There were no shrews and only four captures of common vole (*Microtus arvalis*) in the vineyard out of 7680 trap nights. Live trapping revealed that the surrounding habitats were taken more attractive to wood mice than vineyards (captures/100 trapnights: surrounding 20.55) vineyard 3.75).

PT values

Based on the study results, the mean PT value derived for wood mice living within or in close vicinity to vineyards in spring/summer was $0.14 (90^{th} \text{ percentile} = 0.41)$. It is important to emphasise that these values represent the estimated proportion of time spent 'potentially foraging' in vineyards. All values

of 'time potentially foraging' include times when foraging was not evident but could not be precluded. The calculated PT value can therefore be regarded as a conservative estimate. The calculated mean Jacob's Index was -0.83, implies that vineyards were selected to a lesser extent for foraging than would be expected at random from the proportion of this habitat available within their home range.

Diet sample contents

The stomach samples of wood mice were mainly composed of plant material. Five out of sine samples were exclusively made up of plant matter. Among the plant matter found in the diet samples, seeds were most numerous in the diet of wood mice.

Relevant species in the vineyard (based on live-ti	apping)
Species	Mean trapping rate (captures 100 trappings)
	Vineyart Surkounding ²
Apodemus sylvaticus	y y 375 A 0 20.55 g
Apodemus flavicollis	<u>ي موجع موجع موجع موجع موجع موجع موجع موجع</u>
Microtus arvalis	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Clethrionomys glareolus	<u>\$</u>
Shrews (Crocidura sp., Sorex 35)	
Proportion of diet obtained in vineyards determined	
'potential foraging' time in kineyards as a proportion of the total potential foraging' time equals the proportion of diet obtained	Based or 20 radio-tracking sessions of 20 wood mouse
50% tile	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
90% tile 2 2 0 0 4	
Mean Q Q A S	
Proportion of different food items in the diet	ST D . O
Arthropod and plane items (actually eaten by 20, individuals foraging in and around virteyard) [mean portion]	Based on stomach samples of 20 wood mouse individuals
Animal matter	3%
Plant matter,	97% (fruits 14.0%, weed seed 80.1%, others 2.9%)
Based on 2560 trappings	

Table CP 10.1.2.2/01-1 Overview of small mammal abundance, PT and diet analysi

²Based on 2560 trappings

Inclusio III.

Of all small maniphals, only the wood mouse (Apodemus sylvaticus) was found to be in significant numbers in vingards. Other species were essentially confined to the surrounding, largely woodland habitat Ľ

The wood prouse is the dominant species in vineyards. Live trapping revealed that the surrounding habitats were more attractive for this species than vineyards.

Radio-tracked wood mice spent only a small proportion of time foraging in vineyards (time potentially foraging). From a distribution generated from 20 individuals, the PT estimates for 50th and 90th percentiles were 0.15 and 0.41, respectively.

Wood mice avoid vineyard habitats, preferring surrounding habitats and vineyards are of marginal importance as feeding habitat for wood mice in spring and summer.

The main components of all sampled stomachs were seeds (80.1%) and fruits (14.0%).

Assessment and conclusion by applicant:

This ecological monitoring study was conducted to GLP but not to any specific methodology. However, this is typical of studies of this type therefore the study is still considered to be acceptable, for regulatory purposes by supporting various aspects of the Bird & Manmal risk assessment.

The study showed that the wood mouse was far more prevalent in vine yards and the surrounding areas when compared to other small mammals such as the vole or shreevelt is therefore considered to be a highly relevant small mammal focal species, far more so than the vole which was seen in very low numbers. The study also found that, whilst the wood mouse did spend time within the vine vards, they found the surrounding areas more attractive. A 90th percentile PT value for the wood mouse of 0.41 was determined in this study and has been applied to the refined risk assessment. The study also analysed stomach contents which confirmed that the diet was almost exclusively plant matter with seeds being the primary component.

The results of this study have been used as part of the refined risk assessment of the small herbivorous mammal "vole" scenario, specifically to support the use of the wood mouse as a suitable focal species in vineyards, along with a 90th percentile PT value of 0.41. The study is also considered to support the use of the default omnivorous species diet from EFSA, 2009 of 25% weeds, 50% weed seeds and 25% ground arthropods.

M

\$,	
Data Point:	K@P 10, K2.2/09, X
Report Year:	
Report Title: 0	Generic field monthoring of manopals in Sineyards in Spain
Report No:	R09-123-2
Document No:	<u>M-405593-01</u> 0 0 0
Guideline(s) followed in	No official test guideline (stavailable at present
study:	
Deviations from curent	None is in the second s
test guideline:	
Previous evaluation Q	No
GLP/Officially	es, conducted under CLP/Officially recognised testing facilities
recognised testing	
facilities	
Acceptability/Reliability:	Acs a grad
Executive Summary	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Executive Summary

In this generic study a live tapping and ratio-tracking program was carried out in a typical southern European vine growing region in Spain during spring and summer, to obtain data on PT and diet estimation values for refined exposure assessment. Two small mammal species were monitored by radio-tracking the wood mouse (*Apodemus sylvaticus*) and the Algerian mouse (*Mus spretus*). In this study, five trapping radio-tracking, visual observations and analysis of stomach contents were conducted to characterise PT and diet estimations in vineyards.

The study provided reliable refined parameters of PT for both focal species and dietary estimates for wood mice and Algerian mice for use in higher tier risk assessments for small mammals foraging in vineyards in southern Europe.

a municipality

Study area

The study was conducted in vineyards in the vicinity of

in the region in north-eastern Spain, a typical area for vine cultivation in southern burope.⁽⁰⁾ Four vineyards were selected to represent a common size and structure of vineyards in the region, for suitable adjacent off-crop habitats and for the suitability of the intended study methods.

I. Methods

The field phase of the study was carried out during spring and summer March to July 2009

Mammal trapping, marking and radio-tagging

Small mammals were trapped in four vineyards and the adjacent surroundings to identify the species present and to define the focal species for further study. Live trapping was conducted on all study vineyards with one trapping session (2 to 4 consecutive trappinght) per week throughout the field phase. In the beginning of the study live trapping was carried out in an intensive manner to select suitable species for a radio-tracking program. Due to the tesults of the intensive trapping period the wood mouse (*Apodemus sylvaticus*) and the Algerian mouse (*Mus pretur*) were chosen as focal species for adio-telemetry.

Each captured animal (except individuals <10 g of body weight and shrews) was injected subcutaneously with a Passive Integrated Transponder (PIT) each with a unique ID number. Shrews were marked with a fur cut. Small mammal species optured inside the crop or inorts close vicinity were equipped with radio collars. Individuals were regarded as suitable for tagging if the weight of the tag did not exceed 5% of the animal's body weight. Individuals were tracked at least 24 hours after tagging, to exclude any bias.

By radio-tracking of individual small mammals, their home range, habitat use and the portion of time they spent potentially foraging in vineyards was determined. A total of 20 individuals of each species were successfully radio tracked. Individual Algerian mice were radio tracked continuously over a period of 24 hours. Wood mice, known to be nocturnal, were radiotracked from dusk till dawn. The proportion of time potentially foraging in vineyards (compared to the total potential foraging time in all habitats) was estimated from the radiotracking data, supported by visual observations. These values were regarded as conservative equivalents to the proportion of diet obtained from the treated area (PT). Individual PT was calculated as:

A fine potentially foraging invineyards

Time potentially foraging in alknown habitats

To estimate the proportion of different food types in the diet (PD), stomach contents were analysed (20 stomachs of wood mice and Algerian mice, respectively). Since there are no correction factors available for small mammals, weight-length, weight-number and/or weight-area relationships based on reference data for all food categories (*e.g.* invertebrates, seeds and green plant material), collected during the study, were used to calculate the proportion of dry weight of each food category found in the analysed stomachs.

Stomach sampling

Snap traps were set within additional vineyards in proximity of the study vineyards over the whole study period. A minimum of 20 stomachs were sampled per species. Stomach samples were evaluated by microscopic observations.

Additional Observations

The whole study area was mapped for habitat types and crops. The vegetation status of the vineyards was determined by changes in BBCH principal growth stages during the study period.

The temperature (daily minimum, maximum and average) and daily precipitation data were obtained from the nearest weather recording station. Q_{p}°

II. Results and Discussion

The temperature during the study period ranged between 1.6 and 35.8°C. The mean daily temperature was 18.7°C. Precipitation was recorded on 30 days over this period with a total of 183.2 mm.

PT values

The combination of radio-tracking with visual observations and the trapping scheme as presented here (*i.e.* trapping inside of vineyards or close vicinity), allowed an accurate and representative assessment of potential foraging times in given home ranges in order to calculate reliable of values. All small mammals were closely associated with vineyards and had the opportunity to use these as foraging habitat. Therefore the results can be considered as conservative in terms of potential dietar exposure. PT values were calculated for individual small mammals and as overall PT values (*i.e.* 50% tile, 90% tile and mean) for both species. Based on the study results, the mean PT values calculated for the wood mouse and the Algerian mouse were 0.05 (20% tile = 0.174 and 0.3 (90% tile = 0.43), Pespectively e^{-1}

Table CP 10.1.2.2/09-1 Overview of PTon vineyards

rroportion of diet obt	ined in vineyards determined by radio-tracking (PT) 5 5
'potential foraging' tin	ne in vineyards as a propertion of the total 'potential for aging time
Woodmouse ¹	
	90% He 5 0 0 0 0 0 0 0.17
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Algerian mouse ¹	
Algerian mouse ¹	90% the 2 ~ 2 & 4 0.43
	$\mathcal{F} \qquad \text{Mean} \qquad \mathcal{F} \qquad \mathcal{F} \qquad \mathcal{F} \qquad 0.13$
Based on 20 individuals	20 tracking sessions

Diet estimate and PD values

The analysis of the wood mouse and Afgerian mouse stomach samples followed the most evolved methodology for the omnivorous diet guild, which is biomass dry weight determination by means of comparison with a reference data base. The dry weight propertions for the different food categories (*e.g.* invertebrates, seeds, green plant material, wood / bark) in the stomach samples are presented below.

Table CP 14,1.2.2/09-2 Diet composition of the wood mouse

Based on 20 faeces samples analysed for	their dryweight pro	portions (% dry weigh	t) of different food
Food category C	مربع 50% tile	90% tile	mean
Invertebrates	0.79	14.98	5.95
Seeds of the seeds	98.96	99.95	92.78
Green flant material	0.01	0.25	1.11
Wood/bark @ 7	0.00	0.05	0.16

Ø

Table CP 10.1.2.2/09-3	Diet composition of the Algerian mouse
------------------------	--

Based on 20 faeces samples analysed for their dry weight proportions (% dry weight) of different food categories				
Food category	50% tile	90% tile 🖉	mesta	
Invertebrates	0.07	46.47	12.22	
Seeds	95.85	99.94	×~~82.162 × 2	
Green plant material	0.05	20.40	<u>0</u> 574 0 2	
Wood/bark	0.00	01.11		

III. Conclusion

Overall this study provides reliable refined parameters of PT for both tocal species and dietary estimates for wood mice and Algerian mice for use in higher tier risk assessments for small mammals foraging in vineyards in southern Europe.

Assessment and conclusion by applicant:

This ecological monitoring study was conducted to GLP but not to any specific methodology. However, this is typical of studies of this type therefore the study is fill considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Manual risk assessment.

The results of this study have been used as part of the refined risk assessment of the small herbivorous mammal "vole" scenario, specifically to support the use of the wood mouse as a suitable focal species in vineyards. This study provided a 90° percentile FT value of 0.17 for the wood mouse. However, for the refined risk assessment for Spiroxanine EC 500, the more conservative PT value of 0.41 from study <u>M-291785-01</u> has been used.

Data Point: KCP 10, 1.2.2/40 X X
Report Anthor:
Report Year: 2012
Report Title: Auna Experience - BCS/response to the evaluation by the zonal rapporteur
member state Greece Refined risk assessment for small herbivorous mammals
Report No: 2 1043977701-2 2
Document No: <u>M1-43877-01</u> , 2
Document No: MI-4.39 (1/-01/2) Guideline(s) followed in study: Regulation (EC) No (107/2009
Deviations from current None of A
test guideline: Y Y Previous evaluation: No prot previously submitted
Previous evaluation: No not previously submitted
GLP/Official applicable recognised festing
recognised testing $\sqrt{1-1}$
recognised testing facilities
Acceptability Reliability: Yes
A. Introduction

In its evaluation of Luna Experience as Rapporteur Member State for the Southern Zone of the EU, Greece concluded that the risk to the Common Vole is not acceptable for certain uses and that "Member States should carefully consider the vole scenarios are relevant and whether they should merit attention or not".

Such a conclusion would burden other Member States of the Southern Zone with additional work to resolve this question, if it could not be resolved by the Zonal RMS by providing a risk assessment that shows an acceptable risk for these scenarios. This document is intended to demonstrate that voles were if the scenarios might be unrealistic in Southern Zone Member States, are not at risk by the intended uses of Luna Experience.

Refinement of ecological parameters of the common vole

Tier 1 Risk assessment for the vole as a small herbivorous mammal assumes that the animal only feeds on grasses. This may be true for a short period of time applicable for an acute risk assessment. However, it is not conceivable that voles would eat only grasses over a prolonged period relevant for a long term risk assessment.

Lüthi *et al.* (2010) investigated diets of voles for various plants in natural habitats (n=98) and in recently sown wild flower fields (n=99) by analyzing stomach contents and facees samples. The natural habitats were characterized by a prevalence of monocotyledonous plants whereas directledonous plants prevailed in the wild flower fields.

The authors found a preference for monocots in both scenarios, supporting tonotion that grasses anght be the predominant feed for voles. The value found, however, that despite this preference for methodots, other feed items contributed to a significant part to the total diet. In the setting with divots dominating the habitat, monocots represented on average 44.3% of the diet, dicots 19.6% and seeds made up for 19.4% (wet weight). The rest were unidentified atems of the ontural nabitat (monocots predominating), monocots made up for 71% of the diet, dicots represented 44.3% and seeds 10.7% Again, the rest were unidentified items.

These findings demonstrate that, even in situations where they could easily satisfy their energy demands by feeding on monocots alone, voles will ged on access and other items like seeds and roots too. Therefore the assumption for the long-term risk assessment that oles will feed exclusively on grasses is unrealistically word-case.

Because of these clear findings and the fact that the study was done within the typical range of distribution of this species the study and its results are deemed highly relevant for introducing more realistic elements into the risk assessment for this species.

For this reason a refinement is presented below using the distary information from Lüthi et al. (2010).

Starting from the worst case situation (monocol dominated natural habitat) the diet composition was recalculated to account for the undentified items portion (7.3%). Rather than assuming these were e.g. roots etc. this portion was proportionally distributed to the other three matrices, monocots (grasses), dicots (non-grass herbs), and seeds (weed seeds), resulting in percentages (PD's) for these items of 76.6, 11.9, and 11.5, respectively

II. Conclusions

These findings demonstrate that, even in situations where they could easily satisfy their energy demands by feeding on monocots alone, voles will feed on dicots and other items like seeds and roots too. Therefore the assumption for the long term fisk assessment that voles will feed exclusively on grasses is unrealistically worst-case

Assessment and conclusion by applicant:

The report presents the rest the set of a review of the diet of the vole from different habitats. The evidence suggests that voles do not feed exclusively on grasses and that other plant material such as dicots and seeds also made up part of the diet. A vole diet of 76.6% grass & cereals, 11.9% non-grass herbs and 11.5% weed seeds has been established.

The information is considered suitable for use in a refined mammalian risk assessment for the vole.

	Le la
Data Point:	KCP 10.1.2.2/11
Report Author:	
Report Year:	
Report Title:	Small mammals in vineyards in south-west Germany
Report No:	<u>M-237095-01-2</u>
Document No:	<u>M-237095-01-2</u>
Guideline(s) followed in	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
study:	
Deviations from current	None None
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially	not applicable
recognised testing	$\begin{array}{c} \text{Not upplicable} \\ \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\$ } } } } } } } } } } } } }
facilities:	
Acceptability/Reliability:	

Executive Summary

A survey of small mammals was carried out between April and August 2002 in three vineyards in wine growing areas of south-west Germany. This was done by five trapping and individually marking the animals with cuts in their coat and KMnO₄ tye. Three different study areas with varying habitat features were selected in order to obtain information on the species composition according to the different habitat features. Two species - the common vote and the wood mouse – were identified in small numbers in vineyards with partial and full ground vegetation. The presence of ground vegetation in the vineyard was the determining factor for the occurrence of the common vote and the wood mouse in vineyards.

It can thus be stated in conclusion that the population densities of both species in vineyards are well below the figures determined for other agricultural areas. Vineyards represent a suboptimal habitat for both species. The amount of ground vegetation in the vineyard has a direct effect on the population density of the small manimals occurring there. A population of norther species should be expected in areas with no ground regetation. Areas which have partial or full ground cover have low levels of colonisation, with the presence of the wood mouse restricted to the summer months.

I. Materials and Methods

Study areas in the wire-growing areas of

and

districts near (150 - 400 m above sea level) and were characterised by a warm, mild climate.

The study area (manufactor in was in a wine-growing area of approximately 18 ha, which -

apart from a few meadows and gardens – was covered almost exclusively by vineyards. There was a

wood to the north of the area. The study area itself was about 35 m from the edge of the wood and - like all the vineyards in this area - a layer of ground vegetation had formed in it. Q_{μ}°

The area (area (area)), which had ground vegetation In every other row, was surrounded by thickets on three sides at a distance of about 5 - 10 m. In the area surrounding the study area, large areas under vines alternated with thickets, meadows and fields during the study period.

The study area (second b), which did not have any ground vegetation, was in an area with few structural features where, apart from the actual vineyard, there were only meadows and fields: there were no thickets or woodland.

The Giessen standard method, as recommended by BOY'E & MEDIG (1996), was used to record the data on small mammals. This gave an area of 0.25 ha for all study areas. A total of 64 wooden box traps made by baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oil; rolled oats and peadut butter were used to baited with sardines in oats area of the batter were used to batter we

2001). Between April and August 2002, there was one trapping period per month in each of the study areas. The weight (PESOLA®, spring balance), species, sex and reproductive status of each animal caught was recorded.

Each animal was then individually marked by a cot in its coat and additionally fay Kimn0, dye. The animals were then released at the same place immediately after the data had been recorded and they had been marked. The trapping success was calculated for each species as the total number of individuals caught during the study period in a study area in relation to 100 trappints. One trap unit was taken to be the period for which a trap was set during a monitoring round (1999).

The size of the species population was adjusted using the minimum number alive method (MIMA) which, unlike other methods of estimation, determines the minimum population. With this method, the animals are evaluated as members of the population, even if the are not recorded in each sample. The MNA includes the number of individuals caught in aromspection plus the number of individuals not caught which were recorded in an earlier and later sample, but not in the current one. The number of individuals determined in this way was then pulliplied by four in order to obtain the population densities of the 0.25 hastudy greas which could be related to a heater.

II. Results and Discussion

During the study period, 51 individuals were recorded in 15 trapping series with 9600 trap units and 63 small mammals trapped. Two species were identified in the study areas, each from different families:

Arvicolidae - common vole: *Aicrotus arvitts* (PALLAS) - field mouse and Muridae - true mice: *Apodemus sylvaticus* (Q) - wood mouse.

Common yoles were found in only two pat of the three study areas. In the **study** study area, the calculated catch rate was 1,06 individuals/100 trap units and in the Fuchsen study area it was 0.03 individuals/100 trap units. The catch rate for the wood mouse, which was identified in each of the study areas was 0.25 for **study** and 0.13 individuals/100 trap units for each of the other study areas (**study**).

The tables befow show the sumber of individuals recorded, the number of re-catches, the population sizes in individuals has calculated by MNA, and the averages for each of the two species.

Qî av	
Table CPM0.1.2 2/11-1	Number of common vole catches

Trapping period D Individuals Re-catches Population size				
Location: Kratzenberg				
1	6	0	24	

Trapping period	Individuals	Re-catches	Population size
		Ke-catches	
Location: Kratzenb	erg		
2	6	4	24
3	11	1	
4	10	3* Čģ	
5	3	0	
6	7.2	1.6	
Location: Fuchsen			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	0		
2	0	A 00 ~	
3	0		
4			
5	1 Q 2		
6			
Location: Löhrer Be	erg		
1			
2			
2 3			
4			
5 0			
6			
*Includes two re-cato	thes from previous trap	Ping petriod	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*Includes two re-catches from previous trapping period

Of the total of 34 common vole individuals in the **study area**, 17 were female, including one young animal of the 7 mate individuals eight were young animals. Only in the last trapping period was one female individual caught in the Buchsen study area.

Seven of the eight wood mouse individuals in the **study** area were males, two of them, like the female, young animals. Of the four individuals caught in the **study** area, two were young male animals and one way a young female. An adult female was also caught. Only males were caught in the **study** area, only one of which was a young animal.

Trapping period		Re-catches	Population size		
Location: Gratzenberg					
2	0	0	0		

Table CP 1957.2.2/11-2 Nomber of wood mouse catches

Trapping period	Individuals	Re-catches	Population size
Location: Kratzenb	erg		
3	3	0	
4	2	0	
5	3	2 👸	
6	1.6	0.5	6.4 0 0 0
Location: Fuchsen		A C	
1	0		
2	0		
3	0		
4	0		
5	4		
6	0.8 Q erg		
Location: Löhrer B	erg v v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	100		
2			
3			
<u>4</u>			
5			
6	0.8 9 4	AN 0°	3.2
III Conclu	sion 5 5		O V V

It can thus be stated in conclusion that the population densities of both species in vineyards are well below the figures determined for other agricultural areas. Voneyards represent a suboptimal habitat for both species. The amount of ground vegetation is the vineyard has a direct effect on the population density of the small mammals occurring there. A population of neither species should be expected in areas with no ground vegetation. Areas which have partial or full ground cover have low levels of colonisation, with the presence of the wood arouse restricted to the summer months.

Assessment and conclusion by applicant:

This ecological monitoring study was not conducted to GLP and not to any specific methodology. However, this is typical of studies of this type therefore the study is still considered to be acceptable for regulatory purposes by supporting various aspects of the Bird & Mammal risk assessment.

The results of this study have been used to support the refined mammalian risk assessment, specifically the small herbivorous mammal scenario. The study demonstrates that both the wood mouse and the common vole are present in vineyards but at relatively low numbers compared to other agricultural areas. Furthermore, their presence is dependent on there being ground vegetation in the vineyard.

Data Point:	KCP 10.1.2.2/12
Report Author:	
Report Year:	2019
Report Title:	Relevance of body weight effects for the population development of common
	Relevance of body weight effects for the population development of common over the significance in regulatory risk assessment of pesticides in the European Union
	European Union
Report No:	<u>M-669216-01-1</u>
Document No:	<u>M-669216-01-1</u>
Guideline(s) followed in	None & Q Q J L
study:	
Deviations from current	None A Q & A C
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially	not applicable
recognised testing	
facilities:	
Acceptability/Reliability:	Yes i y y y y y
I. Backgroun	

The common vole (*Microtus avails*) is typically the wild manufal species driving regulatory pesticide risk assessment (RA) in Europe. The risk assessment endpoint for wild manufals is taken from the studies conducted mainly with rodents for the toxicological part of the dossier. Body weight effects in these studies are often driving the selection of the No Observed Adverse Effect Level (NOAEL) used for wildlife risk assessment. Thus, assessing body weight effects in voles very frequently constitutes a key scenario in the RA. Although many studies on cology reproductive biology population genetics, and other aspects of common voles are available, the relevance of body weight for their survival and reproduction has not very been specifically analysed. There is also little guidance on how to quantitatively deal with body weight effects in the regulatory risk assessment of pesticides.

Population relevance of body weight effects on voles by analysis of a dataset from multi-annual study with repeated life-trapping and genotyping was evaluated and body weight with reproductive success was correlated, taking account of the seasonality of body weight. Body weight and growth were similar between reproducing and non-reproducing females. The number of confirmed offspring indicated no correlation with parental body weight. Beproductive success of the voles was mainly influenced by the date of birth, *i.e.*, animals born in Spring have a higher chance to reproduce. Body weight did not correlate without spring most of the year, except for autumn. Animals weighing <15 g in October did not survive winter.

III. Discussion

Results

II.

In toxicology studies such as the rar reproduction study, in which animals are exposed to treated diet for several months, effects on body weight are frequently observed (most often in form of retarded growth, rather than actual body weight loss). Since the results from these studies are used for the wild mammal risk assessment of pesticides, the question arises to what extent effects on body weight may affect populations of free ranging animals exposed to pesticides under field conditions.

Already FFSA noted that there were "no quantitative experimental data to define the level of body weight change that is associated with impaired mating performance or parental care". However, no more guidance was then given in the relevant EFSA guidance on how to quantitatively interpret body weight effects observed in the laboratory or how to translate these to field conditions for risk assessment.

The generic focal species scenario "small herbivorous mammals", *i.e.*, Common voles, often drives the initial steps of pesticide RA in the EU. To date, the relevance of body weight on free ranging common

voles has never been studied with regard to pesticides, although body weight is typically measured during capture–mark–recapture field effect studies. Q_{p}°

The present evaluation is based on a unique dataset from a live trapping study conducted over 3 years and from genotyping of more than a thousand individual voles. Since animals were kept in autdoor enclosures from which they could not move away, the likelihood of trapping them was high. Therefore, information on their life span is considered robust. Since not all animals could be genotyped due to practical reasons, it is possible that some offspring were not detected. However, since a relatively large number of 1255 individuals were genotyped, the data can be considered adequate to address the objective.

A first remarkable result of the present analysis was that about 80% of all females and about 90% of all males had no genetically confirmed offspring. Hence, a considerable proportion of the population and not reproduce or did not reproduce successfully, while relatively few animals produced most offspring (females and males produced up to 13 and 32 pups, respectively).

This means that even under the optimal conditions of this study (grassland habitat, ground predators excluded, population density was in a normal range), the availability of home ranges was a limiting factor for the population. In turn, 80% and 90% of nor-reproducing females and males, respectively, provided a considerable 'reproductive reserve', which could start to reproduce when becoming resident, or when reproducing animals disappeared (e.g., by emigration, predation or agricultural practice). This population resilience is not only relevant for pesticide risk assessment but also explains why common vole populations recover very quickly after rotenticide application with voles have short lifespans (during the breeding season most animals live only about a month), they exhibit a high reproductive output and often disperse from their natal areas.

Body weight effects, as observed in toxicological studies, could potential impact reproductive success of voles, for example during the "fareeding phases" defined by EFSA: "Establish breeding site", "pairing" and "mating". For example, smaller female voles may potentially have a lower reproductive success due to competition over breeding territories.

However, females of small mammal species in agricultural fields are not very selective regarding mates, and males, which have larger home ranges encompassing a number of female home ranges, are only loosely connected with females and thus mate with a large number of females (*i.e.*, polygynous mating system with multiple paternity). Multiple paternity or polyandry is seen as a common female strategy to increase genetic diversity of offspring or to avoid infanticide. Multiple paternities within a litter have been described in common voles, several other small mammals and animals in general. Thus, the actual mating system of common voles is in fact very resilient to effects on individuals and this may also explain that differences in adult body weight of factor 2 of more were not associated in our study with measurable differences in reproductive success, a key element of the regulatory protection goal.

The focus of the present evaluation was to determine to what extent body weight had an effect on reproduction and survival, to a form the risk assessment or management of small mammals.

However, since common tole body weight showed a typical seasonal trend as previously reported, seasonality needed to be taken into account. The main factor influencing reproductive success (measured as the number of genetically confirmed offspring) was the month of birth. Females born early in the season had more offspring than females born later in the season. Body weights were generally higher early in the season (before population density reaches its peak) than in late summer or later. Hence, one might suspect that body weight is related to a higher number of offspring. However, this is not the case, because when seasonality was accounted for by comparing the number of confirmed offspring and female body weight month, it was found that larger body weight did not relate to more offspring. Overall, this means that seasonally changing body weight does not seem to affect reproductive success, but that the single most influential factor affecting it is the time of birth (or in other words, the time animals have for reproduction). Also, when comparing the body weights of

successfully reproducing females (i.e., those with confirmed offspring) and unsuccessfully reproducing females (*i.e.*, those without confirmed offspring), no influence of body weight was found.

In contrast, regarding life span, an effect of body weight was found in young animals born late in the year: when comparing life span and body weight month by month (again to take account of seas ality), it was found that of all animals caught the first time in autumn (October), only those with a bedy weight of at least 15 g survived until the next year. However, survival of animals caught the first time in October was generally low (only 13% survived until the next year). But a low winter survival openimus born? late in the season probably does not affect populations much, since only about 15% of all first captures were caught in October or later.

Before October, body weight and survival did not correlate. In this context, it is interesting to see that body weight is generally highest in late spring and summer when surviyal is typically lowest. These results are in line with findings in bank voles by Koskela who studied the impact of litter size manipulation in outdoor enclosures in Finland. An artificial increase of litter size related to a lower body weight at weaning and a reduction of litter size resulted in larger weaning weights. While litter size manipulation had no effect on winter survival, survival of pups during lactation was reduced for enlarged litters. However, a higher female wearing weight related to a stight phigher winter survival, independent of litter size manipulation (survival of male of spring was not analysed) Adult female weight did not, however, explain the probability of surviving over winter

IV. Conclusions

These results demonstrate no defectable influence of Sommon vole body weight & reproductive success and survival during most times of the year. The results of this study suggest that, additional to the hazard information from toxicity studies, ecological information on voles as a typical species of concern should be considered in the regulatory risk assessment of pesticides

Assessment and conclusion by applicant:

This summary retaites to a literature paper which has been written to highlight that the body weight of the common wole would not appear to affect the reproductive success of this species. The study revealed that there was no detectable influence of common fole body weight on the reproductive success and survival during most time of the year and that reproductive success was mainly influenced by the date of birth.

The paper has been referred to in the mammalian risk assessment to support the notion that the relatively small reductions in body weight recorded in the rat two-generation study will not have an adverse effect at the population level and are therefore not ecotoxicologically relevant.

the manufaltan only weight recorded of unation level and are therefore the stand of the stand of

2013 Common vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products
Common vole (Microtus arvalis) ecology and management; implications for isk assessment of plant protection products
assessment of plant protection products
M 476622 01 1
WI-4/0022-01-1
<u>M-476622-01-1</u>
not applicable
None
No, not previously submitted
not oppliable V W V V V
$\frac{\operatorname{Yes}}{\sqrt{2}} \xrightarrow{\sqrt{2}} \sqrt{2} \xrightarrow{\sqrt{2}} \xrightarrow{\sqrt{2}} \sqrt{2} \xrightarrow{\sqrt{2}} \xrightarrow{\sqrt{2}} \sqrt{2} \xrightarrow{\sqrt{2}} \xrightarrow$
r r

Abstract

Common voles (Microtus arvalis) ap common small mammals in some European landscapes They can be a major rodent pest in European agriculture and they are also representative generic focal small herbivorous mammal species used in risk assessment for plant protection products. In this paper, common vole population dynamics, habitat and food preferences pest potential and use of the common vole as a model small wild mammal species in the risk assessment process were reviewed. Common voles are a component of agroecosystems in many parts in many parts of Europe, inbabiting agricultural areas (secondary habitats) when the carrying capacity of primary grassland habitats is exceeded. Colonisation of secondary habitats occurs during multiannual outbreaks, when population sizes can exceed 1000 individuals ha-1. In such cases, in erop common vole population control management has been practised to wood ognificant crop damage. The species' status as a crop pest, high fecundity, resilience to disturbance and intermittent colonisation of crop habitats are important characteristics that should be reflected in risk assessment. Based on the information provided in the scientific literature, it seems justified to modify elements of the current risk assessment scheme for plant protection products, including the use of realistic food intake rates, reduced assessment factors of the use of alternative focal rodent species in particular. For opean regions. Some of these adjustments are already being applied in some EU member states. Therefore, it Seems reasonably consistently to apply such pragmatic and realistic approaches in risk assessment for plant protection products across the EU.

I. Introduction

Agriculture provides food for more than six billion people globally, with agricultural production greatly increased owing to intensification of farming practices such as increased fertiliser applications, improved plant breeding techniques, irrigation, mechanisation and an increased used of plant protection products.

Plant protection products minimise pre- and post-harvest losses in many crops, including grains, vegetables and corn, but also in hot culture and forestry, by regulating plant disease and reducing the impact of invertebrates, weeds and occastonally vertebrates.

The use of plant protection products and their active ingredients is regulated at EU level and nationally at member state level to ensure that products are effective in managing crop pests and safe for humans and the environment. In the regulatory process, pesticide risk is assessed for formulated products and their active ingredients on the basis of scientific studies performed using recognised test procedures with resulting endpoints applied in the risk assessment models. Only active ingredients and formulated

products satisfying the requirements of the risk assessment to protect non-target organisms from effects associated with the application of the plant protection products can be registered for use.

Risk assessment approaches for wild mammals aim to evaluate the potential impact of a pesticide application on a model "representative" species that is likely to be present in the crop at the time of application. Typically, a model species will have high food intake rate (FIR), consume mostly a relevant type of food (*i.e.* a food type potentially carrying residues) and have a low body weight, all of which maximises the potential exposure to and risk from the pesticide. Under the current scheme of the mammalian risk assessment, the common vole is such a model species representing herbivorous mammals. In agroecosystems, the common vole is an important component of the food web providing ecosystem can provide shelter for many other species.

However, the common vole is also important vertebrate pest species in many crop types across the European agricultural landscapes. It consumes plant material (e_{2} leave, stems, seeds, roots, bark) from several agricultural, horticultural and forestry plants, which can result in significant crop damage. Outbreaks of common voles occur every 2 -3 years. During outbreaks, farmers typically manage the associated damage by applying rodenticides directly to tunnel entrances. Where possible, farmers can use indirect control methods to manage common voles, such as decreasing vegetation height and cover, which removes food and also reduces steller from predation.

Within the framework of commission regulation 107/2009 for placing of plant protection products on the market within the EU, mammalian environmental risk assessments are performed according to guidance presented in an EFSA (2009) guidance document within this gordance the common vole is the representative generic focal small herbivorous mammal species used in the acute and chronic risk assessments, considered relevant for almost all crop types. With a low body weight and a high food intake rate, the common vole has a high potential exposure in crops following product application.

The uncertainty as to how to deal with common voles in rise assessment has remained a constant feature of small herbivorous mammar risk assessment under EFSA (2009) guidance.

This article presents a review of common vote population dynamics, biology and behaviour, including habitat preferences and crop damage potential relevant to risk assessment. In the review, refined approaches to the use of common voles in the risk assessment of plant protection products within the EU regulatory framework on the basis of realistic and scientifically based information are discussed.

II. S Discussion

When considering coles in risk assessment, a realistic position on the importance of voles to the agroecosystem should be taken. Published information highlights opportunities to balance risk assessment with characteristics of common vole biology and ecology and pest status.

Habitat preferences

Common voles are essential food webcomponents ensuring energy flow through the trophic levels as a significant primary consumer. They are an important food source for predators within the food chain; for example, raptor species adapt their abandance to coincide with outbreaks of small mammals. This has obvious ecological benefits, but can also result in conservation issues during times of common vole population declare when large predator populations search for alternative food. Common voles are an important pest species in nultiple crops, causing significant levels of damage. Their distribution and damage potential is widespread across agricultural landscapes within Europe. Common vole populations peak usually searonally during autumn. Multiannually, there is a long-term pattern of vole population growth and decline that results in outbreaks occurring in about 2–5 year periods, which means that naturally occurring easonal and multiannual fluctuations are the rule for common vole populations. The preferred primary habitat of common voles is steppe, which comprises grassland, pasture and meadow with mixed grassland, herbs and weeds that provide appropriate cover to avoid predation. For common voles, many cropped areas are considered to be secondary habitats, and significant invasion into them occurs when there is a population outbreak. In contrast to primary habitats, these secondary habitats cannot maintain common vole populations sustainably for long periods owing to the seasonal nature of

farming, where populations are regularly disrupted by harvest and tilling. Although the common vole is indicated as the representative generic focal species in screening and tier 1 risk assessments under EESA (2009), population dynamics and habitat preferences indicate that in the period between population \mathcal{A} outbreaks the likelihood of significant numbers of common voles being found in secondary habitats such as grain crops, vegetables and sugar beet is low. During vole population outbreaks, the densit of voles in primary habitats is high, which is likely to provide a considerable buffer for potential adverse effects of plant protection products on common vole populations in secondary habitats such as gopped areas Inclusion of different levels of comparative risk in primary and secondary habitats for a pest such as the common vole is considered to be appropriate to ensure a sufficient population density is maintained in the primary habitat. This contributes to maintaining the protection goal to avoid long-tempdetripental effects on common vole populations. 0 Ø

Managing common vole populations

In Europe, few rodenticidal compounds are used regularly for thect control of compon vois populations in crop habitats. The use of rodenticides and alternative methods can reduce crop damage. However, even with such extensive direct action during one break Microtus populations are seen of receiver relatively quickly following rodenticide application, although to data are available for common voles. These findings, along with the exceptional reproductive potential of common voles, indicate that common voles are anticipated to overcome potential adverse effects of in-crop application of plant protection products at the landscape level.

Use of the common vole in risk assessment m

Use of the common vole in risk assessment of a gradience of the common vole in risk assessment of the common of the common vole, its relevance to environmental risk assessments must be practically established to ensure that, at tier I of the visk assessment process, the risk to voles across multiple crops is realistically assessed. Risk assessment parameters for default generic focal species as defined in Appendix A of the EFSA (2009) bird and mammal guidance docupent do not always oppear to concur with results of scientific observations in field and aboratory studies. For example, EFSA (2009) use of energy balance models indicates that a 25 g vole must consume 1.33 times its own body weight [the default food intake rate/body weight (FIL bw)] to satisfy the theoretical daily energy expenditure (DEE). However, in laboratory studies, common voles have been found only to consume about a third of their body weight per day, and values as low as 10% based on the uptake of dev matter have been reported. As shown in laboratory studies, ever at low remperatures, when food uptake is highest, an amount of food equivalent to about 50% of the body meight is eater although this was not verified under field conditions. Reevaluating certain seneric focal species food intake rates that are not in agreement with literature values is an area of future research that, coupled with additional research, could provide realistic food consumption data for Ose in risk assessmen The Common vole is a model species that exists in cropped areas, and, given body weight and food intake rates, represents a worst-case exposure model. It therefore seems reasonable to consider an adjustment to Annex VI (trigger value) to account for the reduced uncertainty associated with the evaluation of derived TER values from acute and reproduction dietary risk assessments. This reduction could follow the model used in Germany, where lower TER trigger values (≥ 5 in the acute and ≥ 2 in the cheonic risk assessment) are applied for common voles and wood mice. German regulators consider these species to be the worst case exposure models and not simply representatives of the worst-case exposure model. They also stress that mammalian toxicity endpoints are usually defined from studies with laboratory Norway rats (*Rattus norvegicus*) or house mice (*Mus* musculus), which have a close phylogenetic relationship to field rodent species, thereby reducing the interspectes uncertainty associated with extrapolating laboratory endpoints to wild mammals. Thus, adjusting the coute and chronic TER trigger points (as is the case in Germany) would be a realistic and pragoratic approact appropriate across all EU member states. The use of alternative focal species within the same feeding guild (e.g. field vole) is a pragmatic approach to risk assessment proposed for the Norther zone where common voles are not widely distributed. However, this position, although pragmatic, cannot be consistently applied across member states. More information is necessary for better assessment of resilience and recovery in common vole populations and for further development and

validation of modelling approaches that can be valuable in assisting decision-making in risk assessment. This information could be obtained from rodent control programmes and field monitoring data evaluating impacts on populations at the agroecosystem level. This information could be used to establish more accurate exposure estimates and to gain a better understanding of the differences in the dynamics of common vole populations when associated with different crop types?

Conclusion III.

Common voles are widely distributed in agroecosystems, The risk of side effects of plant protection products for common voles is limited to individuals present in crops doing product application, while populations in off-crop primary habitat refuges remain unaffected. For many crop the occurrence of common voles is restricted to population outbreaks and is associated with voles becoming significant agricultural pests. Their pest status, highly fluctuating population dynamics, habitat preferences, resilience and high reproductive potential should reduce potential pesticide impact upon common vole populations, but this is not fully reflected in the current risk assessment scheme.

Overall, based on the compelling evidence, provided in the document, as proposed that it bould be justified to modify elements of the current risk assessment, for example by refining consumption estimates on the basis of expanded field collected data on common voles, applying recued TER orgger values universally across all member states and/or advocating alternative focal species where this is considered to be a geographically appropriate. This will ensure that a more realistic and pragmatic approach to wild mammal risk assessment is taken in the assessment of plant protection products.

Assessment and conclusion by applicants

This literature paper presents arguments for refining several of the assumptions used at Tier I of the EFSA Bird & Mammal risk assessment for the compron vote.

The paper has been referred as part of the refined risk assessment to sustify the use of an alternative small mammal, the woodmouse as a focal species.

Data Point 2 (KCPA01227M) C
Data Point Q KCP40(1.2.27)4 O Q O
Report Aprilion:
Report Year: $(a) = 20/14$ $(a) = 0^{\circ}$ $(a) = 0^{\circ}$
Report Title: Population modeling @Use of Cenarios to avoid different levels of protection
Document No \mathcal{O} \mathcal{O} $M_{\mathcal{C}}$ $A89392 01-1 O$ \mathcal{O} \mathcal{O}
Guideline(s) followed in pot applicable
study: A
Deviations from current V Note
test guideline:
Previous evaluation. No, mat previously submitted
GLP/Officially recognised testing
recognised testing \sim
facilities: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Acceptability Repability Yes
Acceptability/Repability/Yes

Abstræet

The calculation of TER values provides a simple method to obtain an idea of how likely it is to observe effects, given an estimated exposure and toxicity. While ecological and behavioural aspects can be considered in higher tier risk assessments, species specific reproduction or population ecology are not taken into account in TER. We exemplarily show that using the TER results in a different level of protection for different species. However, the use of conservative scenarios for population modelling,

developed here for the wood mouse and the common vole, provides a tool to apply the same level of protection in different species.

I. Introduction

TER only takes into account exposure and toxicity. Focussing on the protection goals defined in EFSA (2009) other factors additionally affect the risk on the population level, such as reproduction and population dynamics. This can be demonstrated when comparing recovery of modelled populations of wood mice and common voles in which litter sizes were reduced by 20% in May. While for wood mice a small reduction of population density is visible, no effect is visible in coles.

II. Landscape scenarios

Simulations were conducted in landscapes with varying size, in order to dentify a minimum landscape size, which can sustain a "local populations" (a population in classical sense, *e.g.* MacArthur & Wilson, 1967; Wilson, 1971, or population genetic sense, Hardy, 1908; would be much larger). For wood mice landscapes of >25 ha size were needed, while for common coles 5 ha were sufficient.

To obtain conservative landscape scenarios for population modelling a GIS analysis was conducted calculating a landscape quality measure for all andscapes aquares of 50 ha (wood mouse) and 5 ha (common vole) and ranking the resulting mitlions of landscapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scapes for habitar quality (details in the second scenario) and scenario

2013). Simulations were finally conducted with landscapes corresponding to the 10th, 20th, 50th, 80th and 90th percentiles and it was found that wood price only consistently survived over 20 years in landscapes corresponding to the 10th percentile. This means that wood mice need orelatively large landscape with a considerable fraction of good habitat to survive on the long term, and voles can survive in almost any small landscapes, at there is at least a small fraction of useable habitat available.

Comparison of TER and population level risk

For comparison of TER calculations and opulation similations, the following first tier risk assessment was considered as a basis

 \bigcirc

Crop/stage			DDØ toval (mg/kg bv)	TERLT	Trigger value
Cereals, BBCH	Wood mouse 25%.		¥0.156€	32.0	5
\geq 40	weeds, 50% Wweed		ð		
	weeds 50% weed seeds 25% ground arthropods		J. J		
Cereals, BRCH	Common vole 0100%	St. 67 . 0	2.8734	1.7	5
\geq 40 7	grass) g				

Table CP 10.10.2/14-1 First dier risk assessment considered

¹AR: 250 g a.s./ha ²Effect: Reduced litter size

To calculate effects in population simulations \Re was assumed that the NOEL corresponds to the EC₁₀ of a standard dose response curve. Simulations were conducted additionally with higher and lower doses for both speces, which result in TER values between 0 and 10 in standard risk assessment.

TER results in a different level of protection for species

Simulations showed that does which would result in the same TER value in a first tier risk assessment had differenceffects on the population level in each species. While in voles population level effects were visible only for TER values <1, in wood mice effects were visible for TER values <2-5. This demonstrates that TER results in a different level of protection for the common vole and the wood mouse.

III. Conclusion

The use of TER results in a different level of protection for different species. Conservative, speciesspecific landscape scenarios developed for population modelling provide a tool to reach the same level of of protection in different species.

Assessment and conclusion by applicant:

<u>M-489393-01-1</u> is a poster presentation summarising some population modelling work which suggests that the TER results in a different level of protection for different species with a focus have on the wood mouse and the common vole.

Residues studies

The following residues decline data are relevant for the residues of spiroxaffine of cereal shoots (part of the vole diet used in the risk assessment of Spiroxaffine & 500).

Data Point:	KCP 10.1, 22/15 5 5 5 5 5 5 5
Report Author:	
Report Year:	
Report Title:	Spitoxamine. Kinetic assessment of residue decline study
Report No:	0471836-KIN1 0 2 0 2 0
Document No:	<u>941-759383-016</u> Q L L L L
Guideline(s) followed in	FOCES (2014) and FSA (2019)
study:	
Deviations from current	None of the state
test guideline:	None S S S S S S S S S S S S S S S S S S S
Previous evaluation:	No, not previously submitted a start of the submitted
GLP/Officially	
GLP/Officially	No, not conducted under GLP Officially recognised testing facilities
recognised resting	
facilities	
Acceptability/Reliability:	
Executive Summary	

The decline of piroxamine residues in wheat and barley plants has been investigated in the field in five studies conducted at trial locations in northern and southern Europe. The objective of this project was to describe the calculation of kinetic emproints from these studies according to the guidance of FOCUS (2014). Modelling DT₅ walues were calculated for use in deriving a crop dissipation half-life endpoint. Calculation of persistence endpoints was not considered necessary as there are no relevant study triggers for comparison.

The spiroxamine modelling DF_{50} values ranged from 1.14 to 6.93 days. The overall geometric mean was 3.03 days with geometric for northern EU of 2.74 days and southern EU of 3.83 days.

I. Materials and Methods

Study Design

The decline of spiroxamine residues in wheat and barley plants has been investigated in the field in five studies conducted at trial locations in northern and southern Europe ($\underline{M-301585-01-1}$, $\underline{M-574326-01-1}$, $\underline{M-574326-01-1}$). The objective of this project was to describe the calculation of kinetic endpoints from these studies according to the guidance of FOCUS (2014). Modelling DT₅₀ values were calculated for use in deriving a crop dissipation half-life endpoint.

Calculation of persistence endpoints was not considered necessary as there are no relevant study triggers for comparison. Q_{μ}°

Input data were generated according to the data handling recommendations of FOCUS (2014). The kinetic modelling of the laboratory data was conducted using the CAKE (version 3.4) software package.

The FOCUS (2014) flowchart for calculating modelling endpoints has been followed. The restrice decline behaviour of spiroxamine has been investigated in the field in twenty European trial sites. The results of this study have been used to determine the half-life in the crop ranopy for spiroxamine under field conditions.

Modelling endpoints representing the decline rates of spiroxamine in wheat and backey plants have been calculated in accordance with the guidance of FOCUS (2014) and EFSA (2019), and are summarised in the tables below:

II. Results and Discussion

St. 1				
Study	Trial	DT (days)	6 γ2 err %	Kinetic model
	UK R20079671/\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J.09 5	SEO
	UK R2007 0671/5	\$ \$ 2.5 ¢	9.98 °C	G → ≪ FOMC
	Geomean UK R2907	2.95 2.95 3.28 0 0 0 0 0 0 0 0 0 0 0 0 0		ġ <u>-</u>
J.	Soreden \$2007 0 0698 7*	3.28 O	* <u>\$6.69</u>	FOMC
	Southern France R	1.7 × 4	¢ 306	SFO
M-301585-01-1 ⁻¹	Southern France R		₩ ₩ ₩ 3.73	FOMC
	Geomean Southern France R 2007 06995 C value*		-	-
	first application	2.57	0.725	SFO
	A Italy R 2007 2	2.56	10.2	SFO
	Geomean Haly BQ 2007/2 value	2.56	-	-
	France 16-2958-01*	1.14	5.67	FOMC
J Z A	Geomany 16-2958-02	2.91	6.53	SFO
M-55#326-00-1	The Netherlands 16- 2958-03*	3.34	10.4	FOMC
Ċ	Germany 16-2958-04*	6.3	2.03	DFOP
<u>M-578235-01-1</u>	France 16-2952-01*	3.3	3.47	FOMC

Table CP 10.1.2.2/15-1 Overall summary of modelling endpoints for spiroxamine

Study	Trial	DT ₅₀ (days)	χ2 err %	Kinetic model
Study				•
	Spain 16-2952-02	4.93	4.27	DFOP
	Italy 16-2952-04	6.93	3.91	DFOB
	Portugal 16-2952-04*	6.34	6.8	H\$ S
	Germany 17-2950-01*	6.23	4.53	OFOP
M-628347-02-1	Northern France 17- 2950-02*	1.200	6.49	FONC of
<u>IVI-028347-02-1</u>	The Netherlands 17- 2950-03	3.81		A HS O
	Belgium 17-2950-04	Q 1.73	8.92 8.92	
	Germany E19RP088- ^{&} 01		5 932 F	SFQ SFQ
<u>M-684671-01-1</u>	Germany E19RP088-			SFO SF
<u>M-08+071-01-1</u>	Belgium E ORP088	2.38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		SPRO
	The Netherlands	\$1.32		Ky FOMC
	a a a a			<u>Q</u>
Average (all data)	A 3.48			2
Geometric mean (all				
data)				
Average (excluding trials with Omm rainfall within 24 hours			9 5 .0	
of application)				
Geometric mean () (excluding trials with)			Y	
>1mm rainfall within 24 hours of application				
For these trials two app	ications were applied n 24 hours of application			
Trials with rainfall withi	n 24 hours of application	à à		

*Trials with ramfall within 2 hours of application

Table CP 0.1.2.2/15-2	Qverat) Summary o	ofmodelli	bg endpoints	for spiroxamine o	n Northern EU sites
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathbb{A}$	× ~	<u> </u>	<b>8</b>	I.	

Trial 🖉 👌	DJS (days)	χ2 err %	Kinetic model
UK R2007 0671/5 first application ¹		1.09	SFO
UK R2005 0671 S second	2.5 ° 2.5	9.08	FOMC
Geomean UKR20070671/3	2.75	-	-
Sweden R2007 0698/7	3.28	6.69	FOMC
France 16-2958-01	1.14	5.67	FOMC
Germany 16-2958-02	2.91	6.53	SFO



Trial	DT ₅₀ (days)	χ2 err %	Kinetic model
The Netherlands 16-2958-03	3.34	10.4	FOMC
Germany 16-2958-04	6.3	2.03	DFQP S
Germany 17-2950-01	6.23	4.57	DEFOP
Northern France 17-2950-02	1.27	6.49 J	FOMO
The Netherlands 17-2950-03	3.81		O CHS O
Belgium 17-2950-04	1.73	8.9	N SPO Q
Germany E19RP088-01	4.30	9.32 °C	SFOA .
Germany E19RP088-02		0, 12, 0, 0 [°]	SFO SFO
Belgium E19RP088-03	Q 2.38 ×	× 9.04 ×	SFO SFO
The Netherlands E19RP088- 04			E E E E E E E E E E E E E E E E E E E
Average			<u>j</u>
Geomean 🦮	2.74		Ğ

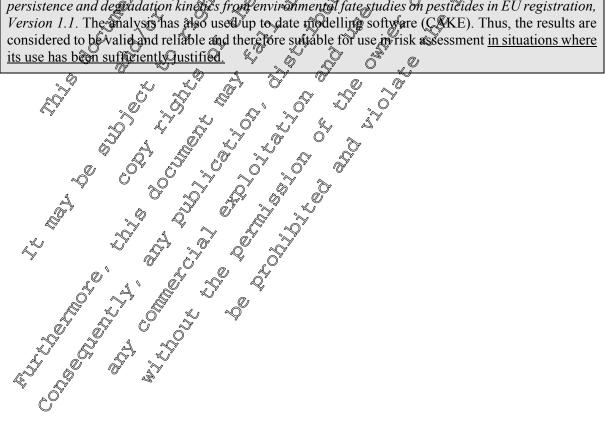
Table CP 10.1.2.2/15-3 Orerall summary of modelling endpoints for spiroxamine on Southern EU sites

Trial	<b>DT</b> 50 ( <b>dayS</b> )	χ ² εξ ² %	Kinetic model
Southern France R 2007 0699/5 first application	Ret.	3.06 °	SFO
Southern France R 2007 0699/5 second approation ¹⁴		<u>\$</u> .73	FOMC
Geomean Southern France R 2007 0699/5 value	5 . J. 73 . O		-
Italy R 2007/2 first		0.725	FOMC
Italy R 2007/2 second		10.2	SFO
Geomean Italy R 2007/2	2.56 Q ⁴	-	-
France 6-2952-01	×. 20	3.47	FOMC
Span 16-2932-02	4.93	4.27	DFOP
taly 16-2952-60	6.93	3.91	DFOP
& Portugal 16-2952-04	6.34	6.8	HS
Ö		· · · · · · · · · · · · · · · · · · ·	
Average	4.30		



Geomean	3.83	
¹ For these trials, two applications were applied		
III. Conclusion		

#### Conclusion III.


The residue decline behaviour of spiroxamine in wheat and barley plants has been investigated in the field in twenty European trial sites.

The spiroxamine modelling DT₅₀ values ranged from 1.14 to 6.93 days The overall geometric means was 3.03 days, with geomean for northern EU of 2.74 days and southern EU of 3.83 days.

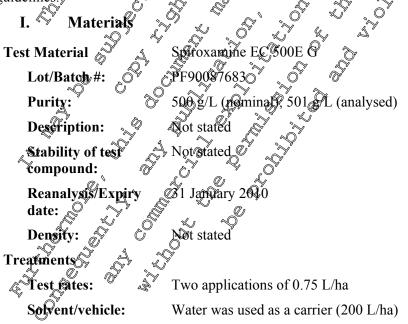
#### Assessment and conclusion by applicant:

This report has been generated in order to compile the decline date of spiroxantine on cereals from a total of 24 residues decline trials conducted as part of five studies. Residues of spirox amine have been determined at frequent intervals following application of spiroxamine containing formulations to cereals. Studies <u>M-301585-01-1</u>, <u>M-574326</u> <u>1-1</u>, <u>W-578</u> <u>35-01-5</u>, <u>M-628347</u> <u>2-1</u> and <u>M-684671-</u> <u>01-1</u>, covering wheat and barley plants in both Northern and Southern Europe, have been summarised and assessed separately below. The individual validity of sach study has been discussed in the evaluation section after each study summary but all of the trigs used in this assessment were considered to be valid and suitable for use in the derivation of an overall crop dissignation half-life (DT₅₀) value. It was found that spitoxamine residues dissipated relatively quickly on cereals with an overall geomean DT₅₀ of 3.03 days determined A geomean  $T_{50}$  value of 2.74 days was determined for Northern EU and a DT₅₀ of 3.83 days for Southern EU. These determined BF 50 values have been used as part of the refined risk assessments to replace the default  $DT_{50}$  of 10 days with a more realistic experimentally determined value. It is noted that only the parts of the local species diet that relates to cereals has used these retined values with the other parts of the diets still using the default value.

The report has followed the guidance set out in the FOCUS (2014) Generic guidance for estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration, Version 1.1. The malysis has also used up to date modelling software (C&KE). Thus, the results are






Data Point:	KCP 10.1.2.2/02
Report Author:	;
Report Year:	2008
Report Title:	Determination of the residues of KWG 4168 in/on spring barley after spracing of KWG 4168 (500 EC) in the field in United Kingdom, Sweden, Southern France of and Italy
Report No:	RA-2648/07
Document No:	<u>M-301585-01-1</u>
Guideline(s) followed in study:	91/414/EEC of July 15, 1991, 7029/VI/95 rev. 5 (9997-07-22)
Deviations from current test guideline:	No deviations (from study plan) occurred which had a negative influence on the study results
Previous evaluation:	yes, evaluated and accepted RAR (2010) Submitted and evaluated as part of the report M-301999-01-0
GLP/Officially recognised testing facilities:	Yes, conducted under GLPOfficially recognised esting facilities
Acceptability/Reliability:	Yes v v v v v v v

#### **Executive Summary**

The purpose of the presented study was to determine the magnitude of residues of KWG 4168 in/on spring barley green material sampled at various intervals after two spray applications with KWG 4168 (500 EC) at approx. 0.75 L/ha each early in the growing season. The first application was made approx. at growth stage BBCH 25 (5 tiller visible), and the second approx. 14 days later. Two trials each were conducted in northern and southern Europe, with the individual trials located in the United Kingdom, Sweden, southern France, and Italy

This study comprises four supervised field residue trials with spring barley in the United Kingdom, Sweden, Southern France, and Italy. A treated and an untreated plot were used for each trial.

The study was conducted according to the relevant guidelines. No residues were found in the control samples. The results for the recovery samples were in the range of 70 - 100%, in conformance with guidelines.





Analysis of test concentrations:	Determination of spiroxamine was conducted using high performance liquid chromatography with mass spectrophotometric detection (HPLC-MS/MS).
Test design	
Test area:	Four residue trials in the UK (sandy loam), Sweden, Southern France (clay silt) and Italy (silty sand). Each trial consisted of a freated and untreated plot. Plots ranged from 100 to 360 m ²
Sampling:	The sample material to be analysed was green material. Samples were collected on -14, -9, -4, -0, 0, 1, 2, 3, 5, 7, 10 and 14 after last treatment (DALT) from the UK and tally study sites, on Day -14, -9, -4, -0, 0, 1, 2, 3, 8, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and 14 DALT from the Sweden study site and -14, -9, -4, -0, 0, 2, 2, 3, 5, 7, 10 and -14, -9, -4, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9, -14, -9,
<b>Duration of test:</b>	14 days A A A A A A A
Study design	

The purpose of the presented study was to determine the magnitude of residues of KWG 4168 in/on spring barley green material sampled at various intervals after two spray applications with KWG 4168 (500 EC) at approx. 0.75 L/ha each, early in the growing season. The first application was made approx. at growth stage BBCH 25 (5 puers visible), and the second approx. 14 days later. Two trials each were conducted in northern and southern Europe, with the individual trials located in the United Kingdom, Sweden, southern France, and Italy.

The test site for the field phase R 2007 0670/5 was Baye CropScience Ltd. 200 Cambridge Science Park, Milton Road, Cambridge, CP7 0 WB. The test site for the field phase R 2007 0698/7 was Bayer Sverige AB S-2021 Malroo. The test site for the field phase R 2007 0699/5 was Bayer CropScience France 16 rue Jean Marie Leclet F-69337 Lyon cedex 09, CP 310 The test site for the field part R 2007 0700/2 was Bayer CropScience Ital 1-20136 Milano.

Samples were taken, prepared in the field where necessary, transported and stored according to EC guidance 7929/VI/95 rev 5 (1997-07-22). The field sub-samples from all trials were stored deep-frozen within 24 hours after sampling and until dispatch to the Laborator of Sampling, Preparation Technique and Sample Logistics (PVTL), Bayer CropScience ACk in D-40789 Monheim am Rhein. All field sub-samples were shipped by deep dreeze fory, and arrived at PVTL in good condition. The field sub-samples were stored in a freeze at -1.8°C or below until preparation of the examination samples. For the preparation of examination samples, the deep-frozen field sub-samples were shredded with dry ice in a cutter. Representative parts of the shredded samples were transferred into polystyrene boxes separately for analysis (UP samples) and archiving (UR samples) and stored at -18°C or below until analysis.

The analytical method was developed for the determination of residues of BYF00587, Prothioconazole, and the metabolites BYF00587 desmethol and AU6476-desthio (SXX0665) in/on plant materials. 5 g of sample was extracted with a mixture of acetonitrile/water (4/1; v/v, containing cysteine hydrochloride) using a blender. After filtration of the extract, the stable isotopically labelled analytes were added. The solution was made up to volume, diluted and subjected to reversed phase HPLC-MS/MS without a further clean up to volume, diluted and subjected to reversed phase HPLC-MS/MS without a further clean up to volume, so described above and detected in ESI positive mode. Residues were quantified using internal stable labelled standards. The LOQ for all compounds defined as the lowest validated fortification level, was 0.01 mg/kg for all sample materials.

# Analytical method

Samples of green material were analysed using the validated analytical method <u>M-301585-01-1</u>, report reference <u>M-301585-01-1</u> (see Doc MCP Section 5).



# II. Results and Discussion

Temperature for Trial R 2007 0671/5 (UK) ranged between 9 - 14 °C and daily rainfall ranged between 0 - 26 mm. Temperature for Trial R 2007 0698/7 (Sweden) ranged between 10 - 21 °C and daily rainfall ranged between 0 - 4 mm. Temperature for Trial R 2007 0699/5 (France) ranged between  $12^{-0.00}$  9°C and daily rainfall ranged between 0 - 15 mm. Temperature for Trial R 2007 0700/2 (Italy) ranged between 15 - 23 °C and daily rainfall ranged between 0 - 6 mm.

The study was conducted according to the relevant guidelines. No residues were found in the control samples. The results for the recovery samples were in the range of 70-100%, in conformance with guidelines.

The analytical method 01013 was developed for the determination of residues of BYG00587 Prothioconazole, and the metabolites BYF00587 desmethyl and JAU6476-desthio (SXX0665) in on plant materials. 5 g of sample was extracted with a mixture of acetonitrile/water (4)1; v/v containing cysteine hydrochloride) using a blender. After filtration of the extract, the stable isotopically labeled analytes were added. The solution was made up to volume, diluted and subjected to reversed phase HPLC-MS/MS without a further clean-up step.

In modification M001 to method 01012, spiroxamine (KWC 41680 was extracted from Barley (grain, green material, straw) as described above and detected in CSI positive mode. Residue Overe quantified using internal stable labelled standards.

The LOQ for all compounds, defined as the lowest validated fortification avel, was 0.01 mg/kg for all sample materials.

United Kingdon R 2007 0671/S	Growth stage	DALT	Sample material	KWG 4168 (mg/kg)
United Kingdom	25 6 40	-14 ~ \$	Green material	<0.01
R 2007 0671/S	31 0 1 2		Green material	< 0.01
	407 &	14 0 0	Green material	< 0.01
Sweden	×24 × 5°	2114 & 3	Green material	< 0.01
R 2007 0698/7	370 27 2		Green material	< 0.01
			Green material	< 0.01
Southern France			Green material	< 0.01
R 2007 0699/5	R W	-0~~	Green material	< 0.01
	51 2	244 24	Green material	< 0.01
Italy O		-14	Green material	< 0.01
R 2007 0700/2		-0	Green material	< 0.01
R 2007 0700/2 @	59 <u>6</u> ~	14	Green material	< 0.01

Table CP 10.1.2.2/02-1	Analytical res	ults of contro	l samples for	KW6,4168, tes	t system: spring barley

DALT = Pays after ast application



Trial No.	Growth stage (BBCH)	DALT	Sample material	KWG 4168 (mg/kg)
United Kingdom	25	-14	Green material	18
R 2007 0671/5	30	-9	Green shaterial	5:6y
	30	-4 🔊	Green material	0.9 ~ v
	31	-0	Green material	0.820 0
	31	0	Greenamateria	
	31		Green matorial	4.3, ¹ ² ³
	31		Green material	3,5 4 .
	32		Green matesal	2.7 & 0
	32	× 0 ×	Green material	2.4
	32		Green material	
			Green material	0.76~
			Green materia	0534
Sweden R 2007 0698/7	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	-14 0 4	Green material	14
			Green material	2.4
		$   \frac{1}{2} $	Green/material	0.41
J. C			Green material	14
	37 $0$ $4$		Green material	7.3
	376 2 2			6.0
			Green material	4.7 2.9
	43 43		Green material Green material	1.8
à A	43 57		Green material	1.3
		AN AN	Green material	0.68
Southern France		-14 _×	Green material	12
P 2007 AS00/5	29 ~ 2		Green material	1.5
	30°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ç ² 4	Green material	0.43
		-0	Green material	0.16
	31 <i>2</i>	0	Green material	8.8
	3.15	2	Green material	2.2
J' & A	\$ <u>3</u> 1	2	Green material	2.0
	≫ 31	3	Green material	1.4
	31	5	Green material	1.1
~	31	7	Green material	0.85
	32	10	Green material	0.59

#### Table CP 10.1.2.2/02-2 Analytical results of treated samples for KWG 4168, test system: spring barley



Trial No.	Growth stage (BBCH)	DALT	Sample material	KWG 4168 (mg/kg)
	51	15	Green materia	0.25
Italy	25	-14	Green material	19
R 2007 0700/2	25	-9	Green material	5:10, 5:10, 5:10
	30	-4	Green material	
	32	-0	Green material	
	32	0	Greenanateria	6.9. 4
	32	R	Green matorial	6.9, ² 6.9, ² 6.9, ²
	32		Green Wateria	5.6
	33	3,00 ~ ~	Green materval	4.7 & 2
	37	× 3 , 0 , 4	Green material	4.7 2 2 4 3.0 ² 2 ³
	39 5 4	× 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	© Greetomateria	AG A
	54 Q &	10 0 Z	Green material ĉ	0.98%
	50 × ×	14 S C	Green materia	0.58

DALT	= days	after	last	treatment

# III. Conclusion

The study was conducted according to the relevant guidelines. No residues were found in the control samples. The result for the recovery samples were in the range of 70 - 100%, in conformance with guidelines.

# Assessment and conclusion by applicant:

There is no formal test guideline for the conduct of residues dealine trials but some guidance is provided in the EFSA Guidance document on Risk Assessment for Birds and Mammals (2009) as well as the more recent EFSA Technical Report on general recurring issues in ecotoxicology (EFSA supporting publication 2019:EN-1673). Up to date regulatory intelligence on the expectations of the test design of such trials has also been taken in to consideration.

The study comprised four trals over two countries in NEU (Sweden and the UK) and two countries in SEU (Sothern France and Italy). The crop used was spring barley which is highly relevant to the proposed representative GAP for cereals. The application rate was high enough in order to achieve sufficiently high residues of spiroxamine at the start of the trials, thereby allowing for a good decline curve to derive DE values from

The analytical sampling regime adopted in the trials is considered to be suitable to derive reliable  $DT_{50}$  values, with sampling amopulation typically conducted before application and on Days 0, 1, 2, 3, 5, 7, 10 and 94. This regime is considered to meet the expectations for a robust residues decline trial, even with the relatively phort expected  $DT_{50}$  for spiroxamine.

Weather data were adequately recorded from the nearest weather station.

Overall, the data are considered reliable and suitable for inclusion in the derivation of refined  $DT_{50}$  values increases for use in Bird & Mammal risk assessment.

Report <u>M-759383-01-1</u> presents the results of the kinetic modeling for the spiroxamine data measured for these trials as well as the other available decline studies on cereals. An overall  $DT_{50}$  value for spiroxamine has been determined using all of these data. As part of the analysis, trials that measured



>1 mm rainfall in the first 24 hours were both included and excluded in order to assess the impact that this rainfall may have had on the overall DT₅₀ value. It was concluded that there was very little variation in the mean DT₅₀ value when these trials were either included or excluded. Thus, a is considered that any rainfall recorded in these trials has not adversely affected the results achieved therefore these trials are considered to be valid and can be included in the determination of the desidue decline for spiroxamine.

Data Point:	KCP 10.1.2.2/16
Report Author:	
Report Year:	$2016 \qquad \qquad$
Report Title:	Determination of the residues of protheconazole, tebutonazole and spiroxamine
	in/on winter wheat after spraw application of PTZ & SPX & TBZ EC 425 in
	northern France, Germany and the Netherlands
Report No:	16-2958 A A A A
Document No:	M-574326-01 A
Guideline(s) followed in	Regulation (6C) Not 107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market
study:	
	October 2009 concerning the placing of plant protection products on the market
	OECD Guidelfae for the Testing of Openicals on Grop Field Trial (TG 509
	published in a grad a
	September 2009
	JJS EPA OCSPB 860.1600, Crop Field Trial
Deviations from current	None Standard Contract of the standard St
test guideline:	
Previous evaluation:	N@ not previously submitted
GLP/Officially	Yes, conducted under GLP/Officially recognised tosting facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes a jy of L
ExecutiveSummary	Yes a hor of the the the test of test

Residues of prothioeonazole, sprioraminoand tebuconazole were determined in/on winter wheat (green material) after one spray application with PTZ & SPX & TBZ EC 425, an emulsifiable concentrate formulation containing 3 g/sprothoconazole, 224 g/L spiroxamine and 148 g/L tebuconazole. The study included four spervised residue trials conducted in the field in Northern Europe (France, the Netherlands and two sites Germany) during the 2016 season.

Average recoveries were within the lange of 70 10%. No residues above the LOQ were found in control samples except for tebuconazole with a value of 0.11 mg/kg.

1? Materials ô	
Test Material	PTZ & SPX & TBZ EC 425
Lot/batch #	2 U 2 U 2 Q / U
	$S_3$ g/L Prothioconazole (nominal); 50.54 g/L (analysed)
	[*] 224 g/L Spiroxamine (nominal); 221.3 g/L (analysed)
<u>N</u>	148 g/L Tebuconazole (nominal); 149.7 g/L (analysed)
Description:	Not stated
Stability of test compound:	Not stated



<b>Reanalysis/Expiry</b>	10 February 2017
date:	Le la
Density:	Not stated
Treatments	
Test rates:	10 February 2017 Not stated Single application consisting of 0.053 kg a.s./ha prothioconazole, 0.224 kg a.s./ha spiroxamine and 0.148 kg a.s./ha tebuconazole with a test item rate of 1.0 L/ha Water was used as a carrier (250-400 L/ha) Determination of each of the actives and their associated metabolities
Solvent/vehicle:	Water was used as a carrier (250-400 Isha)
Analysis of test concentrations:	Determination of each of the actives and their associated metabolites was conducted using high performance liquid chromatography with mass spectrophotometric detection (HP1C-MS0MS)
Test design	
Test area:	Four residue trials in northern France Clayer silt), Germany (sandy
Sampling:	loam) and the Netherlands (clay). Each trial consisted of a treated and untreated plot, Blots ranged from 108 to 125 m ² The sample material to be analysed was green material. Samples were collected on Day 0, 1, 2, 3, 6, 7 and 10 after last treatment (DALT) from the French study ite, on Day 0, 1, 2, 3, 5, 7 and 10 from both German sites, and Day 0, 1, 2, 3, 5, 7 and 10 from the Netherlands site 0 It days
Duration of test:	to days
Environmental test	
Conditions Temperature:	
Temperature:	During application $-50$ to $25.0^{\circ}$
Relative humichty: *	1000000000000000000000000000000000000
pH: ^A	During application – 54,2 to 73 % Soil pH in water - 6.6 in Germany, 8 Å in France Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂ – 5 Å in Germany Soil pH in CaCl ₂
Study Design	S. C. S. S. S.
The objective of this study (comprising prothioconazole	was to determine the magnitude of the residues of prothioconazole and its metabolite JAU 6476-desthio), spiroxamine and tebuconazole in/on

(comprising prothioconazole and its merabolite JAU 6476-desthio), spiroxamine and tebuconazole in/on winter wheat (BBCH 29-31, that dependant) after one spray application with PTZ & SPX & TBZ EC 425. The study measured residues immediately following a single application (consisting of 0.053 kg a.s./ha prothioconazole, @224 kg a.s./ha piroximine and 0.148 kg a.s./ha tebuconazole with a test item rate of 1.0 L/ha and up to 10 days later. The study included four supervised residue trials conducted in the field in Northern Europe (France, two sites in Germany and the Netherlands), with plots ranging from 108 to  $125 \text{ m}^2$ . At each trial site there was one untreated plot in addition to the treated plot(s). The treated and untreated plots were cultivated in the same manner

Sprayets were calibrated before each application and water was used as a carrier at a rate of between 250 and 4000 /ha, mail dependant.

The sample material to be analysed as green material. Analysis was conducted using HPLC-MS/MS.

Climatic and irrigation data were recorded (not according to GLP) during the conduct of the field trials.

#### **Analytical method**



Samples of wheat/green material were analysed using the validated analytical method 01089, report reference  $\underline{M-304677-01-1}$  (see Doc MCP Section 5).

# II. Results and Discussion

The study was deemed to be acceptable based on the criteria set out in the US PA OCSPP & 0.1509, Crop Field Trial (1996) and OECD guideline 509 for The testing of Chemoals on Crop Field Trial (2009).

Mean temperatures ranged from 3 to 8°C in the French triat (16-2958-01), 6 to 13°C in the German triat (16-2958-02), 8 to 12°C in the Netherlands trial (16-2958-03) and 6 to 14°C in the other German trial (16-2958-04). Rainfall ranged from 0 to 10 mm in France, 0 to 4 mm in Germany, 0 to 4 mm in the Netherlands and 0 to 6 mm in the second German trial. No irrigation was applied in any of the form trials.

The application rate of prothioconazole, spiroxamine and tebreonazole for each total was 0.053 0.224 and 0.148 kg a.s./ha, respectively.

The residue levels determined in the treated samples are summarised in the tables below;

Table CP 10.1.2.2/16-1 Measured residues of Prothieconazole, JAU 476-desthio. @buconazole and spiroxamine in/on winter wheat

		Ŵ		Besidues (	mg/kg)	°~/
<b>C</b> (	BBCH	DALT (	<del>کر کر کر</del> کی prothioc			κ,
Country	growth stage	beat T		©JAU 6476-	tebuconazole	spiroxamine
	*	× 1	Prothiocomizole	desthio 🖑		
France	29 😓	<b>N</b>	<u> </u>	× 2.5 ×	K 16	16
(16-2958- 01)	<i>R</i>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ 0 <b>@</b> 6	3.7	2.8
,	29	25	<u>در</u> 0. <del>043</del>	× ڪ0.19	3.3	2.2
Ĉ	5 2 <i>9</i> 5	× ⁰ 3 (	Q.040		3.6	2.3
	30 🗶	62	0.02	Ø.11 Ø	2.9	1.3
Ê,	30 0	Ì	^{کری} ۵٬۵۱۸ ^(۲)	©0.08©	2.6	1.1
	S.	¢ 10 €	0.012 ²	0.063	2.1	0.66
Germany	© 29 Q		0 0.44 S	1.4	10	8.8
(16-2958- 02)	20		× × 0.10 ×	1.6	9.2	6.5
	29	259	0.049	1.2	8.2	5.4
. 4	30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$033 <u></u>	0.82	7.9	4.9
N N	30	\$ \$ \$ \$	Q 0.0140	0.25	3.8	2.1
	@ [\] 30		& < <b>5</b> 01	0.15	3.4	1.6
Č	× 30	× 10	^y	0.066	2.7	1.0
The Netherlands	\$29 6		0.48	1.4	9.9	9.4
Netherlands (16-2998C	D 94	^{SI}	0.050	0.39	4.3	3.6
1 he Netherlands (16-2958- 03)		ي ∑ 2	0.055	0.31	4.5	3.3
	30	3	0.049	0.22	3.8	2.7
	30	5	0.026	0.12	3.3	1.5
	30	7	0.019	0.085	2.6	1.0



Country	BBCH growth stage	DALT	Residues (mg/kg)			
			prothioconazole			<u>k</u>
			Prothioconazole	JAU 6476- desthio	tebuconazole	spiroxanine
	31	10	< 0.01	0.043	P.6	0.53
Germany	29	0	0.47	1.0	7.4	
(16-2958- 04)	29	1	0.043	T 0.29	Q 2.5 Č	
	30	2	0.025	ن س 0.18 م	2.3	
	30	3	0.021	0.11		× 2.6 xy
	30	5	0.014	。 0.001	Ø1.8 🔊	<u></u> 2.005
	31	7	0.00	00.0170	~~~ 1.6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C <u>1</u> 57
	31	10	\$0.01 ×	0.027	A ²	£1.1 ¢

DALT = Days after last application

DALT = Days after last application Table CP 10.1.2.2/16-2 SPX & TBZ EC 425 SPX & TBZ EC 425

SPX & TBZ EC 425			
Analyte	BBCH growth " stage	DAL V	Residures (mg/kg)
			0.44-0.70
		NY 10 4	0.043-0.10
	2		[∞] 0.025-0.055
nrothioconszol		Y 53 0 5	
prothioconazolo		$ \begin{array}{c}                                     $	0.010-0.026
			0.024
	$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & & $	<i>v</i> 70'	<0.01-0.019
		To	<0.01-0.012
			1.0-2.5
			0.26-1.6
	29-20 	2	0.18-1.2
IAU 6476-desthio		3	0.11-0.82
	2 ~ ~ 30 °	5	0.061-0.25
		6	0.11
	× × ×	7	0.047-0.15
		10	0.027-0.066
J ^A & A J	29	0	7.3-16
		1	2.8-6.5
spiroxamine	29-30	2	2.2-5.4
prothioconazolo JAU6476-desthio spiroxatone	27-30	3	2.3-4.9
	30	5	1.5-2.1



Analyte	BBCH growth stage	DALT	Residues (mg/kg)	
		6	1.3	
	20.21	7	1.0-1.7	
	30-31	10	0.53-1,1, , , , , , , , , , , , , , , , , ,	
	20	0	x 7.4-96 x x	
	29	<i>₹</i> 1 0	2 3 - 27 - 57 - 67 - 67 - 67 - 67 - 67 - 67 - 6	
	20.20		2.3-80 0 ⁴	
. 1 1	29-30	3 4	0° 25-7.9 0° 25-7.9	
tebuconazole	20 4			
	30 %		0 0 29 A	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S 1.6-3.4 D	
			1.2-2.7 S	
DALT = Days after last application	n correction of the second sec			

III. Conclusion

Average recoveries were within the range of 70-110%. No residues above the LOO were found in control samples, except for tebucorazole with a value of 0.11 mg/kg.

Assessment and conclusion by applicant

There is no formal test guideline for the conduct of residues decline trials but some guidance is provided in the EFSA Guidance document on Risk Assessment for Birds and Mammals (2009) as well as the more recent EFSA Technical Report on general recorring issues in ecotoxicology (EFSA supporting publication 2019:EN-1673). Up to date regulatory intelligence on the expectations of the test design of such trials has also been taken in to consideration.

The stady comprised our trials over three countries in NEU (Germany, the Netherlands and Northern France). The crop used was winter wheat which is highly relevant to the proposed representative GAP for cereals. The application rate was high enough in order to achieve sufficiently high residues of spiroxamine at the stad of the trials, thereby allowing for a good decline curve to derive DT₅₀ values from.

The analytical sampling regime adopted in the trials is considered to be suitable to derive reliable DT_{50} values, with sampling timepoints typically conducted on Days 0, 1, 2, 3, 5, 7 and 10. This regime is considered to meet the expectations for a robust residues decline trial, even with the relatively short expected DT_{50} for spiroxamine $\sqrt{2}$

Weather data were adequately recorded from the nearest weather station.

Overall, the data are considered reliable and suitable for inclusion in the derivation of refined DT_{50} values in Greats for use n Bird & Manmal risk assessment.

Report M-752083-04-1 presents the results of the kinetic modeling for the spiroxamine data measured for these trials as well as the other available decline studies on cereals. An overall DT_{50} value for spiroxamine has been determined using all of these data. As part of the analysis, trials that measured >1 mmoainfall in the first 24 hours were both included and excluded in order to assess the impact that this rainfall may have had on the overall DT_{50} value. It was concluded that there was very little variation in the mean DT_{50} value when these trials were either included or excluded. Thus, it is considered that any rainfall recorded in these trials has not adversely affected the results achieved

therefore these trials are considered to be valid and can be included in the determination of the residue decline for spiroxamine. \mathbb{R}°

Data Point:	KCP 10.1.2.2/17
Report Author:	
Report Year:	
Report Title:	Determination of the residues of prothioconazol (tebuconazole and spiroxamine) in/on winter wheat after spray application of PSZ & SPX & TBZ EC 25 in 5 southern France, Spain, Italy and Portugal
Report No:	16-2952
Document No:	<u>M-578235-01-1</u>
Guideline(s) followed in	Regulation (EC) No k107/2009 of the European Parliament and of the Council of
study:	21 October 2009 concerning the placing of plant protection products on the
	market OECD Guideline for the Testing of Chemicals on Crop Field Trial (TG 509 published in September 2009) US EPA OCSPP 860 1500 Crop Field Triat
Deviations from current test guideline:	None of the triangle of the tr
Previous evaluation:	No, not previorsly submitted
GLP/Officially	Yes, conducted under GLP/Officially recognised resting facilities
recognised testing	
facilities:	
Acceptability/Reliability;	Yes y g O by a y g a subject of the

Executive Summary

Residues of prothioconazole, sprioxamine and tebuconazole were determined in/on wheat (green material) after one spray application with PTZ & SPX & TBZ EC 425, an emulsifiable concentrate formulation containing 53 %/L prothioconazole 224 gV spiroRamine and 148 g/L tebuconazole. The study included four supervised residue pials conducted in the field in Southern Europe (France, Spain, Italy and Portugal) during the 2016 season.

Average recoveries were within the range of \overline{D} -110%. No sesidues above the LOQ were found in control samples.

Materiats I. **Test Material** Loc Batch #: L Profilioconazole (nominal); 50.54 g/L (analysed) ^APurity: 4 g/I Spiroxamine (nominal); 221.3 g/L (analysed) Tebuconazole (nominal); 149.7 g/L (analysed) g/Ł 48 Not stated Description Stability Not stated compound: 10 February 2017 Reanalysis/Expirv dat@: Not stated **Density:**

Treatments

Test rates:	Single application consisting of 0.053 kg a.s./ha prothioconazole, 0.224 kg a.s./ha spiroxamine and 0.148 kg a.s./ha tebuconazole with a_{μ}°
	test item rate of 1.0 L/ha
Solvent/vehicle:	Water was used as a carrier (300-400 L/ha)
Analysis of test concentrations:	Determination of each of the actives and their associated metabolites was conducted using high performance liquid chromatography with mass spectrophotometric detection (HPLC MS/MS).
Test design	
Test area:	Four residue trials in southern France (silty clay) Spain (clay) Haly (sandy loam) and Portugal (clay). Each trial consisted of a treated and untreated plot. Plots ranged from 45 to 87.5 m ²
Sampling:	The sample material to be analysed was green material. Samples were collected on Day 0, 1, 2, 3, 5, 7 and 9 after last treatment (DALT) from the French study site on Day 0, 1, 2, 4, 5, 7 and 10 from the Spanish site, Day 0, 1, 2, 3, 4, 8 and 10 from the Italian site and Day 0, 1, 2, 3, 5, 7 and 10 from the Portuguese site.
Duration of test:	10 days (9 for France)
Environmental test conditions	Spanish site, Dax Ø, 1, 2, 3, 4, & and 10 from the Itabian site and Day 0, 1, 2, 3, 5, 7 and 10 from the Portuguese site. 10 days (9 for France) During application – Ø.5 to SI % 6.9 to 8.3 (soil pH in water)
Temperature:	During application 8.0 to 15.0°C
Relative humidity:	Porring application - 69.5 to 61 % &
pH:	During application - 69.5 to 61 % 4 67 6.9 to 8.3 (soil pH in water)
Study Design	
The objective of this stud	do was to determine the magnitude of the residues of prothioconazole

Tł (comprising prothioconazole and its metabolite JAU 6476-desthio), spiroxamine and tebuconazole in/on winter wheat (BBCH 23-30, trial dependant) after one spray application with PTZ & SPX & TBZ EC 425. The study measured resulties immediately following a single application (consisting of 0.053 kg a.s./ha prothioconazole, 0.224 kg a.s./ha provanine and 0.148 kg a.s./ha tebuconazole with a test item rate of 1.0 L/ha) and up to 10 days later (withothe exception of France where the last sampling was 9 DALT). The study included four supervised residue trials conducted in the field in Southern Europe (France, Spain Italy and Portugal), with plots ranging from 45 to 87.5 m². Sprayers were calibrated before each application and water was used as a carrier at a rate of between 200 and 400 L/ha, trial dependant ñ 2

The sample material to be analysed as green material. Analysis was conducted using HPLC-MS/MS.

Climatic and irrigation data were recorded (nonaccording to GLP) during the conduct of the field trials.

Analytical method

Samples of wheat green material were malysed using the validated analytical method 01089, report reference <u>M-304</u> (see Doc MCP Section 5).

Results and Discussion

L,

The study was deemed to be acceptable based on the criteria set out in the US EPA OCSPP 860.1500, Crop Field Trial (1996) and OECD guideline 509 for The testing of Chemicals on Crop Field Trial (2009)

Mean temperatures ranged from 6 to 12°C in the French trial (16-2952-01), 6 to 13°C in the Spanish trial (16-2952-02), 9 to 15°C in the Italian trial (16-2952-03) and between 11 and 12°C in the Portuguese

trial (16-2952-04). Rainfall ranged from 0 to 15 mm in France, 0 mm in Spain, 0 mm in Italy and 0 to 15 mm in Portugal. No irrigation was applied in any of the four trials.

15 mm in Portugal. No irrigation was applied in any of the four trials. The application rate of prothioconazole, spiroxamine and tebuconazole for each trial was 0.053, 0.224, and 0.148 kg a.s./ha, respectively. The residue levels determined in the treated samples are summarised in the tables below; Table CP 10.1.2.2/17-1 Measured residues of Prothioconazole, JAU 6476-desthio, tebuconazole and spiroxamine in/on winter wheat

Table CP 10.1.2.2/17-1	Measured	residues of Prothioconazole, JA	U 6476-desthio,	tebuconazole and
spiroxamine in/on winte		<u>O</u>	a star	

				ر Residues	mg/kg)	
C	BBCH	DALT	prothioe	onazole 🖓		
Country	growth stage	DALT	prothioconazole	JAU 6476-	tebuconazola	spiroxamine
France	29	0	0.46	2.3 Q	Ô 13 0	f jo z'
(16-2952- 01)	29	1	20.10 ~	0.78		7.1
01)	29	2	0.065		5.6	4.9
	29	3	مَحْ 0. 05 0 مُ	0.27		<u>4.3</u>
	29	5 ₍₁₎	× 0.030	S P A	~3.8 ₀ 0	× 2.9
	30	- J J	0.608	0.066 0 ·	\$ 3,1	♥ 2.1
	30	<u></u>	D 69014	0.031	¥ ~ ¥.7 ~ 2	1.5
Spain	23 🤸		6 ^{0.46}	Q 01.6 K	9.6	12
(16-2952- 02)	23	P .	\$ \$2 4 \$	1.2	o° √u'	6.1
02)	25	Ô ⁷ 2 >	^{\$\$0.17}		© 11	4.9
	~ ²⁵	Ň. Ł	040 4 6 x	0.54	5.1	3.4
s. (25 0	5 0	0.035	\$ 0.41 K	4.3	2.5
<u>i</u>	29	7-5	0.032	y y.42 y	4.7	2.4
× ÿ	30	Ĵ0	~ <u>6</u> 920 ~	<u>د</u> 0.28	3.9	1.6
Italy	39		× 0.37	0 97	7.5	7.7
(16-2952- 03)	30Ô	× E	00°	0.43	4.5	4.3
~~) 	31	°°2 ₂	¥ <u>9</u> ,078	0.46	4.6	4.3
	31	Ø 3.Q	0.042	0.39	3.6	3.8
L.	31		g (27)	0.31	3.7	3.4
<i>V</i>	32	0 ⁷ 8 0 ⁷	0.0110*	0.11	3.4	2.4
	5 32 A	18	<0.01	0.046	2.3	1.6
Portugal	<u></u>		~\$0.47	1.5	7.9	9.8
Portugal (16-2952) 04)	2 ⁹ 1		0.039	0.35	3.8	4.6
	29 S	ž Ž	0.037	0.34	3.5	4.4
	29	° 3	0.035	0.33	3.0	4.6
Ũ	29	5	0.015	0.084	2.0	2.8
	29	7	0.011	0.057	2.0	2.4

				Residues	(mg/kg)	
Country	BBCH growth	DALT	prothioco	nazole		
Country	stage		prothioconazole	JAU 6476- desthio	tebuconazole	spiroxamine
	30	10	< 0.01	0.033	£.6	1.9
2	after last appl 0.1.2.2/17-2 0 EC 425		ry of measured resid	ues in/on winter	pheat after appli	cation of PT2/&
	Analyte		BBCH growth stage		Residu	es (mg/kg)
		-	23-30	$\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$		7-0.47 39-0.24 37-0.17
prothiocona	zole		0 25-81 ×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$-0.050
		a di seconda di s	25-31 25-31			5-0.035
		J.	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	9-ft		1-0.020
			23-3			97-2.3
	desthio		2 2 3 V	$\frac{10^{7}}{2}$		35-1.2 34-1.1
JAU 6476-0	desthio	ŶŶ	25-3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7-0.54
	ð á				0.0	34-0.41
2	ļ,		² → 29-32 → ³	°7-8°	0.0:	57-0.42
	~		30,32 0	9-10	0.0	31-0.28
	Ş,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 0° 4″		7	.5-13
	Q A	ð 5	225-5U =	<u> </u>	3	.8-11
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		َ [*] 25-31 [*]	2	3	.5-11
tebuconaze	le		25-31 × ×	2 3-4	3.	0-5.5
M.		×	250 .	4-5	2.	0-4.3
N.	J.		Q9-32	7-8	2.	0-4.7
-	[©]	u of	× 30-39	9-10	1.	6-3.9
	2 A			0	7	.7-16
Å.			, ∧ <b>Ç</b> 3-30	1		3-7.1
Ţ,	Z A		25-31	2		3-4.9
mir	ø S		25-31	3-4		4-4.6
spanoxamma	4	45				
spiroxannig			25-31	4-5	2.	5-3.4
spinoxaning C		F	25-31 25-31 25-31 25-31 25-31 25-31 25-31 25-31 25-31 25-31 25-31 25-31 25-31	4-5 7-8		5-3.4 1-2.4



DALT = Days after last application

#### III. Conclusion

Average recoveries were within the range of 70-110%. No residues above the LOQ were found in control samples. Ň

### Assessment and conclusion by applicant:

OS v There is no formal test guideline for the conduct of residues decline trials but some guidence is provided in the EFSA Guidance document on Risk Assessment for Birds and Mammals (2009) @s well as the more recent EFSA Technical Report on general recurring issues in ecoloxicology (EKSA supporting publication 2019:EN-1673). Up to date regulatory interfugence on the expectations of the test design of such trials has also been taken in to consideration.

The study comprised four trials over four countries in SEU (Prance, Spain/Italy and Portugal), The crop used was winter wheat which is highly relevant to the proposed representative GAP for cereals. The application rate was high enough in order to achieve sufficiently high residues of spiroxamine at the start of the trials, thereby allowing for a good decline curve to defive DT values from

The analytical sampling regime adopted in the trials is considered to be suitable to derive reliable DT₅₀ values, with sampling timepoints typically conducted on Days 0, 1, 2, 3, 5, 7 and 40. This regime is considered to meet the expectations for a robust residues decline triar, even with the relatively short expected  $DT_{50}$  for spiroxamine. () N. 

Weather data were adequated recorded from the nearest weather station.

Overall, the data are considered reliable and surable for inclusion of the derivation of refined DT₅₀ values in cereals for use in Bird & Mainmal fisk assessment?

Report M-759383-01 presents the results of the kinetic modeling for the spiroxamine data measured for these trials as well as the other available decline studies on cereals. An overall  $DT_{50}$  value for spiroxamine has been determined using all of these data. As part of the analysis, trials that measured >1 mm rainfall in the first 24 hours were both included and excluded in order to assess the impact that this rainfall may have had on the overall  $D_{50}$  value. It was concluded that there was very little variation in the mean DT₅₀ value when these trials were either included or excluded. Thus, it is the the transmission of th considered that any ramfall ecorded in these trials has not adversely affected the results achieved therefore these trials are considered to be railid and can be included in the determination of the residue decline for spiroxanine. It is acknowledged that there was no rainfall recorded during the trials in



Data Point:	KCP 10.1.2.2/18
Report Author:	;
Report Year:	2018
Report Title:	Determination of the residues of prothioconazole, spiroxamine and trifloxy sprobin
	in/on wheat after spray application of PTZ & SPX & TFS C 280.3 in Germany
	northern France, the Netherlands and Belgium
Report No:	17-2950
Document No:	<u>M-628347-02-1</u>
Guideline(s) followed in	Regulation (EC) No 1107/2009 of the European Parliament and of the Council of
study:	21 October 2009 concerning the placing of plane protection products on the
	21 October 2009 concerning the placing of plant protection products on the market OECD Guideline for the Testing of Chemicals on Crop Field Trial (TG 509 published in September 2009) US EPA OCSPP 860.1500, Crop Field Trial
	OECD Guideline for the Testing of Chemicals on Crop Field Trial (TG 509
	published in September 2009)
	US EPA OCSPP 860.1500, Crop Fiel@Trial > 0
Deviations from current test guideline:	None
Previous evaluation:	No, not previously submitted
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes y g g g g g

## cutive Summary

Residues of prothioconazole, sproxamine and riflox strobin were determined a/on wheat (green material) after one spray application with PTX & SPX & TFS EC 280.3 an emplsifiable concentrate formulation containing 93.3g protheoconazole, 10/ g/L piroxamine and 80 g/L trifloxystrobin. The study included four supervised residue totals coorducted in the field on Northern Europe (Germany, Ŝ. Northern France, the Netherlands and Bergium).

Residues of prothioconazole comprised of prothioconazole and its metabolite JAU 6476-desthio. Residues of sporoxamine comprised of the spiroxamine continuers Ab A2, B1 and B2, the total residue of the parent spiroxamine as the sum of the four enanciomers. Residues of trifloxystrobin comprising trifloxystrobin and its isomers/metabolites CGA 331409, CGA 357262, CGA 357261, CGA 321113 and CGA 373466.

CGA 373466. Average recoveries were within the range of 70-110%. No residues above the LOQ were found in control samples.

Test Material	PTZ & STX & TFS EC 280.3
Lot/Batch #:	201-091477
Purity:	93 g/L Prothioconazole (nominal); 92.40 g/L (analysed)
	507 g/L Spirosamine (nominal); 107.8 g/L (analysed)
	80 g/L Trifloxystrobin (nominal); 79.55 g/L (analysed)
Description	Not stated
Stability of test	SNot stated
[*] Reamalysis/Expiry	21 March 2017
dûte:	
Density:	Not stated



### T

Treatments	
Test rates:	Single application consisting of 0.140 kg a.s./ha prothioconazole, 0.161 kg a.s./ha spiroxamine and 0.120 kg a.s./ha trifloxystrobin with a test item rate of 1.5 L/ha
Solvent/vehicle:	Water was used as a carrier (100-350 L/ha)
Analysis of test concentrations:	Determination of each of the actives and their associated metabolities was conducted using high performance liquid chromatography with mass spectrophotometric detection (HPIQ -MS/MS).
Test design	
Test area:	Four residue trials in Germany (sandy loom), Northern France (clayer silt), the Netherlands (clay) and Belgium (silt form). Each trial consisted of a treated and untreated plot. Plots ranged from 100 to 156 m ²
Sampling:	The sample material to be analysed was green material. Samples were
<b>Duration of test:</b>	10 days (11 for Belgium)
Environmental test conditions	collected on Day 40, 0, 9, 2, 3, 5, 7 and 10 after last freatment (DALT) from each of the four study sites. 10 days (11 for Belgium) During application – 12c0 to 19 0°C
Temperature: 😽	During application – 12:0 to 19:0°C
Relative humidity:	During application _ 20 to 30% & &
pH:	6.7 6 8.1 (soil pH)
Study Design	
The objective of this stud	y was to determine the magnitude of the residues of prothioconazole
(comprising) prothioconazol	le and its metabolite JAC 6476-destavo), the residues of spiroxamine

The (co (comprising the spirox anine chantioners A1, A2, B) and B2, the lotal residue of parent spirox amine as the sum of the four enantiomers) and trifloxystrobin comprising trifloxystrobin and its isomers/metabolites/CGA 331409, CGA 357262, CGA 357267, CGA 321113 and CGA 373466) in/on wheat (BBCH 30) after one spray application with PTZ & SPX & TFS EC 280.3. The study measured residues immediately following a single application (consisting of 0.140 kg a.s./ha prothioconazole, 0.161 kg a.s. Da spiroxamine and 0.120 kg a.s. trifloxystrobin 400 g a.s./ha with a test item rate of 1.5 L/ha) and up to 10 days later with the exception of Belgium where the last sampling was 11 DALT). The study included four supervised residue trals conducted in the field in Northern Europe (Germany, Northern France, the Netherlands and Belgium), with plots ranging from 100 to 156 m². Sprayers were calibrated before each application and water was used as a carrier at a rate of between 100 and 350 L/ha, trial dependant.

The sample material to be analysed was green material. Analysis was conducted using HPLC-MS/MS. For the control sample taken at -0 DAGT, the total green material sample amount of 25 plants was weighed and recorded in order to obtain an approximate single plant weight. The weight of 25 plants in Germany, Northern France, The Netherlands and Belgium was 53 g, 63.5 g, 165 g and 792 g, respectively 0

Climatic and irrigation data were recorded (without GLP) during the conduct of the field trials.

## Analytical method

Samples of wheat/green material were analysed using the validated analytical method 01480, report reference M-628347-02-1 (see Doc MCP Section 5).



#### II. **Results and Discussion**

The study was deemed to be acceptable based on the criteria set out in the US EPA OCSPP 860,1000, Crop Field Trial (1996) and OECD guideline 509 for The testing of Chemicals on Crop Field Trial (2009).

Mean temperatures ranged from 8 to 16°C in the German trial (17-2950-01), 6 to 15°C in the Northern France trial (17-2950-02), 14 to 19°C in the Netherland trial (17-2950-03) and between 12 and 25°C inc the Belgium trial (17-2950-04). Rainfall ranged from 0 to 3 mm in the German trial of to 12 mm in Northern France, 0 to 21 mm in the Netherlands and 0 to mm in Belgium. No irrigation was applied in any of the four trials.

The application rate of prothioconazole, spiroxamine and trifloxysoobin for each trial was Ů *c*r^o and 0.120 kg a.s./ha, respectively.

The residue levels determined in the treated samples are sumparised in the tables below

	Measured residues <u>ø</u>	0* *	¢* ×		N Ô	× A	r
Table CP 10.1.2.2/18-1	Measured residues	f prothoo	conarole	aneQJAU	6476-desthi	o in@n wheat	Ĩ

			Resideres		
Country	BBCHgrowth		a.s. prothio conazole		
	BBCHgrowth		Prothiaconazole	JAU 6476- desthio	
Germany	30 20			© [♥] 4.2	
(17-2950-01)	2 30 0 30 30 30 30 30 30 30 30		~~ 0.26 ~~ ~~	3.4	
	A 30		0.11	2.2	
		N N	0°0.10°	2.0	
		$\sim$	0,085	1.2	
			∛ 0067	0.75	
			ی س س س 0.077	0.37	
Northere C	No Received		2.3	4.3	
(17 2) 50 02)		1 41 Á ^v	0.13	0.62	
Northern France (17-2950-02)	J 30 4	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	0.10	0.58	
		<u></u>	0.042	0.28	
	30, 2 0		0.043	0.20	
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.028	0.084	
	31	م م لا	0.020	0.036	
The Netherlands	2 30 × C	0	1.6	2.9	
(17-2950-03)	Ø 230 Q	1	0.15	2.8	
	× 310	2	0.062	2.4	
	31	3	0.046	2.1	
The Netherlands (17-2950-03) &	[*] 32	5	0.024	1.4	
	32	7	0.015	0.73	
The Netherlands (17-2950-03)	39	10	0.011	0.31	
Belgium	30	0	3.1	7.4	



			Residue	s (mg/kg)	
Country	<b>BBCH</b> growth	DALT	a.s. prothioconazole 🖉		
Country	stage		Prothioconazole	JAU 6456- destario	
(17-2950-04)	30	1	0.63	5.4	»-
	30	2	\$Ú2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q
	31	35%	0.023	Č 3.6 V	de la companya de la comp
	31	5	0.015	Q 1.6 X	0″ 1
	32	7	Q.011	~~ 0.89 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	37		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, <u>6</u> 0.24	
DALT = Days after last application	on		8 8 8	4 A co	

# DALT = Days after last application Table CP 10.1.2.2/18-2 Measured residues of spiroxamine and its enautiomerOn/on syheat Å U

DALT = Days afte	er last appli	cation	Ő				
Table CP 10.1.2	2.2/18-2	Measured	l residues of sp	siroxamine and	l'its enantion	ron/on wheat	t S
					tesidnes (mg/k	g) & ô	ý Ô
	BBCH	DALT	Á Ø		a.s. spiroxomin	ie S S	× S
Country	growth stage	DALT	KWG 4168-AL Knantiomer	KAYG 4168-A2 chantiomer	KWG 4768-B1 enantiomer	KWQG 4168-B2 emantiomer	Total residue of 4 enantiomers
Germany	30	°∼°0 .1					6.1
(17-2950-01)	30 ×	1	40.94 O		9.75 K	<u>) ~~~</u>	3.3
	30	<del>ر</del> کړ	\$ 0.5 <b>5</b>	N 0.55	0.45	0.44	2.0
	230	3 4	<u>0.53</u>	 	<b>6</b> 42 S	× 0.40	1.9
Ĉ	× 30,5°	×9	0_0.43	0.42	0.32	0.33	1.5
	30		g <del>ja</del> s ĉ	0.28	0.23	0.22	1.0
E, S	30	10	©.22	00.23	Q0.17	0.17	0.78
Northern	, R	×0 ,	S LO		1.5	1.4	6.5
France (17-2950-02)	\$30 ¢	1	2 <b>9</b> .31	Q.30 S	0.26	0.25	1.1
	300	Å,	× 0.36	× 0.29	0.25	0.26	1.1
Å	30	° 3 5	. 0 ¹²⁰ .	× 020	0.19	0.18	0.77
	30	<u>5</u> °♥	0.18	<u></u> 0.19	0.17	0.17	0.71
L.	3¥			0.12	0.11	0.11	0.45
	³¹	105	Ø.073	0.076	0.067	0.064	0.28
The O	30	We .	1.6	1.0	0.82	0.79	3.6
Netherlands (17-2950-03)	\$ ³⁰		0.54	0.52	0.41	0.40	1.9
	312	Ż	0.47	0.45	0.36	0.36	1.6
	Ŷ	3	0.40	0.40	0.31	0.31	1.4
	32	5	0.25	0.24	0.19	0.20	0.88
	32	7	0.18	0.18	0.15	0.14	0.65
	39	10	0.10	0.10	0.086	0.082	0.37



			Residues (mg/kg)					
~	BBCH			:	a.s. spiroxamir	ie		
Country	growth stage	DALT	KWG 4168-A1 enantiomer	KWG 4168-A2 enantiomer	KWG 4168-B1 enantiomer	KWG 4168-B2 enantiomer	Total residue of 6 enantiomers	
Belgium	30	0	1.7	1.7	1.3	1.3		
(17-2950-04)	30	1	0.98	0.97 🖉	0.80	0.77 🐇	3.5 6	
	30	2	0.77	0.75	0.66	0.60 [©]	J 2.7 0	
	31	3	0.44	<u>0</u> .42	Q34	A 35 L	Cie de	
	31	5	0.25	0.25	~0.20	0.21	£ 0.91	
	32	7	0.20	V 0,50 x	0.18		0.75	
	37	11	0.083	0.082	Q.070 0	0.070	@.30 °	
DALT = Days after last application $y'' y'' y'' y'' y'' y'' y'' y'' y'' y'$								
Fable CP 10.1.2	2.2/18-3	Measured	l residues of/tr	ifloxystrobily a	ind metabolite	s/isomers in o	n wheat	

DALT = Days after last application	Ű,				
Table CP 10.1.2.2/18-3 Measur	ed residues	frifloxystrob	in and metab	otites/isomers	incon wheat
		A			

			LO [*] .	<u>.</u>				
	ввсн	a		<u> </u>	Résidues	^	0 /	
Country	growth	DAK		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r.s. trifloxy	strobin		
	stage	Ĉ	Grifloxystrobia	CGA	CGA ๙	CGA	<b>©</b> GA	CGA
		× .1		331,409	<b>3</b> 57262∕√	357261	321113	373466
Germany	30 类	0	8.3	0.071	<0.01	¢_0.17 م	0.11	< 0.01
(17-2950- 01)	30	st ¹ .		0,407	@.027	0.38	0.35	0.014
01)		2 🎸	2.1	× 0.20 ×	0.10	£53	0.16	0.015
	کې 30 چې	J.	0 1.6 Q	0.23	<b>A</b> .17	0.57	0.13	0.031
	30	L) 5 K		0.25	@ 0.23	0.61	0.058	0.014
Ê,	30, 0	.705	0.56	Ô ⁹ 0.17∜	Q.P9	0.34	0.032	< 0.01
	30%	, ^A YÓ	S QP ~	- OLA	0.13	0.22	0.022	< 0.01
Northern	30		8.2	<b>0</b> .035	v <0.01	0.063	0.46	< 0.01
France (17-2950-	300	Å.		0.089	0.015	0.11	0.14	< 0.01
	30			Q.13	0.041	0.22	0.12	0.010
	30	3~~	0.35	<b>0</b> .054	0.019	0.060	0.057	< 0.01
No contraction of the second s	30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.060	0.031	0.092	0.023	< 0.01
	<u></u> 31	7 4	© 0.15	0.042	0.035	0.068	< 0.01	< 0.01
Č	34	<b>A</b> 0	^{0.075}	0.023	0.022	0.033	< 0.01	< 0.01
The		ې کړ 0 کړ	5.6	0.055	< 0.01	0.10	0.092	< 0.01
The Netherlands (17-2950-	<u>کَّ</u> 30 ک	AS S	2.8	0.17	0.056	0.38	0.17	0.021
Netherlands (17-2050- 03)	Ŵ	×2	3.0	0.26	0.17	0.65	0.16	0.029
	31	3	1.9	0.23	0.15	0.49	0.095	0.027
	32	5	0.94	0.18	0.15	0.28	0.043	0.013
	32	7	0.64	0.12	0.11	0.15	0.015	< 0.01



					Residues (1	mg/kg)		
Country	BBCH growth				<u> </u>			
Country	stage		trifloxystrobin	CGA 331409	CGA 357262	CGA 357261		6GA 373466
	39	10	0.076	0.049	0.047	0.013	< 0.01	<0.01
Belgium	30	0	10	0.31	0.023	\$	0.34	<u>,</u> 09026 ≪
(17-2950-	30	1	6.0	0.51	0.14	0.95		0.04
04)	30	2	2.9	0,57	0.31	1.0	~0.30 Q	0.596 \$
	31	3	0.32	÷0.25	0.17	¢0.12	0.053	0.015
	31	5	0.091	0.15	Ø.11	¥ 0.0355	~0.026, ×	
	32	7	0.047 O	080	0.069	~ <b>U</b> 0027 /	0.010	
	37	11	<0,07	0.018	0.022	<u> &lt;0.0</u> ‡©	<0.01	\$ \$ 28

DALT = Days after last application

## III. Conclusion

Residues of prothioconozole comprised of prothioconazole and as metabolite TAU 6476-desthio. Residues of sprioxamine comprised of the spiroxamine enanthomers A1, A2, B1 and B2 the total residue of the parent spiroxamine as the sum of the four enantiomers. Residues of trifloxystrobin comprising trifloxystrobin and its isomers/metabolites/CGA 031409, CGA 357262, CGA 357268, CGA 321113 and CGA 373466.

Average recoveries were within the range of 70 10%. No residues above the LOQ were found in control samples.

## Assessment and conclusion by applicant:

There is no formal test guideline for the conduct of residues declare trials but some guidance is provided in the EFSA Guidance document on Risk Assessment for Birds and Mammals (2009) as well as the more recent EFSA Technical Report of general recurring issues in ecotoxicology (EFSA supporting publication 2019, EN-1673). Up to date regulatory intelligence on the expectations of the test design of such rials has also been taken into consideration.

The study comprised four trials over four countries in NEU (Germany, Northern France, the Netherlands and Bergium). The crop used was wheat which is highly relevant to the proposed representative GAP for cereals. The application rate was high enough in order to achieve sufficiently high residues of spiroxamine at the start of the trials, thereby allowing for a good decline curve to derive  $\Phi T_{50}$  values from.

The analytical sampling regime adopted in the trials is considered to be suitable to derive reliable  $DT_{50}$  values, with sampling tiplepoints typically conducted on Days 0, 1, 2, 3, 5, 7 and 10. This regime is considered to meet the expectations for Probust residues decline trial, even with the relatively short expected  $DD_{0}$  for sprovability.

Weather data were adequately recorded from the nearest weather station.

Overally, the data are considered reliable and suitable for inclusion in the derivation of refined  $DT_{50}$  values in geneals for use in Bird & Mammal risk assessment.

Report 5759383-01-1 presents the results of the kinetic modeling for the spiroxamine data measured for these trials as well as the other available decline studies on cereals. An overall DT₅₀ value for spiroxamine has been determined using all of these data. As part of the analysis, trials that measured >1 mm rainfall in the first 24 hours were both included and excluded in order to assess the impact



that this rainfall may have had on the overall  $DT_{50}$  value. It was concluded that there was very little variation in the mean  $DT_{50}$  value when these trials were either included or excluded. Thus, it is considered that any rainfall recorded in these trials has not adversely affected the results achieved therefore these trials are considered to be valid and can be included in the determination of the residue decline for spiroxamine.

			4		
		(Ča	"Ś"	N.	
Data Point:	KCP 10.1.2.2/19		Ű	à Ô	Y OY
Report Author:	. ?	ý			
Report Year:	2020	A			Û, Û
Report Title:	Determination of th	e residues of triflox	xstrobin, prothioe	Qnazol and spi	roxamine
	in/on wheat after sp	ray application of P	FZ & SPX & TFS	S EG <b>280.3 in th</b>	he field in
	Germany, Belgium	and the Netherland	s - Final report		~
Report No:	E19RP088	<u> </u>	<u></u>	<u> </u>	
Document No:	<u>M-684671-01-1</u>	<u>, , 0° , 0° , .</u>	<u>~</u>		, O
Guideline(s) followed in	Regulation (EQ) No	o 1407/2009 of the C	Juropean Parliand	ent and of the Č	ouncel of
study:	21 October 2009 co	ncerning the placing	g of plant protecti	on products on	tho
	market 🔗 🖗	× .~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		E L'	2
	A V		Y & &	, <u>S</u> , U	4
	OECD Guideline fo	or the Testing of Che	micals on Crop T	Field Trial 📎	
	(TG \$209 published	in September 2009)		20 Kg	
		× ×		0	
	US EPA OCSPR	0.1500, CropField	Trial 📯 🖓	<u> </u>	
Deviations from current	None	S & N			
test guideline:	i de la como de la com	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	- & - , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-63	
Previous evaluation:	No not previously	submitted	O' × i	Х°	
Q^/		<u> </u>	, <u> </u>	/	
GLP/Officially recognised testing facilities:	Yes, conducted und	ler GLP/OPicially	ecognised testing	facilities	
recognised testing		Y A Y			
facilities:			<u>i</u>		
Acceptability/Reliability:	Yes a				
Executive Summary			Š		

The purpose of the study E19RP088 was to determine the magnitude of the residues of prothioconazole (comprising prothioconazole and its degradation product JAU 6476-desthio), spiroxamine (comprising KWG 4168-A1 chantioner, KWG 4168-A2 enantiomer, KWG 4168-B1 enantiomer, KWG 4168-B2 enantiomer, the total estidue of spiroxamine parent as the sum of the four enantiomers, and the total residue of spiroxamine (*Qua 44* butylcyclohexanone)), the residues of trifloxystrobin (comprising trifloxystrobin, CGA 331409, CGA 357262, CGA 357261, CGA 321113 and CGA 373466) in/on wheat (green material) after one spray application with PTZ & SPX & TFS EC 280.3, an emulsifiable concentrate (EC) formulation containing 93.3 g/c prothioconazole, 107 g/L spiroxamine and 80 g/L trifloxystrobin.

I. Materials Test Material Lot Batch : PTZ & SPX & TFS EC 280.3 Di-001477 93.3 g/L Prothioconazole (nominal); 90.42 g/L (analysed) 107 g/L Spiroxamine (nominal); 107.4 g/L (analysed) 80 g/L Trifloxystrobin (nominal); 73.83 g/L (analysed) Not stated



Stability of test compound:	Not stated
-	
Reanalysis/Expiry date:	22 March 2022
Density:	Not stated
Treatments	
Test rates:	Not stated 22 March 2022 Not stated E19RP088-01, Germany: Single application consisting of 0.142 kg a.s./ha prothioconazole, 0.163 kg a.s./ha spiroxamine and 0.122 kg a.s./ha trifloxystrobin yoth a test item rate of 1.52 I/2ha E19RP088-02, Germany: Single application consisting of 0.150 kg a.s./ha prothioconazole, 0.172 kg a.s./ha spiroxamine and 0.129 kg a.s./ha trifloxystrobin with a test item rate of 1.61 L/ha E19RP088-03, Belgium: Single application consisting of 0.140 kg a.s./ha prothioconazole, 0.161 kg a.s./ha spiroxamine and 0.120 kg a.s./ha trifloxystrobin with a test item rate of 1.61 L/ha E19RP088-04, Netherlands; Single application consisting of 0.139 kg a.s./ha trifloxystrobin with a test item rate of 1.61 L/ha E19RP088-04, Netherlands; Single application consisting of 0.139 kg a.s./ha prothioconazole, 0.160 kg as./ha spiroxamine and 0.120 kg a.s./ha trifloxystrobin with a test item rate of 0.49 L/ha
Solvent/vehicle:	Water was used as a carrier (£19RP088-01, Germany: 300 L/ha, E19RP088-02, Germany: 322 L/ha, E19RP088-03, Belgium: 301 2 L/ha, E19RP088-04, Netherlands: 299 E/ha
Analysis of test 🔬	Determination of each of the actives and their associated metabolites
concentration	Was conducted using high performance by and show a conducted metabolics
concentrations.	was conducted using ingriperiorinance injuid enformatiography with
	mass spectsophotometric detection (HPLC-MS/MS).
Environmental test	
conditions or Ar k	
	$E_{1}$ $\mathcal{P}$ $\mathbb{P}$ \mathbb{P} $\mathbb{P}$ \mathbb{P} $\mathbb{P}$ $\mathbb{P}$ \mathbb{P} $\mathbb{P}$ \mathbb{P} $\mathbb{P}$ $\mathbb{P}$ \mathbb{P} $\mathbb{P}$ $\mathbb{P}$ \mathbb{P}
Temperature:	12000000000000000000000000000000000000
k, v	$3^{17}$ Ki $3^{10}$ C $3^{17}$ Ki $3^{17$
Relative humidity: "	Notstated O X X &
pH: Q A	Not stated
Study design	EXPROSSION $-0.0$ to 14.0 C/E19R088-02 = 12 to 20°C, FI9RP088-03 = 9.0 to 12.0°C and FI9RP088-04 = 8.0 to 17.0°C Not stated $-0.0°C$ Not stated $-0.0°C$
The nurnose of the study F	9RP988 was to determine the magnitude of the residues of prothioconazole
(comprised prothiocor	and its degrader on product IAU 6476 dosthic) spirovoming (comprising
(comprising protinioconazol	e and its degradation product JAU 6476-desthio), spiroxamine (comprising
KW(1.4168-A1 enantiomer	KWG 4168-32 enablighter KWG 4168-B1 enantiomer KWG 4168-B2

The purpose of the study E19RP088 was to determine the magnitude of the residues of prothioconazole (comprising prothioconazole and its degradation product JAU 6476-desthio), spiroxamine (comprising KWG 4168-A1 enantromer, KWG 4168-A2 enantiomer, KWG 4168-B1 enantiomer, KWG 4168-B2 enantiomer, the total residue of spiroxamine parent as the sum of the four enantiomers, and the total residue of spiroxamine (*via* (4-tbutylcyclohexanone)), the residues of trifloxystrobin (comprising trifloxystrobin CGA 331409 CGA 357262, CGA 357261, CGA 321113 and CGA 373466) in/on wheat (green material) after one spray application with PTZ & SPX & TFS EC 280.3, an emulsifiable concentrate (EC) tormulation containing 93.3 g/L prothioconazole, 107 g/L spiroxamine and 80 g/L trifloxystrobin.

Test site for the field phase E19RP088-01, E19RP088-02 was Bayer Crop Science BCSD, Elisabeth-Setbert-Strasse 4a, 40764 Langenfeld, Germany. The test site for the field phase E19RP088-03 was Bayer Cop Science SA-NV, J.E. Mommaertslaan 14, 1831 Diegem (Machelen), Belgium. The test site for the field phase E19RP088-04 was Bayer Crop Science SA-NV Netherlands, Energieweg 1, 3641 RT Mijdrecht, Netherlands.



The study measured residues immediately following a single application at the four trial locations (consisting of 0.140 kg a.s./ha prothioconazole, 0.161 kg a.s./ha spiroxamine and 0.120 kg a.s./ha trifloxystrobin).

The sample material to be analyzed was green material. The analysed substances were prothioconazole, JAU 6476-desthio, total residue of spiroxamine (*via* 4-t-butylcyclohexanone), KWG 4168-A1 enantiomer, KWG 4168-A2 enantiomer, KWG 4168-B1 enantiomer, KWG 4168-B2 enantiomer total residue of 4 spiroxamine enantiomers, trifloxystrobin, CGA 321113, CGA 331409, CGA 057262, CGA 357261 and CGA 373466.

The application rates of the active substance(s) were calculated based on the notional contact additional adjuvants, surfactants or mixing partners were used for the application

## Analytical method

Samples of wheat/green material were analysed using the validated analytical method 01480, report reference M-628347-02-1 (see Doc MCP Section 5)

## II. Results and Discussion

Mean temperatures ranged from 7 to 44°C in the German trial (DI9RP088-01) mean temperatures ranged from 12 to 20°C in the German trial (E19RP088-02), mean temperatures ranged from 8 to 17°C in the Netherlands trial (E19RP088-04).

Rainfall ranged from 0 to 8 mm in the German trial (E19RP088-01), 0 to 1 mm in the German trial (E19RP088-02), 0 to 6 mm in the Belgium trial (E19RP088-03) and 0 to 10 mm in the Netherlands trial (E19RP088-04).

The application rate of prothic conazote, spiroxamine and tofloxy probin for each trial was 0.140, 0.161 and 0.120 kg a.s./ha respectively

Average recoveries were within the range of 70-1 10%. No residues above the LOQ were found in control samples with only two exceptions.

The residue levels determined in the treated samples are summarised in the tables below;

Table CROO.1.2.2/19-1 Measured restrues of prothin conazore and AU 6476-desthio in/on wheat

Trial No Country			Residues	(mg/kg)
Trial No			Prothioconazole	JAU 6476- desthio
E19RP088401	26 × .		1.1	2.8
	$\sim$	<u> </u>	0.16	2.9
	26 Q ~	Ç ² 2	0.049	2.1
		3	0.037	1.9
	×30 0	5	0.022	1.3
	20 Q 30 30 30 30 30 30 30 30 30 30	7	0.014	0.84
V & A	<b>S</b> 31	9	< 0.01	0.42
E199 P088 62 0 57 Germany	22	0	2.0	3.9
Germany	22	1	0.12	3.8
$\bigcirc$	30	2	0.039	3.0
	30	3	0.041	2.7



Trial No.	BBCH growth		Residues	s (mg/kg)
Country	stage	DALT	Prothioconazole	JAU 6476- desthoo
	30	5	0.019	desthor 1/8
	31	7	0.019	\$ 1.0 \$
	32	100	\$0.01	
E19RP088-03	23	0	Q 2.3	55.4
Belgium	23		Q ⁴ 0,30 0	3.00
	23			0 Q.3 Q
	23		0.0442 0.024	°≫ 1.6 [∞]
	30	$\begin{array}{c} & & 2 \\ \hline & & & 2 \\ \hline & & & & 2 \\ \hline & & & & 2 \\ \hline & & & & & 2 \\ \hline & & & & & & 2 \\ \hline & & & & & & & & 2 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$	0.024	0 ⁴ 0 <del>6</del> 2 4
	30 2	N N D	0.010 <	\$ 17 8
	30 k		L 20.01 C	0.47 5° 5° 0.16
E19RP088-04	£29 °	N N N	\$ 3.1 °	S 2.1
The Netherlands	29			2.9
	30 2	2 4	\$ \$0.048	O 1.8
Ĩ. Ĩ~Y			2 V.0.2 2	1.3
~¥ &}	2 33 O	\$ 5, 0°	0.024	1.1
		N D	0 0.018	0.81
5	32	× × 10 59	Q Q 14	0.52

DALT = Days after last application Table CP 10/1.2.2/19-2 Measured residues of KWG 4168-A1@nantiomer, KWG 4168-A2 enantiomer, KWG 4168-B1 enantiomer, KWG 4168-B2 enantiomer and total residue of 4 spiroxamine enantiomer in/on wheat

					Zesidues (mg/k	xg)	
Trial No.			^{ху} кw?	KWG 4168-A2 enantiomer	KWG 4168-B1 enantiomer	KWG 4168- B2 enantiomer	total residue of 4 spiroxamine enantiomer
E1984088-	26			Ç 1.1	0.92	0.94	4.0
01 Germany	<u>گ</u> 26		Ø.71	0.71	0.61	0.62	2.6
	26	N.C.	0.75	0.76	0.64	0.66	2.8
, S	30 30 4		0.39	0.60	0.51	0.53	2.2
V nº A	\$ 30 A		0.44	0.45	0.38	0.37	1.7
	A A A A A A A A A A A A A A A A A A A	×7	0.37	0.37	0.32	0.31	1.4
	31	9	0.21	0.21	0.17	0.17	0.75
E19RP088-	22	0	1.5	1.4	1.2	1.2	5.3
02	22	1	0.91	0.91	0.74	0.75	3.3



				1	Residues (mg/k	xg)	a,°
Trial No. Country	BBCH growth stage	DALT	KWG 4168-A1 enantiomer	KWG 4168-A2 enantiomer	KWG 4168-B1 enantiomer	KWG 4168- B2 enantiomer	total residue ob spiroxamino enantiomer
Germany	30	2	0.67	0.67	0.55	o.57 🔪	Ô [°] , 263 [°] , 4
	30	3	0.63	0.63	0.51	0.53	2.3
	30	5	0.45	0.45	0.380	0.40	
	31	7	0.34	<u>4</u> 34	629	° (\$29 ,	Ý Ŷ.2 _
	32	10	0.24	∞ 0.24	0.20	0.20	
E19RP088- 03	23	0	1.8	5 <b>68</b> ×	2 145 - 49.98	r 15 ,	6.6
Belgium	23	1	1.1 4	<u>~</u> @1.1_@	Q.98	1.0 0	\$ ^{4.2}
2.01810111	23	2	0.95	0.90	0.78	× 0.80	2.8
	23	3	975 ¢	Q.75	0.65 °C	Q.63	2.8
	30	6	0.31 °C	0.31	€ ⁷ 0.28	0.27	م الم الم
	30	7_0	, <b>0<u>,</u>2</b> 7	D [*] 9,527	0.32	0° 0,93 %	, 0.98
	30	16	<u>لار</u> 0.10	£ 0.10	~9.085°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>	0.38
E19RP088- 04	29	~~ ⁰ ~	10	S 1.7	× 1.4		6.1
The	29 ≪	/ 1	<b>Q</b> .94 O	@.91 ~	Ø.77 &	s 9.78	3.4
Netherlands	300	2°,	§ 0.37	^م ن 0.30	0.30	0.30	1.3
	jõ s	<u></u> 3 x		Ø.25 2		0.20	0.88
Ĩ	31.5	L.	0°0.18%	0.18	6 ^{30.14} 0	0.14	0.65
	32	k) ⁷ k	0.43	× 0.19	0.40	0.099	0.46
Ê,	32	105	<b>%</b> .10	\$.096 £	©.073	0.074	0.34

DALT = Days after last application Table CP 10.1.2,2/19-3 Measured residues of spirosamine (via 4-t-butylyclohexanone) in/on wheat

ATrial No.	BBCH growth stage	[₹] DALT	Total residue of spiroxamine 1 (via 4-t- butylyclohexanone (mg/kg)
E19RP088-01	260	0	7.1
Germany	26 **	1	4.7
Germany Contraction of the second sec	26	2	5.4
	30	3	4.3
	30	5	3.2
	30	7	2.4
Č ^O	31	9	1.4
E19RP088-02	22	0	8.5



Trial No. Country	BBCH growth stage	DALT	Total residue of spiroxamine 1 (via 4-5 ² butylyclohexanote (mg/kg)
Germany	22	1	§ 6.5 ¢
	30	2	45 5
	30		
	30		
	31		
	32		Q 0 1.70 0
E19RP088-03	23 4 0		
Belgium			0 [°] \$6.7  \$
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$3.8 O
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5 5.8 5 5 5 1.7 9 5 6 1.7 9
a			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.00
E19RP088-04	5 ^y 5 ^y 29		8.3
The Netherlands	295 20		6.3
	2 ³⁰ 2 ³⁰	$\begin{array}{c} \overbrace{}^{\circ} & _{\circ}^{1} & _{\circ}^{\circ} \\ \overbrace{}^{\circ} & \overbrace{}^{\circ} & _{\circ}^{\circ} \\ \overbrace{}^{\circ} & \overbrace{}^{\circ} & _{\circ}^{\circ} \\ \end{array}$	2.4
S, Ó à			2.0
	La La La	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.4
E19RP088-04 The Netherlands			1.0
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.83

Table CP 10.1.2.2/19-4 Measured residues of trifloxxstrobin, CGA 321113, CGA 331409, CGA 357262, CGA 357261, CGA 373466 in on wheat

Trial No. Country	BBCH	DAKQ			Residues	(mg/kg)		
Country	growth stage	A.	Trifloxy Stropm	©GA 321113	CGA 331409	CGA 357262	CGA 357261	CGA 373466
E19RP088-	Ø26		<u>6</u> .2 4	0.42	0.056	< 0.01	0.12	0.013
01 Germany	∑ 2,6- ⁴	A.	2.9	0.40	0.25	0.14	0.71	0.10
Germany	Ž.	Ô [°] 2 🕺	۲.1°	0.18	0.30	0.31	0.98	0.11
	5 30 A	<i>z</i>	1.1	0.099	0.26	0.31	0.77	0.076
Germany	348	275	0.55	0.057	0.18	0.23	0.45	0.050
	30	7	0.26	0.046	0.11	0.17	0.24	0.039
C	31	9	0.067	0.013	0.049	0.064	0.047	< 0.01
	22	0	6.8	0.30	0.12	0.016	0.22	0.016

Trial No.	BBCH	DATE			Residues	(mg/kg)		a,°
Country	growth stage	DALT	Trifloxy- strobin	CGA 321113	CGA 331409	CGA 357262	CGA 357261	CGA 303466
E19RP088-	22	1	4.3	0.41	0.39	0.16 🗳	× 0.79	√ 0.0 ⁷ 2
02 Germany	30	2	2.9	0.28	0.47	0.27	0.93	0:058
Germany	30	3	2.3*	0.18*	گ0.44*	0,28*	0.85	×0.054*\$
	30	5	0.96	0.11	0.33	Q 0.22	Ø.34	0.029
	31	7	0.51	0.02	0.20	0.18	0.29	@012 @
	32	10	0.25	Q9 16	0.15	² 0.13	Q.\$P5	\$ <0.0
E19RP088-	23	0	9.1*	&√0.45*©°	0.15 0.73* ž	0.283 0.19	¶.8* *>	0.10*
03 Belgium	23	1	3.5	0,32	0.48	0.19	0.5	6.076 °
Deigiuili	23	2	1.1	a 0077a	009	0.130	ي 28.28	0.043
	23	3		0.03	Ø.20*		0.20	9 .01*
	30	6	<i>≸</i> 0.10 °°	<0.01	0.069	0.055 °	0.060	\$ <0.01
	30	7	0.080	€ 20.01 20.01	@ 053 Å	0.00	0.053	< 0.01
	30	10	0.034	<0.01	~0.022 [®]	ر ۱۹۹۵ کې	0.023	< 0.01
E19RP088-	29	<u>رگن</u>	0 10 °	0.16	0,12	\$ 0.065 [°]	× 9.25	< 0.01
04 The	29 🦼		6 .8 Ć	<u> </u>	00.36	0.18	0.88	0.048
Netherlands	30	200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>3</u> 9.13 <u>3</u>	0.31	Ø0.16 ∜	0.34	0.017
	ĴŪ,	0 ⁻ 3 č	2.9	× 0.068	\$9 .25		0.30	0.011
Ĩ	0 31 0	.5	0 ⁴ 1.2 60	0<036	0.2	0.16	0.24	< 0.01
	320	4	© 0. <u>95</u>	×0.025	0.16	0.14	0.18	< 0.01
	32	1000	294 2	0.0 Q2	\$0.12 \$	0.11	0.16	< 0.01

DALT = Days after last application

*mean value, sample was extracted and sed multiple times

No deviations occurred during the conductor this study which had any negative impact on the quality of this study

III. Conclusion

Residues of prothioconozole comprised of prothioconazole and its metabolite JAU 6476-desthio. Residues of sprioxamine comprised of the spiroxamine enantiomers A1, A2, B1 and B2, the total residue of spiroxamine parent as the sum of the four enantiomers, and the total residue of spiroxamine (via 4tbutylcyclohexanone. Residues of trifloxystrobin comprising trifloxystrobin and its isomers/metabolites CGA 331409, CGA 357262, CGA 357261, CGA 321113 and CGA 373466.

Average decoveries were within the range of 70-110%. No residues above the LOQ were found in controksamples with only two exceptions.

Assessment and conclusion by applicant:

There is no formal test guideline for the conduct of residues decline trials but some guidance is provided in the EFSA Guidance document on Risk Assessment for Birds and Mammals (2009) as well as the more recent EFSA Technical Report on general recurring issues in ecotoxicology (EFSA

supporting publication 2019:EN-1673). Up to date regulatory intelligence on the expectations of the test design of such trials has also been taken in to consideration. Q_{n}°

The study comprised four trials over three countries in NEU (Germany, the Netherlands and Belgium). The crop used was wheat which is highly relevant to the proposed representative GAP for cereals. The application rate was high enough in order to achieve sufficiently high residues of spiroxamine at the start of the trials, thereby allowing for a good decline curve to derive DT_{50} values from.

The analytical sampling regime adopted in the trials is considered to be suitable to derive reliable DT_{50} values, with sampling timepoints typically conducted on Days D, 2, 3, 5, 7 and 10. This regime is considered to meet the expectations for a robust residues decline trial, even with the relatively short expected DT_{50} for spiroxamine.

Weather data were adequately recorded from the nearest weather station. Bainfall was measured at the trial sites themselves in order to provide accurate precipitation measurements.

Overall, the data are considered reliable and suitable for inclusion in the derivation of refined DT values in cereals for use in Bird & Mammal risk assessment of the derivation of the derivat

Report <u>M-759383-01-1</u> presents the results of the kinetic modeling for the spirotamine data measured for these trials as well as the other available decline studies of cereals. An overall DT_{50} value for spiroxamine has been determined using all of these data. As part of the analysis, trials that measured >1 mm rainfall in the first 24 hours were both included and excluded in order to assess the impact that this rainfall may have had on the overall DT_{50} value. It was concluded that there was very little variation in the mean DT_{50} value when these trials were either included of excluded. Thus, it is considered that any rainfall recorded in these trials has not adversely affected the results achieved therefore these trials are considered to be valid and can be included in the determination of the residue decline for spiroxamine.

For procedural reason studies listed in the Table CP 10.12.2-1 below are included in the current dossier as available data or information previously submitted but nonnecessarily evaluated. However, these reports have been fully superseded by never studies. Consequently no summaries of the reports have been included in the dossier.

		6	
Data Point	Document	Date	Title & S
4	N o. C	Ő	
КСР 🔬	<u>M-236289-</u>	2000,	Voles Small gramin ores with polyphasic patterns Microtine
10.1.2.2	<u>01-1</u>	, Q	roders, a special case of diel activity patterns
KCP	<u>M-236295-</u>	1978	Short-terry rhythins in foraging behaviour of the common vole,
10.12.2/04	<u>01-1</u>		Microtes arvalis
КСР	<u>M@75573-</u>	2008	Kleinsaeugercoenosen suedwestdeutscher Weinberge
10.1.2.2/05	<u>67-1</u> ~		
KCP	<u>M-069143-</u> (2001	AGROOTAM - Database 2001 - Microtus agrestis, Microtus arvalis,
10.1.2,2,06		Ô	Apodemus sylvaticus
KCP	<u>0</u> -108725-	2001	AGROMAM - Database 2001 - Sorex araneus, Sorex coronatus
10,12.2/07	<u>01-1</u>		
\bigcirc			

Table CP 10.1.2.2-1 Studies previously submitted and not relied upon for the risk assessment

CP 10.1.3 Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)

No data are available with Spiroxamine EC 500 for terrestrial vertebrates other than mammals and bods. No additional studies on other terrestrial vertebrates are required in accordance with Compassion Regulation (EU) No 283/2013 or 284/2013 and there are currently no risk assessment schemes for reptiles or amphibians.

In the supporting publication by EFSA (2017)³ to review the biological relevance of the magnitude of effects observed in studies with amphibians and reptiles, it is noted that fish-generated toxicity data seem to be appropriate to cover aquatic amphibians. For terrestrial organisms typically birds and mammals are shown to be more sensitive than amphibians and reptiles a higher number of substances. Currently data do not allow for extrapolating between groups, however the frequency of cases in which amphibians or reptiles are more sensitive than birds or mammals is around 30%. It can therefore be reasonably assumed therefore that the risk assessment for fish, birds and mammals is thely to be protective of the risk to amphibians and reptiles.

CP 10.2 Effects on aquatic organisms

Toxicity data for spiroxamine, Spiroxamine EC 300 and the metabolities of spiroxamine are sumparized in the table below. The data include studies previously reviewed and included in the DAR and EFSA conclusion for spiroxamine as well as any previously un submitted or new studies which have been conducted.

to aquatic of gamsins	à ô			Y Q)
Organism	[*] Yest item	Test type	Endpoints		Reference
Fish					
Oncorhynchus mykiss (Rainbow tromy		Acute toxicito 96 h (static)	96-hour LC ₅₀ 19,500 ug a.s./ (0mm)	"	<u>M-006243-01-1</u>
Lepomis a macrocláirus (Bluegith sunfish)	Spiroxamme	Acute toxicity 96 h (static)	90 hour 1 C 50 7 130 µg a.s./L (nm)	EU	<u>M-006229-01-1</u>
Danio rerio (Zebra fish)	Spiroxantine	Acute toxicity 96 h(static)	96 Rour LC ₅₀ 2,410 μg a.s./L (mm)	EU	<u>M-303809-02-1</u>
Oncorhynchus mykiss (Rainbow trout)	Spir Ramine EC	Acute	96-hour LC ₅₀ 11,500 μg/L (mm) (5,700 μg a.s./L)	EU	<u>M-006610-01-1</u>
Oncorhynchus mykiss		Aroniče vicity CLS) 25 d (flow hrough)	NOEC <62.5 μg a.s./L (nom) (EC ₀) 14 μg a.s./L (nom)	EU	<u>M-006232-01-1</u>
(Kaindow Lout)		Statistical Re-analysis	EC ₁₀ >62.5 μg a.s./L (nom)	NEW	<u>M-760407-01-1</u>
(Rainbow Dout)					

Table CP 10.2-1 Summary of energoints for toxicity of spiroxamine. Spiroxamine EC 500 and metabolites to aquatic organisms

³ EFSA supporting publication 2017; EN-1251. Biological relevance of the magnitude of effects (considering mortality, sub-lethal and reproductive effects) observed in studies with amphibians and reptiles in view of population level impacts on amphibians and reptiles.

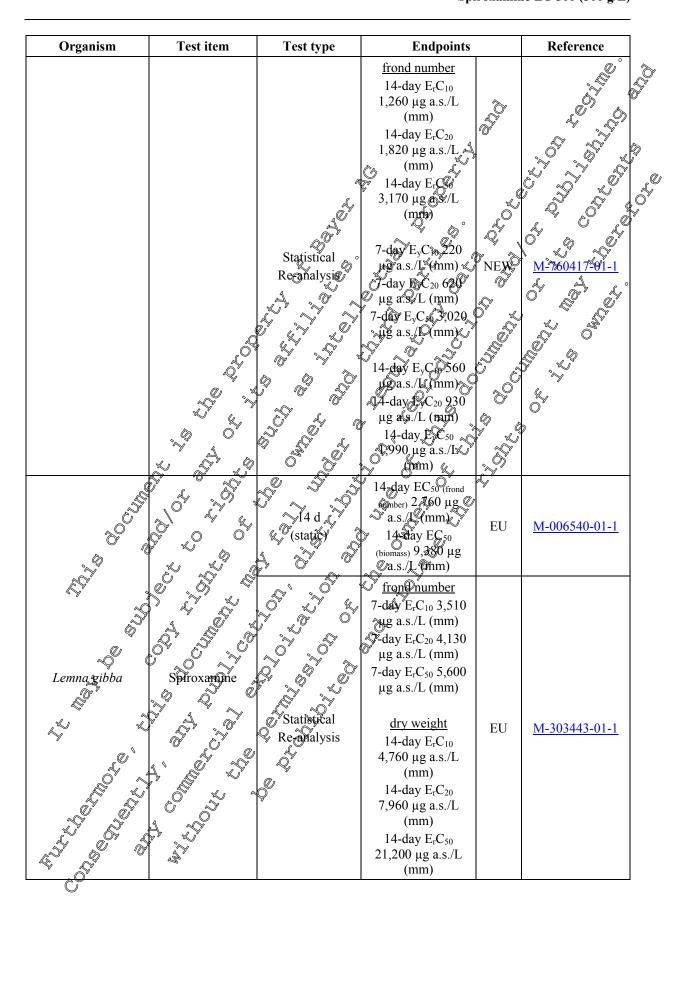
Organism	Test item	Test type	Endpoints		Reference
organishi	i est item	Chronic toxicity	Enupoints		
Oncorhynchus mykiss	Spiroxamine	(ELS; radiolabelled) 96 d (flow through)	NOEC 14.2 μg a.s./L (mm)	EU Co	<u>M-006446501-1</u>
(Rainbow trout)		Statistical	EC ₁₀ 91.5 µg a.s./L (mm) EC ₂₀ 195 µg a@/L (mm)	NEW	<u>MI-760405-01</u>
Oncorhynchus mykiss (Rainbow trout)	Spiroxamine	Chronic toxistry (ELS; sediment system; palsed exposure) 56 cs	NOEC 3 x 602µg	EU S	M-302369-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-11 M-302569-00-10 M-3000-000-000-000-000-000-000-000-000-0
<i>Danio rerio</i> (Zebra fish)	Spiroxamine	Chronic to ticity (FPLC) 230 d (flow through)	NØEC 2/6 μg , a.s./L (nom) EO10 1.88 μg	EUG EUG	M ⁴ 304458 02-1
		Staystical Re-analysis	A.S./L (prom)	NÊW	<u>∲4760413-01-1</u>
Danio rerio (Zebra fish)	Spirroxataure	Chronic toxicity sediment System; Pulsed exposure) 56 d	EC ₁₀ (sukvival) 23.3 μg(a.s./L (im) NOEC (biomarker 37TG) 5/8 μg a.s.(L (im)	÷ ↓ ↓ EU	<u>M-467979-03-1</u>
		Statistical Reônalysis	DC ₁₀ nd determinable	NEW	<u>M-760412-01-1</u>
Pimephale promelas (Fathead minnow)	Sporoxamine		Growth and ferrility not affected at up to and including 58.8 μg a.s./L (mm) No effects on endocrine specific	EU	<u>M-304833-01-1</u>
		Fish screening Fish screening	biomarker endpoints at up to and including 18.9 μg a.s./L (mm) BCF _(whole fish) 87		
macrochirus (Bluegilf sunfign)	Spiroxamme	BCF	CT ₅₀ 13 - 19 hours	EU	<u>M-006479-01-1</u>
Aquatic invertebrat	k v				
Laphila magna	Spiroxamine	Acute toxicity 48 h (static)	48-hour EC ₅₀ 6,100 μg a.s./L (im)	EU	<u>M-006245-01-1</u>

Organism	Test item	Test type	Endpoints		Reference
Daphnia magna	Spiroxamine	Acute toxicity 48 h (radiolabelled; static)	48-hour EC ₅₀ 6,800 µg a.s./L (mm)	EU	<u>M-006476-91-1</u>
Daphnia magna	Spiroxamine	Acute toxicity 48 h (radiolabelled; flow-through)	48-hour EC ₅₀ 3,000 µg a.s./р (mm)	EU	M-00652.2-01-1
Daphnia magna	KWG 4168-N- oxide (M03)	Acute toxicity 48 h (static)	48-hour EČ50 >100,000 μg/L · ~(pom) @	RU Q	M-0067@-01-1@ 0 0 0
Daphnia magna	Spiroxamine EC 500	Acuré toxicity 48 h (static)	48 hour EC 50		<u>xy-006630-01-1</u> •
		Chromo toxicity 21 d (static- Trenewar)	NOEQ 100 µg а.s./Ф (nong)		<u>8-006401-01-1</u>
Daphnia magna	Spiroxamine	Statisticato Re-analysis	ЕСФ 120 др а.s.4 (пФп) ЕС ₂₀ 200 цв а.s./L (пот 5	NEW	
L. L	Spiroxamine	Chronic toxicity 21 d Gradiolabeled; flow-through	NOEC 34 kg a.s./L (mm)	, EU	<u>M-006555-01-1</u>
		Re-analysis	EC ₁₀ 3Cμg a.s.L mm)* EC ₂₀ 68 μs a.s./L (mu)*	NEW	<u>M-760409-01-1</u>
AT S	Spiroxamine Spiroxamine	Chronic to ricity 24 d (radiolabeled, static-renewal) Statistical Recanalysis	NOEC 47 μg ∂a.s./L (mm)	EU	<u>M-006466-01-1</u>
Daphnia magna		Stanstical Refanalysis	EC ₁₀ 39 μg a.s./L (mm) EC ₂₀ 65 μg a.s./L (mm)	NEW	<u>M-761544-01-1</u>
				EU	<u>M-304557-01-1</u>
Daphnia maena A A A A A A A A A A A A A A A A A A A		Q. Q.	<u>.</u>	·	

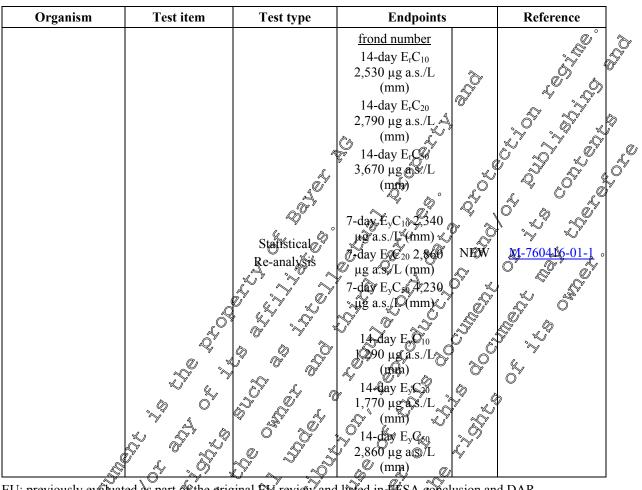
Chironomus Spirovamine EC Chronic toxicity NOEC 5.0 µg EU M-006626-01- Chironomus Spirovamine EC 28 d (static) µg a.s./9 EU M-006626-01- Virgarias 500 Statistical EU M-006626-01- M-006626-01- Virgarias 500 Statistical EC10/EC20 not NEW M-760408-01- Virgarias Chronicstoricity GEC10 7,120 µg M-760408-01- Virgarias Chronicstoricity GEC10 7,120 µg M-760408-01-	Organism	Test item	Test type	Endpoints		Reference
invertebrates 500 mesocosm 9.5 µg a.s./L FTO-RAC 0.5 µg a.s./L ETO-RAC 0.5 µg a.s./L a.s./L FRO-RAC 3.1 µg d.s./L FRO-RAC 3.1 µg d.s./L Sediment-dwelling organisms FEO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine FEO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine FeO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine FeO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine FeO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine FeO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine Spirovamine FeO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine Spirovamine FEO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L Chironomus riparius Spirovamine Spirovamine Spirovamine FEO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg d.s./L FEO-RAC 3.1 µg						
invertebrates 500 mesocosm 9.3 µg a.s./L FTO-RAC 0.5 µg a.s./L ETO-RAC 0.5 µg a.s./L ETO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L Sediment-dwelling organisms ERO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L Sediment-dwelling organisms ERO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L Chironomus riparius Spirovamine FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L Chironomus riparius Spirovamine FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L FTO-RAC 0.5 µg a.s./L Chironomus riparius Spirovamine Statistical EC (MEC 2000t) FTO-RAC 0.5 µg a.s./L Chironomus riparius Spirovamine Statistical EC (MEC 2000t) FTO-RAC 0.5 µg a.s./L Chironomus riparius Spirovamine Statistical EC (MEC 2000t) FTO-RAC 0.5 µg a.s./L Chironomus riparius Spirovamine Statistical EU M-760403-01- Chironomus riparius Spirovamine FC 28 d (static) NOEC 5.0 µg product/L (22.5) EU					all a	
Sediment-dwelling organisms ERO-RAC 9.1 µg Sediment-dwelling organisms ECG Chironomus Spirovamine riparius Spirovamine Spirovamine Spirovamine Chironomus Spirovamine Spirovamine Spirovamine Chironomus Spirovamine Spirovamine					NEW	<u>AM-690576-01</u>
Sediment-dwelling organisms FRO-RAC 5.1 µg Sediment-dwelling organisms FCO Chironomus Fronic toxicity riparius Spirovamine Spirovamine Spirovamine Chironomus Spirovamine Spirovamine Spirovamine Chironomus Spirovamine Spirovamine Spirovamine Chironomus Spirovamine Spirovamine Spirovamine Chironomus Spirovamine Spirovamine				ETO-RAS 0.5 µg	2°	
Sediment-dwelling organisms ECQ Chironomus Chironomus riparius Spirectamine Spirectamine Spirectamine Spirectamine Spirectamine Statistical ECQ Statistical ECQ Statistical ECQ Spirectamine Statistical Statistical EC10/EC20000t Ke-analysis NOEC 5.0 µg Spirectamine Chronic toxicity Statistical EC10/EC20000t Spirectamine Chronic toxicity Statistical EC10/EC20000t Spirectamine Chronic toxicity Spirectamine Spirectamine Spirectamine<						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sediment-dwelling o	organisms		CS./L / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~.	
Chironomus riparius Spirevamine Chironomus Chironomus Spirevamine C	0					
Chironomus riparius Spirovamine Spirovamine Chironomus Spirovamine Spirovamin						
Chironomy Spirexamine Factolabelled) NOEC riparius Spirexamine Factolabelled) Factolabelled) Factolabelled) Spirexamine Spirexamine Statistical Statistical Statistical Morection Statistical Statistical Factolabelled) Factolabelled) Morection Morection Statistical Statistical Factolabelled) Factolabelled) Morection Morection Chironomy Statistical Factolabelled) Morection Morection Morection Chironomy Spirexamine FC Statistical Factolabelled) Morection Morection				es./L (pom)		°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Chironomes Snireszamine EC 28 d (static) NOEC 5.0 µg/s.s./L M-760403-01-		Spirexamine	a ` ~(/)	NØEC Q	ΥΩ*	0
Chironometry Spirgermine EC 28 d (static) Product/L (22.5 EU M-006626-01-	ripur tus			5,600 μg/a.s./L~C		Þ
Chironomy Spirgyamine FC 28 d (static) Product/L (≥2.5 EU M-006626-01-			Statistical		<u>S</u>	
Chironomy Spirgy mine FC $28 d$ (static) product/L (≥ 2.5 EU <u>M-006626-01-</u>	<u> </u>	<u>, 8</u>	Re-analysis		NEW	<u>M-760403-01-1</u>
Chironomy Spirozamine FC 28 d (static) 2° 2°			Chronic toxicity		EU	M-006626-01-1
Lumbricutes variegatus Sphoxamine Amphibia	Chironomus d ripartigs	Spiroxamine EC	28 d (static)			
Lumbricators variegatus Spiroxanniae Amphibia			Re-analosis	$\mathbb{E}C_{10}/\mathbb{E}\mathbb{C}_{20}$ not deteoninable	NEW	<u>M-760408-01-1</u>
Lumbricators variegatus Amphibia Amphibia				<u>A</u> 7		
Lumbrications variegatus Amphibia	Ę,			eC10 7,120 μg		
Amphibia	Lumbricutys (variegatus	Spiroxamine	Chronic toxicity	(mm)	NEW	<u>M-688127-01-1</u>
Amphibia				NOEC 16,700 μg		
Amphibia				a.s./kg sediment (mm)		
	Amphibia					

Organism	Test item	Test type	Endpoints		Reference
Xenopus laevis	Spiroxamine	XETA	No indication of endocrine activity on the thyroid axis concluded. A statistically significant increase in Plouresence was observed at the 1.6 mg/L treatmenObut this concentration was	NEW	Reference
Algae	·	Ö . Ü		A A	
Scenedesmus subspicatus		A 72 h (static) 7 4 72 h (static) 7 5 72 h (static) 7 5 7 5 7 5 7 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7		EUX EUX	M-006228 4 -1 5 5 5 5 5 5 5 5 5 5 5 5 5
		120 h (static)	$E_{r}C_{50}$ (nom) $E_{4}C_{50}$ 5.42 µg a.s./L (nom)	EU	<u>M-006518-01-1</u>
Scenedesmus subspicatus	Spiroxamine C	Statistical Regnalysis	$\begin{array}{c} \text{a.s./L (nom)} \\ \hline & \text{E}_{r}\text{C}_{10} \ 9.20 \ \mu\text{g} \\ \text{a.s./L (nom)} \\ \hline & \text{E}_{r}\text{C}_{20} \ 10.9 \ \mu\text{g} \\ \text{a.s./L (nom)} \\ \hline & \text{E}_{r}\text{C}_{50} \ 15.2 \ \mu\text{g} \\ \text{a.s./L (nom)} \\ \hline & \text{E}_{y}\text{C}_{10} \ 3.60 \ \mu\text{g} \\ \text{a.s./L (nom)} \\ \hline & \text{E}_{y}\text{C}_{20} \ 4.73 \ \mu\text{g} \\ \text{a.s./L (nom)} \\ \hline & \text{E}_{y}\text{C}_{50} \ 7.99 \ \mu\text{g} \\ \text{a.s./L (nom)} \\ \hline & \text{E}_{y}\text{C}_{50} \ 7.99 \ \mu\text{g} \\ \text{a.s./L (nom)} \end{array}$	NEW	<u>M-761402-01-1</u>
Pseudoko chneriella subcapitata	Spiroxamine	96 h (static)	$\begin{array}{c} E_r C_{50} > 8.14 \ \mu g \\ a.s./L \ (im) \\ E_b C_{50} \ 5.5 \ \mu g \\ a.s./L \ (im) \\ E C_{50} \ (cell \ density) \\ 5.7 \ \mu g \ a.s./L \ (im) \end{array}$	EU	<u>M-006533-01-1</u>

Organism	Test item	Test type	Endpoints		Reference
		Statistical Re-analysis	$\begin{array}{c} E_r C_{10} \ 4.93 \ \mu g \\ a.s./L \ (im) \\ E_r C_{20} \ 10.5 \ \mu g \\ a.s./L \ (im) \\ E_r C_{50} > 8.14 \ \mu g \\ a.s./L \ (im) \\ E_y C_{10} \ 1.29 \ \mu g \\ a.s./L \ (im) \\ E_y C_{20} \ 2.18 \ \mu g \\ a.s./L \ (im) \\ E_y C_{20} \ 2.18 \ \mu g \\ a.s./L \ (im) \\ E_y C_{50} \ 5.90 \ \mu g \\ a.s./L \ (im) \ (i$	NEW	Reference
Desmodesmus subspicatus		Statistical Re-analysis	$\begin{array}{c} & & \\$		M-273962-00-1
		96 h (Datic)	\bigcirc a.s./(nom) \frown ErCs 6.3 \oplus g	S S EU	M-006512-01-1
			S ErCenot	NEW	<u>M-761414-01-1</u>
Anabaena L Iflos-aquae	Spiroxamine	Q 96 postatic)	EC ₅₀ (cell density) >990 μg a.s./L (mm)	EU	<u>M-006537-01-1</u>
		96 h (static)	E _r C ₅₀ 11.85 μg a.s./L (mm)	EU	<u>M-006542-01-1</u>
Anabaena Jos-aquae Navicula Pelliculosa	Spiroxamine	♀ Statistical Re-analysis	$\begin{array}{c} E_r C_{10} \ 8.36 \ \mu g \\ a.s./L \ (mm) \\ E_r C_{20} \ 9.44 \ \mu g \\ a.s./L \ (mm) \\ E_r C_{50} \ 11.9 \ \mu g \\ a.s./L \ (mm) \end{array}$	EU	<u>M-280532-01-1</u>



Organism	Test item	Test type	Endpoints		Reference
		Statistical Re-analysis	$\begin{array}{c} E_y C_{10} \ 6.83 \ \mu g \\ a.s./L \ (mm) \\ E_y C_{20} \ 7.60 \ \mu g \\ a.s./L \ (mm) \\ E_y C_{50} \ 9.32 \ \mu g \\ a.s./L \ (mm) \end{array}$	NÊW	M-761402-01-16
Desmodesmus subspicatus	KWG 4168- desethyl (M01)	72 h (staticy) 72 h (staticy) Statistical Re-analysis	$E_rC_{10} \text{ not}$ $determinable$ $E_rC_{20} 42 \text{ Jug/L}$ (nom) $E_rC_{50} 737 \text{ µg/L}$ (nom) $E_rC_{50} 737 \text{ µg/L}$ (nom) $E_rC_{50} 70.6 \text{ µg/L}$ (nom)		M-761465-07-1
Pseudokirchneriella subcapitata	desprop (M02)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E $C_{10} 20 p_{10} 20 p_{10} / (10)$ E $C_{20} 5.7 p_{20} / (10)$ E $C_{50} 383 p_{10} / (10)$ E $C_{50} 383 p_{10} / (10)$ E $C_{10} n c$ E $C_{20} 14.8 p_{20} / (10)$ E $C_{20} 14.8 p_{20} / (10)$ E $C_{20} 14.8 p_{20} / (10)$ E $C_{20} 14.8 p_{20} / (10)$		M-680695-01-1
Desmodesmus	CKwc2168-N	572 h (static) (4)	Ψ ₁ C ₁₀ 6508 μg/L	EU	<u>M-288235-01-1</u>
subspicatus	KWC2168-N OKWC2168-N OXGe (M03)	Ö72 h (static) ()))))))))))))	$\begin{array}{c} E_y C_{10} \ \ 218 \ \mu g/L \\ (nom) \\ E_y C_{20} \ 526 \ \mu g/L \\ (nom) \\ E_y C_{50} \ 2835 \ \mu g/L \\ (nom) \end{array}$	NEW	<u>M-761467-01-1</u>
Desmodesnius Subspicatus	KW64168-acid	♀ 72 h (static)	E _r C ₁₀ >3,200 μg/L (nom) E _r C ₂₀ >3,200 μg/L (nom) E _r C ₅₀ >3,200 μg/L (nom)	EU	<u>M-309818-01-1</u>
		Statistical Re-analysis	Not determinable. E _y C ₅₀ considered to be >3,200 µg/L (nom)	NEW	<u>M-761469-01-1</u>



Organism	Test item	Test type	Endpoints		Reference
		72 h (static)	ErC ₅₀ 29 μg/L	EU Õr	<u> </u>
Scenedesmus subspicatus	Spiroxamine EC 500	Statistical 4 Re-analysis	$\begin{array}{c} E_r C_{10} \ 4.90 \ \mu g \\ a.s./L \ (nom) \\ E_r C_{20} \ 7.09 \ \mu g \\ a.s./L \ (nom) \\ \hline \\ c \\ a.s./L \ (nom) \\ E_r C_{50} \ 14.4 \ \mu g \\ a.s./L \ (nom) \\ \hline \\ E_v C_{10} \ 0.20 \ \mu g \\ a.s./L \ (nom) \\ \hline \\ E_v C_{20} \ 4.02 \ \mu g \\ a.s./L \ (nom) \\ \hline \\ c \\ E_v C_{20} \ 6.22 \ \mu g \\ a.s./L \ (nom) \\ \hline \end{array}$		<u>M-006617, 67-1</u> 4 4 4 4 4 4 4 4 4 4
Aquatic plants			NY OY N	, S	
Lemna gibba	Spiroxamine Spiroxamine	Statistical Recanalysis	$\begin{array}{c} \begin{array}{c} \underline{\text{fronce}} number \\ \hline 7-\text{day } E_r C_{10} & 0.060 \\ \mu & a.s./I_{1} (mm) \\ \hline \mu & a.s./I_{2} (mm) \\ \hline \mu & g.s./L (mm) \\ \hline 7-\text{day } E_r C_{50} & 7.80 \\ \hline \mu & g.s./L (mm) \end{array}$	EU EU	

EU: previously evoluated as part of the original EV review and listed in EFSA conclusion and DAR NEW: new study or data generated since the previous BU review or previously not submitted Values in **bold** have been used in the risk assessment, mm = Results based on mean measured test concentrations nom = Recults based on nominal lest concentrations im = Results based on mutial measured test concentrations * EC10 considered un liable therefore not used in risk asses

Toxicity endpoints

Ś For the long form studies where EC 10 and EC 21 values were not already available, these values have been calculated. For each elevant study a summary of the statistical re-evaluation work immediately follows the summary of the main study. In cases where a valid EC_{10} could be determined, the risk assessment has used the lower value out of the OOEC and the EC10. Furthermore, for the algal and Lemma studies where yield had no been determined in the study report, the $E_{\nu}C_{10}$, $E_{\nu}C_{20}$ and $E_{\nu}C_{50}$ values have been determined, where possible, However, it is noted that the risk assessment has used the growth rate E_rC_{50} values, in accordance with the recommendations of the Aquatic Guidance Document⁴.

Acute fish that are available using spire amine technical for three fish species. The most sensitive species way Danio rerie with a 96-hour LC₅₀ of 2,410 µg a.s./L. Thus, this endpoint has been used in the acute risk assessment for fish. For chronic fish toxicity there are three fish early life stage studies as well as one standard rish full life cycle study using spiroxamine technical. The lowest endpoint comes

⁴ Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 2013;11(7):3290, 268 pp.

from the fish full life cycle study (M-304458-02-1) which gave a NOEC of 2.6 μ g a.s./L. In the previous Renewal of Approval for spiroxamine an EC₁₀ of 2 μ g a.s./L was derived for this study and used in the assessment. EC_x re-evaluation has therefore been conducted for this study and an EC₁₀ of 1.88 μ g a.s./L has been derived. Thus, the EC₁₀ of 1.88 μ g a.s./L has been used at Tier I in the chronic fish risk assessment. It is noted that this EC₁₀ is below the lowest concentration tested in the study and could therefore be considered unreliable, however, as a precedent for using an EC₁₀ for this study has been set in the previous evaluation of spiroxamine the EC₁₀ has also been used here. A refined fishfull life cycle study using pulsed-exposure and conducted in the presence of sediment (M-467979-03-1) is also available and has been considered as part of a refined risk assessment. Whis refinement study has been discussed later on in the section.

Three acute *Daphnia* studies are available for spiroxamine technical from which the lowest EC_{50} of 3,000 µg a.s./L was derived. This endpoint has therefore been used in the acute aquation vertebrate eask assessment. For the chronic aquatic invertebrate risk assessment, therefore been used in the chronic aquatic invertebrate risk assessment, therefore been used in the chronic aquatic invertebrate risk assessment. A NOEC of 34 µg a.s./L has therefore been used in the chronic aquatic invertebrate risk assessment.

For sediment-dwelling organisms two studies using *Chironomus riperius* are available. No effects were seen at any concentration tested in the formulation study (*i.e.* NOEC ≥ 2.5 bg a.s. (*i.*) therefore the higher NOEC from the technical material study of 5,600 µg as L has been used in the risk assessment for sediment-dwelling organisms. Both studies showed a lack of significant effects therefore it is considered justified to take the highest of the two available NOEC values.

Spiroxamine is a fungicide and therefore, according to the Aquatic Guidance Document, the recommended test species for seminent-dwelling organisms is *Lumbriculus*. A *Lumbriculus* study is available using spiroxamine technical and provides a sedment-based ordpoint for use in the risk assessment. The lowest endpoint from this study was an EC_{10} of $120\mu g$ a.s./kg sediment. Thus, both the NOEC of 5,600 μg a.s./L from the *Chiranomus* study and the EC_{10} of 7,120 μg a.s./kg sediment from the *Lumbriculus* study have been used in the risk assessment for surface water and sediment compartments, respectively.

For the algal fisk assessment the lowest bound $E_r S_{50}$ value from the studies with green algal species has been used in the risk assessment (5, C₅₀ of 12 µg a.s./L from study MO06228-01-1). A potentially lower endpoint of > 8.14 µg a.s./L is available from study M-0065 3-01-1 but as this value is not bound (*i.e.* a 'greater than' value) or is considered more appropriate to use the derived E_rC_{50} of 12 µg a.s./L to represent green algae. Spiroxamine is a forgicide therefore additional studies with algal species from a different taxonomic group are no a data requirement, however, several studies are available using algal species which are not green algae, including *Skeletopema costatum*, *Navicula pelliculosa* and *Anabaena flos-aquae*. The lowest E_rC_{50} of 0.3 µg a/s./L as this value is lower than the E_rC_{50} for the green algal species it is considered necessary to include this in the risk assessment. Thus, both the E_rC_{50} of 12 µg a.s./L and the E_rC_{50} of 6.3 µg a/s./L have been used in the risk assessment to represent freshwater and marine species, respectively.

Spiroxamine is a fungicide therefore data for aquatic macrophytes are not a core data requirement. However, two studies using *Jamma* are available therefore aquatic macrophytes have also been included in the risk assessment. The fowest EC_{50} value was determined to be 1,910 µg a.s./L and has therefore been used in the risk assessment.

A mesocosm study is available using Spiroxamine EC 500 which included zooplankton and algae. The study has been re-assessed against current requirements including MDD analysis and meets the minimum requirements. The NOEC based on Class 1 effects was 1.0 μ g a.s./L which gives an ETO-RAC of 0.5 μ g a.s./L when an assessment factor (AF) of 2 is applied, in accordance with the recommendations of the Aquatic Guidance Document. An ERO-RAC of 3.1 μ g a.s./L was also derived based on Class 3A effects at 9.3 μ g a.s./L with an AF of 3. For the risk assessment the more conservative ETO-RAC of 0.5 μ g a.s./L has been used. The study has not been used as a refinement study in the risk

assessment but as the ETO-RAC of 0.5 μ g a.s./L is lower than the lowest Tier I algal RAC of 0.63 μ g a.s./L, the mesocosm endpoint has been included in the Tier I risk assessment alongside the algal and invertebrate risk assessments.

Formulation data

Studies have been conducted using the representative formulation, Spiroxamine EC 500, specifically an acute fish, acute *Daphnia* and an algal study. These three studies provided a fish LC₅₀ of 11,500 µg/L (5,700 µg a.s./L), a *Daphnia* EC₅₀ of 10,300 µg/L (5,070 µg a.s./L) and an algal E_rC_{50} of 29 µg/L (14,3) µg a.s./L). In terms of the active substance content the formulation to active is considered to be driven by spiroxamine as the endpoints are very similar to the respective periodical material studies but it is noted that the technical material data provide the general lowest endpoints. A generate formulation specific risk assessment has been conducted and presented below.

Metabolites

For the metabolites there are experimental data available for M00, M02, M03 and M06 with algae. A non-GLP acute *Daphnia* study is available using M03 which has been used in the risk assessment but there are no acute aquatic invertebrate data available for M01, M02 and M06 Furthermore, there are no acute fish data available for any of the metabolites. For the risk assessment of has therefore been necessary to estimate the metabolite excicit, for fish and aquatic invertebrates using the available data with the parent material. It is clear from the algal data that the metabolites are at least one order of magnitude less toxic than spiroxamine (spiroxamine Cr_{50} : 92 µg a.s./L. M01 Er_{50} : 737 µg/L; M02 $E_{r}C_{50}$: 383 µg/L; M03 $E_{r}C_{50}$: 31, 000 µg/L; M06 $E_{r}C_{50}$: >3,200 µg/L). The non-GLP acute *Daphnia* study with M03 gave an EC_{50} of >100,000 µg/L which is also much greater than the EC_{50} for spiroxamine of 3,000 µg a.s./L. It is therefore considered justified to use equivalent parent toxicity to represent the metabolites in cases where there are no experimentally determined values. This approach is still considered to be conservative given that the available data with the most sensitive organism group, algae, confirms that the metabolites are at least ten times less toxic than spiroxamine. Thus, the acute fish LC₅₀ for M01, M02, M03 and M06 has been taken to be 3,000 µg/L.

Exposure

FOCUS PEC_{sw} values have been determined for the proposed uses of Spiroxamine EC 500 on vines at rates of both 200 g as /ha, and 300 g a.s./ha, considering both one and two applications as well as applications to early and to late growth stages. Full details of the calculation of PEC_{sw} values, including FOCUS Step 4 values, have been presented in M-CP Section 9, Environmental fate.

Isomers

In accordance with the isoner Coldance Document⁵ is necessary to consider the impact of selective degradation over time for isomeric substances, such as spiroxamine. In the absence of specific toxicity data on the individual isomers, an additional Uncertainty Factor (UF) is applied to the risk assessment if selective degradation could occur.

For parent spiroxamine further investigative environmental fate work is currently ongoing in order to clarify whether or northere is significant selective degradation of isomers in surface water and sediment over time. Until this work has been completed and submitted a conclusion on the issue of selective degradation of spiroxample in surface water cannot be made. Thus, for the risk assessment below an

⁵ Guidance of EFSA on risk assessments for active substances of plant protection products that have stereoisomers as components or impurities and for transformation products of active substances that may have stereoisomers. EFSA Journal 2019;17(8):5804

additional Uncertainty Factor (UF) has not been applied to the risk assessment for the parent materials spiroxamine and Spiroxamine EC 500 (*i.e.* an UF of 1.0 has been used).

For the metabolites of spiroxamine there are no chiral data available to be able to make an assessment over whether or not selective degradation occurs therefore there is a possibility that selective degradation of isomers could occur in surface water over time. In order to account for any possible increased toxicity to aquatic organisms as a result of an increase in the ratio of a single isomer, an UF has been applied to the risk assessment of M01, M02, M03 and M06. The UF has been calculated following the recommendations of the isomer Guidance Document and have been presented in the table below.

spiroxamine		A		
Test item	Study reference	Test materia batch number	Isomer ratio	
Acute fish	1			s A c.º
M01	-	- 5 27 2		4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76
M02	-			
M03	-		- ~ ~ ~ ~ ~	10.0
M06	-			2.32 2
Acute inverte	ebrate	· · · · · · · · · · · · · · · · · · ·		\mathcal{T}
M01	- 60			4.76 ²
M02	-	- 45 01 6		12.5 ²
M03	<u>M-006792-01-1</u>	950209ELB019	Not available	10.0 ³
M06	- <u>5</u> , 0 ;~	- 2 , 2		2.32 ²
Algae	<u>M-288@32-01²</u>	950209ELB015 27 - 27 2 29 - 27	A:B 56:42 A:B \$5:42	
	<u>M-288@32-01-1</u>	921103ELB02	A:B 56:42	4.76
M01 M02	<u>M-680695601-1</u>		A:B 83/1:16	12.5
M03	<u>M-288235-01, it set and set a</u>	KTS \$324-j~2 &	Di/D2/D3/D4: 27/26/20/27	10.0
M06	<u>M-200818-01-1</u>	SES 1027/2-1	A:B 43.04:52.75	2.32

Table CP 10.2-2 Uncertainty Factors determined spirovamine	for the aquatic	toxicitodata	with the	netabolites o
spiroxamine	40 ^{7 -}	Å.	0	

¹ Changes in stereoisom te excess are unknown herefore Uncertainty Factor = 100/content of lowest stereoisomer (%) used for evotox endpoin as indicted in Yable [3.1, p.30 of isomer GD] and assumes that the toxicological effects of the mixture can be attributed to a single somer This assumes that all enantiomer ratios can be safely assumed to be 50:50. For example A:B ratio of 83.1:16 would be 100/(16/2) = UF of 12.5

² No toxicity data available for this metabolite for this organism group therefore the isomer ratio determined in the equivalent algal study has been used as a surgegate

³ Toxicity data available with *Dapphia* for this metabolite but no isomer details available therefore the isomer ratio determined in the equivalent algas study has been used as a surrogate

- No toxicity eata on metabolite available

Risk assessment

The risk assessment procedure follows the Aquatic Guidance Document (EFSA Journal 2013^{Error! B} ookmand not defined.), as appropriate to the data requirements under EU Regulations 283/2013 and 284/2013.

The risk assessment has been presented using PEC/RAC ratios. Application rates of 200 g a.s./ha and 300 g a.s./ha, considering both one and two applications, have been considered in the risk assessment. Applications to early and to late growth stages have also been considered. A risk assessment for the metabolites has been presented as well as a formulation specific spray drift risk assessment.

Ľ

ð

1 x 200 g a.s./ha

Table CP 10.2-3 Aquatic organisms: acceptability of risk (PEC/RAC <1)	for spiroxamine for each agu	atic 🔊
group based on FOCUS Steps 1 - 3 calculations for application of Spiroxa	amine EC 300 to vines	\$
(1 x 200 g a.s./ha; early application)	S 4	Ô

(y upplication)		1 Contraction of the second se	
Group		Fish acute	Fish chronic (ී්	Invertebrate acute	Invertebrate
Test specie	es	Danio rerio	Danio rerio 🛛 🕅	Daphniomagna	Daphnia magnal 4
Endpoint		LC ₅₀	EC ₁₀	EC ₅₀ dy	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
(µg a.s./L)		2410	1.88	1000 a^{\vee} Q	340 0 0
AF		100	10 & @° *	900 x x x x	
RAC (µg a	.s./L)	24.1	0.188 0 0		1248 8
FOCUS Scenario	PEC sw- max (µg a.s./L)	1.30	0.188 2 2 0.188 2 2 0.188 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	C ratio	
Step 1	31.276	1.30	166 ⁷		230 . ~
Step 2		0.0746.2			
NEU	1.799	0.0746	257	0,0600	0.529
SEU	2.323	0.0969 0	12.4	0.0774 2	9.683
Step 3		x A .9			ÿ
D6 Ditch	3.346		Q7.8 5 5		-
R1 Pond	0.121,5	- 07 27 20	0.644/	- 2 3	-
R1 Stream	2.446		13.0 × ~		-
R2 Stream	3 294	- × 6 4		- ~	-
R3 Stream	3.508	-0 3 &	18,7 \$ \$	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	-
R4 Stream	2.455		ĴĨĴ.1 _⟨ , [°] ⟩ ⟨, .	S S	-
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** Table CP 10.2-3 (continued) Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine for each aquatic group based on VOCUS Steps 1 - 3 calculations for application of Spiroxamine EC 500 to vines (1 200 g a.s./ha; early application)

	Algae (Freshwater	Algae O	Mesocosm	Aquatic macrophyte s	Sediment dwo	eller
Test species	Scenedesmu	Skélejonema costatum	Algae and invertebrate s	Lemna gibba	Chironomus riparius	Lumbriculus variegatus
Endpoint	ErC39	$E_rC_{50}$	NOEC	EC ₅₀	NOEC	EC ₁₀
Endpoint	12.0	6.3	1.0	1910	5600	7120 µg/kg
AF Ö	10	10	2	10	10	10
RAC (µg a.s./L)	1.2	0.63	0.5	191	560	712



FOCUS Scenario	PEC sw- max (µg a.s./L)		PEC/RAC ratios					
Step 1	31.276	26.1	49.6	62.6	0.164	0.0559	1.28	
Step 2						- F		
NEU	1.799	1.50	2.86	3.60	-		07.0713	
SEU	2.323	1.94	3.69	4.65	- 4	- 8	0.1272	
Step 3		·		Å,		- V		
D6 Ditch	3.346	2.79	5.31	6.69	- \$ ~	- 2 2		
R1 Pond	0.121	0.101	0.192	<b>1</b>		- / .	Z ~ ~	
R1 Stream	2.446	2.04	3.88	4.89	- 4	¥		
R2 Stream	3.294	2.75	5.23	659 0	- 2 4	- 0°	- & &	
R3 Stream	3.508	2.92	5.57	7.02				
R4 Stream	2.455	2.05	5.57 5 A	4.91			- <u></u>	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of  $\Psi$  are highlighted in batt ¹ Based on a Step 1 PEC_{SED} of 909 603 µg a.s./kg ² Based on Step 2 PEC_{SED} of 500 51 µg a.s./kg for NEU and 90.249 µg a.s./kg for SEU Table CP 10.2-4 Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxanime for each aquatic group based on FOCUS Steps 1 3 calculation for application of Spiroxanime EC 500 to vines (1 x 200 g a.s./ha; late application

Group	Fishacute	Fish chrome	Invertebrate acute	Invertebrate chronic				
Test species		Danio verio 🖉	Baphnia magna	Daphnia magna				
Endpoint 🔊			EC50	NOEC				
(µg a.sAL)			3,000	34				
AF 🍣			100	10				
1010 (µg u.s./L)		0488 5 5	30	3.4				
Scenario $max (\mu g)$	EQCLIS $\mathbb{R} \oplus \mathbb{C}$ sw- $\mathbb{C}$ $\mathbb{A} \oplus \mathbb{A}$ $\mathbb{A} \oplus \mathbb{A}$							
Step 1 31.276	<b>1.30</b>	<b>266</b>	1.04	9.20				
Step 2		, O'						
NEU 5.302	0.222 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28,5	0.178	1.57				
	0.22	28.5	0.178	1.57				
Step 3								
SEU \$352 Step 3 D6 Ditch 3473		18.2	-	1.00				
Rapond p0.122	- &	0.649	-	0.0359				
R1 Stream 2.503	-	13.3	-	0.736				
R2 Stream 3.355	-	17.8	-	0.987				



R3 Stream	3.528	-	18.8	-	1.04	
R4 Stream	2.502	-	13.3	-	0.736	Ô

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** 

Aquatic organisms: acceptability of risk (PEC/RAC <1) for prirox mine Table CP 10.2-4 (continued) for each aquatic group based on FOCUS Steps 1 - 3 calculations for application of Spiroxamme EC500 to Å Ľ vines (1 x 200 g a.s./ha; late application) Ö

vines (1 x 20	ines (1 x 200 g a.s./ha; late application)			<u> </u>	Ũ	Č,		, O
Group		Algae (Freshwater )	Algae (Marine)	Mesocosm	Aquato macrophyte s		ener of g	
Test species	8	Scenedesmu s subspicatus	Skeletonema costatum	Algae and invertebrate s &	Lemna gibbă	Chiropomus ripanas	Lumbrieulus variegatus	
Endpoint		ErC ₅₀		NOEC	EC50	<b>Ö</b> ÖEC _K	EC10	
(µg a.s./L)		12.0	ErC ₅₀	1.0	1910	5600	7120@g/kg	
AF		10		25	10 20	1.00°	100	
RAC (µg a.:	s./L)	1.2	0.63		5191 JO 8	360	7/12	
FOCUS Scenario	PEC _{sw-} _{max} (µg a.s./L)			A PEC/RA	C vatios v			
Step 1	31.276	26,1	49:40	62.0 °	0.164	0.0	<b>1.28</b> ¹	
Step 2			g og i	S S		4		
NEU	5.352	4.40	8.50	10.7, 5 10.7 5	- 6 , 9	-	$0.0912^2$	
SEU	5.3.9	<b>4</b> 46 O	850 6	10.7		-	0.113 ²	
Step 3	~~~ (l		A ò	× ÷	Å.			
D6 Ditch	3.413	2,84	5.42	6.83 29	. ~	-	-	
R1 Pond	0.122	0.102	0.194 🎯 🧹	Ø.244 📞 🗸	5	-	-	
R1 Stream	2.503	2.09	3.97		-	-	-	
R2 Stream	3.385	9.80	5.33		-	-	-	
R3 Stream	3.528	2.940 Q		7.06	-	-	-	
R4 Stream	2.502	2.199 🖓	3.97	5.00	-	-	-	

AF: Assessment factor, PEC; Predictor environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of are highlighted in **bold** 

¹ Based on a Step PEC_{SED} of 909.603 μ@a.s./kg ² Based on Step PEC_{SED} of 64.968 μg a.s./kg for NEU and 80.775 μg a.s./kg for SEU

For the acute fish acute nivertebrate, aquatic macrophyte and sediment-dweller risk assessments, the PEC/RA@ratio@rate are store store and store and store and store are store are store and store are store ar acceptable rise to these openism groups from exposure to spiroxamine following application of Spiroxamine EC 500 to grapes at 1 x 200 g a.s./ha (early and late applications).

For the coronic invertebrate risk assessment an acceptable risk could be demonstrated using FOCUS Step 2  $\mathbb{QEC}_{sw}$  values only for early application to grapes at 1 x 200 g a.s./ha.

For the chronic fish and algal risk assessments, as well as those organisms covered by the mesocosm study, some FOCUS scenarios passed the risk assessment when Step 3 PEC_{sw} values were used but



several scenarios for these groups require refinement of the risk assessment. For the chronic invertebrate risk assessment for late applications to grapes at 1 x 200 g a.s./ha, all but one scenario passed the risk assessment using Step 3 PEC_{sw} values therefore refinement is also required here. Refined risk assessments using FOCUS Step 4 PEC_{sw} values are presented later in this section.

## <u>2 x 200 g a.s./ha</u>

Table CP 10.2-5 Aquatic organisms: acceptability of risk (PCC/RAC <1) for spiroxamine for each aquatic group based on FOCUS Steps 1 - 3 calculations for application of Spiroxamine EC 500 to vines 2 x 200 g a.s./ha; early application)

Fish acute	Fish chronic	hyertebeate acute	Invertebrate
Danio rerio	Danio reria	Daphnia magna 🖇	Daphnia magna
LC ₅₀	EC ₁₀	EQ0	NOEC A A
2410	1.88		
100		100 0 8	10_0
24.1	100	34 (O) Ne	304 . V
		AC datios	
1.30	166 5 4 5	1.04 2 5	9.20
10.10 <b>2</b> 8 3	13.3	20.0831	0.734
0,178 4 4	22.8 × × ×	0.143 🔬	1.26
ŶŶŴŴ			
- 2 2 0	17.8 0	- ~	0.984
	<b>∂</b> , <b>9</b> 36 , O [×] [≪]		0.0518
			0.719
-2 5 8	175 5 5	-	0.969
	¥8.7 🔊 🗞	-	1.03
-6 3 8	134	-	0.722
	Danio rerio LC ₅₀ 2410 100 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1	Danio rerio     Danio rerio       LC ₅₀ EC ₁₀ 2410     1.88       100     10       24.1     0.188       0.10%     166       0.10%     13.3       0.10%     17.8       0.10%     17.8	Danio rerio       Danio rerio       Daphuia magna         LC 50       EC 10       E Co         2410       1.88       3000         100       10       10         24.1       0.188       30         0.103       166       1.04         0.103       13.3       0.0831         0.103       13.3       0.143         0.103       13.3       0.143         0.103       13.3       0.143         0.103       13.3       0.143         0.103       13.3       0.143         0.104       13.0       -         0.105       17.5       -

AF: Assessment factor, PEC: Predicted environmental Concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratio abov (the trigger of are highlighted in **bold** 

Table CP 10.2-50 continued) Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine for each aquatic group based on FOCUS Steps 1 - 3 calculations for application of Spiroxamine EC 500 to vines (2 x 2005 g a.s./ha; early application)

Group		Algae (Marine)	Mesocosm	Aquatic macrophyte s	Sediment dwo	eller
Test species	Scenedesmu s subspicatus	Skeletonema costatum	Algae and invertebrate s	Lemna gibba	Chironomus riparius	Lumbriculus variegatus
Endpoint	ErC ₅₀	ErC ₅₀	NOEC	EC ₅₀	NOEC	EC ₁₀



### Page 215 of 567 2021-03-31 Document MCP - Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

1		1				1	
(µg a.s./L)		12.0	6.3	1.0	1910	5600	7120 µg/kg
AF		10 10 2 10 10 10 [°]					
RAC (µg a.	.s./L)	1.2	0.63	0.5	191	560	712
FOCUS Scenario	PEC sw- max (µg a.s./L)		2 0.63 0.5 191 560 712 57 PEC/RAC ratios				
Step 1	31.276	26.1	49.6	62.6 Č	0.164	0.0559	
Step 2				al a	. ⁶ 8		
NEU	2.494	2.08	3.96	4.99	- \$ ~~	- 4	0.13¢
SEU	4.284	3.57	6.80	8057			0.234 ²
Step 3			N			,	
D6 Ditch	3.346	2.79	5.31	6.69	- 2 5	- <u>6</u> 6	- @ ~ ~ ~
R1 Pond	0.176	0.147	0.279	0.352			
R1 Stream	2.446	2.04	0.279¢	4.89	- % %	- 2 5	-
R2 Stream	3.294	2.75	5.23	6.59			×,
R3 Stream	3.508	2.92	5.5% 0			- ~ ~	. –
R4 Stream	2.455	2.05	3.90	4.91	-4 2	-@	-

AF: Assessment factor; PEC Predicted environmental concentration; RAC Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are orghlighted in **bold** ¹ Based on a Step 1 PEC pb of 909.603 µg a.s./kg ² Based on Step 2 PEC pb of 93.626 µg a.s./kg for NEV and 166.878 µg a.s./kg for SEU Table CP 10.2-6 Aquatic organisms: acceptability of risk (PEC/RAC 1) for spiroxamine for each aquatic group based on OCUS Steps 1 - 3 calculations for application of Spiroxamine EC 500 to vines (2 x 200 g a.s./ha; late application)

Group	Eish acuite	Fish chronic	Invertebrate acute	Invertebrate chronic
Test species	Danio rerio 🖓 🐴	Danjo terio 🔿	Daphnia magna	Daphnia magna
Endpoint		ESC 20 27	EC ₅₀	NOEC
(µg a.s./L) ~	2410	N.88 X ~	3000	34
AF	100 2 4		100	10
RAC (µg a.s./L)	241		30	3.4
FOCUS Scenario PEC sw- max (ug a.s.(L)		PEC/RA	AC ratios	
Step 1	1.30	166	1.04	9.20
Step 2				
NEU 5035	0.238	30.5	0.191	1.69
SEQ 5.735	0.238	30.5	0.191	1.69
Step 3				
D6 Ditch 3.531	-	18.8	-	1.04



R1 Pond	0.181	-	0.963	-	0.0532	
R1 Stream	2.503	-	13.3	-	0.736	ð
R2 Stream	3.355	-	17.8	-		<i>S</i>
R3 Stream	3.528	-	18.8	- 47	1.04	
R4 Stream	2.502	-	13.3	- <u>A</u>	0.736	Ô

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** 

 Table CP 10.2-6 (continued)
 Aquatic organisms: acceptability of fisk (PEC/RAC<1) for spirovamine for each aquatic group based on FOCUS Steps 1 - 3 calculations for application of spirovamine EC 500 to vines (2 x 200 g a.s./ha; late application)</td>

Group	Algae (Freshwater )	Algae (Marine)	Mesocosp	macrophyte	Sediment dwo	eller , , , , , , , , , , , , , , , , , , ,	
Test species	Scenedesmu s subspicatus	Skeletonetna costatum	Algae and Algae	Lemna gibba	Chironomus riperius	Lumbriculus variegatus	
Endpoint	$E_rC_{50}$	ErC50	NOE	BEC soul a		$EC_{10}$	
(µg a.s./L)	12.0	6.37	1.0°	1900	5600 0	7120 µg/kg	
AF	10 00 0		p ^y o	10		10	
RAC (µg a.s./L)	1.2 ~	0.63	0.50 ⁹ 5 ⁹	191 🗸	560	712	
<i>a n</i>	FOCUS $\max_{\max} (\mu g)$ $\lim_{\infty} (\mu$						
Step 1 31, 976	26.1	<b>6</b> 9.6	\$2.6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.364	0.0559	<b>1.28</b> ¹	
Step 2			¥ 10° ₀ ,				
NEU 5.735	4,98	9.50	128 5	- 0	-	0.164 ²	
SEU 5.735	A ~ ~ . /	9.10 0	jî1.5 🍇 🛛		-	0.205 ²	
Step 3	A						
D6 Ditch 3.531		5.60 0	7 <b>.0</b> 6 [©]	-	-	-	
R1 Pond 0.181	0.150	0.280	0.362	-	-	-	
R1 Stream 2.503	2.99 Q	3.97	5.01	-	-	-	
R2 Stream 3.355 🐇	2.80	5.33	6.71	-	-	-	
R3 Stream 3.528	2.94	5.60	7.06	-	-	-	
	<b>2</b> .09	3.97	5.00	-	-	-	

AF: Assessment factor; PE© Predicted environmental concentration; RAC: Regulatory acceptable concentration; PE©/RAC ratios above the trigger of 1 are highlighted in **bold** 

¹ Based on a Step 1 PEC sed of 99.603 µg a.s./kg

² Base on Stop 2 PEC of 16.712 µg a.s./kg for NEU and 146.012 µg a.s./kg for SEU

For the acide fish, acute invertebrate, aquatic macrophyte and sediment-dweller risk assessments, the PEC/RAC ratios are <1 using FOCUS Step 1 or Step 2 PEC_{sw} values thereby demonstrating an acceptable risk to these organism groups from exposure to spiroxamine following application of Spiroxamine EC 500 to grapes at 2 x 200 g a.s./ha (early and late applications).



For the chronic fish, chronic invertebrate and algal risk assessments, as well as those organisms covered by the mesocosm study, some FOCUS scenarios passed the risk assessment when Step 3 PEC_{sw} values were used but several scenarios for these groups require refinement of the risk assessment. Refine risk assessments using FOCUS Step 4 PEC_{sw} values are presented later in this section.

## <u>1 x 300 g a.s./ha</u>

Table CP 10.2-7 Aquatic organisms: acceptability of risk (PCC/RAC <1) for spiroxamine for each aquatic group based on FOCUS Steps 1 - 3 calculations for application of Spiroxamine EC 500 to vines 1 x 300 g a.s./ha; early application)

<i>,</i>	y appricat	,	"Q ^v	S C	
Group		Fish acute	Fish chronic	hyertebeate acúte	Invertebrate
Test specie	s	Danio rerio	Danio rerio 🖉	Daphnia magna 🖉	Daphnia magna
Endpoint		LC ₅₀		EQ0	NOEC A A
(µg a.s./L)		2410	1.88	EQ. 3000 4 5	\$4 ₁ 5
AF		100			10
RAC (µg a.	s./L)	24.1	100	9000 4 7 7 7 100 2 2 30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
FOCUS Scenario	PEC sw- max (µg a.s./L)		PECARA	1.56 ² 2 2	S S S S S S S S S S S S S S S S S S S
Step 1	46.914	1.95			13.8
Step 2					
NEU	2.699	0.112	14.4 · 🔊	KU 0900	0.794
SEU	3.484	Q 145 4 (k.	18.5 L ~	0.148	1.02
Step 3	l of i			õ v	
D6 Ditch	3.021		26.70 0 0 De 268 5 0 2	- 2	1.48
R1 Pond	0.182		0.968 . O V		0.0535
R1 Stream	3.670			-	1.08
R1 Stream R2 Stream	4.942	-Q ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	26.3 5 5	-	1.45
R3 Stream	5.Q63		28.0	-	1.55
R4 Stream	3.683		19.6 ⁹ . L	-	1.08

AF: Assessment factor, PEC: Predicted environmentation oncentration; RAC: Regulatory acceptable concentration; PEC/RAC ratio abov (the trigger of are highlighted in **bold** 

Table CP 10.2-7@continued) Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine for each aquatic group based on FOOUS Steps 1 - 3 calculations for application of Spiroxamine EC 500 to vines (1 x 300 g a.s./ha; early application)

Group	Algae Freshwater	Algae (Marine)	Mesocosm	Aquatic macrophyte s	Sediment dwo	eller
Test sheries	Scenedesmu s subspicatus	Skeletonema costatum	Algae and invertebrate s	Lemna gibba	Chironomus riparius	Lumbriculus variegatus
Endpoint	ErC ₅₀	ErC ₅₀	NOEC	EC ₅₀	NOEC	EC ₁₀



## Page 218 of 567 2021-03-31 Document MCP - Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

1							
(µg a.s./L)		12.0	6.3	1.0	1910	5600	7120 µg/kg
AF		10 10 2 10 10 10					
RAC (µg a.	s./L)	1.2	0.63	0.5	191	560	712 57 67 57 57 7 57 57 7
FOCUS Scenario	PEC sw- max (µg a.s./L)		PEC/RAC ratios				
Step 1	46.914	39.1	74.5	93.8 🖉	0.246	0.0838	
Step 2				L,	. ⁶ 8		
NEU	2.699	2.25	4.28	5.40	- \$ ~~	- 2 2	0.10 <b>C</b>
SEU	3.484	2.90	5.53	697		-~~~~	Q.990 ²
Step 3			S				
D6 Ditch	5.021	4.18	7.97	1.00	- 2 5	- <u>6</u> 6	- 2 4°
R1 Pond	0.182	0.152	0.289	0.364			
R1 Stream	3.670	3.06	0.289¢	7.34	- 🗶 🖉	- 2 5	
R2 Stream	4.942	4.12	7.84	9.88			
R3 Stream	5.263	4.39	8.35 0			r- ~~ ~	-
R4 Stream	3.683	3.07	5.85	7.37	-4 2	- & 0'	-

AF: Assessment factor; PEC. Predicted environmental concentration; RAC, Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are dighlighted in **bold** ¹ Based on a Step 1 PEC to of 1360 µg a.s./kg ² Based on Step 2 PEC to of 76.097 ng a.s./kg/tor NEV and 135.374 µg a.s./kg for SEU Table CP 10.2-8Aguatic organisms: acceptability of risk (PEC/RAC 4) for spiroxamine for each aquatic group based on POCUS Steps 1 - 3 calculations for application of spiroxamine EC 500 to vines (1 x 300 g a.s./ha; late application)

Group	Eish acute	Fish chronic	Incertebrate acute	Invertebrate chronic
Test species	anio rerio 👾 🛛 🔊	Danjo terio 🔿	Daphnia magna	Daphnia magna
Endpoint Q		ESC 20 27	EC ₅₀	NOEC
(µg a.s./L) ~	02410	N.88 X ~	3000	34
AF A	100 2 4		100	10
RAC (µg a.s./L)	241 8	<b>A</b> 188 ,	30	3.4
FOCUS Scenario PEC sw. max (ug a.sg E)		PEC/RA	AC ratios	
Step 1	1.95	250	1.56	13.8
Step 2				
NEU 8028	0.333	42.7	0.268	2.36
SEC 8.028	0.3 \$	42.7	0.268	2.36
Step 3				
D6 Ditch 5.120	-	27.2	-	1.51



R1 Pond	0.183	-	0.973	-	0.0538	
R1 Stream	3.755	-	20.0	-	1.10	ð
R2 Stream	5.034	-	26.8	-	1.40	<i>S</i>
R3 Stream	5.294	-	28.2	- 4	1.56	
R4 Stream	3.754	-	20.0	- <u>A</u>	1.10 8 8	Ô

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** 

Aquatic organisms: a@eptability of fisk (PEC/RAO<1) for spirosamine Table CP 10.2-8 (continued) for each aquatic group based on FOCUS Steps 1 - 3 calculations for application of piroxamine EC 500 to vines (1 x 300 g a.s./ha; late application)

Group	Algae (Freshwater )	Algae (Marine)	Mesocosp	macrophyte	Sediment dwo	eller A f
Test species	Scenedesmu s subspicatus	Skeletoneind costatum	Algae/and.	Lemna gibba	Chironomus riperius	Lumbviculus varjegatus
Endpoint	$E_rC_{50}$	E _r C ₅ 02	NOE	BEC soul S		EC10
(µg a.s./L)	12.0	6.37	1.00	1900	5600 0	7120 µg/kg
AF	10 &	Yo S	p ^y o	10		10
RAC (µg a.s./L)	1.2 ~	0.63	0.50 [°] 5 [°]	191 🕺	560	712
FOCUS $\max_{\max} (\mu g \mathcal{A} + \mathcal{A}$						
Step 1 46.94	<b>1</b> .1	<b>A.</b> 5 6	93.8	0.346	0.0838	<b>1.91</b> ¹
Step 2	Y N L	A D	× °° .			
NEU 8.028	669 5	1257	169° 🔊	. ~	-	0.137 ²
SEU 8.028	<b>8</b> .69 2	H2.7 0 4		<u>s</u> y	-	0.170 ²
Step 3	A					
D6 Ditch 5, 120		8.13 0	19.2	-	-	-
R1 Pond 0.183	0.159	0.290	0.360	-	-	-
R1 Stream 3.755	3.93 Q	5.96	7.51	-	-	-
R2 Star 5.034 🔬	4.20	7.99	¥0.1	-	-	-
R3 Stream 5.294	4.41 ^O	8.40	10.6	-	-	-
R4 Stream 3584	<b>3</b> .13	5.96	7.51	-	-	-

AF: Assessment factor; PEO Predicted envolumental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** 

¹ Based on a Step 1 PEC_{SED} of \$60 μg a.s./kg ² Based on Step 2 PEC_{SED} of 97.452 μg a.s./kg for NEU and 121.163 μg a.s./kg for SEU

For the agate fish, acute invertebrate, aquatic macrophyte and sediment-dweller risk assessments, the PEC/RAC ratios are <1 using FOCUS Step 1 or Step 2 PEC_{sw} values thereby demonstrating an acceptable risk to these organism groups from exposure to spiroxamine following application of Spiroxamine EC 500 to grapes at 1 x 300 g a.s./ha (early and late applications).



For the chronic fish, chronic invertebrate and algal risk assessments, as well as those organisms covered by the mesocosm study, a small number of FOCUS scenarios passed the risk assessment when Step³ PEC_{sw} values were used but the majority of FOCUS scenarios for these groups require refinement of the risk assessment. Refined risk assessments using FOCUS Step 4 PEC_{sw} values are presented later in this section.

## <u>2 x 300 g a.s./ha</u>

Table CP 10.2-9 Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine for each aquatic group based on FOCUS Steps 1 - 3 calculations for appleation of Spiroxamine EC 500 to vines (2 x 300 g & a.s./ha; early application)

Group		Fish acute		Invertebrate acute	Invertebrate Chronic
Test species	<b>S</b>	Danio rerio	Danio reme	Daghnia magna	Daphnia magna 🗸 °
Endpoint		LC ₅₀	EC 10 - 7 - 7 1,88,7 - 7 10 - 7 - 7 10 - 7 - 7	BC 50 C	DapHnia magna 5° NOEC 55 34 55
(µg a.s./L)		LC ₅₀ 2410	1.88 2 2	3000 5	34 <i>S</i> Õ
AF		100	$\frac{1.88}{10}$		34 5 0 145 4
RAC (µg a.	s./L)	24.1	0.188		3.4
FOCUS Scenario	PEC sw- max (µg a.s./L)		250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 20	Darfhnia magna 5C ₅₀ 3000 20 20 20 20 20 20 20 20 20	S.
Step 1	46.914	1495 🔊 🖉	250 25 20	1.56	13.8
Step 2			y X _X	7.	
NEU	3.741	0.155 2		0.128	1.10
SEU	6.25	0.267 0	34.2 🔊 🖒	0.214	1.89
	Q. "C			, Ø	
D6 Ditch	5.021		26.7 5	<u>-</u> 0	1.48
R1 Pond	0.265 🛒		9.41 🗸 🖉	37	0.0779
R1 Stream	3.670	- A & Z	19:5	-	1.08
R2 Stream	4.842		26.3	-	1.45
R3 Stream	~		28.00	-	1.55
R4 Stream	3.683		1986 - ³	-	1.08

AF: Assessment factor, PEC Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** 

Table CP 10.2-9 (continued) Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine for each aquatic group based on FOCUS teps 1 - 3 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a s/ha; early application)

Group	Algae (Freshwater )	Algae (Marine)	Mesocosm	Aquatic macrophyte s	Sediment dwo	eller
ر Test species	Scenedesmu s subspicatus	Skeletonema costatum	Algae and invertebrate s	Lemna gibba	Chironomus riparius	Lumbriculus variegatus



				•		•	<u>.                                    </u>
Endpoint		$E_r C_{50}$	$E_r C_{50}$	NOEC	EC ₅₀	NOEC	EC ₁₀
(µg a.s./L)		12.0	6.3	1.0	1910	5600	7120 μg/ g 🕺 🐊
AF		10 10 2 10 10 10					
RAC (µg a	.s./L)	1.2	0.63	0.5	191	560	712
FOCUS Scenario	PEC sw- max (µg a.s./L)			PEC/RA	AC ratios		
Step 1	46.914	39.1	74.5	93.8	0.246	0.0838	
Step 2				A	Q e	A L	× c , e
NEU	3.741	3.12	5.94	<b>2</b> 48		- ~ ~ ~	Q.997 ²
SEU	6.425	5.35	10.2	12.9	- <u> </u>	- 5	0.352 ²
Step 3			A				
D6 Ditch	5.021	4.18	7.97	10.0			
R1 Pond	0.265	0.221	0.421	0.530	- 🗶 🖉	- 2 5	
R1 Stream	3.670	3.06	5.83	7.34		0 5	L.
R2 Stream	4.942	4.12	7. <b>84</b> 0	9.88	P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- ~ &	-
R3 Stream	5.263	4.39	8.35	10.5	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 6 0	-
R4 Stream	3.683	3.07	5.85	7.37			-

AF: Assessment factor; PEC: Predicted environmental concentration; PAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold** ¹ Based on a Step 1 PEC sed of 1360 og a.s./Ag ² Based on Step 2 PEC sed of 140.459 µg a.s./kg for NEU and 250.316 µg ys./kg for SEU Table CP 10.200 Aquatic organisms: acceptability of risk (PEC/BAC <1) for spiroxamine for each aquatic group based on FOCUS Steps 1 -3 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a.s./ha; late application)

Group	Fish ácute	Fish chronic 4	Anvertebrate acute	Invertebrate chronic
Test species	Donio refio or	Danio rente	Daphnia magna	Daphnia magna
Endpoint 🔊 🤇	LC ₅₀	$\Sigma C_{10} \gg \infty$	EC ₅₀	NOEC
(µg a.s./L)	2410 5	1.88	3000	34
AF 🦉 🦼	J200 4 × ~		100	10
RAG(µg a.s./L)	24.1 9 × Q	0.188	30	3.4
FOCUS Scenario PEQui- mo (µg S./L),		PEC/RA	AC ratios	
Step 1 46.9	1.95	250	1.56	13.8
Sten 2				
NEO \$8.602	0.3\$7	45.8	0.287	2.53
SEU © 8.602	0.357	45.8	0.287	2.53
Step 3				



D6 Ditch	5.309	-	28.2	-		1.56
R1 Pond	0.272	-	1.45	-		0.0800
R1 Stream	3.755	-	20.0	-	~	1.10
R2 Stream	5.034	-	26.8	-		1.48
R3 Stream	5.294	-	28.2	-	A	1.56 \$ \$
R4 Stream	3.754	-	20.0	<u>&amp;</u> -	Å.	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in bard

Aquatic organisms acceptability of risk PEC/RAC <10 for spiroxamine Table CP 10.2-10 (continued) for each aquatic group based on FOCUS Steps 1 - 3 calculations for apprication of Spiroxamine EC 500 to vines (2 x 300 g a.s./ha; late application)  $\sqrt{1}$ Ŝ

		0				
Group	Algae (Freshwater )	Algae		Aquatic macrophyte		eller (*
Test species	Scenedesmu s subspicatus	Skeletonema costatum	Algae and invertebrate s	Lemna Sibba	Chironomus Siparius	Lumbriculus Mariegatus
Endpoint	ErC ₅₀	ErC50	NOEC 4	ECC0 (1910	NOEC O	$EC_{10}$
(µg a.s./L)	12.0		ĝ.0 Ø	1910	5600	7120 µg/kg
AF	10 2	10	2 67 59	106	10	10
RAC (µg a.s./L)	\$.2 F	Q:63		199 0	560	712
FOCUS Scenario			PEC/RA	A A	7)	
Step 1 546.914	39.1	74.5	93.8 P	0.246	0.0838	<b>1.91</b> ¹
Step 2	N S		Star 19	1 North Contraction of the second sec		
NEU 8.602	7.17		<b>)</b> 7.2 🌜 🛛		-	0.246 ²
SEU 8.602	7.14	13 2 . 4	17.2 V O V	-	-	0.308 ²
Step 3						
D6 Ditch 5.309	4.420	8.43	10.6	-	-	-
R1 Pond 0.272	Q.227 Q	0.432	0,544	-	-	-
R1 Staam 3.755 🗶	3.13	5.96	7.51	-	-	-
R2 Stream 5.034	4.20	7.99	10.1	-	-	-
R3 Stream 5394	4.41	8.40	10.6	-	-	-
R4 Stream S.754	3.120 ×	5.96	7.51	-	-	-

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable

concentration: OEC/RAC ratios above the trigger of 1 are highlighted in **bold**¹ Based on a step 1 PEC_{SED} of 1360 μg a.s./kg
² Based on Step 2 PEC_{SED} of 175.067 μg a.s./kg for NEU and 219.018 μg a.s./kg for SEU

For the acute fish, acute invertebrate, aquatic macrophyte and sediment-dweller risk assessments, the PEC/RAC ratios are <1 using FOCUS Step 1 or Step 2 PEC_{sw} values thereby demonstrating an



acceptable risk to these organism groups from exposure to spiroxamine following application of Spiroxamine EC 500 to grapes at 2 x 300 g a.s./ha (early and late applications).

For the chronic fish, chronic invertebrate and algal risk assessments, as well as those organisms covered by the mesocosm study, a small number of FOCUS scenarios passed the risk assessment when Step 3 PEC_{sw} values were used but the majority of FOCUS scenarios for these groups require refinement of the risk assessment. Refined risk assessments using FOCUS Step 4 PEC_{sw} values are presented below

## Refined risk assessment using Step 4 PEC_{sw} values

For each of the proposed uses of Spiroxamine EC 500, refined risk essessments for those organism groups that did not pass the risk assessment using Step 3 PEC_{sw} values for all of the relevant EOCUS scenarios have been presented below. The exposure estimates have been refined by use of Step 4 PEC values considering mitigation measures in the form of either *i*): a 20 m po-spray buffer zone with a 20 m vegetated filter strip or *ii*): a 25 m no-spray buffer zone with a 20 m vegetated filter strip.

Table CP 10.2-11	Aquatic organisms:	acceptatili	ty of¢isk (P	20C/RA <<1)	for spires	mine based
on FOCUS Step 4 c	alculations for application	n of Spirox	amine EC 5	60 to vines (14	🔉 200 g a.s.	/has early 🖉
application)	L.		S, D		پ	

· · · ·				<u>y v s</u> i
Group	Fish chronic	Agae (Freshwater)	Algae (Marine)	Mesocosm
Test species	Fish chronic       Danio rerio	Scenedesmus subspicatus	Algae (Maĉine) Skeletonema costatym	Algae and invertebrates
Endpoint	EC ₁₀	E ₆ C ₅₀	$\begin{array}{c} costatym \\ E_{p}C_{30} \\ \hline 6.3 \\ \hline \end{array} $	NODC
(µg a.s./L)		912.0 °	6.3	(ÊRO
AF		10 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	106	2
RAC (µg a.s./L)	W.188 .0	\$2 \$ \$	0.63	0.5
FOCUS Scenario			AC ratios 25	
Step 4 (20 monsbz and	120 m vfs)			
D6 Ditch 0.257	1 20 m vfs) 2 A	0.214 5 ⁴ 2 ⁴	0.498	0.514
R1 Pond 0.049				-
R1 Stream 0.232	1.23, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	0,193	0.368	0.464
R2 Stream 0.42	1.23, 5 5 9.66 C 5	0.260	0.495	0.624
R3 Stream 0.330	1.76° 0′ 4	0.275	0.524	0.660
R4 Stream 0.234	1,24 0	0\$\$95 ~~~	0.371	0.468
Step 4 (25 m nsbz ark	20 m (Ts) 0			
D6 Ditch 0.182 \		- 4	-	-
R1 Pond 0,041			-	-
R1 Stream 0.167 R2 Stream 0.225 R3 Stream 0.228	1.19	-	-	-
R2 Stream 0.225		-	-	-
R3 Stream @238	<b>1.27</b> 0.894	-	-	-
R4 Stream 0.168	0.894	-	-	-

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; nsbz: no spray buffer zone; vfs: vegetated filter strip; - not required as risk assessment already passes



 $\sim$ 

Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine based Table CP 10.2-12 on FOCUS Step 4 calculations for application of Spiroxamine EC 500 to vines (1 x 200 g a.s./ha; late ू*©*° annlication)

application	)					
Group		Fish chronic	Invertebrate chronic	Algae (Freshwater)	Algae (Marine)	A 10
Test specie	S	Danio rerio	Daphnia magna	Scenedesmus subspicatus	Skeletonema costarum	Algae and invertebeates
Endpoint		EC ₁₀	NOEC	Ereso	EC 50 E	NOEC O
(µg a.s./L)		1.88	34	42.0 Ô	6.3	
AF		10	10	10 🖓	10,° , ~	<u> </u>
RAC (µg a	.s./L)	0.188	3.4	1.2	0.63	
FOCUS Scenario	PEC sw- max (µg a.s./L)			PEG RAC otios		
Step 4 (20 i	n nsbz and	20 m vfs)				
D6 Ditch	0.310	1.65		0.258	5 0° 40 5 5 6 492 5 5	0.620
R1 Pond	0.049	- %	- & &			- *
R1 Stream	0.239	1.27		0.199	0,379	0.478
R2 Stream	0.318	1.69	- 5 0	0.265	Ø.505~ Ø	0.636
R3 Stream	0.331	1.76	- 5 64 0.0974 5 6	0.276	0.525 2	0.662
R4 Stream	0.239	1.27 ° ×	- 0, 5	0,199 0	0/379	0.478
Step 4 (25 1	n nsbz and	20 m vfs)				
D6 Ditch	0.24	1.29 ~ 4			-0	-
R1 Pond	0.041		- , , , , , , , , , , , , , , , , , , ,			-
R1 Stream	0.172	0.945	E C		-	-
R2 Stream	0.229	9.22 · · · · · · · · · · · · · · · · · ·	- \$		-	-
R3 Stream	0.238	1.27			-	-
R4 Stream	0.172	8915 5		- 8	-	-

AF: Assessment factor, PEC Predicted environmental concentration; RAC: Regulatory acceptable

AF: Assessment factor, PEC Predicted environmental conceptration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the thigget of 1 are highlighted in **bold**; nsbz: no spray buffer zone; vfs: vegetated filter strip; - not required as risk assessment already passes Table CP 10.2-13 Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine based on FOCUS Step 4 calculations for application of Spiroxamine EC 500 to vines (2 x 200 g a.s./ha; early application) 90

	Fishchronic	Invertebrate chronic	Algae (Freshwater)	Algae (Marine)	Mesocosm
Test species	Danie Ferio	Daphnia magna	Scenedesmus subspicatus	Skeletonema costatum	Algae and invertebrates
Endpoint	EC ₁₀	NOEC	ErC ₅₀	ErC ₅₀	NOEC
(μg a.sJL)	1.88	34	12.0	6.3	1.0
AF	10	10	10	10	2



## Page 225 of 567 2021-03-31 Document MCP – Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

[			1	1	T	1 1
RAC (µg a.	.s./L)	0.188	3.4	1.2	0.63	0.5
FOCUS Scenario	PEC sw- max (µg a.s./L)			PEC/RAC ratios	ð	
Step 4 (20 1	n nsbz and	20 m vfs)			- A	
D6 Ditch	0.257	1.37	-	0.214	0.40	
R1 Pond	0.074	-	-	- 0	d i	
R1 Stream	0.232	1.23	-		9.368	0.464
R2 Stream	0.312	1.66	- 4	0.260 Q	0,495	0.624
R3 Stream	0.330	1.76	0.0971	0.275	9.524	
R4 Stream	0.255	1.36		0.213	0.405	0.510
Step 4 (25 1	n nsbz and	20 m vfs)				
D6 Ditch	0.198	1.05	- 2, 2			
R1 Pond	0.062	-				
R1 Stream	0.167	0.888	- ~ ~			- 2
R2 Stream	0.223	1.19				×
R3 Stream	0.238	1.27 🗸 🔬	- 23 -	- ~ ~		P <u>-</u>
R4 Stream	0.255	1.36	- 6 6			-

AF: Assessment factor; PEC: Predicted environmental oncentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above be trigger of 1 are highlighted in **bold** risbz: to spray buffer zone; vfs: vegetated filter strip: not required a risk assessment already passes Table CP 10.2-16 Aquatic organisms: acceptability of risk (REC/RAC <1) for spiroxamine based

Table CP 10.2-16 Aquatic organisms: acceptability of risk (SEC/RAC <1) for spiroxamine based on FOCUS Step 4 calculation for application of Spiroxamine EC 500 to vines (2 x 200 g a.s./ha; late application)

Group		Invertebrate chronic	(Freshwater)	Algae (Marine)	Mesocosm
Test species	Danjo rena	Paphniamagna	Scenedesmus subspicatus	Skeletonema costatum	Algae and invertebrates
Endpoint 🔊 🤇	EC100	NOEC A	€ _F C ₅₀	$E_r C_{50}$	NOEC
(μg a.s./L)	EC ₁₈		12.0	6.3	1.0
AF 🦓			10	10	2
RAG(µg a.s./L)	0.188	3.	1.2	0.63	0.5
FOCUS Scenario			PEC/RAC ratios		
Step 4 (20 m nsb and	20 m vfs	v			
D6 Ditch 0018	Jr.69 🗸	0.0935	0.265	0.505	0.636
R&Pond 0.075	- 3	-	-	-	-
R1 Stream 0.239	1.27	-	0.199	0.379	0.478
R2 Stream 0.318	1.69	-	0.265	0.505	0.636



R3 Stream	0.331	1.76	0.0974	0.276	0.525	0.662
R4 Stream	0.239	1.27	-	0.199	0.379	0.478
Step 4 (25 1	n nsbz an	d 20 m vfs)	·			
D6 Ditch	0.250	1.33	-	-	- 4	- 4
R1 Pond	0.063	-	-	-	4	- 67 67 67
R1 Stream	0.172	0.915	-	- &	-~	
R2 Stream	0.229	1.22	-	- 🐨	<i>R</i>	<u></u> - <u></u>
R3 Stream	0.238	1.27	-	J.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
R4 Stream	0.230	1.22	- 4	- ~		<u> </u>

AF: Assessment factor; PEC: Predicted environmental concentration; RAC Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are fighlighted in bold; nsoz: no spray buffer zone; vfs: vegetated filter strip; - not required as risk assessment abready passes

Table CP 10.2-15	Aquatic organis	s: accept	ability of ri	sk (PEGA	ŔĂÇ [°] ҈∛Ĭ)	forspiroxa	nine based
on FOCUS Step 4 calcu	lations for applica	tion of Spi	iroxamine)	ÉC 509/to	vines (1	x 300 g a s://	ha; early
application)	4.	and the second s	y w			Î S	, Q

application		, 10, 14		<u>ð 8 .</u>	_ <del>\</del> \`
Group	Fish chronge	Invertebrate chronic	Algae 🔿 🏑	Algae (Macine)	Mesocosm
Test species	Danio rerio	Daphnia magna		Skeletoriema costatum	Algae and invertebrates
Endpoint	EG10	PNOECO S	Er <b>Ç</b> 50 [°] ^(k)	ErC ₅₀	NOEC
(µg a.s./L)	Q1.88	34 5	13.0	8.3	1.0
AF Č	5 10 × ×	10 ~	10 5 0	100	2
RAC (µg a.s./b)	0.188 O C	3.4 🖉 🖉		0.63	0.5
FOCUS Scenaries a.s./L)					
Step 4 (20 m nsbz	and 20 m vfs)	113° ×			
D6 Ditch 0.385	and 20 m vfs) 5 2.05 1.86 7/18		0.320	0.611	0.770
R1 Pond 0074			ð	-	-
R1 Stream 0.349		Ø7103	0.291	0.554	0.698
R2 Stream 0.467	2.48	0.137 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.389	0.741	0.934
R3 Stream 0.496	2.64		0.413	0.787	0.992
R4 Stream 0.350	1.87	Ø.103	0.293	0.557	0.702
Step 4 (25 m usbz	ang/20 masss)				
D6 Ditch 0.274	× 1.45 5	-	-	-	-
R1 Pord 0.002		-	-	-	-
R1 Stream (0.251	1.34	-	-	-	-
R2 Stream 0.335	1.78	-	-	-	-
R3 Stream 0.357	1.90	-	-	-	-
R4 Stream 0.253	1.35	-	-	-	-



AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; nsbz: no spray buffer zone; vfs vegetated filter strip; - not required as risk assessment already passes

Table CP 10.2-16	Aquatic organisms: acceptability of risk (PEC/ lculations for application of Spiroxamine EC 500 to	RAC <1) f@yspire	oxamine based	~
on FOCUS Step 4 ca	lculations for application of Spiroxamine EC 500 to	o vines (1 🔊 300 g a	a.s./ha;¶ate 🦽	U'
application)		"O"		

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · ·				1			
Res speces       Damo Terro       Deprint maging subspicatus & costatum & invertebrates &         Endpoint       EC10       NOEC       E,C50       EC50       NOBC         (µg a.s./L)       1.88       34       32.0       6.3       1.0         RAC (µg a.s./L)       0.188       3.4       32.0       6.3       0.5         FOCUS Scenario       PEC sw. max (µg a.s./L)       0.188       3.4       92.0       96.63       0.5         Step 4 (20 m nsbz and 20 m vfs)       PEC sw. max (µg a.s./L)       PEC sw.       9.63       0.5       9.63         Step 4 (20 m nsbz and 20 m vfs)       PEC sw.       PEC sw.       9.63       0.5       9.63         R1 Pond       0.074       -       -       -       -       -         R1 Stream       0.358       K90       0.105       0.298       0.568       0.716         R2 Stream       0.476       0.44       0.998       0.759       0.956         R3 Stream       0.496       2.64       0.145       0.298       0.568       0.716         Step 4 (25 monsbz and 20 m vfs)       -       -       -       -       -       -         D6 Diteh       0.364       1.94       -       -	Group	Fish chronic				Mesocosm		
AF       10       10       10       10       10       10       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       <th2< th="">       2       2       <th2< th="" th<=""><th>Test species</th><th>Danio rerio</th><th>1</th><th>Scenedesmus Ö Subspicatus O</th><th>costatum 🖉</th><th>Algae and invertebrates</th></th2<></th2<></th2<>	Test species	Danio rerio	1	Scenedesmus Ö Subspicatus O	costatum 🖉	Algae and invertebrates		
AF       10       10       10       10       10       10       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       <th2< th="">       2       2       <th2< td="" th<=""><td>Endpoint</td><td>$EC_{10}$</td><td>NOEC</td><td>ErC50</td><td>CAC 50 C</td><td>NOBO</td></th2<></th2<></th2<>	Endpoint	$EC_{10}$	NOEC	ErC50	CAC 50 C	NOBO		
RAC (µg a.S./L)       0.188       0.188       0.1       0.1       0.1       0.1         FOCUS Scenario       PEC sw. max (µg a.S./L)       PEC RAC (atios)       0.1       0.1       0.1         Step 4 (20 m nsbz and 20 m vfs)       0.136       0.388       0.740       0.932         D6 Ditch       0.466       2.48       0.136       0.388       0.740       0.932         R1 Pond       0.074       -       -       -       -       -         R1 Stream       0.358       1.90       0.105       0.290       0.568       0.716         R2 Stream       0.478       2.54       0.146       0.412       0.787       0.992         R4 Stream       0.398       90       0.146       0.412       0.787       0.992         R4 Stream       0.364       1.94       -       -       -       -       -         R1 Pond	(µg a.s./L)	1.88	34 🐇	چ <u>ک</u> 2.0	6.3	1.0%		
RAC (µg a.S./L)       0.188       0.188       0.1       0.1       0.1       0.1         FOCUS Scenario       PEC sw. max (µg a.S./L)       PEC RAC (atios)       0.1       0.1       0.1         Step 4 (20 m nsbz and 20 m vfs)       0.136       0.388       0.740       0.932         D6 Ditch       0.466       2.48       0.136       0.388       0.740       0.932         R1 Pond       0.074       -       -       -       -       -         R1 Stream       0.358       1.90       0.105       0.290       0.568       0.716         R2 Stream       0.478       2.54       0.146       0.412       0.787       0.992         R4 Stream       0.398       90       0.146       0.412       0.787       0.992         R4 Stream       0.364       1.94       -       -       -       -       -         R1 Pond	AF	10	10		100	Z J J		
Step 4 (20 in risb2 and 20 in vis)       Image: second secon	RAC (µg a.s./L)	0.188	3.4		0.63 O K	0.5		
Step 4 (20 in risb2 and 20 in vis)       Image: second secon	Scenario max (µg			PECRAC atios				
D6 Ditch $0.466$ $2.48$ $0.13$ $0.388$ $740$ $0.932$ R1 Pond $0.074$ $     -$ R1 Stream $0.358$ $190$ $90.105$ $0.298$ $9.568$ $0.716$ R2 Stream $0.478$ $2.54$ $0.146$ $0.398$ $0.759$ $0.956$ R3 Stream $0.496$ $2.64$ $0.146$ $0.412$ $0.787$ $0.992$ R4 Stream $0.358$ $9.90$ $0.1056$ $0.298$ $0.568$ $0.716$ Step 4 (25 mensbz and 20 m vfs) $     -$ D6 Dite 0 $0.364$ $94$ $    -$ R1 Pond $0.062$ $       -$ R1 Stream $0.259$ $1.38$ $     -$ D6 Dite 0 $0.364$ $94$ $    -$ <td>Step 4 (20 m nsbz a</td> <td>nd 20 m vfs)</td> <td></td> <td></td> <td>ð _do</td> <td>×</td>	Step 4 (20 m nsbz a	nd 20 m vfs)			ð _d o	×		
R1 Pond       0.074       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>D6 Ditch 0.466</td><td>2.48 🖤 🔬</td><td>0.13</td><td>0,388</td><td>0740 m</td><td>0.932</td></td<>	D6 Ditch 0.466	2.48 🖤 🔬	0.13	0,388	0740 m	0.932		
R2 Stream       0.478       2.54       0.44       0.598       0.759       0.936         R3 Stream       0.496       2.64       0.146       0.413       0.987       0.992         R4 Stream       0.588       90       0.105       0.098       0.568       0.716         Step 4 (25 monsbz and 20 m vfs)       0       0       0       0       0       0       0       0.568       0.716         D6 Ditch       0.364       94       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <	R1 Pond 0.074	- ~ ~	- 6 57		- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		
R2 Stream       0.478       2.54       0.441       0.598       0.739       0.936         R3 Stream       0.496       2.64       0.146       0.413       0.987       0.992         R4 Stream       0.58       90       0.105       0.098       0.568       0.716         Step 4 (25 monsbz and 20 m vfs)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<	R1 Stream 0.358	1×90 5	p.105 Č		Q.568	0.716		
R3 Stream       0.496       2.64       0.146       0.412       0.787       0.992         R4 Stream       0.58       90       0       0.165       0.298       0.568       0.716         Step 4 (25 monsbz and 20 m vfs)       0       0       0       0       0       0       0       0.568       0.716         D6 Ditch       0.364       94       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0		AV		£398	0 759 🗇	0.956		
Step 4 (25 monsbz and 20 m vfs) $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ $0.364$ <th <="" colspan="2" td=""><td></td><td>^y 2.64</td><td>0.146</td><td>0.4125</td><td>0,787</td><td>0.992</td></th>	<td></td> <td>^y 2.64</td> <td>0.146</td> <td>0.4125</td> <td>0,787</td> <td>0.992</td>			^y 2.64	0.146	0.4125	0,787	0.992
Step 4 (25 monsbz and 20 m vfs) $0.364$ $94$ $67$ $-$ D6 Ditem 0.364 $94$ $67$ $ -$ R1 Pond $0.259\%$ $1.38$ $67$ $ -$ R1 Stream $0.259\%$ $1.38$ $67$ $  0.062$ $                            -$ -       -	R4 Stream 0.58	0.90 O C	0.105	0,0098	0.568	0.716		
D6 Dit $\frac{1}{29}$ $\frac{1}$	Step 4 (25 monsbz a	nd 20 m vfs)	AN	107				
R1 Pond $0.062$ $2$ $3$ $3$ $3$ $4$ $4$ $  -$ R1 Stream $0.259$ $1.38$ $3$ $3$ $4$ $4$ $  -$ R1 Stream $0.259$ $1.38$ $3$ $3$ $4$ $  -$ R1 Stream $0.259$ $1.38$ $3$ $3$ $3$ $4$ $  -$ R1 Stream $0.259$ $1.38$ $3$ $3$ $3$ $4$ $   -$ R2 G $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$	D6 Diton 0.364	<b>1.94</b> 5 '	¢ ô	- 2, 0	-	-		
R1 Stream $0.25\%$ $1.38$ $5\%$ $   -$ R2 Stream $0.357$ $1.90\%$ $     -$ R3 Stream $0.357$ $1.90\%$ $    -$	R1 Pond 0.062			& A'	-	-		
R2 Stream $0.343$ $7.82$ $7.97$ $ 7.97$ $  -$	R1 Stream 0.25%				-	-		
P3 Straam \$0.357 1.00 0 10 0	R2 Stream 0543	<b>1.82</b>		, la	-	-		
KJ Sucaniz (1.30 )	R3 Stream 0.357	1.90		ę.	-	-		
R4 Stream 0.259 1.38	R4 Stream 0.259	1,38	- 2 2	-	-	-		

AF: Assessment factor, PEC Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; nsbz: no spray buffer zone; vfs: vegetated filter step; - not required as risk assessment already passes Table CP 102-17 Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine based on FOCUS Step 4 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a.s./ha; early application)

Group State	Fishchronic	Invertebrate chronic	Algae (Freshwater)	Algae (Marine)	Mesocosm
Test species	Danio rerio	Daphnia magna	Scenedesmus subspicatus	Skeletonema costatum	Algae and invertebrates
Endpoint	EC ₁₀	NOEC	ErC50	ErC50	NOEC



1				I			
(µg a.s./L)		1.88	34	12.0	6.3	1.0	
AF		10	10	10	10	2 °	Ś
RAC (µg a.	.s./L)	0.188	3.4	1.2	0.63	0.5	F.
FOCUS Scenario	PEC sw- max (µg a.s./L)			PEC/RAC ratios	A A		Ê,
Step 4 (20 r	n nsbz and	20 m vfs)		Č	Î Î		, O
D6 Ditch	0.385	2.05	0.113	0.321	0.611	0.720	, Ô ^Y
R1 Pond	0.111	0.590	-	- Q			×
R1 Stream	0.349	1.86	0.103	0.291	Ø.554	0.698	
R2 Stream	0.467	2.48	0.137	Ø.389	0.744	0.934	
R3 Stream	0.496	2.64	0.146	0.405 Q	0.987	0.992	
R4 Stream	0.399	2.12	0.10,7	0,333 0	0.633	0,798	
Step 4 (25 r	n nsbz and	20 m vfs)					
D6 Ditch	0.297	1.58	- 0 7			- 2	
R1 Pond	0.093	-			- & &	<pre>%</pre>	
R1 Stream	0.251	1.34 🗸 🔬	- 8 4	- ~ ~ ~		D <u>-</u>	
R2 Stream	0.335	1.78 0	- 67 67 -		- 5	-	
R3 Stream		1,90		0		-	
R4 Stream	0.399	2.12	- 2 5			-	

AF: Assessment factor; PEC. Predicted environmental concentration; RA&. Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; nsbz: no spray buffer zone; vfs: vegetated filter trip; - for required as risk assessmental ready passes Table CP 19.2-18 Aquatic organisms: acceptability of risk (PEC/RAC <1) for spiroxamine based on FOCUS Step 4 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a.s./ha; late application)

Group			Divertebrate chronic	Algae (Fræshwater)	Algae (Marine)	Mesocosm
Test specie	~Q ( }	Danio rerio		Scenedesmus subspicatus	Skeletonema costatum	Algae and invertebrates
Endpoint	Ž	$\mathbf{\hat{P}}\mathbf{\hat{C}}_{10}$		ErC ₅₀	ErC ₅₀	NOEC
(μg/a/s./L)	Ŵ	1.88		12.0	6.3	1.0
AF	Ĩ,		Ž10 0	10	10	2
RAC (µg a.	s.O	0.188	3.4	1.2	0.63	0.5
FOCUS Control	PEC & max by g a QML)		Ŷ	PEC/RAC ratios		
Stop 4 (20	nsbz and	20 4 vfs)				
D6 Ditch	0.478	2.54	0.141	0.398	0.759	0.956
R1 Pond	0.113	0.601	-	-	-	-



R1 Stream	0.358	1.90	0.105	0.298	0.568	0.716
R2 Stream	0.478	2.54	0.141	0.398	0.759	0.956
R3 Stream	0.496	2.64	0.146	0.413	0.787	0.992
R4 Stream	0.360	1.91	0.106	0.300	0.571	0.720
Step 4 (25 r	n nsbz and	20 m vfs)			A	
D6 Ditch	0.376	2.00	-	- &	- 4	
R1 Pond	0.095	-	-	- 8		
R1 Stream	0.259	1.38	-		- 0	
R2 Stream	0.343	1.82	- @	- ~ ~	Ø Ŷ,Ċ	- 0 0
R3 Stream	0.357	1.90	- &		- 20 2	- **
R4 Stream	0.360	1.91			-000	
			.~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a der	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the tragger of a are highlighted in **bod**; nsb2 no spray buffer zone vfs: vegetated filter strip; - not required as risk assessment already passes

For the chronic invertebrate and argal risk assessments, including those organises covered by the mesocosm study, an acceptable risk from exposure to spirocamine can be concluded for all proposed uses of Spiroxamine EC 500 to grapes when mitigation in the form of a 20 m no opray buffer zone with a 20 m vegetated filter strip is applied.

For the chronic fish risk assessment, the PEC/RAC ratios for majority of FOCUS scenarios were still >1 when up to 95% total application mitigation in the form of a 25 m no-spray boffer zone with a 20 m vegetated filter strip was applied. Further refinement of the chronic fish risk assessment is therefore required and has been discussed able end of this section.

The table below provides a summary of those FOCUS scenarios for which an acceptable risk can be demonstrated using up to 55% total application mitigation and those scenarios for which further refinement is required.

Table CP 10.2-19 Summary of aquatic risk assessment: FOCUS scenarios with an acceptable risk demonstrated and those requiring further refinement

Proposed use of	Spiroxamine s (g a Sha) 5	FOOUS seenarios for whiteh	FOCUS scenarios for which
EC 500 to grape	š (g a Qha)	aceeptable risks have been	further refinement is required
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		demonstrated using a 25 m nsbz	
1 x 200	Early	DCDitch XI Pond [*] , R1 Stream, R4 Stream	R2 Stream, R3 Stream
	Eate S	R1 Pond*, R0 Stream, R4 Stream	D6 Ditch, R2 Stream, R3 Stream
2 x 200	Early	R&Pond* R1 Stream	D6 Ditch, R2 Stream, R3 Stream, R4 Stream
S .		R1 Pond*, R1 Stream	D6 Ditch, R2 Stream, R3 Stream, R4 Stream
1×300	Early ~~~~	R1 Pond*	D6 Ditch, R1 Stream, R2 Stream, R3 Stream, R4 Stream
	Late 2	R1 Pond*	D6 Ditch, R1 Stream, R2 Stream, R3 Stream, R4 Stream
2 x 300	Early	R1 Pond	D6 Ditch, R1 Stream, R2 Stream, R3 Stream, R4 Stream

Late	R1 Pond	D6 Ditch, R1 Stream, R2 Stream,	
		R3 Stream, R4 Stream	~

nsbz: no spray buffer zone; vfs: vegetated filter strip

* R1 Pond scenario for this use passes the risk assessment at Step 3 therefore no mitigation required

Metabolites

Risk assessments for the metabolites of spiroxamine; KWG 4168-desethyl (M01) KWG 4168despropyl (M02), KWG 4169-N-oxide (M03) and KWG 4268-acid (M05) have been presented below. As for spiroxamine, application rates of 200 g a.s./ha and 300 g a.s./ha cone and two applications) have been considered for both early and late growth stages

The selection of endpoints for the metabolite risk assessment have been discussed at the start of Section 10.2. As previously discussed, to account for possible selective isomeric degradation, Uncertainty Factors (UF) have been applied to the RAC values (refer to Table CP 10.2-2).

<u>1 x 200 g a.s./ha</u>

Table CP 10.2-20Aquatic organisms: acceptability of rist (PEC/RAC ×1) for A01 and M02 basedon FOCUS Steps 1 and 2 calculations for application of Spirovamine EC 500 to vines (1 x 200 g a.s./ha;early application)

	<u>~~</u> '0'			<u> </u>	, K
<u>a</u>		x 18 6			<u>~</u>
Fish acute	Invertebrate	Algae 🔨		Invertebrate	Algae
Danjo rerio		Desmodesmu s supspicatus	· ~	acute Daptinia magna	Pseudokir- chneriella subcapitata
LC ₅₀	PC 50 2 3	ErC ₅₀ O	LC ₅₀	2EC ₅₀	$E_r C_{50}$
24 20 ^a	30 60 a	737	2440	3000 ^a	383
	100	P Z	900 °	100	10
24.	30.00	73.7		30.0	38.3
4.56	4.76 S	4.76	22.5	12.5	12.5
	6.30	15.5 ° ~	1.93	2.40	3.06
a construction of the second sec		PEC/RA	C ratios		
. v v v v v v v v v v v v v v v v v v v	C sw-max 4.088 µ	ıg/Ľ	PE	C _{sw-max} 3.384 µ	ıg/L
0.807	10:649 Ű	0/264	1.76	1.41	1.10
)*			
A PE	C w-max 0.197 µ	ıg/L	PE	C _{sw-max} 0.165 µ	ıg/L
	ı- ~Ş	-	0.0856	0.0688	0.0539
A PE	C sw-max 0.208 µ	ıg/L	PE	C _{sw-max} 0.316 µ	ıg/L
	-	-	0.164	0.132	0.103
	Danjo rerio LC ₅₀ 240 ^a 240 ^a 240 ^a 24. 5 24. 5	Might Fish acuté Invêrtebrate Danio rerio Daphnia Danio rerio Daphnia Magna Daphnia LC50 DC50 240°a 2000 240°a 300°a 25.06 476 26.26 476 27.26 27.26 27.27 27.26 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 <td>M01 Algae Fish acute Invertebrate Algae acute Daphnia Desmodesmu Danjo rerio Daphnia Subspicatus LC50 PC50 ErC50 240° 30'60° 73.7 240° 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.6 4.76 4.76 4.76 4.76 4.76 5.06 6.30 9.0264 27.80 0.264 2.264 28.07 9.649 0.264 29.807 9.649 0.264</td> <td>M01 Algae Fish acute Invertebrate Algae Fish acute <i>Acute Daphnia Desmodesmu Danjo rerio Daphnia Desmodesmu Daphnia Desmodesmu Dánjo rerio Acute Acute Daphnia Daphnia Desmodesmu Dánjo rerio Acute Acute Acute Acute Acute Daphnia Daphnia Desmodesmu Dánjo rerio Acute Acute</i></td> <td>M01 Mb2 Fish acute Invertebrate Algae Fish acute Invertebrate <i>Acute Daphnia Desmodesmu Danio rerio Daphnia Danio rerio Daphnia Desmodesmu Daphnia Daphnia Danio rerio Daphnia Desmodesmu Daphnia Daphnia L</i>C₅₀ <i>E</i>C₅₀ <i>E</i>C₅₀ <i>L</i>C₅₀ <i>E</i>C₅₀ 240^a 3000^a 737 240^a 3000^a 240^a 30.00^a 73.7 24.4^b 30.0 24.6 4.76 4.76 24.4^b 30.0 4.6 4.76 4.76 24.4^b 30.0 4.6 4.76 4.76 24.4^b 30.0 4.6 4.76 1.93 2.40 9.807 9.649 9.264 1.76 1.41 9.807 9.649 9.264 1.76 1.41</td>	M01 Algae Fish acute Invertebrate Algae acute Daphnia Desmodesmu Danjo rerio Daphnia Subspicatus LC50 PC50 ErC50 240° 30'60° 73.7 240° 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.5 30.00° 73.7 24.6 4.76 4.76 4.76 4.76 4.76 5.06 6.30 9.0264 27.80 0.264 2.264 28.07 9.649 0.264 29.807 9.649 0.264	M01 Algae Fish acute Invertebrate Algae Fish acute <i>Acute Daphnia Desmodesmu Danjo rerio Daphnia Desmodesmu Daphnia Desmodesmu Dánjo rerio Acute Acute Daphnia Daphnia Desmodesmu Dánjo rerio Acute Acute Acute Acute Acute Daphnia Daphnia Desmodesmu Dánjo rerio Acute Acute</i>	M01 Mb2 Fish acute Invertebrate Algae Fish acute Invertebrate <i>Acute Daphnia Desmodesmu Danio rerio Daphnia Danio rerio Daphnia Desmodesmu Daphnia Daphnia Danio rerio Daphnia Desmodesmu Daphnia Daphnia L</i> C ₅₀ <i>E</i> C ₅₀ <i>E</i> C ₅₀ <i>L</i> C ₅₀ <i>E</i> C ₅₀ 240 ^a 3000 ^a 737 240 ^a 3000 ^a 240 ^a 30.00 ^a 73.7 24.4 ^b 30.0 24.6 4.76 4.76 24.4 ^b 30.0 4.6 4.76 4.76 24.4 ^b 30.0 4.6 4.76 4.76 24.4 ^b 30.0 4.6 4.76 1.93 2.40 9.807 9.649 9.264 1.76 1.41 9.807 9.649 9.264 1.76 1.41

AF Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; UF: Uncertainty Factor

^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

 \sim

Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based Table CP 10.2-21 on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (1 x 200 g a.s./ha: early application)

early application)						<u> </u>
Metabolite		M03			M06	S . 10
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrat e acute	Algae , 5
Test species	Danio rerio	Daphnia magna	Desmodesmus subspicatus	Danio refio	Daphnia 🕅	Desmodesmu s subspicatus
Endpoint	LC ₅₀	EC ₅₀	ErC ₅₀	LC ₅₀	EC ₅₀	GrC ₅₀ O
$(\mu g/L)$	2410 ^a	>100000	31700	$24 \hat{N}^a$	3000 2	3200
AF	100	100		100 ×	100	
RAC (µg/L)	24.1	1000	31700 🖉	24	30.0	320 «
UF	10.0	10.0	1000	2.92	2.52 0"	2.2
Corrected RAC (µg/L)	2.41		317		¥2.9 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.25 0 ⁴
FOCUS Scenario			PEC/RAC	Jutios &		\$ \$
Step 1		EC sw-max 9.611	µg/L 🖉 🦑	PE PE	C sw-max 78.029	μg/L
	3.99	0.0961 S	@ Ø303 @	7.51	6,9 3 Q	0.566
Step 2				C K		
NEU	<u>S</u> OP	EC w-max 0478		O SPE	EC ky-max 4.308	µg/L
	\$0.198 <i>5</i> y			0.415	0.333	-
SEU	' de le	EC swamax 0.870	µg/I_y	S PE	EC sw-max 5.340	µg/L
O'	10:361 ≪			0.514	0.413	-

AF: Assessment factor; PEC: Predicted environmental concentration; RAC. Regulatory acceptable concentration; UF: Uncertainty Factor

UF: Uncertainty Factor ^a Endpoint has assumed equivalent texicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; not required a risk assessment passes using Step 1 PEC values Table CP 10.2-22 Aquatic organisms; acceptability of risk (PEC/RAC <1) for M01 and M02 based on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (1 x 200 g a.s./ha; late application) late application) Õ Å ~Q Ô Ũ

Metabo		M01			M02	
- >	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
	Panio perio	Baphnia magno	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint (µg/L)		EC ₅₀	$E_r C_{50}$	LC ₅₀	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 °	3000 ^a	737	2410 ^a	3000 ^a	383
AF ^V	100	100	10	100	100	10
RAC (µg/L)	24.1	30.0	73.7	24.1	30.0	38.3
UF	4.76	4.76	4.76	12.5	12.5	12.5

Metabolite		M01		M02			
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrate acute	Algae	
Test species	Danio rerio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseudokir- chneriella Subcapitata	
Corrected RAC (µg/L)	5.06	6.30	15.5	1.93	2.40	3.06~	
FOCUS Scenario		REC/RAC ratios					
Step 1	Pl	PEC sw-max 4.088 μgΦ 200 PEC sw-max 3.384 μg/μ					
	0.807	0.649	0.264	1.76		Y.10	
Step 2							
NEU	Pl	EC sw-max 0,375 p			SC Sw-max € 464 į		
	-	- & &		0.0851	0.06	0.053	
SEU	PI	EC	ıg/D	PE PE	EC & max 0 2 4 µ	ıg4Ú	
	-	y- & a			0.0930	0.0731	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration;

Assessment factor, FEC. Frequenced environmental concentration; Kecc: Regulatory acceptable concentration; UF: Uncertainty Factor
 ^a Endpoint has assumed equivalent toxicity of the parent material: PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values
 Table CP 10.2-23 Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 G vines (1 x 200 g a.s./ha; late application)

	ð, ·,			A V		
Metabolite	\$ ~	M03			M06	
Group	Fish acute	Invertebrate active	Algae	Fishacute	Invertebrat e acute	Algae
Test species	Danio rerio	Daphnia magua	Desmottesmus subspicatus	Danio rerio	Daphnia magna	Desmodesmu s subspicatus
Endpoint	LON	ĘĊ,	Er O 50	LC ₅₀	EC ₅₀	E_rC_{50}
(µg/L)	LG8 2410	>100000	3 1700	2410 ^a	3000 ^a	3200
AF		100	10	100	100	10
RAC (µg/L)			3,170	24.1	30.0	320
UF	10.0 0	10.0	10.0	2.32	2.32	2.32
Corrected RAC (µg/L)	241		317	10.4	12.9	138
FOCUS FOCUS		y - y	PEC/RAC	² ratios		
Step 7	PE	EC _{sw-max} 9.611 J	ug/L	PE	C _{sw-max} 78.029	μg/L
	3.99	0.0961	0.0303	7.51	6.03	0.566

Metabolite		M03		M06			
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrat e acute	Algae	
Test species	Danio rerio	Daphnia magna	Desmodesmus subspicatus	Danio rerio	Daphnia magna	Desuladesma s subspicadas	
Step 2			•		1	07 07 x	
NEU	P	EC sw-max 0.637	µg/L 🖒	PE	EC sw-max 7.746	µg/E	
	0.264	-	- _L	0.746	0.599 🖉		
SEU	P	EC sw-max 0.726		Q PE	EC swaffax 6.715	µg/L C	
	0.301	-	-20	0.646	0.519		

AF: Assessment factor; PEC: Predicted environmental concentration, RAC. Regulatory acceptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

<u>2 x 200 g a.s./ha</u>

Aquatic organisms: acceptability of risk (PECRAC) for 1001 and M02 based Table CP 10.2-24 on FOCUS Steps 1 and 2 calculations for application of Spirotamine FC 50000 vines (2 x 200 g a.s./ha; early application) ,Ø O Ñ Ô 2 Ĩ

Metabolite	Č)	O MON	Ô, ô		× M02	
Group	Fish acute	Invertebrate		Fish acute	Invertebrate açute	Algae
Test species	Danio rerio	Daplinia mágna	Desmadesmu s subspicatus	Danilo rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint	PC ₅₀	EC50 2	$\mathbb{E}_{r}C_{50}$	$LC_{50} \ll$	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 ^a	3000	737.Gr S	2410 ^{/a}	3000 ^a	383
AF 🐐	j00 j~	¥90 0	ÌV &	A 00	100	10
RAC (µg/L)	24.1	30.0%	73.7 0	24.1	30.0	38.3
UF 🖉	4,000 200	4,46 0	4. 06 0	12.5	12.5	12.5
Corrected RAC (µg/L)	5.06		¥5.5	1.93	2.40	3.06
FOCUS Scenario 3			, PEC/RA	C ratios		
Step 1	, PE		ig/L	PE	C sw-max 3.384 µ	ıg/L
	Ø 807	0.649	0.264	1.76	1.41	1.10
Step 2		, ~Q				
NEU S	A SPE	C sw-max 0.387 µ	ıg/L	PE	C sw-max 0.139 µ	ıg/L
Step 2	× ž	-	-	0.0721	0.0579	0.0454
SEU S	PE	C sw-max 0.371 µ	ıg/L	PE	C sw-max 0.611 µ	ıg/L
	-	-	-	0.317	0.255	0.199

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; UF: Uncertainty Factor

^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based a Table CP 10.2-25 on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (2 x 200 g a ha; early application) S

					O ^v	
Metabolite		M03			🖇 M06	5° 5° 4
Group	Fish acute	Invertebrate acute	Algae 🖏	Fish acute		
Test species	Danio rerio	Daphnia magna	Desmodesmus sub sp icatus	Danio rerio.	Daphnia magna 🏑	Besmodesmu s subspicatas
Endpoint	LC ₅₀	EC ₅₀	ErC ₅₀	C ₅₀	FC 50	EG 50
(µg/L)	2410 ^a	>100000 0	31700 🖉 📈	241 0 ^a	3000	3200
AF	100	100	100 ~	roso A	100, 0'	10
RAC (µg/L)	24.1	1000	3170	24.1	30.0	B20 S
UF	10.0	100 5	10.0	2.22	2.32	2.32
Corrected RAC (µg/L)	2.41					138
FOCUS Scenario		EC sw-max 9.611	PEC/RAC			7
Step 1	N R	EC sw-max 9.611	ig/L	PK	C sw-mas 78.029	μg/L
	3.09	0:0961	0.0303	1251	6,03	0.566
Step 2		\$ \$ ~			Ū.	
NEU O	A A	EC swanax 0.885 j	ug/L	R VI	EC _{sw-max} 8.015	μg/L
Ĩ,	<i>1</i> \$€368 ≪			0.772 °	0.620	-
SEU NY	No No	C sw. 00x 1.614	ug/L	PE	EC sw-max 9.678	μg/L
<u>E</u>	0.670	w S		1 0/932	0.748	-

AF: Assessment factor, PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration;

UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - for required as risk assessment passes using Step 1 PEC values **Table CP 00.2-26** Aquatic organisms: acceptability of risk (PEC/RAC <1) for M01 and M02 based

on FOCOS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (2 x 200 g a.s./ha; late application) Ŵ , O

Metabolite	0° 0'	M01 A)		M02	
Group	Y S .	Kovertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
Test species	Panio renio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint S	LC ₅₀	EC ₅₀	$E_r C_{50}$	LC ₅₀	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 ^a	3000 ^a	737	2410 ^a	3000 ^a	383
AF	100	100	10	100	100	10

Metabolite		M01		M02		
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
Test species	Danio rerio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseptitokir- chneriella Sybcapitota
RAC (µg/L)	24.1	30.0	73.7	24.1	30.0	38.3~
UF	4.76	4.76	4.76	12.5	12.5	1295 🔬
Corrected RAC (µg/L)	5.06	6.30	15.5 PEC/RA	1.93	2.40	9.06 °
FOCUS Scenario		\$ 0	PEC/RA	Gratios >>		
Step 1	Pl	EC sw-max 4.088 µ	ug/I a c	PI	EC sw-max 3.384 µ	ıg/Lo
	0.807	0.649	Q ² 64 ~	Q.76		1.10
Step 2	·					y O
NEU	PI	EC	ıg/D	PE OPE	Cov-max 0.511 µ	ıg4Û
	-	y a		0.165	0.1300	0.102
SEU	(A)	EC _{sw-max} 0.598 µ	ıg/Ł	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EC 55 max 0.429 µ	ıg/L
	- 🦓	Ô, S,			0.178	0.139

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory & Ceptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent (exicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; not required as risk assessment passes using Step 1 PEC values

Table CP 10.2 Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (2 x 200 g a.s./ha; late application)

		-0							
Metabolite		MO		\sim	M06				
Group	Fish acute	Invertebrate acute		₿ Fish acute	Invertebrat e acute	Algae			
Test species	Danio Prio	Daphnia MagnaQ	Desmodesmus Subspiratus	Danio rerio	Daphnia magna	Desmodesmu s subspicatus			
Endpoint	LCQ Q	EC ₅	Eres	LC ₅₀	EC ₅₀	$E_r C_{50}$			
(µg/L)	2910° 4	2700000 ⁰	31700	2410 ^a	3000 ^a	3200			
AF	100 00 0	100 🖉 🖉	10	100	100	10			
RAC (µg/L)	24.1	1000 %	3170	24.1	30.0	320			
UF La K	10.0 5	,10.0 ~Q	10.0	2.32	2.32	2.32			
Corrected RAC	2.41	100	317	10.4	12.9	138			
FQCUS Scenario		PEC/RAC ratios							
Step 1	PE	EC _{sw-max} 9.611 µ	ug/L	PEC sw-max 78.029 µg/L					
	3.99	0.0961	0.0303	7.51	6.03	0.566			

Metabolite		M03			M06			
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrat e acute	Algae		
Test species	Danio rerio	Daphnia magna	Desmodesmus subspicatus	Danio rerio	Daphnia magna	Desulodesma s subspicados		
Step 2					4	0° 8° 4		
NEU	Р	EC sw-max 1.034	µg/L 💍	J¥E	C sw-max 14.497	μg/ Δ		
	0.429	-	- _L	1.39	1.12			
SEU	Р	EC sw-max 1.325	µg/L	Q PE	C sw-man, 12.247	/µg/LO		
	0.550	-	$-\mathcal{Q}^{(0)}$]x18 . 🖉	0.947	- 2 ~ ~		

AF: Assessment factor; PEC: Predicted environmental concentration, RAC. Regulatory acceptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

<u>1 x 300 g a.s./ha</u>

Aquatic organisms: acceptability of risk (PECRAC) for 1001 and M02 based Table CP 10.2-28 on FOCUS Steps 1 and 2 calculations for application of Spirotamine EC 500 to vines (1 x 800 g a.s./ha; early application) ,Ø O Ñ Ô 2 Ĩ

		<u> </u>			<u> </u>	
Metabolite		O'MAN			× M02	
Group	Fish acute	Invertebrate	Algar O	Fish acute	Invertebrate açute	Algae
Test species		Daplinia mágna	Desmodesmu s subspicatus	Danto rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint	PC ₅₀	EC50 A	$\mathbb{E}_{r}C_{50}$	$LC_{50} \ll$	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 ^a	3000	737. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2410/ª	3000 ^a	383
AF 🖏		≸0 0 0		<u>4</u> 00	100	10
RAC (µg/L)	24.1	30.0	73.7 0	24.1	30.0	38.3
UF 🖉	4,06	4,96 0	4. 06	12.5	12.5	12.5
Corrected RAC (µg/L)	5.06 8		¥5.5	1.93	2.40	3.06
FOCUS Scenario			、♀´ PEC/RA	C ratios		
Step 1		C _{sw} Cax 6.13	ig/L	PE	C _{sw-max} 5.076 µ	ıg/L
	121	6 .973	0.396	2.63	2.12	1.66
Step 2		, ~Q				
NEU S	A SPE	C sw-max 0.295 µ	ıg/L	PE	C sw-max 0.242 µ	ıg/L
	0.0583	-	-	0.126	0.101	0.0790
SEU S	PE	C sw-max 0.562 µ	ıg/L	PE	C sw-max 0.474 µ	ıg/L
Ŭ	0.111	-	-	0.246	0.198	0.155

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; UF: Uncertainty Factor

^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based a Table CP 10.2-29 on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (1 x 300 g a ha; early application) S

carry appreation)					® ^y	
Metabolite		M03			🖇 M06	
Group	Fish acute	Invertebrate acute	Algae 👸	Fish acute	Invertebrat	Algar S
Test species	Danio rerio	Daphnia magna	Desmodesmus sub sp icatus	Danio rerio.		Besmodesmu s subspicatus
Endpoint	LC ₅₀	EC ₅₀	ErC ₅₀	LC50 X	FC 50	E4C 50
$(\mu g/L)$	2410 ^a	>100000 0	31700 2	2416	3000	3200
AF	100	100		1090	100 0'	10
RAC (µg/L)	24.1	1000	3170 2	24.1	\$0.0	B20 \$
UF	10.0	10.00	10.0	2.32 5	2.32	2.32
Corrected RAC (µg/L)	2.41			010.4 °		138
FOCUS Scenario			PEC/RAC			7
Step 1	PA N	C sw-max 14.412	μ̃g/L of of	¢. PK	2 _{sw-ma} 917.04.	3 µg/L
	5.08	0444	0.0455	$\mathbf{\Omega}.3$	9,05	0.849
Step 2					\mathcal{D}	
NEU O	N P	EC strana 0.717	µg/L		EC _{sw-max} 6.462	μg/L
	<i>\$</i> \$298 ≪		-9 S (D.622	0.500	-
SEU NY	Š Š	EC sw for 1.305	µg/L	PE	C _{sw-max} 11.619	μg/L
	0.541	w S		Ax12	0.899	-

AF: Assessment factor, PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration;

UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are

highlighted in bold; - for required as fisk assessment passes using Step 1 PEC values Table CP 70.2-30 Aquatic organisms: acceptability of risk (PEC/RAC <1) for M01 and M02 based on FOCOS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (1 x 300 g a.s./ha; late application) Ŵ , O

Metabolite	0° 0'	M01 A)		M02	
Group	Y S .	Kovertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
Test species	Panio renio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint S	LC ₅₀	EC ₅₀	$E_r C_{50}$	LC ₅₀	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 ^a	3000 ^a	737	2410 ^a	3000 ^a	383
AF	100	100	10	100	100	10

Metabolite		M01		M02		
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
Test species	Danio rerio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseptitokir- chneriella Stabcapitata
RAC (µg/L)	24.1	30.0	73.7	24.1	30.0	38.3~
UF	4.76	4.76	4.76	12.5	12.5	1295 2
Corrected RAC (µg/L)	5.06	6.30	15.5	~ @ ^v	12.5 2.40 0	9.06 °
FOCUS Scenario		Ś	PEC/RA	Gratios >		
Step 1	PI	EC sw-max 6.131 µ	ug/I	Q PI	EC sx-max 5.076 µ	ug/Lor y°
	1.21	0.973	9,396	Q.63	2.12 ×	1.66
Step 2						y O
NEU	Pl	Ξ C w-max 0.313 μ	ıg/Ĺ	S SPI	EC (w-max 0) 6 µ	ıgA
	0.0618	y 1		0.128	0.1030 🔬	0.0803
SEU	- Pi	ΞC _{csw-max} 0.492 μ	ıg/L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EC segmax 0.339 µ	ıg/L
	0.0794	O' Å		0.175	0 .140	0.110

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory occeptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent forcicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; not required as risk assessment passes using step 1 PEC values

Table CP 10.2 Stand Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (1 x 300 g a.s./ha; late application)

Metabolite		MO		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M06				
Group	Fish acute	Invertebrate acute		Fish acute	Invertebrat e acute	Algae			
Test species	Danio Prio	Daphnia MagnaQ	Desmodesmus Subspiratus	Danio rerio	Daphnia magna	Desmodesmu s subspicatus			
Endpoint	LCQ Q	EC ₅	Eres	LC ₅₀	EC ₅₀	$E_r C_{50}$			
(µg/I)	2910 ^a	200000 ⁰	3,700	2410 ^a	3000 ^a	3200			
AF	100 00 0	100 0	10	100	100	10			
RAC (µg/L)	24.1	1000	3170	24.1	30.0	320			
UF L K	J0.0 5 ×	10.0 <i>~</i> Q	10.0	2.32	2.32	2.32			
Corrected RAC	2.41	100	317	10.4	12.9	138			
FQCUS Scenario		PEC/RAC ratios							
Step 1	PE	C _{sw-max} 14.417	µg/L	PEC _{sw-max} 117.043 μg/L					
	5.98	0.144	0.0455	11.3	9.05	0.849			

Metabolite		M03			M06			
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrat e acute	Algae		
Test species	Danio rerio	Daphnia magna	Desmodesmus subspicatus	Danio rerio	Daphnia magna	Desuladesma s subspicadas		
Step 2			·		1	0 0 x		
NEU	P	EC sw-max 0.956	µg/L 🚫	PE	EC sw-max 8.010	µg/E		
	0.397	-	- 2		0.619			
SEU	P	PEC sw-max 1.09 µ	ıg/L A	Q PE	C sw-10.072	µg/LC		
	0.452	-	-Q ⁰	0.970 ~ [©]	0.779	-2 2		

AF: Assessment factor; PEC: Predicted environmental concentration, RAC. Regulatory acceptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

2 x 300 g a.s./ha

Table CP 10.2-32 Aquatic organisms: acceptability of risk (PECRAC) for 1001 and M02 based on FOCUS Steps 1 and 2 calculations for application of Spirotamine EC 500 to vines (2 x 800 g a.s./ha; early application) Ĩ ,Ø O Ò 2 Ĉ

		<u> </u>			<u> </u>	
Metabolite		O MOT			× M02	
Group	Fish acute	Invertebrate	Algar O	Fish acute		Algae
Test species	Danio rerio	Daphnia mágna	Desmodesmu s subspicatus	Danto rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint	PC ₅₀	EC50 A	ErC ₅₀	$LC_{50} \ll$	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 ^a	3000	737. 5	2410 ^{/a}	3000 ^a	383
AF	joo jy	¥90 Ö ⁵	ĴØ & .	100	100	10
RAC (µg/L)	24.14	30.0 2 2	73.7	24.1	30.0	38.3
UF 🖉	4,06	4,46 0	4. 06 0	12.5	12.5	12.5
Corrected RAC (µg/L)	5.06	6.30 Q	¥5.5 0	1.93	2.40	3.06
FOCUS [®] Scenario ³			·∽♥´ PEC/RA	C ratios		
Step 1	, PE	С _{sw} @ax 6.13%µ	ıg/L	PE	C sw-max 5.076 µ	ıg/L
	121	6 .973	0.396	2.63	2.12	1.66
Step 2		, ~Q				
NEU	A SPE	C _{sw-max} 0.567 µ	ıg/L	PE	C sw-max 0.479 µ	ıg/L
	0.112	-	-	0.248	0.200	0.156
SEU S	PE	C _{sw-max} 1.084 µ	ıg/L	PE	C sw-max 0.917 µ	ıg/L
\bigcirc	0.214	-	-	0.476	0.382	0.299

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; UF: Uncertainty Factor

^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based a Table CP 10.2-33 on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a ha; early application) S

					O ^y	
Metabolite		M03			🔺 M06	5° 59' 49
Group	Fish acute	Invertebrate acute	Algae 🖏	Fish acute	Invertebrat	2 ~ 4
Test species	Danio rerio	Daphnia magna	Desmodesmus sub sp icatus	Danio rerio.	- · W	Desmodesmu s subspicatas
Endpoint	LC ₅₀	EC ₅₀	ErC ₅₀	C ₅₀	FC 50	E 4 C 50
$(\mu g/L)$	2410 ^a	>100000	31700 2	241 0 ^a	3000	3200
AF	100	100		180 <u>1</u>	100, 0"	10
RAC (µg/L)	24.1	1000	3170 ×		30.0	B20 5
UF	10.0	106 5	10.0	262	2.3	2.32
Corrected RAC (µg/L)	2.41					138
FOCUS Scenario	27 S		PEC/RAC			9
Step 1	Ϋ́Ϋ́ ΡΞ	C sw-max 14.412	µg/L of or	PKC	2 _{sw-ma} 917.04	3 µg/L
	5.08	0444	0.0455	Q.3	9,03	0.849
Step 2					Ų.	
NEU O	N N	EC swynax 1.329	ug/L	R APĚ	C _{sw-max} 12.022	2 μg/L
- -	¢\$.551 ≪		- S	9.16 °	0.930	-
SEU NY	Š.	EC sw 0 x 2.420	ug/L	PE	C sw-max 21.656	μg/L
	1.00 20	w s		2,08	1.67	-

AF: Assessment factor, PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration;

UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in bold; - hot required as risk assessment passes using Step 1 PEC values Table CP 10.2-34 Aquatic organisms: acceptability of risk (PEC/RAC <1) for M01 and M02 based

on FOCOS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a.s./ha; late application) Ŵ , O

Metabolite	0° 0'	M01 A)		M02	
Group	Y S .	Kovertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
Test species	Panio renio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseudokir- chneriella subcapitata
Endpoint S	LC ₅₀	EC ₅₀	$E_r C_{50}$	LC ₅₀	EC ₅₀	$E_r C_{50}$
(µg/L)	2410 ^a	3000 ^a	737	2410 ^a	3000 ^a	383
AF	100	100	10	100	100	10

Metabolite		M01			M02	
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrate acute	Algae
Test species	Danio rerio	Daphnia magna	Desmodesmu s subspicatus	Danio rerio	Daphnia magna	Pseptitokir- chneriella Subcapitata
RAC (µg/L)	24.1	30.0	73.7	24.1	30.0	38.3~
UF	4.76	4.76	4.76	12.5	12.5	1295 20
Corrected RAC (µg/L)	5.06	6.30	15.5 PEC/RA			9.06 °
FOCUS Scenario		Ś		Gratios >		
Step 1	Pl	EC sw-max 6.131 µ	ug/I	Q PI	C sw-max 5.0 🔊 µ	ıg/Lo
	1.21	0.973	9 ,396	2.63	<u>2</u> .12 ×	1.66
Step 2						y O
NEU	Pl	Ξ C -max 0. 5 56 μ	ıg/Ĺ	S SPE	EC (w-max 0, 446 µ	ıg L
	0.110	y- ¹ 4 0		0.23	0.1860	0.146
SEU		EC sw-max 0.763 µ	ıg/Ł		EC 55 max 0.649 µ	ıg/L
	0.151	O' A		0.332	Q.267 2	0.209

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory occeptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent for icity of the parent material; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**; not required as risk assessment passes using step 1 REC values

Table CP 10.2 5 Aquatic organisms: acceptability of risk (PEC/RAC <1) for M03 and M06 based on FOCUS Steps 1 and 2 calculations for application of Spiroxamine EC 500 to vines (2 x 300 g a.s./ha; late application)

	<u> </u>					
Metabolite		MO		\sim	M06	
Group	Fish acute	Invertebrate acute		₿ Fish acute	Invertebrat e acute	Algae
Test species	Danio Prio	Dupinin	Desmodesmus Subspiratus	Danio rerio	Daphnia magna	Desmodesmu s subspicatus
Endpoint	LCQ Q	EC ₅	Eres	LC ₅₀	EC ₅₀	$E_r C_{50}$
(µg/L)	2910 ^a 4	J00000	31700	2410 ^a	3000 ^a	3200
AF	100 00 00	100 🖉 🖉	10	100	100	10
RAC (µg/L)	24.1	1000 %	3170	24.1	30.0	320
UF La K	10.0	10.0 <i>~</i> Q	10.0	2.32	2.32	2.32
Corrected RAC	2.41	100	317	10.4	12.9	138
FQCUS Scenario	PEC/RAC ratios					
Step 1	PE	C sw-max 14.417	µg/L	PEC	C _{sw-max} 117.04.	3 μg/L
	5.98	0.144	0.0455	11.3	9.05	0.849

Metabolite		M03		M06		
Group	Fish acute	Invertebrate acute	Algae	Fish acute	Invertebrat e acute	Algae
Test species	Danio rerio	Daphnia magna	Desmodesmus subspicatus	Danio rerio	Daphnia magna	Desulodesma s subspicatus
Step 2		·			4	0° 8° 4
NEU	Р	EC sw-max 1.551	µg/L 🖉	Ĵ₽E	C _{sw-max} 14.547	μg/Δ
	0.644	-	- "	1.40	1.12	
SEU	Р	EC sw-max 1.988	µg/L	Q PE	C sw-18.370	µg/LO
	0.825	-	-~~~~		1.42	- 2 .0

AF: Assessment factor; PEC: Predicted environmental concentration, RAC. Regulatory acceptable concentration; UF: Uncertainty Factor ^a Endpoint has assumed equivalent toxicity of the parent material; PBC/RAC ratios above trigger

highlighted in **bold**; - not required as risk assessment passes using Step 1 PEC values

For KWG 4168-desethyl (M01), K&G 4468-despropy (M02) and KWG @169- Voxide (M03) acceptable risks to aquatic organisms have been demonstrated using other FOCUS Step for Step 2 PEC_{sw} values for all proposed useroof Spiroxamine EC 500 on grapes

For KWG 4168-acid (M06) acceptable risks to aquatic preanises have been demonstrated for the proposed uses of Spiroxamine EC 500 on gropes at 1 x 200 g a.s. tha (early and late application), 2 x 200 g a.s./ha (early applications only) and 1 x 300 g es./ha (late application only). For late applications at 2 x 200 g a.s./ha, early application at 1 x 300 g a s./ha and early and late applications at 2 x 300 g a.s./ha to grapes, possible risks to aquaric organisms have been identified. Further environmental fate data for this metabolite are currently being generated and the PEC modelling vill be updated and submitted as part of the top-up sebmission for the Renewal of Approval of Spiroxamine

Formulation risk assessment

A formulation specific risk assessment using the available formulation data with Spiroxamine EC 500 has been conducted and presented below. Formulations are considered to remain intact only for very short periods following application therefore exposure due to spray drift only has been considered here. The maximum single application rates of 200 g a.s./ha and 300 g a.s./ha have been used in the risk assessments below Further details on the PEC, calculations can be found in Document M-CP Section 9 Environmental Pate.

Aquatic organisms, acceptability of risk (PEC/RAC <1) for Spiroxamine EC 500 Table CP 10:2036 based on spray drift PECs, calculations for application of Spiroxamine EC 500 to vines (2 x 200 g a.s./ha)

Group &		Fish acute 2	Invertebrate acute	Algae
Test species		Oncortognchus mykiss	Daphnia magna	Scenedesmus subspicatus
Endpoint (µg/L)		LC ₅₀	EC ₅₀	E_rC_{50}
(µg/L)		HQ00	10300	29
AF S		100	100	10
RAC (ug/L)		115	103	2.9
Water body type	PECsw (µg/L)		PEC/RAC ratios	
Č ⁹ y y y y		Default distance		
Ditch	6.918	0.0602	0.0672	2.39

Group		Fish acute	Invertebrate acute	Algae
Test species		Oncorhynchus mykiss	Daphnia magna	Scenedesmus
Pond	0.2456	0.00214	0.00238	0.0840 5
Stream	5.741	0.0499	0.0557	1,98
		5 m distance		
Ditch	4.183	0.0364	0.0496	
Pond	0.2851	0.00248	0.00277	
Stream	4.183	0.0364	Ø.0406 °	
		10 m distance		
Ditch	1.515	©0132 ©	0.01470	0.522
Pond	0.1570	£ 0.00139	0.00452	0.0541
Stream	1.515	@ ^{\$} @.@132 @ ^{\$}	\$ 00147, [*]	\$ \$ 9 .522

AF: Assessment factor; PEC: Predicted or vironmental concentration; RAC: Regulator; acceptable concentration; PEC/RAC ratios above the trigger of Lore highlighted in **bold**

Table CP 10.2-37	Aquaticorganism	s: acceptability o	of rusk (PEC/RAC	1) for Spiroxamine EC 500
based on spray drift PE	Csw calculations for	r application of S	piroxanine EC 500	1) for Spiroxamine EC 500 to vines (Dx 300 g a.s./ha)

	K,		<u> </u>	
Group		Fish acute	Invertebrate acote	Algae
Test species		On Orhynehus	Daplerita magna 🥎	Scenedesmus subspicatus
Endpoint			1030g 25	ErC ₅₀
(µg/L)				29
AF Or	Nº Nº 60		100	10
RAC (µg/b)		ক্রিয় ক	₩03 ~ ⁰	2.9
Water body type	ARECsw-(µg/L)	Default distance	PEC/RAC ratios	
		Default distance	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Ditch	1038	0.090		3.58
Pond	0.3684	0.00320	0.00358	0.127
Stream	8.612	QF _ 20:0749 ~	0.0836	2.97
*		5 m distance		
Ditch	6.274	00 546	0.0609	2.16
Pond	6.274 2 C C C C C C C C C C C C C C C C C C	× Q.00372	0.00415	0.147
Stream	6774	0.0546	0.0609	2.16
Stream	¥6:274 5 4	10 m distance		
Ditch	2573	0.0198	0.0221	0.784
Peterd 2	0.235\$	0.00205	0.00229	0.0812
Stream	2.273	0.0198	0.0221	0.784

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the trigger of 1 are highlighted in **bold**

At the default distance of 3 m, possible risks to aquatic organisms have been identified following application of Spiroxamine EC 500, however, acceptable risks to aquatic organisms from exposure to Spiroxamine EC 500 have been demonstrated when suitable mitigation is applied. For the propose bases on grapes at both 200 g a.s./ha and 300 g a.s./ha a 10 m no spray buffer zone needs to be applied as an application mitigation measure in order for the risks to aquatic organisms from Spiroxamine EC 500 exposure to be acceptable. It should be noted that the proposed mitigation measures for the risk assessment of spiroxamine also cover this mitigation.

Refined risk assessment for the chronic risk to fish

Two Fish Full Life Cycle (FFLC) studies are available using spiroxanine technical. The first study (M-<u>304458-02-1</u>) was conducted under continuous exposure conditions (*i.e.* a flow-through test design) and provided a NOEC of 2.6 μ g a.s./L. In the Assessment report for spiroxanine provided by the Rapport or Member State (RMS) Germany in September 2009 (Volume 3, Annex B9, pp. 963-969), the RMS calculated an EC₁₀ of 2 μ g a.s./L. The RMS considered the EC is to be an adequate endpoint for regulation, *i.e.* for Tier 1 risk assessment. This EC is value has been recalculated as part of the current Renewal of Approval of spiroxamine, following an assessment of the statistical methods (M27604)2-01-1), and a value of 1.88 μ g a.s./L has been determined. Thus the EC is of 108 μ g a.s./L has been ased in the Tier I chronic fish risk assessment presented above.

The second FFLC study (M-467979 03-1) was conducted as a refinement study and simulated a peakexposure scenario in the presence of sediment. This refined PFLC study provided NOEC and EC₁₀ values of 15.8 and 23.3 μ g a.s.L, respectively. In line with the EPSA Aquatic oruidance Document (EFSA PPR Panel 2013), refined exposure aboratory toxicity tests can be used in the higher tier risk assessment (Tier 2C), if the exposure regime of the higher tier effect study covers the predicted exposure regime in edge-of-field water bodies.

The objective of the refined LFLC study was to assess the effects of spiroxamine peak-exposure on different life stages of zebratish (*Danio retio*) under static conditions in a water-sediment system. A full summary of the study has been provided in Document M-CA Section 8 and further details can be found in the study report (M-t67978-03-1). In short, zebrafish were exposed to two successive pulses of spiroxamine separated by a 44-day interval during a full life-cycle that included F0 early life stages, juvenile growth, advit reproduction, and early life stages of the P1 generation (Figure 10.2-01). The two spiroxamine pulses therefore expose the fish at several different sensitive development stages (fertilised eggs, newly hatched larvae, 4 week old juveniles during around adult during reproduction). The target nominal peak exposure concentrations were 12, 24, 48 and 192 µg a.s./L. Mean measured peak-exposure concentrations of spiroxamine were 15, 3, 308, 68,0 and 265.7 µg a.s./L for the first pulse, and 16.2, 30.0, 59.7 and 244 µg a.s./L for the second pulse. The overall measured test concentrations were determined by taking mean of the two initial peak exposure concentrations.

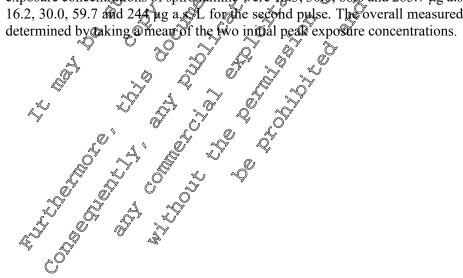
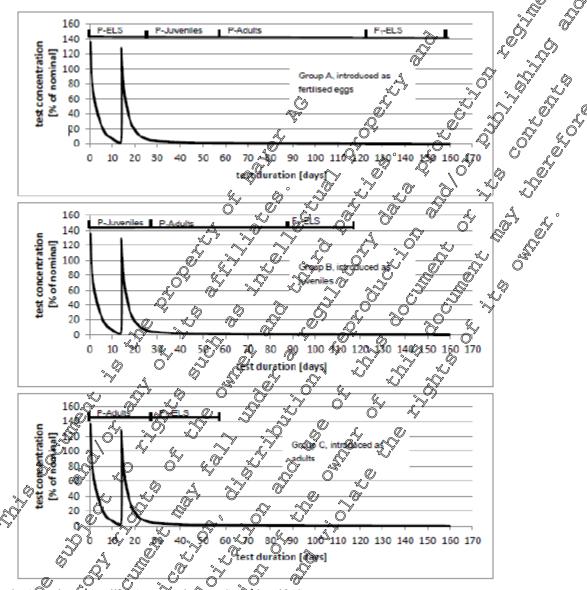
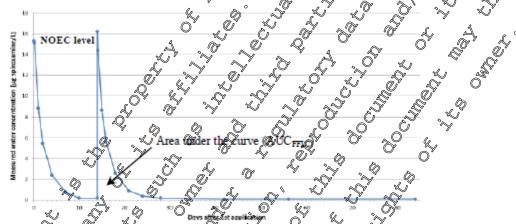



Figure CP 10.2-01 Spiroxamine peak exposure of different life stages of zebrafish. Exposure started with fertilised eggs, juveniles and adults in Groups A, B and C respectively. (Source M-467979-03-1)

P: Parental generation, F1: Film 1 generation ELS: Farly Life Stage

The most consitive biological endpoint was survival of the F1-larvae of group C (parental generation exposed as adults). The corresponding NOEC was determined to be 15.8 μ g a.s./L and the EC₁₀ was determined to be 22.3 μ g a.s./L (expressed as mean measured concentrations). The first and second pulses corresponding to the peak concentrations of 15.3 and 16.2 μ g a.s./L, respectively, resulted in no mortality in the exposed fish. The NOEC value of 15.8 μ g a.s./L was therefore calculated as the mean of the exposure concentrations at the first and second peaks.

Both EC₁₀ and NOEC values have been calculated for the most sensitive endpoint of the refinedexposure FFLQ study as outlined in the EFSA Aquatic Guidance Document (2013) and in data requirements Comission Regulation 283/2013). EFSA Supporting publication 2015: EN-924 states that where a reliable modian EC₁₀ could be calculated, then the lower between this value and the NOEC should be used. Looking at the study, it is clear that with a limited number of tested doses (4 plus controls) the study has been designed to derive a NOEC and not an EC_x. However, the dose intervals cover an adequate range for EC_x calculation with effect values of 4.4 %, 10.9 %, 50.9 %, and 94.4 % for 15.8, 30.4, 63.9, and 255 µg/L, respectively. Because the confidence limits span a broad range and taking into account the effects actually measured in the test, the EC₁₀ was considered as less meaningful,



and the NOEC of 15.8 μ g/L was deemed more appropriate for risk assessment. Overall, the NOEC is found more adequate to be used for the risk assessment based on the refined-exposure FFLC study_{*m*}°

The comparison of the two fish full life cycle studies with spiroxamine conducted under continuous and peak exposure conditions, respectively, showed in both studies the same sensitive endpoints indicating consistency of the results of both studies (*i.e.* effects on survival of F1-generation, survival of F0-generation, sex ratio of adults, weight and vitellogenin biomarker for adult females).

Questions have previously been raised regarding this study and the possibility that not all developmental life stages of the fish have been sufficiently exposed in light of the exposure profile achieved in the test. Figure 10.2-02 presents the measured concentrations of spiroxamine determined in the study.

Figure CP 10.2-02 Measured spiroxamine concentration in water samples from study <u>M-46</u> <u>979-08</u> <u>1</u>, following application of 12 μg a.s./L (NOEC, non-thal concentration) on Day 0 and Day 14

Mean measured peak oncentrations contractions for the first and second pulses, respectively been measured NOEC was therefore <math>f.8 µg a.s./L g

The study comprised three test groups in which different life stages of the fish were used at the start of the exposure test. Thus, fertilised eggs, newly hatched farvae, 4-week old juveniles during growth, and adults during reproduction would have been exposed to one or both of the exposure pulses. In a refined laboratory exposure test, such as this the fundamental concept is to use a more representative exposure regime which mimics the situation in the field. This is achieved by using an exposure regime which is considered to be realistic to worst case when compared to the relevant FOCUS profile(s). A direct consequence of taking this modified approach is that the exposure will not be 'worst case' for the duration of the exposure period. The only way that this can be achieved is under the continuous renewal conditions used in the standard Tier J test design. Thus, by deliberate design, a modified exposure test like this cannot expose every possible part of the organism's life for the duration of the test. However, what it can do Q provide respects which are considered to be more realistic based on what is likely to occur in the field and therefore the results determined from the test are more realistic and, hence, more relevant. The refined FFL study has included all of the critical life stages of a fish from embryo through to adult therefore all life stages are considered to have been covered by the test design. Whilst the maximum exposure max not have coincided with, for example, the day of hatching, this critical phase has still been covered by the exposure regime and hatching embryos would have been exposed to spiroxamine. It is therefore considered that the test design was appropriate to sufficiently expose the fish of all sensitive of the stages but under conditions which are much more realistic in relation to the environment following application of spiroxamine. Whilst it is accepted that the concentrations of spiroxamine reduced to below LOQ 10 days after application, ultimately this is the purpose of the study as infecreates the typical exposure that would occur in the field.

The results of the refined FFLC study can be compared to the results of the other available Tier I chronic fish data. Two flow through fish early life stage (ELS) studies with rainbow trout using continuous flow-through conditions are available in which the test concentrations were maintained from embryo addition

0

through to juvenile fish. In the first study (M-006232-01-1) a NOEC was not established but a 93-day EC₀ of 14 μ g a.s./L was derived as a surrogate. In the second ELS study (<u>M-006449-01-1</u>) a 96_zday NOEC of 14.2 µg a.s./L was derived. In the standard FFLC study with zebrafish, which also sized. continuous flow-through test conditions, a 230-day NOEC value of 2.6 µg a.s./L was achieved. Athough these three studies have used two different fish species and have used different test durations, the results are considered to be largely consistent with each other and provide a good reference point for the chronic NOEC for fish following constant exposure to spiroxamine. The NOEC achieved in the offined FLC study of 15.8 µg a.s./L is therefore considered to be at a remarkably similar level to those values already achieved. Indeed, the difference between the two FFLC studies using the same test species, but different exposure regimes, is only a factor of 6. Thus, the results achieved ander the modified exposure test of conditions are highly similar to those results achieved under constant exposure in which all sensitive life stages were exposed to worst case conditions. This would strongly suggest that the exposure regime of the refined FFLC study was sufficient for the toxic effects of spiroxamine to manifest themselves. It is therefore considered that the zebrafish in the refined EDLC study were adequately exposed to P spiroxamine, including the most sensitive developmental stages.

The EFSA Aquatic Guidance Document stipulates certain conditions under which modified chronic exposure studies can be used to derive a chronic RAC for use in a refined risk assessment. These are:

- The (repeated pulsed) exposure regime in the refined laboratory toxicity, lest is realistic to worst case when compared with the relevant predicted (modelled) first exposure profile.
- The duration of the test is hong mough to allow the observation of the layed offects
- The refined chronic RAC is compared with the PEC with t

In order for the refined Tier 2C RAC value of $58 \ \mu$ g a.s./L to be used in the risk assessment it is necessary to compare the exposure profile achieved in this study with the exposure profiles for each of the relevant FOCUS scenarios that did not pass the fisk assessment using the Der I RAC of 0.188 μ g a.s./L. Only those FOCUS scenarios that are considered to be covered by the refinement study, in terms of the exposure profile, can use the Tier 2C RAC value in the refined risk assessment. The Tier 2C RAC value would then be compared to the PEC_{swama} as required by the equatic Guidance Document.

A full analysis of each relevant FOCO'S exposure profileon relation to the exposure in the refined FFLC study, along with an assessment of the applicability for use in a refined risk assessment, will be conducted and submitted as part of the top-up submission. Consideration over the length of the test in relation to assessing delayed effects will also be provided.

Illustrative refined Osk assessment

The table below presents an illustrative refined risk assessment, using the Tier 2C RAC value of 1.58 μ g a.s./L, for the scenarios that did not demonstrate an acceptable risk at Tier I. Note that this has been presented purely in order to demonstrate the potential that the Tier 2C RAC has to refine the risk assessment and to demonstrate an acceptable chronic fisk to fish. The current proposed mitigation has been manufatined here but it should also be poted that, for scenarios where the Tier 2C RAC can be used, a lower level of mitigation could possibly be used.

Table CP 10.2-38 Summary of potential refined risk assessment for the proposed uses of Spiroxamine EC 500 on grape using the Ticr 2C RAC of 1.58 µg a.s./L

to grapes (FOCUS scenations for which further refinement is required based on the Ther I RAC of 0.188 µg a.s./L	Step 4 PEC _{sw} using a 25 m nsbz with a 20 m vfs (μg a.s./L)	PEC/RAC ratio based on Tier 2C RAC of 1.58 μg a.s./L
	Early	R2 Stream	0.223	0.141
1 x 200	Earry	R3 Stream	0.238	0.151
1 X 200	Late	D6 Ditch	0.242	0.153
	Late	R2 Stream	0.229	0.145

		R3 Stream	0.238	0.151
		D6 Ditch	0.198	0.125
	F 1	R2 Stream	0.223	0.141
	Early	R3 Stream	0.238	0.151
2 200		R4 Stream	0.255	0.151 0061
2 x 200		D6 Ditch	0.250	9 .158
	T - 4 -	R2 Stream	0.229	0.145
	Late	R3 Stream	0.238	0.151
		R4 Stream	0.230	0.146 4
		D6 Ditch	0.274	0.173
		R1 Stream	0.251	0.159
	Early	R2 Stream	W225	0,212
	5	R3 Stream	0.357 0.253 0.25	$\begin{array}{c c} 0 \not 2 1 2 & $
1 200		R4 Stream	0.253	0.160
1 x 300		D6 Ditch	0.253 0.253 0.264 0.253 0.253 0.253	0.200 >
		R1 Stream	0.259	0064 2 2
	Late	R2 Stream	0.349 4	9.217 O Q Q Y
		R3 Stream	0:357 0 2 0	0.226
		R4 Stream	(£259 × 0 ×	0,184
		D6 Ditch	0.297	£188 Q
		R1 Stream V V	0.251	0.159
	Early	R2 Stream & Ø	0.035 6 40 0	0.21
		R3 Stream	Q.357 Q	0226 4
2 200		R4 Stream	0.399	≥0.253 O
2 x 300		D6 Ditcher	0.376 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.238
		🖓 Stream 🖗 🔗	\$259 × × ×	0,164
	Late 🚽	R2 Stateam 🖉 🔿	\$0.343 O &	<u>0</u> 0217
	, Q		0.357 0	0.226
	, d'	R4 Stream	0.360 @	0.228

PEC: Predicted environmental concentration; RAC? Regulatory acceptable concentration; nsbz: no spray buffer zone; vfs: vegetaed filteestrip

zone; vfs: vegetated filteestrip assessment *(i.e.* the refined FFC study exposure is realistic to worst case in relation to that particular FOCUS scenario exposure profile), all relevant scenarios for all of the proposed uses of Spiroxamine EC 500 could result in PEC/RAC ratios 1, thereby allowing for the demonstration of an acceptable chronic risk to fishowhen mitigation in the form of a D'm no-spray buffer zone with a 20 m vegetated ò filter strip is applied.

The Log ph of spiroxamine is \$79 and 2.98 at pH for diastomers A and B, respectively but at pH 9 these value are 4.88 and 5.08, despectively therefore a specific risk assessment to address the potential risks of accumulation and biomagnification in the aquatic food chain is required. The worst case BCF value has been determined to be $\sqrt[87]{L/kg}(M-\sqrt{6479-01-1})$. With a Log P_{ow} of >3 there is the potential for accumulation, of spiroxamine within the aquatic food chain, via secondary poisoning of birds and

mammals, following on spiroxamate witten the aquatic foo mammals, following consumption of contaminated fish.

In accordance with the EFSA Aquatic Guidance Document⁶ and the EFSA Bird & Mammal Guidance Document⁷, a secondary poisoning risk assessment has been conducted in order to assess the potential risks of transfer of lipophilic compounds, such as spiroxamine, through the food chain.

The biomagnification factor (BMF) is defined as the relative concentration in a predatory animal compared with the concentration in its prey (BMF = $C_{\text{predator}}/C_{\text{prey}}$). The Regulatory Acceptable Concentration for secondary poisoning (RAC_{sp}) is calculated for both birds and mammals using the following equations:

Ĉĥ

$$RAC_{sp} = \frac{NOAEL_{bird}}{5 x 0.159 x BCF_{fish} x BMF} \qquad or \sqrt{\frac{NOAEb_{mammal}}{5 x 0.142 x BCF_{fish} x BMF}}$$

In accordance with the Aquatic Guidance Document, for the Tiers secondary poisoning risk assessment a default BMF value of 1 is used for compounds with a BCF <2,000 K/kg. The values of 0.159 and 0.142 are multiplication factors based on a 1000 g bad eating 159 g fish per day and a \$600 g mammal eating 425 g of fish per day. The worst case BCF salue of 87 L/Rg has also been used in the Calculations. The NOAEL for birds is 5.40 mg a.s./kg bw/day and the NOAEL for manipals is 21.0 mg a.s./kg bw/day.

The following RAC_{sp} values have been calculated:

$$RAC_{sp}$$
 bird = 0.0781 mg/L \neq 78.1 μg a.s./

According to the Aquatic Guidance Document:

lowing RAC_{sp} values have been calculated:
RAC_{sp} bird = 0.0781 mg/L
$$\neq$$
 78.1 µg a.s./L
RAC_{sp} mammal = 0.340 mg/L \neq 340 µg a.s./L
ling to the Aquatic Guidance Document:
If RAC_{sp} >21-day ψ WA PEC_{sw} Acceptable risks; no further action necessary

If RAC_{sp} <21-day TWA PECQ - Rethemour is necessary

The highest FOCUS step 3 TWAPECs ratue for grapes has been determined to be 2.627 µg a.s./L (D6 ditch, 2 x 300 g a Sha, loe application. This value has therefore been used in the risk assessment. It is clear that the RAC_{sp} values for birds and manmally (78,1 and 340 µg s.s./L, respectively) are greater than the worst case FOCUS Step 3 PWA REC_{sw} alue for spiro amine (2.627 µg a.s./L) following the representative uses. Thus, the concentrations of spirovamine will not accumulate within the tissues of birds and mammals at conceptrations high enough to cause possible harmful effects following consumption of contageinate tish. A low risk from bioaccumulation within the aquatic food chain is therefore concluded

Summary of aquatic risk assessment

The acute risks to fish, acute fisks to aquatic invertebrates, risks to aquatic macrophytes and to sediment dwelling organisms was domonstrated to be acceptable following all proposed uses of Spiroxamine EC 500 without the need for any mitigation measures. For the chronic risks to fish, chronic risks to invertebrates, risks to algae and to those organisms covered by the mesocosm study (algae and invertebrates) application pritigation was required.

For all organism groups, with the exception of the chronic risk to fish, acceptable risks could be demonstrated for all relevant GOCUS scenarios for all proposed uses of Spiroxamine EC 500 when a 20 m no-spray buffer zone with a 20 m vegetated filter strip is applied as a mitigation measure. For the chronic risk to fish a 25 in no-spray buffer zone with a 20 m vegetated filter strip was necessary in

⁶ Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 2013;11 (7): 3290

⁷ European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA. EFSA Journal 2009; 7(12): 1438. Doi:10.2903/j.efsa.2009.1438

order to demonstrate an acceptable chronic risk for some of the relevant FOCUS scenarios. However, not all scenarios passed the chronic fish risk assessment, as detailed below. Ø1

-	e of Spiroxamine rapes (g a.s./ha)	FOCUS scenarios for which acceptable risks have been demonstrated using a 25 m nsbz with a 20 m vfs	FOCUS scenarios for which
1 x 200	Early	D6 Ditch, R1 Pond*, R1 Stream, R4 Stream	R2 Stream, R3 Stream
Late		R1 Pond*, R1 Stream, R4 Stream	Q6 Ditch, R2 Stream, R3 Stream
2 200	Early	R1 Pond*, R1 Stream	D6 Ditch, R©Stream, R3 Stream, R4Stream
2 x 200	Late	R1 Pond*, R1 Stream	AD6 Ditch, R2 Stream, R7 Stream, R4 Stream
1 x 300	Early	R1 Pond*	DéDitch, RI Stream, R2 Stream, ° R3 Stream, R4 Stream
1 x 300	Late	R1 Pond*	D6 Dîteh, R1 Stream, R2 Stream, R3 Stream, W4 Stream
2 200	Early	AGI Ponto ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ditch R1 Stream, R2 Stream, R3 Stream, R4 Stream
2 x 300	Late	Rol Pond & C	D6 Ditch, R Stream, R2 Stream, R3 Stream, R4 Stream

nsbz: no spray buffer zone; vis vegetated filter strip

* R1 Pond scenario for this use passes the risk assessment of Step & therefore no witigatter required

At 1 x 200 g a.s./ha and 2 x 200 g as /ha at least one full FOCUS scepario passed the risk assessment. At the 1 x 300 g a.s./ha and 2 5300 g a.s./ha uses no complete FOCUS scenario passed the risk assessment, thereby requiring refinement of the chronic fish risk assessment. Justification to use a refined chronic fish Roc value to further refine the risk assessment will be provided in the top-up Ľ, submission later this year.

Following formulation specific risk assessment, considering spray drift only, the risks to aquatic P organises were demonstrated to be acceptable when a 10 pr no-spray buffer zone is used as application mitigation. This mitigation is covered by the mitigation of a 25 m no-spray buffer zone with a 20 m vegetated filter strip already proposed above

The risks to aquatic organisms from exposure to the metabolites KWG 4168-desethyl (M01), KWG 4168-despropol (MO2) and KWG 4169-N-oxide (MO3) was demonstrated to be acceptable following all proposed uses of Spiroxanone E6500. For KW\$ 416&acid (M06) acceptable risks to aquatic organisms have been demonstrated for the proposed uses of Spiroxamine EC 500 on grapes at 1 x 200 g a.s./ha (early and late application), 2 x 200 g as ha (arly applications only) and 1 x 300 g a.s./ha (late application only). For late applications of 2 x 200 g a.s./ha, early application at 1 x 300 g a.s./ha and early and late applications at 2, 2300 g a.s./hate of grapes, possible risks to aquatic organisms have been identified following exposure to MQ6. Further environmental fate data for this metabolite are currently being generated and the PECs modelling will be updated and submitted as part of the top-up submission later this year.

The potential risks from biosecumulation of spiroxamine within the aquatic food chain have been demonstrated to be low.

Biodiversity

No relevant scientifically peer-reviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxicological perspective, on aquatic organisms. Therefore, it is considered that the potential impact of the active substance on biodiversity and the ecosystem, including potential

indirect effects *via* alteration of the food web, are covered by the risk assessment for aquatic organisms in this section and in the ED hazard assessment.

Sumaries of the available data with Spiroxamine EC 500 are presented below.

CP 10.2.1 Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and macrophytes

Data Point:	
Report Author:	
Report Year:	
Report Title:	KWG 4168 500 EC - Acete toxicity (96 h) to tanbow trout in a static test
Report No:	DOM 93057 & & & X & Y &
Document No:	<u>M-006610-01-1</u>
Guideline(s) followed in	OECD 203 (1992)
study:	
Deviations from current	The loading rate was 1/2 g fish/L (the curren guidance recommends a loading of
test guideline:	<0.85 g/L) and we were the health and survival of the fish insthe control would
	suggest this had no impact on the test N N N N
	Only one set of observations in the mat 24 notes of the test
Previous evaluation:	yes, \mathcal{O} aluated and accepted \mathcal{A}^{\vee} \mathcal{O}^{\vee} \mathcal{O}^{\vee} \mathcal{O}^{\vee} \mathcal{O}^{\vee}
	DAR (1997), RAR (2010)
GLP/Officially	Yes, conducted under GEP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Executive Summary

The acute toxicity of KWG 4168 500 EC to Rainbox trout (*Oncorhynchus mykiss*) was determined in a static 96-hour est. Six test concentrations were assessed along with a control. Each treatment group contained 20 rainbow trout.

At test termination, mortalities of 0, 0, 0, 100, 100 and 100% were observed in the control, 3.16, 5.62, 10.0, 17.8, 31.6 and 56.2 mg/ test concentrations

No sub-lethal effects were observed in the control, 3.10 and 5.62 mg/L test concentrations, whereas, fish were observed showing irregular swimming behaviour in the 17.8, 31.6 and 56.2 mg/L test groups at the 4 hour observations.

Measured test concentrations of 28, 489, 6.79, 19.829.1 and 57.9 mg/L were achieved in the test.

Based of measured test concentrations the KE_{50} (96 hour) of KWG 4168 500 EC (active ingredient 494 g/L) to rainbow trout (*Oncorhynchus mylars*) in a static 96-hour test was determined to be 11.5 mg test substance/L with a 95% confidence interval from 6.70 - 19.8 mg test substance/L (binomial probability).

The lowest lethal concentration (LC) was 19.8 mg test substance/L, the lowest-observed-effect-concentration (LOEC) was 6.70 mg test substance/L and the no-observed-effect-concentration (NOEC) was 4.83 mg test substance/L. \swarrow

I. S Materials and Methods

Materials 0 6		
Test Material	KWG 4168 500 EC	
Lot/Batch #:	04023/0021	
Purity (a.s.):	494 g/L	

	Description:	Clear yellow liquid	
	Stability of test	Not reported	
	compound:		
	Reanalysis/Expiry date:	Not reported	
	Density:	Not reported	
Tre	eatments		
	Test rates:	Clear yellow liquid Not reported Not reported Not reported Nominal: 3.16, 5.62, 10.0, 17.8, 91.6 and 56.2 mg test substance/L Measured: 2.28, 4.83, 6.70, 49.8, 290 and 59.9 mg test substance/L Test water Yes, mean measured concentrations 67 to 1110 of nominal Rainbow Trout (<i>Qncorhrachus mykiss</i>)	
	Solvent/vehicle:	Test water	
	Analysis of test concentrations:	Yes, mean measured concentrations 67 to 111% of nominal	
Tee	st organisms		
10.	Species:	Rainow Trout (<i>Qncorhpychus ny</i> kiss)	
	Source:	GMuetler, D-37186 Moringen	
	Acclimatisation	All that figh by the hold in colours the same is to be to be the	
	period:	photoperiod and observed for at least 14 day option to testing. Less than 3 % mortality as noted provide the test initiation. In the 48 hour	
	Å.	Acclintation period before testing less that 5 percent of fish died.	
	Feeding:	Noted during test	
	Treatment for disease:	Not red during test	
Tes	st design 🔬		
	Test vessel:	Whe aquaria were made of glass and had a size of 32 x 36 x 38 cm containing 40 L test solution	
	Test medium:	Reconstituted water prepared by adding salt stock solutions	
	Replication: 20*	Single replicate	
	No. of animals/vessel:	Typenty fight per vessel	
ŀ	Duration of test:	96 hours of the	
period: photoperiod and observen for at reast of a days prior by retesting Less than 3 % mortality as forded prior to the test mitiation. In the 48 hour acclimation period before testing less than 5 percent of fish died. Feeding: Not field during test Treatment for disease: There was no treatment of the fish from this lot until used in this test. Test design There was no treatment of the fish from this lot until used in this test. Test design The aquaria were made of glass and had a size of 32 x 36 x 38 cm containing 40 L test solution Test medium: Reconstituted water prepared by adding salt stock solutions Replication: Single replicate No. of Thenty fish per vessel Duration of test: 96 hours Environmental test conditions Temperature: nH: 6.8 to 7.4 Photoperiod: 16 hours light : 8 hours dark			
Conditions			
	Dissolved Øxvgen:	5.6 to 10.3 mg/L	
	AH: A A	6.8 to 7.4	
ß.	Photoperiod:	16 hours light : 8 hours dark	

Study Design

An acute 96-hour toxicity test was conducted to estimate the toxicity of KWG 4168 500 EC to rainfow trout *(Oncorhynchus mykiss)*. The primary measure for acute toxicity was mortality. Sublethal and behavioral responses were also observed during the course of the study. Results of the toxic were expressed as a 96-hour median lethal concentration (LC₅₀) which is the concentration of KWG 4168 500 EC estimated to be lethal to 50 percent of the test population of fish at the specified time.

Nominal test concentrations were 3.16, 5.62, 10.0, 17.8, 31.6 and 56.2 mg/L. Mean measured concentrations were 2.28, 4.83, 6.70, 19.8, 29.1 and 57.9 mg/L.

Test vessels were glass aquaria and had a size of $32 \times 36 \times 38$ cm ($1 \times 0 \times h$). The test volumes amounted to 40L. To each vessel 20 fish were added, which were observed after four hours and then daily for mortalities and symptoms of intoxication.

Dissolved oxygen, temperature and pH values were determined daily in each aquatum.

Analytical determinations of the active substance were made in the test medium at test initiation and termination.

Analytical method

Samples of water were analysed using the validated analytical method 90252 M001 report reference <u>M-008490-02-2</u> (see Doc MCP Section 5).

II. Results and Discussion

Validity criteria were not assessed up the study report.

At Day 0 measured concentrations ranged between 59 and A 1 % of nominal and at Day 4 measured concentrations ranged between 60 and 78 % of nominal. The test substance was quite stable under test conditions as shown by the percent ranges for measured analytical values observed between Day 0 and Day 4 for the individual test levels

test sutistance/L)		ation at hominal	Mean calculated concentration Day 0 - Day 4 (%)	Recalculated mean measured concentration (mg test substance/L)
0 (Control)**			<lod< td=""><td>0</td></lod<>	0
3.16			72	2.28
5.62	94 8 2	78	86	4.83
10.0	59 Q	7.5	67	6.70
17.8 🗸 🦼	MIII A O		111	19.8
31.6	92 ° 2 °	' - 2 ⁰ '	92	29.1
56.2	A103 2 2	<u>-</u> 9 U	103	57.9

Table CP 10.2.101-1 Measured concentrations during the test

¹ Average of two measurements, confected by the recoveries

Limit of detection. 0.01 mg a.s.

No mortalities or observable symptoms of intoxication were observed in the control, 2.28 or 4.83 mg/L mean measured groups. All fish in the 6.70 mg/L test group were observed with toxic symptoms and swimming behaviour slightly irregular (slight symptom). All the fish in the 19.8, 29.1 and 57.9 mg/L groups died during the 96-hour test period.

Mortalities and symptoms of intoxication (number dead / number affected with Table CP 10.2.1/01-2 symptoms) (description of observed symptoms)

Meanmeasuredconcentration(mgtestsubstance/L)	4 hours	24 hours	48 hours	72 hours	96 hours
0 (Control)	0 / 0	0 / 0	0 / 0	0/0	0,0,0,0,0
2.28	0 / 0	0 / 0	0 / 0	0/@	$\frac{\partial \partial}{\partial t} = \frac{\partial \partial}{\partial t} = $
4.83	0 / 0	0 / 0	0,40	0×0 ×	
6.70	0 / 20 (SN)	0 / 20 (SN)	0 / 20 (SN)	0 / 20 (SN)	€/ 20 (SN)
19.8	20 / 20				- +
29.1	20 / 20	- 0		Y- 20 8	-4 4
57.9	20 / 20	- 4	<u>7- ~ ~ ~ ~</u>		

Dead fish are added to the sum of fish with symptoms

Dead fish are added to	the sum of fish with symptoms	
SN: Swimming behavio	our slightly irreginar (slight symptom)	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Table CP 10.2.1/01-3	Study end-points based on mean meas	wed cancentrations and test substance/L)

End point	24 hours 24 hours 24 hours 26 hours
LC ₅₀	
LOEC	
NOEC	\$ \$ \$ \$ \$ \$ \$ \$ 4.83

#### III. Conclusion

The LC₅₀ (96-bour) KWQ4168 500 EC (active ingredient 494 g/L) to rainbow trout (Oncorhynchus mykiss) in a static 96-hour test was determined to be 1.5 mg test substance/L (equivalent to 5.7 mg a.s./L) with a 95% confidence interval from 6.70 - 19.8 mg test substance/L.

The lowest lethal concentration (LLC) was 19% mg test substance/L, the lowest-observed-effectconcentration (LOEC) was 6.70 mg test substance/L and the no-observed-effect-concentration (NOEC) was 4.83 mg test@ubstance/I

All reported results are related to mean measured concentrations of the test substance.

#### Assessment and conclusion by apphcant:

The study was conducted to the original 1992 version of the OECD 203 test guideline. Validity criteria according to the current QECD 203 (2019) guideline have been assessed and were met:

- Control mortality must not exceed 10% at the end of the test (actual: 0%)
- Dissoftved dygen concentration in all test vessels to be  $\geq 60\%$  of the air saturation value (actual: 56 to 163 mg/L)  $\sim \mathbb{C}$

@nalytical measurement of test concentrations is compulsory (analysis was performed)

The study is merefore considered acceptable.

The LC 50 (96-hour) was determined to be 11.5 mg test substance/L (equivalent to 5.7 mg a.s./L).



Data Point:	KCP 10.2.1/02
Report Author:	
Report Year:	1994
Report Title:	Acute toxicity of KWG 4168 EC 500 to waterfleas (Dafornia magna)
Report No:	HBF/DM 123
Document No:	<u>M-006630-01-1</u>
Guideline(s) followed in	OECD 202 (1984)
study:	
Deviations from current	Daphnids were 10/vessel instead of the recommended 5/vessel Temperature was measured in only one vessel and at the study Three replicate vessels used, 4 required by current guidance
test guideline:	Temperature was measured in only one vessel and at the old of the study Three replicate vessels used, 4 required by current guidance
	Three replicate vessels used, 4 required by current guidance O' O O
Previous evaluation:	
	$DAK(1997), KAK(2010) a^{*} \sqrt{1} d^{*} a^{*} \sqrt{1}$
GLP/Officially	Yes, conducted under GLP Officially recognised Osting facilities
recognised testing	Yes, conducted under GLEADITICIALly recognised testing facilities
facilities:	
Acceptability/Reliability:	Yes <u>(Y to Y to Y to O</u> )

#### **Executive Summary**

The 48-hour acute toxicity of KWG 4168 FC 500 to *Dopinia magna* was assessed under static conditions. Test species were exposed to nominal test concentrations of 0.65, 2.03, 3.62, 6.42, 11.4, 20.3 and 64.2 mg/L for 48 hours. Immobilisation and sub-lethal effects were observed after 24 and 48 hours. The 48-hour EC₅₀ value was 10.3 mg formulation/L and the no observed effect concentration (NOEC) (48 hours) was 3.62 mg formulation/k. The lowest observed effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (NOEC) (48 hours) was 3.62 mg formulation/k. The lowest observed effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (NOEC) (48 hours) was 3.62 mg formulation/k. The lowest observed effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration (LOEC) was 6.42 mg formulation/L and the provide effect concentration was 4.82 mg formulation/L (TEC, geometric mean

of NOEC and LOEC.

concentrations:

Test organisms

#### I. Materials and Methods

Materials

Test Material
Lot/Batch #: 2089 A according to 94023/0021
Purity: $3^{3}$ $42^{2}$ % (as s. content) $3^{3}$
Description: O Clear Gellowish liquid o
Stability of test Stable for the duration of the test, as shown by the results of the 48-hr
compound: analytical determination
Reanalysis/Exprine 17 March 1994
Adate:
Density: 0 4.004 gmL
Treatment of the treatm
Test rates: 5 0 0 5, 2.03, 3.62, 6.42, 11.4, 20.3 and 64.2 mg formulation/L
Solvent/Schicle
Analysis of test Yes, mean measured concentrations 67.7 to 148.7% of nominal

**Species:** *Daphnia magna*, first instar (6 – 24 hrs old)



Source:	Bundesgesundheitsamt in Berlin
Acclimatisation period:	This strain has been maintained in the laboratory (2 litre containers) the water in which they are kept is changed weekly (dilution water was M7-medium), 2 0 ± 1 °C, 16 : 8 hour light-date cycle); the animals were fed single cell green algae <i>Scenedomus subspictuus</i> and occasionally some commercial ornamental fish feed (trade name: TetraMinR) (aqueous suspension) Not fed during the test None reported 100-mL beakers with prexi glass plates for bids M7-medium Three replicates Ten daphnids per vessel
Feeding:	Not fed during the test $\sqrt[3]{2}$ $\sqrt[3]{2}$ $\sqrt[3]{2}$ $\sqrt[3]{2}$
Treatment for disease:	TetraMinR) (aqueous suspension) Not fed during the test None reported 100-mL beakers with prexi glass plates for lids M7-medium Three replicates Ten daphnids per vessel
Test design	
Test vessel:	100-mL beakers with prexi glass plates for hors
Test medium:	M7-medium $A$ $\phi$
<b>Replication:</b>	Three replicates T T S S S S
No. of animals/vessel:	Ten daphnids per vessel
<b>Duration of test:</b>	48 hrs 2 0 5 0 6 4
Environmental test conditions	100-mL beakers with prexi glass plates for bds M7-medium Three replicates Ten daphnids per vessel 48 hrs Test end; 19.92 Test start: © 8.7 8.8 mg/L Test end; 3.3 – 8.0 mg/L
Temperature:	Rest end: 19.98 20 5 4 5 5
Dissolved oxygen:	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$
рН:	100-mL beakers with prexi glass plates for hids M7-medium Three replicates Ten daphnids per vessel 48 hrs Fest engl 19.92 Test start: 8.7 8.8 mg/L Test start: 7.98 8.03 Test end: 7.99 - 8.06 16 h light 8 h dark
Photoperiod:	16 h light 8 h dark
Photoperiod:	

This study was conducted to assess the acute toxicity of KWG 4168 EC 500 to the water flea *Daphnia* magna over 48 hours. Test concentrations were based on the results of a preliminary non-GLP test.

Daphnia magua were used in the test from an in house culture, aged 6 to 24 hours. First instar daphnids were separated from older daphnuds by sequential mean screening.

Test vessels were 100 mL beckers containing 50 mL test solution, covered with a plexi glass plate. Beakers were held in a climatic chamber for 48 hours at  $20 \pm 1^{\circ}$ C under a photoperiod of 16 hours light to 8 hours dark.

For the test, 32, V mg and 40.6 mg of the test substance were weighed into 500 and 2000 mL test water, respectively, on order to prepare the nominal concentrations of 64.2 and 20.3 mg formulation/L. The solutions were stirted for 00 minutes with a magnetic stirrer. Lower concentrations were prepared from the concentration 20.3 mg formulation/L by dilution. Using a pipette, ten 6 - 24 hour old first instars were carefully ransferred into each beaker. The animals were randomly distributed to the single beakers. Three beakers, each containing ten water fleas in 50 mL test water, were used for each concentration. Nominal concentrations were 0.65, 2.03, 3.62, 6.42, 11.4, 20.3 and 64.2 mg/L.

To each test concentration were added ten first instar *Daphnia magna* using a pipette. Three replicates were used per concentration.



After 24 and 48 hours, water fleas were assessed visually by counting survivors, *i.e.* animals with swimming movements within 15 seconds of gentle agitation of the test vessel, and any uncertainty was checked using a stereomicroscope.

Temperature, oxygen content and pH of the test water was determined using electronic measuring equipment. Temperature was determined at test end, and oxygen content and pH were determined both at test start and test end.

EC50 determination was probit-analysis after the maximum likelihood method using a calculate

#### Analytical method

Samples of water were analysed using the validated malytical method 00252 M001, report reference <u>M-008490-02-2</u> (see Doc MCP Section 5).

#### II. Results and Discussion

The study was deemed valid in the report as control prortalities were less than 10%.

The active substance content analysed at the beginning of the test showed recoveries of 93.6 to 1487% of the nominal concentrations (for an average: 14.9%). These results indicate that the test concentrations prepared in this test correspond well to the nominal concentrations?

Moreover, the active substance content in the test concentrations of 203, 642 and 20.3 mg formulation/L were analysed at the end of the 48 hours exposure period. The active substance contents at the end of the test are slightly lower (19%) than those at the start of the test.

The results have been expressed in terms of nominal concentrations.

Nominal concer	ntration	Analysed concer	itration (mg a.s./L	) 0 4	
(mg formulation/L)	ting a.s.T.)	0 hours	of nominal		% of 0-hour values
0.65	0.52 2	0.40	<b>value</b> 1250	Ø	-
2.03	1.00 🔬 🐒	0.95	93.0 ° °	0.82	88.2
3.62	1.78		95.5	-	-
6.42	3916 5.61 2 5 5 5 5 6 1 2 5 5 6 1 2 5 5 6 1 2 5 5 6 1 2 5 5 6 1 2 5 5 6 1 2 5 5 6 1 2 5 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3.1 7 0	98.1	2.7	87.1
11.4	5.61	đ à c	\$114.15	-	-
20.3	10.0	13.0 ° °	130.0	8.8	67.7
64.2	31.6	470		-	-

# Table CP 10.2.1/02-1 Measured concentrations of KWG 468 during the test

The number of immobilised water fleas after 24 and 48 hours are presented below along with observed abnormalities.

Table CP 10.2. 7/02-2	Impobility of Daphnia magna after	48-hr exposure to KWG 4168
-----------------------	-----------------------------------	----------------------------

Measured	Rep	Sumber of living a	nimals after	Immobilised water	fleas (%) after
concentration s (mg a.s./L)		, 24 hears	48 hours	24 hours	48 hours
Cantrol	1	LÊ V	10		
Control 64	2	10	10	0	0
	3	10	10		



Measured	Rep	Number of living a	nimals after	Immobilised water	fleas (%) after
concentration s (mg a.s./L)	•	24 hours	48 hours	24 hours	48 hours
0.65	1	10	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	2	10	10	0	0 4 5
	3	10	10		
2.03	1	10	10 🖉		
	2	10	10	0 0 4	
	3	10	10		$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$
3.62	1	10	9		
	2	10			$3\pm 6$
	3	10	A0 , 0 , 0		$3\pm 6^{\circ}$
6.42	1	9	6[3]\$4 7		
	2	10	<b>9</b> [4] ^{6,4}	] ≵¥ 6 Č Š	23 15
	3	10	8[3] ^{6,4}		
11.4	1	9	8 [D) ^{56,4}		<u></u>
	2	9 V K	<b>6</b> ,4		$37\pm15$
	3	9 2 5,4 °	5 [50] ^{9,4}		
20.3	1	7[2] 5 5 9		$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	
	2	5 [3] 6,4	\$0 \$ \$ <u>\$</u> @	$43 \pm 92$	100
	ð ^ý	\[\[\[\]2] ^{6,4} \] ^{\[\]}	NY Y S		
64.2					
	2			100	100
<u> </u>	3				
<ul> <li>] number of livin</li> <li>* given as mean ±</li> </ul>	ng anima standar	als showing symptoms, d deviation (3) - 1 meth	fobserved ( ²		
Symptoms:	Ô	ponnae provements	Fréquen	cy of antennae r	novements clearly
~0	Ô		sincrease	d	2
3 Frequency decreased	of an	tente movements	clearly 4 Hardly a	iny loveients perceival	ble
-0	move	ments show coord	limation 6 Animals	lay at the bottom	
disturbances	s 🔊	e water surface	y y S Animals	cling together in clust	ers
able CP 10.2 A		prents show coord e water surface	oints after 48-hour exp		
0`	@```		r r		
Endpoint () (mg for malatio	ØL)	EGO & S	NOEC	LOEC	TEC
24-hour 6	S	21.4	6.42	11.4	8.55
4&hour	- Oř	103	3.62	6.42	4.82
			l I		

 4& hour
 103

 TEC, geometric mean of NOEC and LOEC



#### III. Conclusion

The 48-hour EC₅₀ value for *Daphnia magna* exposed to KWG 4168 EC 500 was 10.3 mg formulation/L (equivalent to 5.07 mg a.s./L) and the no observed effect concentration (NOEC) was 3 ( mg ) formulation/L. The lowest observed effect concentration (LOEC) was 6.42 mg formulation/L )

#### Assessment and conclusion by applicant:

The study was conducted to an older version of the OECD 202 test guideline. The study has therefore been assessed against the most recent version (April 2004).

Validity criteria according to OECD 202 (2004) were met:

- Mortality/immobilisation in the control to not exceed 10% (actual: 0.9%)
- Dissolved oxygen concentration at test termination to be ≥3 mg/L in all test vessels (actual 8.3 to 8.8 mg/L)

This study used three replicates of 10 organisms which is a deviation from current guideline requirements of four replicates of 5 organisms but as the total number of organisms used in this study was greater than that required, this deviation is not considered to have had a detrimental impact and the results are still considered to be valid.

The study is therefore considered acceptable.

The 48-hour EC₅₀ value was determined to be 10.3 mg formulation L (equivalent to 5,07 mg a.s./L).

Data Point:	
Data Point: 4 KCP 10.2, 1203 0 0 0 0 0 0 0	
Report Author:     Image: Author in the second	
Report Year: $\sqrt{2}$ $\sqrt{1994}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	
Report Title: Influence of KWG 4168 500 EC on the growth of the green alga, Scenedesmus	s
subspicat@s & br as	
Report No: 7/JO/122094	
Document to: $4 M - 066617 - 0571 O' C' C'$	
Guideline(s) followed in OFCD-Guideline No. 201 (1984), OECD Guideline for Testing of Chemicals	3",
study: ************************************	
Deviations from curpent None y y O	
Previous evaluation: vestevaluated and accepted of	
$\sim \sim $	
GLP/Officially OYes, conducted under SLP/Officially recognised testing facilities	
recognised testing	
facilities and the second se	
Acceptability/Reliability: Thes of O	

#### Executive Summary

In a 72-hour oxicity study cultures of green alga, *Scenedesmus subspicatus*, were exposed to KWG 4168 EC 500 at nominal test concentrations of 0.00032, 0.00056, 0.0010, 0.0018, 0.0032, 0.0056, 0.010, 0.018 and 0.032 mg/L.

The growth rate inhibition in the treated algal culture as compared to the control ranged from -11.8% to 52.4%. The biomass inhibition in the treated algal culture compared to the control ranged from -20.9% to 85.6%

Based on nominal test concentrations, the  $E_rC_{50}$  and  $E_bC_{50}$  values were determined to be 0.029 and 0.012 mg/L, respectively.



I.

**Materials** 

**Materials and Methods** 

#### KWG 4168 500 EC **Test Material** Lot/Batch #: 089A **Purity:** 491.4 g/L Clear, yellow liquid **Description:** Stability of test Not reported compound: **Reanalysis/Expiry** 16 December 19 date: **Density:** Not reported Treatments Nominal 0.0003 **Test rates:** 0.018 m 0.032 Solvent/vehicle: None t@96.69 nominal. The average Analysis of test Xes, measured c oncentration of nominal concentrations: measured concentration was 88.5% **Test organisms Species:** Green alga, Scenede Sous subspicators Collection of AlgarCultures, Inst. Plant Physiology, Universitat Source: **37**077 Gottingen, Germany Göttingen, Nikolausbe **ee** 18 Treatment for disease: Test design tton plugged. 300-mL Erlenmeyer flasks Test vessel: deionise@water and matrient solution Test medium terile. [®] per test concentration **Replication:** replicates for Initial cell density: Duration of test Environmental te conditions Temperatu 4-hr a day at 8000 lux Photoper

Study Design

Green alga, Scenedesmus Subspicatus) were exposed to KWG 4168 EC 500 over 72 hours to determine inhibition of growth of biomass and inhibition of the growth rate.

Stock cultures and pre-cultures of the alga were grown in nutrient solutions. The pre-cultures were inoculated with  $1 \times 10^4$  cells/mL. Water, nutrient solution and stock solution of the product were mixed together and split into two parts. One part was used for growth inhibition tests by inoculating it with



enough pre-culture to give a density of 1 x  $10^4$  cells/mL. The second part was used for quantitative analyses and was not mixed with algal pre-culture.

The tests were conducted in 300mL Erlenmeyer flasks sealed with cotton wool plugs and placed in an incubator at  $23 \pm 2^{\circ}$ C and 8000 lux 24 h/day. Temperature and pH was determined using electronic equipment throughout the study.

The nominal concentration of KWG 4168 EC 500 tested were 0.00032, 0.00056, 0.0010, 0.018, 0.0032, 0.0056, 0.010, 0.018 and 0.032 mg/L. Three replicates of each test concentration were conducted and six replicates of the control. The reference chemical  $K_2C_5O_7$  was tested at 0.10, 0.18, 0.32, 0.56, 1.00 and 1.80 mg/L.

Algal cell numbers were determined microscopically at 400x magnification using a Thoma counting chamber.

#### Analytical method

Samples of water were analysed using the validated analytical method 00252/1001 report reference <u>M-008490-02-2</u> (see Doc MCP Section 5),  $\sqrt{2}$ 

#### II. Results and Discussion

Validity criteria were not assessed in the study report

The analytical results are presented below and confirmed the correct dosing of the test system. All results have been expressed in terms of the nominal concentration

Nominal concentration	Nominal concentration	Initial measured	Difference to the
(μg test item/L)		concentration (µg 4 a.s.L)	çontrol (%)
0.32	0.16	W15 5 0 5	93.8
0.56	207 ° 40 ×		96.3
1.0 \$ 9			83.7
1.8 4 .0	0,88	⁸ 0.85 [%] ₂₀	96.6
3.2	Y.56 5 27 0		96.2
5.6	2.72	¥2.1 5	76.6
10 4 0	9.89 J 2 2	4.87 Q	87.9
18 0 .9	8.86	×12	81.8
32 K S	9.89 Y Y Y 8.86 Y Y Y 45.6 0 Y Y	13	83.3
<u> </u>		Mean:	88.5

 Table CP 10.2.1/03-1
 Initial measured concentrations of KWG 4168 500 ECS

The highest deviation from the control if growth rate was observed in the test with 0.032 mg/L KWG 4168 EC 500 after 72 hrs with growth rates inhibited by 52.4% when compared to the control. The greatest percentage inhibition in biomass was observed after 72 hrs in the test vessel treated with the highest dose of 0.032 with \$5.6%.

At a concentration of 0.0056 mg/L, some cells were deformed. At concentrations of 0.010, 0.018 and 0.032 mg/L, some cells were observed to be swollen with deformed cell walls.



0

Table CP 10.2.1/03-2Inhibition of growth rate and biomass (relative to control) in Scenedesmussubspicatus exposed to KWG 4168 500 EC

Nominal concentration	% inhibit	tion in growt	h rate	% inhibition in biomass			
(mg/L)	24 h	48 h	72 h	24 h	<b>48</b> h	720 h	9
Control	-	-	-	- 🧳	- 🔍		R.
0.00032	-11.8	4.1	-0.6	-20	7.6	2	Ŋ
0.00056	17.7	2.3	7-2.1	2.6	12	2.8	2
0.0010	0.1	8.7	0.0	2.3	₫8.7 🖓	7.30	,0 ,¥
0.0018	-3.9	-4,20	-1.2		-14.O	<b>9</b> .1 <b>9</b>	
0.0032	-7.1	\$3.2 ¢3	-1.0	¥-11.6¢	JQ °∽	-1.7	
0.0056	0.4	5.8	G1.3 Q	2.9	14.2		
0.010	48.3	24.7*	8.40	\$ <b>5</b> 8.1	582	42.5	
0.018	26.9* &	31.8	\$0.7* ×	440	64.0	72.5*	
0.032	Q17.7*	44.8*	52.45	90.2 Č	71,0 .	85.6*	

* t-values analysed in "Dunnett" Test? that are statistically different from the control

A summary of the relevantendpoorts determine in the report are presented below.

Table CP 10.2.1/(	)3-3 «\$	Summar	v of de	rived	ndpoints		` &
	£.	The second se	* »		, C	1,1	O
Growth rate	Ø		N.		Ž	2	0

Growth rate
$E_rC_{50}$ : $\sqrt[3]{9}$ $0.029$ mg/ $1^{-7}$ $\sqrt[3]{9}$ $\sqrt[3]{9}$ $\sqrt[3]{9}$
LOE _r C: $0$ $1018$ fag/L $2$ $4$ $3$ $4$
LOE _r C: 0.018 $\operatorname{mg/L}$ $\mathcal{A}$ $\mathcal{A}$
Biomass a subject of the second
$E_bC_{50}$ : $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$
$LOE_bC$ . $25$ $25$ $0.0142$ mg/L $25$ $45$
NOE _b C: $0.006 \text{ mg/b}$ $0.006 \text{ mg/b}$ $0.007 \text{ mg/b}$
NOE _b C: Effect threshold:

## III. Conclusion

The growth rate values (72 hour) determined for *Seenedesmus subspicatus* in KWG 4168 500 EC - treated matrient medium were,  $E_rC_{so}$  0.029 mg/L equivalent to 0.0143 mg a.s./L), LOE_rC 0.018 mg/L and NOE_rC 0.010 mg/L.

The biomass values (72 hour) determined for *Scenedesmus subspicatus* in KWG 4168 500 EC - treated nutrient medium were an  $E_b$  of 0.012 mgA (equivalent to 0.0059 mg a.s./L), a LOE_bC of 0.010 mg/L and a NOE_bC of 0.096 mgA.

#### Assessment and conclusion by applicant:

The study was conducted to the OECD 201 test guideline (1984), the current version of which is the OECD 202 "Freshwater alga and cyanobacteria, growth inhibition test", adopted 28 July 2011.

Valid Criteria have therefore been re-assessed against the criteria in the current 2011 version of the guideline and have been met.



- The biomass in the control cultures should have increased exponentially by a factor of ≥16 within the 72-hour test period (actual: 118);
- The mean coefficient of variation for section-by-section specific growth rates in the control cultures <35% (actual: 22.9%);</li>
- The coefficient of variation of average specific growth rates during the whole test period in replicate control cultures <10% (actual: 2.04%).</li>

It is noted that chemical analysis of the test media only took place at 0 hours therefore, although its can be confirmed that nominal test concentrations were achieved at the start of the test, there is no information on the stability of the test concentrations over the course of the 72-hour test portiod. The results have been based on nominal test concentrations but there is the possibility that this may inderestimate the  $E_rC_{50}$  which could be lower if it were based on mean measured test concentrations based on recoveries from 0 hours and 72 hours. However, several other algal studies with technical spiroxamine are available and demonstrate that spiroxamine is relatively stable over this 72-hour period under algal test concentrations, are likely to be reflective of the mean concentration achieved over the course of the test.

Furthermore, the results of this formulation study are considered to be highly consistent with the results of the technical material studies with several species of green area and therefore there is no indication that the formulation has any greater toxicity when compared to the active substance alone. It is considered that the formulation reflects the toxicity of the active substance.

It is also noted that this study does not provide the most conservative endpoint for the Tier I algal risk assessment and, as a result, is not directly used on the risk assessment.

For these reasons the study is considered to be valid and acceptable.

The  $E_rC_{50}$  was determined to be 0.029 mg/L (equivalent to 0.0143 mg/r.s./L).

The data have been subjected to statistical re-evaluation and the results have been presented in the following study summary.

Data Point; KCP40.2.1/64 O O
Report Author:
Report $\tilde{Y}$ ear: $\tilde{Y}$ $\tilde{Z}$
Report Title: Calculation of EC10, C20 and EC50 values for Scenedesmus subspicatus with KWG 4168 500 EC in an algal growth inhibition test
KWG 4168 500 EC in an algal growth inhibition test
Report No: $0471836$ -ECO28 $0^{\circ}$ $0^{\circ}$
Document NO $0$ $0$ $-761437-01-1$ $3$ $3$
Document No     Q-/6/431-01-1       Guideline(a) followed in study:     None       Deviations from current     None
study: O S C S
test guideline: $\sqrt{2}$
Previous evaluation: No, rot previously sommitted
Note V
GLP/Officially cognised testing facilities
facilities: A A A A A A A A A A A A A A A A A A A
Acceptability/Renability: Ye

#### Executive Summary

The report <u>M-006617-01-1</u> on the effects of exposure to KWG 4168 500 EC on the growth of algae (*Scenedasmus subspicatus*) did not provide estimates of  $EC_{10}$  or  $EC_{20}$  values. Therefore, these values as well as  $EC_{50}$  values have been calculated in accordance with the Annex to Com. Reg. 283/2013.



The resulting  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values for yield at 72 h were 3.20, 4.02 and 6.22 µg a.s./L, respectively. For growth rate after 72 h, the  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values were 4.90, 7.09 and 14.41 µg a.s./L, respectively.

#### I. Methods

The statistical evaluation was performed with statistical software ToxRatPro 3.3.0.

Effect concentrations with 10, 20 and 50% from the test item treatment when compared to the control were determined for yield and growth rate after 72 hours exposure. A Probit regression was performed for both measures, with confidence limits estimated according to Fieller's theorem.

#### II. Results and Discussion

#### Yield at 72 hours

Regarding the calculation of EC₁₀, EC₂₀ and EC₅₀ values for yield at 72 b, a statistically significant concentration/response was found (p(F) <0.00) for this parameter  $\sqrt{20}$  a statistically significant

The resulting  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values and the respective confidence intervals are represented if the following table below.

 Table CP 10.2.1/04-1
 Results of the Probit analysis of yield at 72th: Selected effective concentrations (ECx) of the test item and their 95% confidence limits

	Yield S S S
Parameter	EC 10 EC 10 EC 20 EC 20 EC 50 EC
	anterval) 🕉 🦉 interval) 👘 🖓 interval)
Effect on yield at 72	$4\theta^2 \qquad 6.22$
Effect on yield at 72	$\left  \begin{array}{c} O^{2} & (2^{2} + 90 - 3.62) \\ O^{2} & (3.549 - 4.42) \\ O^{2} & (3.549 - 4.42) \\ O^{2} & (5.79 - 6.67) \\ O^{2} & (5.7$

The resulting  $E_{10}$ ,  $E_{20}$  and  $E_{50}$  values of 3.20 (95%Cb; 2.70, 3.62), 4.02 (95%CL: 3.54 – 4.42) and 6.22 (95%CL: 5.79 6.67) ug a.s./L, respectively, meet the goodness of fit criteria showing a significant concentration/response relationship and therefore the estimated EC values are considered reliable.

#### Growth rate at 72 hours

Regarding the calculation of  $EC_{20}$  and  $EC_{20}$  values for growth rate at 72 h, a statistically significant concentration/response was found (p(p) <0.001) for this parameter.

The resulting  $C_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values and the respective confidence intervals are represented in the following table below.

# Table CP 10.2.1/04-2 Results of the Probinal Sis with growth rate at 72 h: Selected effective concentrations (EC.) of the test item and their 95% confidence limits

	Growth rate	
Parameter 95 % confidence interval) prg a.s./L]	EC ₂₀ (95 % confidence interval) [μg a.s./L]	EC ₅₀ (95 % confidence interval) [μg a.s./L]
Effect on growth $4.90$ 4.90 3.70 - 5.87	7.09 (5.94 – 8.03)	14.41 (12.95 – 16.56)

The resulting EC₁₀, EC₂₀ and EC₅₀ values of 4.90 (95%CL: 3.70 - 5.87), 7.09 (95%CL: 5.94 - 8.03) and 14.41 (95%CL: 12.95 - 16.56) µg a.s./L, respectively, meet the goodness of fit criteria showing a



significant concentration/response relationship and therefore the estimated ECx values are considered reliable.  $Q_{\mu}^{\circ}$ 

#### III. Conclusion

The resulting  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values for yield at 72-hours were determined to be 3.20 @.02 and 6.22 µg a.s./L, respectively. The  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values for growth rate at @.-hours were determined to be 4.90, 7.09 and 14.41 µg a.s./L.

#### Assessment and conclusion by applicant:

The statistical re-evaluation of the data has determined reliable  $E_{40}$ ,  $EC_{20}$  and  $EC_{50}$  values for both growth rate and yield. The  $E_rC_{50}$  determined in this be-evaluation work of 14.4 bg a.s. A is considered to be the same as the  $E_rC_{50}$  determined in the original study report of 0.029 mg/L (14.3 g a.s. L) therefore the original  $E_rC_{50}$  from the study report remains the critical endpoint determined from this study.

The values determined in the re-evaluation work are considered to be fully valid

(M) n

# CP 10.2.2 Additional long terms and chronic toxicity studies on fish, aquatic invertebrates and sediment dwelling organisms

Data Point:	KCP 10 \$2/01 0 6 6 6
Report Author:	
Report Year:	
Report Title:	Influence of KWG 4168\$C 500 on development and emergence of larvae of
	Chironophus marius
Report No:	HBF/CH 03
Document No:	
Guideline(s) followed in	Proposed method/for settiment toxicity tests deteloped by the BBA/IVA ad hoc
study: 🖉	working group "sediment toxicity tests" (February 1994)
Deviations from current	Replication of vessels not as per current guidance which recommends at least four
test guideline:	replicates per control and test group. However, there were only 5 too few larvae
~°,	per group, therefore the impack was considered minimal 3 L glass beakers were
	used test vessels, however, 600 mL glass beakers are recommended by the
	current guidance. However, the larger vessels were not likely to have a negative
	impact on the organisms, Dased off space available per larvae
¥	The composition of the artificial sediment is not as per current guidance,
	however, it was prepared following OECD 207 guidance at the time of testing.
	Based on the control emergence rate this did not impact the validity of the test
Previous evaluation:	yes, evaluated and accepted
	DAR (1997), RAR (2010)
GLP/Officially	Yes conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	See 4, 40
1 3 3 1	$\int_{-\infty}^{\infty} f(s, x) = \int_{-\infty}^{\infty} f(s, x) = \int_{-\infty}^$
Exacutive Sumptory	2

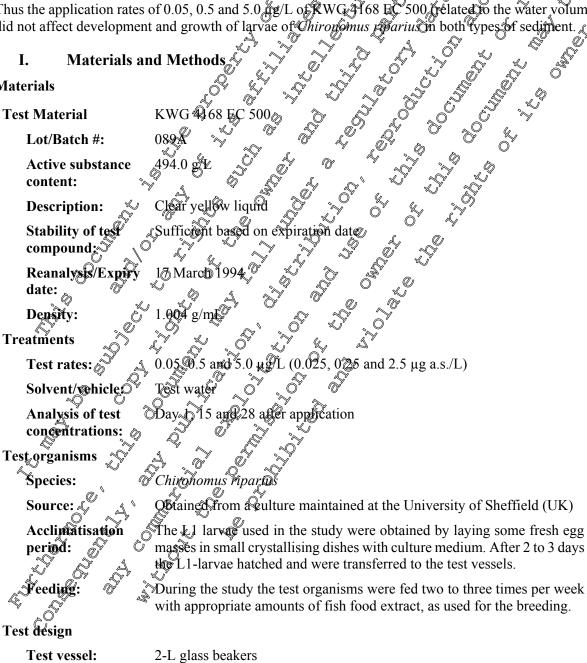
#### Executive Summary

Exposure to KWG 168 EC 500 was tested to assess the potential impact on the maturation of the sediment divelling life stage of *Chironomus riparius*. Test species were exposed to nominal concentrations of 0.05, 0.5 and 5.0 µg/L (equivalent to 0.025, 0.25 and 2.5 µg a.s./L). A control group was also tested. The test was conducted with both natural sediment and artificial sediment.

In test containers with natural sediment, 45 and 76% of nominal concentrations were analysed in the concentrations 0.5 and 5.0  $\mu$ g/L respectively, one day after application. In beakers with artificial



sediment, 33% of nominal concentrations were analysed at 5.0  $\mu$ g/L. The content of a.s. at 0.5  $\mu$ g/L was lower than the detection limit of 0.1  $\mu$ g a.s./L. Assuming that the behaviour of the test substance was analogous to 5.0  $\mu$ g/L (artificial sediment), only 0.08  $\mu$ g a.s./L could be expected at this concentration which is well below the detection limit.


The percentage emergence of midges in the natural sediment controls in relation to the number of inserted larvae was 92%. In the controls with artificial sediment, the emergence was 87% The number of emerged midges was not influenced by the treatment at any dosage as revealed by the staristical comparison of emerged midges from all test concentrations with those of the control (X2, Test, p = 0.0)

Also, the day of first emergence was not influenced at any concentration at both types of sedimeter, as well as the time of emergence (emergence peak) (U-Test, p = 0.05). (Only the concentration of 50  $\mu$ g caused a slight but statistically significant delay of emergence of male midges of about 1.1 (artificial sediment only), which is not considered to be caused by the test substance.)

Thus the application rates of 0.05, 0.5 and 5.0 mg/L of KW G⁄4168 E0 500 (related to the water volume) did not affect development and growth of larvae *arius* both types of sediment

I. Materials and Metho

**Materials** 





Test medium:	Natural sediment, artificial sediment and the test water was Elendt M7 medium $\swarrow$ $\approx$
<b>Replication:</b>	Three for the control, 0.05 and 0.5 $\mu$ g/L and duplicate vessels for the $5.0$ $\mu$ g/L test group per sediment type
No. of	25
animals/vessel:	
<b>Duration of test:</b>	28 days
Environmental test conditions	
<b>Temperature:</b>	17.9 to 20.1 °C 7.0 to 9.9 mg/L
Dissolved oxygen:	7.0 to 9.9 mg/L & g 2 2 2 2 2
pH:	7 29 to 8 16
<b>Photoperiod:</b>	16:8 hours light-dark cycle (including half hour dusk and dawn) mean
	light intensity $-1200 \text{ lux}$

#### Study Design

KWG 4168 EC 500 was tested to assess the potential impact on the rhaturation of the sediment dwelling life stage of *Chironomus ripartus*.

The test concentrations were selected on the basis of estimated environmental concentrations based on drift rates caused by normal agricultural ase. As the lowest concentration of  $0.05 \,\mu$ g/L ( $0.025 \,\mu$ g a.s./L) was below the detection limit of  $0.1 \,\mu$ g a.s./L) the concentration of  $5.0 \,\mu$ g/L, which is the tenfold of the highest environmental concentration, was also tested for better validation of analysis.

The following test concentrations were selected: 0.05 µg/L, 0.5 µg/L and 500 µg/L (0.025, 0.25 and 2.5 µg a.s./L). The test concentrations were set up as follows: 95 me test formulation was added to 1000 mL test water stock solution). Of this stock solution, 10, 1.0 and 0.1 mL were each made up to 1000 mL with test water (fulution I, II and III).

In order to reach the concentration of 0.05  $\mu$ g/L, 10 mL of dilution III were applied to the overlying water column of beakers containing 1.9 L water and 10.79 mL to those containing 2.05 L. The suspension was applied just below the water surface by using a pipette and gently mixing to ensure homogeneous distribution without disturbing the sediment For the test concentration of 0.5  $\mu$ g/L, 10 mL or 10.79 mL of different and for the concentration of 5.0  $\mu$ g/L, 10 mL or 10.79 mL of dilution III were applied each in the same way. For the biological examinations three replicates were prepared for the control, 0.05  $\mu$ g/L and 0.5  $\mu$ g/L and 0.5

For analysis of the active ineredient control about 2 litres of test medium were needed. Thus, additional parallel replicates were prepared for analytical purposes only (control: 1 replicate, 0.5  $\mu$ g/L and 5.0  $\mu$ g/L: 2 replicates of each sediment).

During the study the test organisms were fed two to three times per week with a commercial ornamental fish food extract as used or the breeding.

The animals in the test containers were exposed to a temperature of  $20 \pm 2^{\circ}$ C and a 16 : 8 hour lightdark cycle (additionally a 30 minute hour dusk and dawn) in a climatic chamber. Light intensity was determined to be on average approximately 1200 lux.

The test vessels were observed at least three times per week to make a visual assessment of any behavioural differences compared to the control. The sex, time and number of emerged adults was recorded at the same dates.



To determine number and sex of emerged adults, the covering plates of each test container were carefully partly removed and the midges which mostly stayed at the glass sides of the aquaria were enumerated; after identification of the sex (male midges have feathered antennae) midges were removed.

The bottom of the test containers was covered with a 2 cm high layer of natural or artificial sediment, respectively. Beakers were filled with 1.90 to 2.05 L test media. The height of the overlying water corresponded to 20 cm. The overlying water level was marked outside on the test vessel. Gentle activition was provided through a glass pasteur pipette situated about 2.5 cm above the sediment laver.

The nominal test concentrations were 0.05, 0.5 and 5.0 mg formulation fitre. An aqueous suspension of the test substance was applied to the test containers just beneath the water surface with a projecte of day 0 and mixed in the overlying water by gently aeration

The test containers (2 1-glass beaker) were filled with a layer of 2 cm of sediment and 20 m reconstituted overlying water ("M 7" according to ELENDT) Puring the study, mutuber, sex and time of emergence of emerged midges were determined daily. Emerged midges were removed from test systems. The test period was 28 days.

Test containers were 2-L glass beakers with an average drameter of 11 to 12 cm each labelled indicating study number, concentration and replicate. Test and bleeding water was prepared Plendt M7 menum.

Two different kinds of test sediment were used: a natural sediment and an artificial sediment. One half of the test vessels were filled with the natural sediment, the other with the artificial one. The natural sediment originates from the Honninger, Weiher, a water body close to the Obertorgisches Land". The sediment was taken there after draining the pond by means of a track-laying diggen transported in containers to Monheim. The Honringer Weiher, being about 0.1 km² in size, lies about 4.5 km northeast of Wipperfurth (Rheinsch-Bergischer Krais) and is fed by the brook Honninge. The pond can be characterised as oligo- to mesotrophic. It lies in a protected area and serves as a domking water reservoir (Wupperverband). Three experimental ponds located in the "Ptanzenschutzzentrum Monheim" were filled with a layer of this sediment and ground water in 1990 The test sediment for the study which is reported here was collected from one of these experimental pends. Only the top 5 - 10 cm of the sediment were taken, sieved (mesh size: 2.0 mm), mixed and deep frozen will the vest container were prepared.

The artificial sediment was prepared on day -12 and directly distributed over the test vessels. It consists of 69% fine quartz sand (84% of the sand has a particle size of 0.06 00.2 mm), 10% dried, finely ground peat (sphagnum peat; pH 2 - ), 20% kaolin (kaol pite content of about 36%, pH value ca 7, "Kaolin W", from Erbsloh / (Fisenberm) and around 1% calcium carbonate (pure) to adjust the pH value to  $6 \pm$ 0.5 (figures refer to dry weight)

#### Analytical method

Ô <u>M-008490-02-2</u> (see Doc MCP Section 5).

#### Results and Discussion

No validity criteria assessment was included in the report.

The analytical results of the four stock solutions (day 0) were between 79 % and 133 % of the nominal values (on average 94.8 % Based on these findings, initial concentrations were assumed to be the nominal values.

In test contained with natural sediment, 45 and 76% of nominal concentrations were analysed in the concentration 0.5 and 5.9 µg/L respectively, one day after application. In beakers with artificial sediment, 33% of nominal concentrations were analysed at 5.0 µg/L; the content of a.s. at 0.5 µg/L was lower that the detection limit of 0.1  $\mu$ g a.s./L. Assuming that the behaviour of the test substance was analogous to 5.0  $\mu$ g/L (artificial sediment), only 0.08  $\mu$ g a.s./L could be expected at this concentration which is well below the detection limit.



These findings are caused by the high absorptivity of KWG 4168. A major part of the test substance adsorbed at the surface of the sediment and only fractions of it could be found in the overlying water after some days. The artificial sediment absorbed the test substance at a slightly higher amount that the natural one, probably caused by the slightly higher content of organic matter.

The analytical results indicate a continuous decrease of active ingredient concentrations in the overlying water during the 28 day study period at the concentration of 2.46 µg a.s./L (natural sediment) (analysed concentrations were measured at 1.54 µg/L on day 1 decreasing to 0.15 µg/L by day 280. At all other concentrations the analysed results fell below the detection limit after day one of the study in both natural and artificial sediment. Results are given in the table below.

al.

Nominal	Analytical results on sampling days mean of two analyses (µg a.s. L)								
concentratio n			Trials with natural sediment						
(µg/L)	Day 1	Corrected recovery*			Corrected		Day 28	Orrected recovery	by the
	Analyse d conc.	Analyse d conc.	% [©] of nomina	Analyse d conce	Analyse d courc.	% of nomina	Analyse d cone	Analyse deonc.	Solution of nomina
Control	<0.1	- ()		na	Sna 🔗	na	20 ~ C	na	na
0.25	0.12	0.11	/. s	×0.1	- 🖘	C40 ¢	< 0.1	-07	<40
2.46	1.54	1088	)76 °	0.2	0.26	10.6	NTS X	0.18	7.3
	*		b)	Frials with	h arti <b>6</b> cial	sediment			
Control	<0.1	- 6	42 E	na 🔊	na	na o	na	na	na
0.25	<0,5 0,67	Ô X		<0,1 ×	<u>0-</u> _0	<40	<b>\$0.1</b>	-	<40
2.46	067	0.82	Q .	0×0.1√	-~	¥4.0	<0.1	-	<4.0
na = not analy	ysed O		) A.		<u>a</u>			<b>I</b>	

Table CP 10.2.2/01-1         Summary of analysis of active ingredient contents in overlying
---------------------------------------------------------------------------------------------

*The test concentration of 0.25 for a.s./ as corrected with the recovery of 106%, the test concentration of 2.46  $\mu$ g a.s.  $\hbar$  is corrected with the recovery of 82% L,

The %-emergence of midges in the controls in relation to the number of inserted larvae was high: 92 % of the inserted larvae maturated to addits in control with narval sediment and 87 % in the control with artificial sediment. The number of emerged midges was not influenced by the treatment at any dosage as revealed by the statistical comparisor of emerged midges from all test concentrations with those of the control X2-Test, p = 0.05

The data indicate that the emergence of the female started with" a small delay compared to male midges in all treatments. As humbers of temale midges are only slightly higher than those of males by 8.5% for an average, the relation of females and males is considered to be about the same at all test concentrations. Ą Ø

	Nûnber of emerged midges (3 replicates)	Emergence (%) of inserted larvae	% male emergence	% female emergence
Natural sectment				
Contr	69	92.0	46.4	53.6
0.05	67	89.3	46.3	53.7

Table CP 10, 22/01-2 Summary of numbers of emerged midges



0.5	66	88.0	54.5	45.5	
5.0	44	88.0*	47.7	52.3	
Artificial sedime	ent			<u>~</u>	ST OF
Control	65	86.7	41.5	58.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.05	66	88.0	48.5	51.5	
0.5	57	76.0	الله 42.1 م	<u>چ</u> 57.9	
5.0	41	82.0**	· 39.0	60,0	
5.0		82.0*	39.0		

*related to 2 beakers with 25 larvae each

Thus the application rates of 0.05, 0.5 and 5.0  $\mu$ g/s of KWG 4168 EC 500 (related to the water volume) did not affect development and growth of large of *Guronomus riperius* wheth types of sediment. The NOEC was determined to be  $\geq 0.0 \ \mu$ g/s ( $\geq 2.5 \ \mu$ g a. 5.1).

#### III. Conclusion

The percentage emergence of midges on the controls in relation to the number of inserted larvae was 92% with natural sediment and 87% in the control with artificial sediment. The number of emerged midges was not influenced by the reatment at any dosage as revealed by the statistical comparison of emerged midges from all test concentrations with those of the control (X2 Dest, p = 0.05).

Also, the day of first emergence was not influenced at any concentration at both types of sediment, as well as the time of emergence (emergence peak) (U-Test, p = 0.05). (Only the concentration of 5.0 µg/L caused a slight but statistically significant delay of emergence of male midges of about 1.1 days (artificial sediment only), which is not considered to be caused by the test substance).

Thus the application rates of 0.05 3 5 and  $5.0 \ \mu g$  of KWG 4168 EC 500 (related to the water volume) did not affect development and growth of larvae of *Chronomus ripgrius* at both types of sediment.

#### Assessment and conclusion by applicant:

No validity criteria assessment was included in the report, therefore, an assessment has been made against the current  $OECD_{219}(2004)$ :

- The emergence in the control and softent control must be at least 70% at the end of the test (actual: 92.0 and 86.5%, for the artificial and natoral sediments, respectively)
- *C. * parius* comergence to adults from control vessels should occur between 12 and 23 days after their insertion into the vessels (actual: between days 17 and 23)
- At the end of the test pH and the dissolved oxygen concentration should be measured in each vessel. The oxygen concentration should be at least 60% of the air saturation value
- (ASV) at the temperature used and the pH of overlying water should be in the 6-9 range in all test vessels (actual 7.29 to 8.16 mg/L)
- The water temperature should not differ by more than ± 1.0°C. The water temperature could be controlled by isothermal room and in that case the room temperature should be confirmed in an appropriate test vessel (actual: 2.2°C, however, the control emergence (in both sediment types) would suggest that this temperature variation had no impact on the organisms)

The validay criteria according to the current OECD test guideline are considered to have been met. The temperature deviation was slightly larger than that stated by the criterion but this is not considered to have affected the validity of the study.

The study was conducted in 1994 and therefore followed the BBA test guideline in place at the time. Several differences exist between this test guideline and the current OECD 218 and 219 test



guidelines, most notably the number of replicates used and the size of the test vessels. This study tested only a single replicate of 25 organisms at each test substance concentration as opposed to the four replicates of 20 organisms (total: 80 organisms per treatment). The artificial sediment is also different to that currently recommended.

All these points taken into consideration, the results are still considered to be suitable for use in the risk assessment as the study met the requirements of the test guideline at the time and the results largely fulfil the validity criteria of the current OECD test guideline. The study as therefore, considered acceptable.

The NOEC has been determined to be  $\geq 5.0 \ \mu\text{g/L}$  ( $\geq 2.5 \ \mu\text{g}$  a.s./L) but it is noted that there was a slight but statistically significant delay of emergence of male midges of about 1.1 days in the artificial sediment only. This was not considered to be a treatment-related effect as it was not seen in the natural sediment. It is also noted that there is a *Chironomus* study using spiroxamine technical ( $\frac{1}{20065}$ ) 01-1) which has a NOEC more than three orders of magnitude greater that this POEC value which supports the lack of any treatment-related effects at 3.0  $\mu\text{g/L}$ .

The data have been subjected to statistical re-evaluation and the results have been presented in the following study summary.

Data Point:	$K_{\rm s} = 10.2.2492$ $0^{\circ}$ $L_{\rm s} = 0^{\circ}$
Report Author:	
Report Year:	2020 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Report Title:	Calculation of EC10 and EC20 values for Chironomus ripations with spiroxamine
~	ECG00 in EchroniOstudy
Report No:	0491836 ECO7 @ 5 2 0 0 4
Document No:	<u>M-760</u> 8-017 0 0 0 1 0
Guideline(s) followed in	None y y y y y
study:	
Deviations from current	None y y y y y
test guideling:	
Previous evaluation:	No pot previously submitted
GLP/Officially	No, not conducted under GLP Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes a contraction of the second secon

#### Executive Summary

The report <u>M-006626 f1-1</u> on the effects of Spirovamine EC 500 on the development and emergence of the non-biting midge (*Chironomus riparius*) study did not provide estimates of EC₁₀ or EC₂₀ values. Therefore, these values have been calculated in accordance with the Annex to Com. Reg. 283/2013. Due to a lack of dose response, it was not possible to calculate reliable EC_x values for either of the parameters tested in either sediment types (natural or artificial).

tested in either sediment types (natural or artificial).



#### I. Methods

The statistical evaluation was performed with statistical software ToxRat Professional v3.3.0.

Effect concentrations with 10 and 20% from the test item treatment when compared to the pooled controls were calculated for cumulative emergence and development rate in both sediment types, but due to lack of a dose response, these could not be determined for either parameter.

#### II. Results and Discussion

Cumulative emergence at 28 days (natural sediment)

Due to the lack of a significant dose response on the emergence, when compare to the control it was not possible to calculate  $EC_{10}$  and  $EC_{20}$  values.

Development rate at 28 d (natural sediment)

Due to the lack of a significant dose response on the development rate, when compared to the control, it was not possible to calculate  $EC_{10}$  and  $EC_{20}$  values.

Development rate at 28 d in males (natural sediment)

Due to the lack of a significant dose response on the development rate, when compared to the control, it was not possible to calculate  $\mathcal{G}C_{10}$  and  $\mathcal{E}C_{20}$  values

Development rate at 28 d in females (natural sedonent)

Due to the lack of a significant dose response on the development rate, when compared to the control, it was not possible to calculate  $EC_{10}$  and  $EC_{20}$  values.

Sex ratio at 28 d (patural Sedimerit)

According to the obtained results due to the p(Chi2) being above the chosen alpha, no effects were detected on sex ratio differences at the study termination.

Cumulative emergence at 28 days (artificial sediment)

Due to the lack of a significant dose response on the emergence, when compared to the control, it was not possible to calculate  $EC_{10}$  and  $EC_{20}$  values.

Development rate at 28 d (artificial sediment)

Due to the lack of a significant dose response on the development rate, when compared to the control, it was not possible to calculate EC, and  $EC_{20}$  values.

Development rate at 28 dan mates (artificial sediment)

Due to the lady of a significant dose response on the development rate, when compared to the control, it was not possible to calculate  $EC_{10}$  and  $EC_{20}$  values.

Development rate at 28 d in tomales (artificial sediment)

Due to the fack of a significant dose response on the development rate, when compared to the control, it was no possible to calculate  $EC_{10}$  and  $EC_{20}$  values.

Sex ratio at 28 d (artificial sediment)



According to the obtained results due to the p(Chi2) being above the chosen alpha, no effects were detected on sex ratio differences at the study termination.  $Q_{p}^{\circ}$ 

#### III. Conclusion

Due to a lack of dose response, it was not possible to calculate reliable EC, values for either of the parameters tested in either sediment types (natural or artificial).

#### Assessment and conclusion by applicant:

The statistical re-evaluation of the data confirmed that due to a lack of a significant dose response was not possible to determine reliable  $EC_{10}$  and  $EC_{20}$  values for emergence and development rate.

The NOEC of 5.0  $\mu$ g/L (2.5  $\mu$ g a.s./L) from the original study report shall remain the critical endpoint determined from this study.

The values determined in the re-evaluation work are considered to be fully valid

## CP 10.2.3 Further testing on aquatic organismo

A mesocosm study using Spiroxamine C 500 (M-304557 M-1) is available and has been summarized below. A re-analysis study has also been conducted in order to assess the mesocosm data against current requirements. A summary of this eport has been presented following the summary for the original report.

Data Point: KCP 0.2.3/01
Report Author:       Q008       Q008<
Report Year: Quote
Report Title: PBiological effects and fate of Spirosomine C 500 w outdoor mesocosm ponds
So Simulating actual expositive concertors in agricultural use
Report No: C S KWX091 K S S C
Document &o: <u>M-304957-014</u>
Guideline(s) followed in OECO Guidance Document Simulated Freshwater Lentic Field Tests (Outdoor
study: St
Guidance Document on Testing Proceedures for Pesticides in Freshwater
Microcosms (SETACCEuropeWorkshop, Monks Wood, UK, July 1991)
Communication of storing studies interpretation criteria (2002)
(Proceeding from the CLOSSIC Workshop)
Deviations from current of the second
test guideline:
Previous evaluation: yespevaluated and accepted
$  \qquad \langle \nabla   \mathbf{RAR} (2000) \rangle \langle \nabla   \langle \nabla   \langle \nabla   \rangle \rangle$
GLP/Officially Ves, conducted under GLP/Officially recognised testing facilities
recognised testing
facilities:
Acceptability Keliability: Ses a
Executive Summary

## Executive Summary

The aim of the study was to determine the ecological effects of a simulated contamination with Spirosamin EC 500 on different trophic levels (phytoplankton, zooplankton, macroinvertebrates and periphyton in outdoor mesocosms as an aquatic model ecosystem for lentic aquatic freshwater systems with different trophic levels. The fate of the compound in the individual compartments (water body, sediment and macrophytes) was monitored simultaneously.



Three applications of the test substance (with a 7-day interval) were made and the study ran for 14 weeks post-application.  $Q_{\mu}^{\circ}$ 

Analysis of the test substance (Spiroxamine EC 500) in the water column 4 hours after each of the three fungicide applications indicated that all microcosms received the intended doses. On average \$27% of the intended dose were measured by the accompanying chemical analysis.

Due to the fact that the variability in concentration levels probably is higher during the first hores post, application due to incomplete mixing, and the concentration of higher treatment levels can be measured with a higher accuracy, it was decided to express the treatment-related responses observed in terms of the intended treatment levels  $(1.0, 2.1, 4.4, 9.3, 19.4 \ \mu g a.s./L)$ .

At the end of the experiment (Day 84) approximately all measured concentrations were below the Limit of quantification (0.1  $\mu$ g a.s./L).

The estimated DT50 of Spiroxamine in the water phases was determined as 28 days

The  $DT_{50}$ -value for the whole system of 7.2 days (water + nacrophytes + sediment) has to be considered with caution, as the fate of the test substance in the sediment showed a fluctuating pattern.

The overall NOEAEC for this mesocosin study was self 9.3  $\mu$ g/L. All effects observed up to the highest dose level of 19.4  $\mu$ g a.s. /L showed a fast recovery. Taking the fact into consideration that the highest concentration was investigated in one replicate only, the overall NOEAEC for this mesocosin study on Spiroxamine was set at 9.3  $\mu$ g a.s./L.

The taxa and species, on which the most pronounced effects were observed at this concentration are the Rotatoria. The most sensitive Rotatorian species were Asplancia, Potyarthra and Keratella quadrata. Similar sensitivities were observed for some species from several Rhytoplankton families, for example the Cryptophyceae Chroomonas, and Cryptophas. The Diatomeae Achnantes and the Chlorophyceae Ankya judai and Characium as well as the Chlorophyll a level as a measure for the periphyton. The effects are statistically reflected in two indices for diversity, similarity and PRC community response.

Heterogeneous occurrence of filamentous algae was skown to be not compound dependent at concentrations up to 4.4 µg a.s. by an additional laboratory study. Periphyton chlorophyll-a determinations revealed slight differences to the control at sampling days 28 to 42 in all dose levels. These differences to the control were not statistically significant at two consecutive measurement points. No indirect effects by potential adverse effects on poriphyton were observed neither in zooplankton nor in phytoplankton.

Investigations by ASS and little Cages and not reveal any adverse effects for all dose levels within the entire test period.

No effects could be observed on the three macrophytes species, which were introduced into the ponds or occurred naturally.

First significant effects were detectable at 4.4 og a.s./L. The study revealed a clear dose/response relationship. The highest observed effect classes belong to class 3B. No pronounced effects without recovery were observed within this study.

The overall NQEAEG for the mesocosm study (including the laboratory study with *filamentous algae*) was set at 9.3  $\mu$ g/L;  $\sim$   $\sim$ 

aterials and Methods Materials

Test MaterialSpiroxamine EC 500Lot/Batch #:PF90087683Purity:49.8%, 501 g/L (content of a.s.)



<b>Description:</b>	Clear brown liquid
Stability of test	Not reported
compound:	
Reanalysis/Expiry date:	Not reported
Density:	1.006 g/mL
Treatments	
Test rates:	1.0, 2.1, 4.4, 9.3 and 19 4 μg a.s./L
Solvent/vehicle:	Water
Analysis of test concentrations:	Not reported Not reported 1.006 g/mL 1.0, 2.1, 4.4, 9.3 and 194/μg a.s./L Water Yes - days 0 7, 14, 18, 21, 28, 35/42, 49/56, 69, 70, 37 and 84 Phytoplankton, zooplankton, macrozoobenthos and periphyton Naturally occuring Mesocosms prepared 5 months prior to applocation
Test organisms	
Species:	Phytoplankton, zooplankton, macrozoobenthos and periphyton
Source:	Natural occuring of the to the to the
Acclimatisation	Mesocosms prepared 5 months point to applocation
period:	
Test design	
Test vessel:	Cylindrical tanks made of black Polyethylene? each tank is 2.75 m in
*	drameter and 155 m je depth the surface is 3.94 m
Test medium:	Tanks were filled with sediment to a lovel of about 14 cm and with
	water up to 1 m depth (Bie water was composed of 80 % local ground water and 20 % water from a dearby (inconfaminated pond)
Replication:	$\bigcirc 3$ replicates for the control 2 replicates for the 1.0 – 9.3 µg a.s./L
	treatments and one replicate for the 19.4 $\mu$ g a.s./L treatment.
Duration of test;	Adays S S S
Environmental test	
	₹ ¹ 0.21 © 21.48°C 5° 6°
Dissolved oxygen:	2.35 20 @mg/L 2
рӉ҉Ѽ	$30.21 \ 21.48 \ C \ C \ C \ C \ C \ C \ C \ C \ C \ $
pH. Photoperiod:	2.35 – 20 Qmg/L Not reported Natoral. 0 9.70 hours sunshine per day
Study Design	
The sim of the start was	to determine the evolution efforts of a simulated contamination with

The aim of the study was to determine the ecological effects of a simulated contamination with spiroxamine EC 500 on different trophic levels (phytoplankton, zooplankton, macroinvertebrates and periphyton) in outdoor mesocours as an aquatic model ecosystem for lentic aquatic freshwater systems with different trophic levels. The fate of the compound in the individual compartments (water body, sediment and macrophytes) was monitored simultaneously.

The mesocosms used were twelve cylindrical tanks made of black Polyethylene (PE). They are installed next to the Institute for Ecotoxicology at the Agricultural Research Centre of BayerCropScience in Monheim am Rhein, Germany (geographical position: 51° 4′ N, 6° 55′ E). Each tank is 2.75 m in



diameter and 1.55 m in depth, the surface is 5.94 m² (Figure 1 and Figure 2). When filled to the nominal operating depth of 1.0 m, each tank contains 5.94 m³ water. The respective water level is obtained from a gauge inside the tank. A plastic tray (depth: 0.2 m) is located on the bottom of each tank. The trays are filled with natural sediment up to a height of about 14 cm. The tanks are arranged with three basins each in four rows. All basins are connected with a separate 13th tank by pipe. During the months before the start of the study the water was pumped from the separate tank into the 12 study basins forwards and backwards, guaranteeing a homogenous mixing in the complete system in order to adjust the same chemical and biological conditions before study start. The ponds were disconnected from each other one week before the first application.

Twelve test tanks (6 m³ water, 1 m water depth) which were used in this study are especially designed systems which allow the establishment of almost identical conditions at the start of a study. The bottoms of the artificial tanks were covered with natural sediment (approximately 14 cm in height) five months prior to the study start. The water was composed of local ground water and water from a pearby uncontaminated pond which was inoculated several times with zooptankton from chatural pond nearby. Natural communities developed spontaneously from seeds and roots of aquatic plants as well as from air borne and naturally transferred stages of plantsonic benthic and filamentors algae organisms during the months before study start. Additionally one and two weeks respectively before application plants of three macrophyte species (Callitriche pallustris, Myrophyllum spiratum and Potamogeton crispus) were inserted into the ponds to initiate a heterogeneous tabitat. In general, the artificial ponds are representative of a small stagnant water body.

The test substance was applied three times during the early growing season in Nav 2067 three times at an interval of 7 days onto the water surface of nine test ponds. The treatment levels were 1.0, 2.1, 4.4, 9.3 and 19.4  $\mu$ g a.s./L (two replicates of 1.0 to 0.3  $\mu$ g a.s./L, one replicate for 19.4  $\mu$ g a.s./L). Three further tanks were used as intreated controls.

The mesocosms were investigated for a period of two veeks Defore and 14 weeks after treatment. Several times during the study period water, sediment and macrophyte samples were taken and analysed to investigate the concentration of the test substance in water and sediment. Further parameters evaluated were the taxonomic composition of phytoplankton, zooplankton and macroinvertebrates at different days before and after the applications.

All ponds had six predetermined sampling positions to cover the whole expanse. At these positions samples for biological samples and water were taken. The sediment samples were taken at different places which were chosen by chance each time. Separate equipment was used to sample controls, ponds with lower and ponds with higher concentrations of the test substance.

The water samples were taken with a compercial water proof vacuum cleaner (Elektrostar, Starmix Zyklon HG &b). The suction tube (tength: 120 cm, diameter 5 cm) was introduced vertically from the water surface down to about 15 cm above the sediment and withdrawn within a few seconds. During this time opproximately 12 L of water were fulled into the sampling container.

Sediment samples were taken by means of a core according to MILBRINK (1971) (sampled sediment surface: 19.6 cm², height bout 10 cm). Previously it has been shown that chemicals primarily adsorb to the upper layer of the sediment, thus only the top about 2 cm of sediment were used for analysis. The sampled sediment column way filled into a glass-beaker having the dimension of the corer. The upper 2 cm of four separate sediment samples per pond were mixed.

During the study the abundance of macrophytes (% coverage) and filamentous algae was assessed visually A qualitative statement on the development during the study is available in this report. At the end of the study all pacrophytes and filamentous algae were harvested. The species were identified. For the determination of the biomass each species was dried in a dryer at 50°C.

250 mL of the mixed water sample was preserved with Lugol's solution. For evaluation of these samples, a fixed volume of the thoroughly shaken phytoplankton sample were emptied into a sedimentation chamber (Utermöhlkammer) for phytoplankton identification in the laboratory and allowed to stand for



at least 12 hours. The identification and enumerating of the cells was made by means of a reversed microscope within five days after the filling. The number of enumerating fields (at least 5 fields) was chosen according to the actual concentration of algae. The number of individuals was calculated according to Utermöhl. Until identification and counting, the samples were stored at room temperature in the dark.

3.3 litre of water were sampled and merged from six sampling positions in each pond, resulting in 20 L water samples. The merged samples were filtered through a plankton sieve (mesh size) 56 µm) and preserved in a fixation solution (70% Ethanol containing 40 g Sucrose/L and 40 mL Glycerine/L). For species identification (see 4.1.2), the thoroughly shaken samples were filtered through a plankton sieve (mesh size: 30 to 50 µm). The sample bottles were rinsed again with fixation solution and emptied into the plankton sieve. The zooplankton was transferred into a petri-dish with enumeration lines, containing fixation solution. The zooplankton samples were evaluated by use of a reversed nicroscope, identifying and enumerating the individual organisms. To prevent evaporation the petri-dishes were covered. After determination, all samples were filled back into the bottles and stored at room temperature in the dark. If the density of organisms was too high, two methods were used to evaluate the sample. Pirst, the individual sample was divided for enumerating by full evaluation of all sub-samples and somming up the results. Second, only a few sub samples were taken from a thoroughly homogenised sample and the enumerated results were projected for the toral sample. Not all organisms were identified at the species level, only most abundant species and/or those which could be identified within a reasonable time frame.

Two artificial substrate samplers (ASS) per mesocospi were placed on the sediment surface. The ASS was pulled up at each sampling placed in a bucket and the animals were washed into the bucket with tap water. The water was passed through a 9.5 mm sieve, and the residue was fixed as described above for the zooplankton. The fixed samples were macroscopically examined (see 4.1.2) and enumerated under a binocular. Not all organisms were identified at the species level, only most abundant species and/or those which could be identified within a reasonable time frame.

Within this mesocosin study possible adverse effects on the detrivorous biocoenosis were investigated using litter cages. Small litter cages were filled with leaves of *Populats spec*. (about 5 g dry weight) and offered as habital (cage size: diameter: 10 on; high 7 cm; mesk size 1 cm; stainless steel). The cages were exposed into the sediment surface on small plates made of staintess steel mesh (diameter: 20 cm mesh size 0.02 cm). Three weeks before the first application eight cages were exposed in each pond, thus a natural detrivorous biocoenosis could develop onto the leaves until application. The dry weight of the Populus leaves was determined before exposure by weighing. Two and four weeks after the last application one cage per pond and six, wight and ten weeks after the last application two cages each respectively, were taken out of the ponds. The leaves were poured shortly with clean water, thereafter the water was passed through a 0.5 mm sieve, and the residue was fixed as described above for the zooplankton, the leaves were drive in a dryer at 50 °C for at least 20 hours and the dry weight was determined.

One Emergence trap was fixed with lines at the center of each pond. The traps had a diameter of 56 cm  $(= 0.25 \text{ m}^2)$  In the traps, emerged organisms were fixed with 1,2-Ethandiol. The samples were preserved in fraction solution see above. As the ASS samples clearly show no effects on macroinvertebrates and as emerging organisms were not expected to be the most sensitive group, the samples of the emergence were not evaluated anymore.

The determination of chlorophyll-a was performed in accordance with NUSCH (DIN 3842 L 16 (DEV 1987)). Water samples were fiftered through Whatman GF/C glass fibre filters (pore size 1  $\mu$ m). The filters were folded, placed in aluminium foil and deep-frozen (-18°C) until extraction with ethanol. During the 2 hour extraction period the samples were agitated. The final extinction measurement was made in a Fray photometer (type MPM 1500, WTW) at a wavelength of 665 nm.

For the determination of the periphyton eight racks (made of stainless steel) per pond with ten glass slides each were placed in the water column (about 20 cm beneath the water surface. After a defined exposure time one slide per rack was taken out of the mesocosm and the periphyton on the glass slides



was wiped off with a glassfaser filter. The filters were folded, placed in aluminium foil and deep-frozen (- 18°C) until extraction with ethanol. During the 2 hour extraction period the samples were agitated. The final extinction measurement was made in a 1-ray photometer (type MPM 1500, WTW) at a wavelength of 665 nm.

The physico-chemical water parameters were measured several times during the study at an interval of about 7 days in mixed water samples.

For water analysis, 2 x 20 mL of a mixed water sample (see 4.3.4.2) was poured into a 50 mL amber glass bottle. On some occasions the water samples were obtained from three depths (ca. 10  $\times$  30, 30 -60 and 60 - 90 cm beneath water surface), to reveal the distribution of the test substance in the water column during the first 4days after application. For this purpose the water samples were obtained with a flask attached to a metal rod. The flask (1.0 L glass bottle) was moved around in the point during filling to obtain water from different sites. Samples of the water in the control mesocosms were taken one four before and 1 day after application to ensure that no cross contamination has entered the control poinds. Additionally to the water samples, the application suppressions were analysed on day 0, 7 and 14. For sediment analysis the upper 2 cm of four sediment samples (see 4.3.4.3) were mixed and about 320 g were taken for analysis.

As the heterogeneous occurrence of plamentous areae could not be sufficiently resolved within the mesocosm study, a separate laboratory study with focus on the flamentous areae only was performed in April 2008 using the same test regimes; three applications of 1.0, 21, 4.4, 9.3 and 19.4 µg a.s./L on Day 0, 7 and 14. The test was run for 24 days

The biological data were analysed as follows: For each taxon (species up to phylum if appropriate; total counts per sample (e.g., Zooplankton, phytoplankton, sediment organisms) universate statistics were used to test on differences between treatments and controls and to calculate a NOEC (No Observed Effect Concentration). At the community level, diversity and omilarity indices as well as Principal Response Curves were used for analysis. The program community Analysis V4.25 was used for all of the calculations, except or the Principal Response Curves. A former version of the CA program is described in (1992). The PRC analysis was performed with CANOCO 4.02

(DLO, Wageningen NL), which represents the original program used in published papers describing the method

#### Analytical method »

Samples of water were analysed using the variate analytical method 00623, report reference  $\underline{M}$ -<u>031628-01-1</u> (see Doc MCP Section 3).

Samples of sectiment were dralysed using the validated analytical method 01088, report reference  $\underline{M}$ -<u>298750-01-1</u> (see Doc MCP Section 5)

Samples of macrophytes were analysed using the validated analytical method 00721, report reference  $\underline{M-304557-01-1}$  (see Poc MCP Section 5)

#### H. Results and Discussion

The analyzed concentration of the application solutions gave an average of 92.1 % of the nominal concentrations for the three applications (minimum: 86 %, maximum: 97 %), thereby confirming nominal concentrations were appreved.

All analytical results correspond very well to each other (average over all concentrations at days 0/+4h, 7/+4h, 14/+4h, 82.7%). The results demonstrate, that nominal concentrations had been initially applied at each of the three treatments. The concentration of the test substance in the pond water declined continuously. Four weeks after the last application the concentration at the two lowest treatment levels was below the limit of detection (=  $0.102 \ \mu g \ a.s./L$ ). In the highest treatment level the concentration in the water phase was below the limit of detection on day 70.



Stratified samples of three different water heights were taken to determine the a.s. distribution in the water column four hours, one and four days after each application. The results show that four hours after the second and third application the major part of the test substance was still in the upper water layer. 24 hours after the second and 4 days after the third application it was homogeneously distributed in the total water column. At the first application no stratification of the concentration of the test substance was found. Probably the rainfall after this application caused a faster distribution.

The measurement of centrifuged water samples did not reveal any significant difference of noncentrifuged water samples. Therefore it can be assumed, that the total amount of test substance was too available.

The concentration of the test substance in the sectionent increased until two weeks after the last application. Thereafter the concentrations decreased very slowly with a fluctuating pattern. The highest measured amount of the test substance in this matrix was 20.8 % of the nominal concentration on day 28 at the highest test concentration. At the end of the study the portion of the test substance in sectionent was below 10 % of the initial applied amount for all reatments.

A very small portion of the applied substance was attributed to the macrophytes only 4 % as a maximum). Comparable to the water analysis the concentrations in the low cosages fall below the limit of quantification on day 28 and at the bighest dosage on day 70.

The mean  $DT_{50}$ -value for dissipation of spiroxamine in the water is 3.76 days. The mean  $DT_{50}$ -value for the whole system (water plus macrophytes plus sediment) was 7.22 days. This latter value has to be considered with caution, as the fate of the test substance in the sediment was very heterogeneous.

Experimental day	Nominal concentration	Man mersured	v Sominal Concentration
	Mmg @ (I)	concentration	concentration
Ű		F(mg.ass./L) ₀	<i>y</i>
Day 0 [1 hour]	v ^{9.25} 2 ³ 2 ³ 2 ³	5 86 5 2 79	94
		25.00 0 0	92
	27.51		91
	Geo 1 - NY S	<b>32</b> .06 √ 0 ¹	90
Day 7 [1 hour]	58.1557 ~~ 124,30 ~~ 525 ~~ 13.16 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	×11444 A	94
Day 7 [1 hour]	A25 & ~ ~ ~	5,88 9,2 42	94
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9 ¹ 2.42 ⁰	95
	279.51 20 40 00	912.42 ⁽⁰⁾ 25 (0)	91
	58.15	Å9.95	86
	13.10 27.51 58.15 126.30 75	117.23	97
Day 14 [1 hour]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.87	94
	13.15	12.50	95
	29.51 2 ~ ~	24.19	88
	58.15	50.95	88
	121/.30	112.95	93
Day 14 [1 hour]	<i>()</i>	Mean of %	92.1
Ŭ		SD	1.9

Table CP 10.2.3/01-1 Summary of analysis of spray solutions used to dose the test system

treatment	-			v v v				
Experimental day	Measured concent	Measured concentration (as % of the total applied nominal amounts) Image: Concentration (as % of the total applied nominal amounts) Water Sediment Macrophytes						
	Water	Sediment	Macrophytes	Sum of the second				
0 [+ 4 hours]	72.5	-	-	72.5 5				
1	53.7	- 0	- 65	5357 ~ 69 Q				
4	24.9	- 4	- 8	Q4.9 5 5 6				
7 [-1 hour]	15.5	12.0	0.003	27,5 0 0				
7 [+ 4 hours]	94.5	- 0		¥4.5 2 Q				
8	62.2		- 4 . 4 . 5	62.2				
11	35.7	<u>+</u> ~ ~ ~		357 0 4				
14 [-1 hour]	28.6	12.4	0.404 · · · · · · · · · · · · · · · · · ·	41.2 S				
14 [+ 4 hours]	76.5			76				
15	60.5			100.5 V				
18	21.9	- 8 5 0		21.0				
21	12.3	\$.33 ×	\$000 \$ \$	19.6				
28	6,50	13,4	0.000	20.9				
42	3.74 5 0	13,4 0.2	0.000	16.3				
56	3.82	5.855	0.000	9.71				
70	3984 27	127 2 5	0.000	16.0				
84		6.61 2 2	\$.000	10.5				

Table CP 10.2.3/01-2 Mass balance of spiroxamine in the test system during the study – 1.0 μg a.s./L treatment

Table CP 19.2.3/01-3 Mass halance of spiroxamine in the test system during the study – 2.1 μg a.s./L treatment

Experimental day	Measured concentr	ation (as %) of the to	tal applied nominal a	imounts)
	Water	Sediment S	Macrophytes	Sum
0 [+ 4 hours]	6702 2 4	- 47	-	67.2
1 🖉 💃	33.4 Q		-	53.4
4 2	25 3 0	- ~~	-	25.3
7 [-1 hour]	18.0	3.24	0.420	19.7
7 [+ 4 hours]	83.7 J	Ŷ	-	83.7
8	654 2 ~	-	-	63.4
8 5 5 11 5 5 5	33.4	-	-	33.4
14 [4 hour]	21.2	12.2	1.18	34.5
14 [+ 4 hours]	68.8	-	-	68.8
15	67.2	-	-	67.2
18	21.6	-	-	21.6

Experimental day	Measured concentration (as % of the total applied nominal amounts)				
	Water	Sediment	Macrophytes	Sum	
21	12.3	8.60	1.40	22.3	
28	3.84	12.1	0.725	16.7	
42	1.90	9.00	0.030	10.9	
56	1.94	8.41	0.037	10.4	
70	1.97	4.72	0.038	\$46.73 Q 5 ³	
84	1.91	6.14	0.038 00	8.69	

Table CP 10.2.3/01-4 Mass balance of spirox amine in the test system during the study – 4.4 µg a.s./L treatment

treatment				
Experimental day	Measured concent	ation (as % of the to	al applied nominal a	mounts) a construction of the construction of
	Water Q	ation (as % of the to	al applied nominal a	Sum
0 [+ 4 hours]	71.3			£71.3 م
1	57.1	- 6	- 2 . 6	57.%
4	26.1 5 5			26.1
7 [-1 hour]	15,9	6.2	0.168	22.5
7 [+ 4 hours]	94.6 \$ \$ 67.4 \$ \$			94.6
8 11 14 [-1 hour] 0 14 [+4 hours]	67,4 6		r	67.4
11 8	¥8.3 ~ ~ ~			38.3
14 [-1 hour] 🏷 炎	35,20 0 4	13.8 0	51.11	50.0
14 [+ 4 hours]	68.9 × ~	- ~ ~ ~		68.9
15	264.4			64.4
18 9 21	30.8		A -	30.8
21	Q1.6 5 0	20.9 5 5	2.09	34.6
28 ~ 0		15.2°	1.29	28.4
42 A	30.8 7 7 7 7 7 7 11.8 7 7 11.33 3 7 7 7 7	113	0.162	13.2
56	0.82	8.14~0	0.130	9.09
70		8.36	0.015	9.20
84		\$*.36	0.015	9.19

Table CP 19.2.3/01 5 Mass balance of Spiroxamine in the test system during the study – 9.3 μg a.s./L treatment

Experimental day	Measured concentration (as % of the total applied nominal amounts)				
	Water	Sediment	Macrophytes	Sum	
0 [+ 4 hours]	80.3	-	-	80.3	
1	60.9	-	-	60.9	

Experimental day	Measured concentration (as % of the total applied nominal amounts)					
	Water	Sediment	Macrophytes	Sum Sum		
4	28.4	-	-	28.4		
7 [-1 hour]	17.6	4.37	0.288	22.2		
7 [+ 4 hours]	98.7	-	- 27	98.7 °		
8	77.8	- 💎	- 07	70.8		
11	43.0	-	- 20 *	43.0 0 5		
14 [-1 hour]	33.5	6.08	1.48 Q° Q	41.9		
14 [+ 4 hours]	87.4	- 40 00 0		87.4 4 5		
15	70.6		- 2 2 8	70,6		
18	36.3		-4 A 64	38.3 5		
21	21.2	14.2 0 .4	2.25	37.7%		
28	14.5	\$.49 \$ \$	1019 5 5	2402 0		
42	1.51 Q	4.15	0.1960	5.86 %		
56	0.392	7.94 8	0496 0	8.53		
70	0.396	\$9.34 fr @	19.050 × ×	<u>9</u> .79		
84	0:387	5.38 4 4	0.054 J	5.82		

Table CP 10.2.3/01-6 Mass balance of sporoxamine in the test system Ouring the study – 19.4 µg a.s./L treatment

Experimental my Measured concentration (as % of the total applied nominal amounts) Water & Sediment & Macrophytes Sum							
0 [+4 kours]	Water 2 4 85.3 5 62.9 5	Sediment &	Macrophytes	Sum			
0 [+4 hours]	85.3			85.3			
	85.3 3 3 3 3 3 3 3 3 3		-	62.9			
4	Q9.2 5 0		-	29.2			
7 [-1 hour] 🦧 🖒	19.2	6 80°≈ ×	0.16	26.3			
7 [+ 4 hours]			-	115.7			
		Č ^z .~O	-	80.1			
11	45Q7 ~ Q	- 59 &554	-	45.1			
14 [-1 hour]	36.4 <i>fy C</i>	\$.54	1.23	46.2			
14 [+ 4 hour	86.	-	-	86.0			
15	87.9 53.85	-	-	87.9			
18 2 6 4	53.85	-	-	53.8			
	46.3	5.85	3.68	55.9			
$ \begin{array}{c} 14 [-1 \text{ hour}] \\ 14 [+4 \text{ hour} \\ \hline 15 \\ \hline 18 \\ \hline 21 \\ \hline 28 \\ \hline 7 \\ \hline 42 \\ \hline \end{array} $	12.1	20.8	1.92	34.9			
42	1.83	13.9	0.15	15.9			
56	0.377	13.0	0.089	13.4			

Experimental day	Measured concentration (as % of the total applied nominal amounts)					
	Water	Sediment	Macrophytes	Sum Sum		
70	0.185	12.4	0.029	12.6		
84	0.180	8.30	0.030	8.51		

Direct effects of the applications of Spiroxamine EC 50006 the overall community metabolism could not be observed. In the second half of the study the development of the filamentous algae caused, especially for one replicate of the control and one replicate of 1.0 µg/Q, significant dower pH values and oxygen concentrations. The other treated ponds displayed slight higher values as compared to the control range during this period. All other investigated chemical physical parameters do not show any difference between treated ponds and the controls.

The macrophytes showed a strong growth in a ponds without any sign of a treament related offect. .

The measurements of the chlorophyll a content of the pelagial water revealed a short term effect for the three highest test concentrations between days 7 to 14. These findings are in agreement with the observed effects of the phytoplankton ouring this time period. X)

The periphyton was determined indirectly Via chlorophyll a measurement. The total development was comparable for all ponds with a strong increase during the pre-treatment and a decrease after the application phase. A transient effect between days 28 and 42 cannot be excluded for the treated ponds, although one replicate of 4.4 and 9.3 µg/E each, was always in the range of the control. A statistical significant difference was calculated for day 42 only. A full recovery could be stated for all treatments on day 56 (= 6 weeks after last application). Periphyton consists of epiphytic algae, which to a lower amount can be detected in the pelagial water as well. The epiphytic algae, which were detected in the pelagial water in this rudy revealed NOEC of 2 µg & /L for Achnonites spec., which was one of the dominant taxa in this study. For two other epiphytic taxa, which occurred in minor abundances only, a slight benefit was found at the two highest test concentrations.

The heterogeneous development of the Mamentous algae in the mesocosm did not allow a reliable determination of this organism, as the values within the treated ponds were very inconsistent. Although the abundance of filamentous algae was lower in most of the treated ponds, a clear dose related effect could not be stated. Taking the heterogeneous growth of filamentous algae into consideration still a potential recovery for these algae up to the second highest concentration can be stated. A laboratory test performed to further investigate possible effects on the filamentous algae revealed a NOEC of 4.4 µg a.s./L. The results of this study are considered for the assessment of short term effects of the test substance to mamentous algae. Considering the results of the mesocosms and the additional laboratory study the NOÉAEC was set to 90 µg/L

The total results of the chlorophyll a, periphyton and filamentous algae result in a NOEAEC of 9.3 µg/L. The development of the periphyton and the filamentous algae obviously had no major influence on the dynamics of phyto- and zooplain ton and the macroinvertebrates. The observed biological results for these groups are summarised in the following Table and in respective assessment for each treatment level. Where statistically significand differences between treatments and controls were observed, and these were considered to be treatment related and biologically significant, the responses were categorized in effect classes as mentioned in Working Document SANCO/3268/2001 rev.4(final), 2002, but following the adapted effect classes as described by

These effect lasses are presented below.

et al (2006) and De Jong et al. (2008).

the mesocosm stud	
Effects class	Definition of effects
1	Effect could not be demonstrated
2	Slight effect (minor in duration and magnitude)
3 A	Pronounced short-term effects and recovery within 8 weeks after the first application or total period of effects <8 weeks followed by recovery
3 B	Pronounced short-term effects and recovery within 8 weeks after the last application of followed by recovery
4	Pronounced effect but study measurement too short to demonstrate that treatment related effects last less than 8 weeks
5 A	Clear long-term effects Pasting longer than 8 weeks but full recovery observed at end of experiment
5 B	Clear long-term effects lasting longer than 8 weeks but full recovery not observed at the end of the experiment

Table CP 10.2.3/01-7	Effect classes used to evaluate the treatment-related responses of spiroxamine in
the mesocosm study	°

In the summary table (see below) trends of treatment-related effects are indicated boplacing the effect class. A trend of an effect on a certain endpoint does not need to be statistically significant on consecutive sampling days or at the end of the experiment, but is considered relevant in connection with the overall effects observed.

Treatment level of 1.0 µg a.s./L: No consistent treatment-related effect could be observed for the population and community endpoints of the benthic macroinvertebrates sampled in the ASS and the phyto- and zooplankton studied.

Treatment level of 2.1 gg a.s. A. No consistent treatment elated, effect could be observed for the population and community endpoints of the benthic macroinvertebrates sampled in the ASS and the phyto- and zooplankton studied.

Treatment fevel of 4.4 µg a.s. (1) The benthic macrofilvertebrates were not affected by the treatments. For the zooplankton a stight adverse treatment related effect became apparent for one taxonomic group the Rotatoria. Regarding the single species, only weak adverse effects which were statistically not significant were found for the dominant taxa *Polyarthya species* and *Asplanchna species*. But for the sum of Rotatoria Class 2 effect resulted for a very short period after the third application (days 14 to 18). Another Rotatoria species (*Keratella quadratic*) showed higher densities as compared to the control after day 28. But it is questionable, if this indine is caused by lower competition of other zooplankter, as no biological significant adverse effect was found for the phytoplankton a Class 2 effect was found for one Diatomeae taxa (*Achnantes species*) and a Class 3 effect for one Cryptophyceae taxa (*Cryptomonas species 20-30 m*). These taxa matrix contributed to the total algae abundance, these effects were also reflected on the community level. However aready 4 weeks after the last application a full recovery could be stated for all these endpoints.

Treatment revel of 9.3 µg a.s./L: Again no treatment related effect existed for the macroinvertebrates. The pronounced effects on the Rotatoria species *Asplanchna species* and *Polyarthra species* and thus on the sum of Rotatoria are regarded as Class 3 effect. But a recovery was obvious already 2 weeks after the last application. The rotatoria dynamics caused a transient lower similarity of the zooplankton between the control and this dosage. A class 3 effect could also be derived from the PRC calculations. Nevertheless a recovery on the species level and the zooplankton community can be stated. The effects on single phytoplankton species and algae community, which were observed at 4.4 µg/L were also seen in this dosage although slightly more pronounced (Class 3 effect). The dynamics of the respective single taxa and the Community indices show a very high similarity between the control and this dosage from

day 42 onwards. Regarding the results of the acroinvertebrates and the zoo- and phytoplankton this treatment can be considered as the overall NOEAEC_{mesocosm}.

Treatment-level of 19.4 \mug a.s./L: The treatment-related responses observed in the microcosmstrated with 19.4 μ g a.s./L. and the species involved were similar to the previous tructure of the species involved. with 19.4 µg a.s./L, and the species involved, were similar to the previous treatment but more pronounced. The strongest effects observed at this treatment level belong to class 3 thus this treatment could be considered as NOEAEC as well, but since only one replicate exist at this dose levely the concentration 9.3 μ g a.s./l was chosen as the overall NOEAEC_{mesocosm}.

Table CP 10.2.3/01-8	Summary of treatment related	effects	observed in the	mesocosta	tudyon	terms	7
of effect classes		4	, Ó¥	×,	Ň	Å	ų

			a?	Å			
	Number of	Test concentrations (µg á.s./L) &					
	detected taxa *)	1.0	2.1	4.4	9.3	A19.4	
						A	
Zooplankton							
Cladocera	10 taxa		Ø . S	6 2		1	
	Sum of Cladocer			Fi S		2₀1	
Copepoda	2 taxa		to s	1000	1 0 3	ř	
	Nauplii 🖉 🔧	1 0				2 ↓	
Ostracada	1 taxa	S é	100 4		¢1 0	1	
Diptera		1		in the second	hý	1	
Rotatoria	Littaxa 🖉 🖉			№	× /	1	
Ś	Asplanchną spęc. 🧳				2↓	2 ↓	
	Polyarthra spec.				3A ↓	3A ↓	
<u> </u>	Keratella quadrata		100	3BØ	3B ↑	3B ↑	
, S	Supt of Rotatoria			201	3A ↓	3A ↓	
Taxa richness				1	1	1	
Diversity				1	1	1	
Similarity		1. ~	1 5	1	3B ↓	3B ↓	
PRC community res	sponse O V	N N	3	1	3B ↓	3B ↓	
Macroinsertebrate							
(ASS)	Ab taxa	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	1	1	1	
Taxarichness			1	1	1	1	
Diversity		1.0	1	1	1	2 1	
Similarity S		Ø	1	1	1	1	
PRC community jes	sponse ~	1	1	1	1	1	
Littereages		1	1	1	1	1	
Cryptophyceae	1 taxa	1	1	1	1	1	
	Chroomonas spec.	1	1	1	2↓	3A ↓	
	Cryptomonas spec.	1	1	3A ↓	3A ↓	3A ↓	

	Number of detected taxa *)	Test concentrations (µg a.s./L)						
		1.0	2.1	4.4	9.3	19.4		
					~	5		
Diatomeae	8 taxa	1	1	1	S.	K		
	Achnantes spec.	1	1	2↓	JA↓ ^d	73B ∳Ç7		
Chlorophyceae	6 taxa	1	1 💍		1 5	L'A S		
	Ankyra judai	1		1	2 ↑ ∅			
	Characium spec.	1	Ũ		2,0	2 60 . 0		
Chrysophycea	2 taxa	1 🔊	1	1	Ŷ,			
Conjugatophyceae	3 taxa	1 &		K L		×1 🗸		
Cyanobacteria	3 taxa			a d		100 s		
Euglenophyta	4 taxa		A D			Ĩ S		
Taxa richness	Q				10° S	2 10		
Diversity	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10' '>'		1 8	Ŷ.Ś.	Z ^P ↓		
Similarity	Q.L		S S	24 8	3 AOI (3A ↓		
PRC Community res	sponse 🖉 🖉		1	₽Ž ↓ _Q	3A↓ O	3A ↓		
Chlorophyll a		Ŷ Q		2	2	2 ↓		

*) only affected taxa are named wither taxa are Summedup)

 $\downarrow = decrease$

 \uparrow = increase

III. Conclusio

Analysis of the test substance (Sproxamine EC 500) if the water coumn 4 hours after each of the three fungicide applications indicated that all microcosms received the intended doses.

On average 82.7% of the intended dose wore measured by the accompanying chemical analysis.

Due to the fact that the variability in concentration levels probably is higher during the first hours post application due to incomplete mixing, and the concentration of higher treatment levels can be measured with a higher accuracy, it was decided to express the treatment-related responses observed in terms of the intended treatment levels (1, 0, 2.1, 4, 9, 3, 19.4, 4, 2.3,

At the end of the experiment (Bay 84) approximately all measured concentrations were below the Limit of quantification (Q.Tug a st.L).

The estimated DT_{50} of Spiroxappine in the water phase was determined as 3.8 days.

The DT_{50} -value for the whole system of 7.2 days (water + macrophytes + sediment) has to be considered with caution as the fate of the test substance in the sediment showed a fluctuating pattern.

The overal NOFAEC for this mesocosm study was set at 9.3 μ g a.s./L. All effects observed up to the highest dose level of 49.4 μ g a.s./L showed a fast recovery. Taking the fact into consideration that the highest concentration was investigated in one replicate only, the overall NOEAEC for this mesocosm study on spiroxamine was set at 9.3 μ g a.s./L.

The taka and species, on which the most pronounced effects were observed at this concentration are the Rotatoria. The most sensitive Rotatorian species were Asplancha, Polyarthra and Keratella quadrata.

Similar sensitivities were observed for some species from several Phytoplankton families, for example the Cryptophyceae Chroomonas and Cryptmonas, the Diatomeae Achnantes and the Chlorophyceae Ankya judai and Characium, as well as the Chlorophyll a levels as a measure for the periphyton,

The effects are statistically reflected in low indices for diversity, similarity and PRC components response.

Heterogeneous occurrence of filamentous algae was shown to be not compound dependent concentrations up to 4.4 µg a.s./L by an additional laboratory study.

Periphyton chlorophyll-a determinations revealed slight afferences to the control at sampling to 42 in all dose levels. These differences to the control were not statistically significant consecutive measurement points.

No indirect effects by potential adverse effects on periphyton were observed neither in zooplankton for Ĵ in phytoplankton.

Investigations by ASS and litter cages did not reveal any adverse effects for all dose levels within the entire test period. Ô

No effects could be observed on the the macrophytes species. which were introduced into the ponds or occurred naturally.

First significant effects were detoctable at 4.4 µg as /L. The study revealed a chear dose/response relationship. The highest observed effect classes belong to class 3B. No pronomiced effects without recovery were observed within this study.

The overall NOEAEC for this mesocosm study (picluding the laboratory study with filamentous algae) was set at 9.3 µg a.s./L. S Ô

 \bigcirc

Assessment and conclusion by applicant:

The study was conducted to the guidance in place at the time of conduct.

Analytical measurements taken of the days of application demonstrate that the nominal test concentrations were achieved. , Ø

In accordance with the Aquate Guidance Document, the study data has been re-evaluated to take account of MDD analysis as well as re-assessment of the effect lassifications. The results of this reassessment are presented in the subsequent summary of study <u>M-690576-01-1</u>). Further commentary on the reliability and acceptability of these mesocosm data is also included at the end of the following

Data Point:	KCP 10.2.3/03
Report Author:	; ; ; · · · · · · · · · · · · · · · · ·
Report Year:	2019
Report Title:	Re-evaluation of a mesocosm study with spiroxamine
Report No:	E 413 3295-9
Document No:	<u>M-690576-01-1</u>
Guideline(s) followed in	None
study:	
Deviations from current	None ∇ D D D D
test guideline:	
Previous evaluation:	No, not previously submitted 2 0 2 0
GLP/Officially	not applicable
recognised testing	
facilities:	
Acceptability/Reliability:	Yes y y y y

Executive Summary

The effects of the fungicide active substance spiroxamine on aquatic organisms of different trophic levels (phytoplankton, periphyton, zooplankton and macroinvettebrates), were investigated in an outdoor mesocosm study (Bayer CropScience AG Report ID EBKWX091) conducted in 2007, in accordance with the guidance available at that time. In the current 'Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge of field surface wate?' EFSA (2013), it is suggested to report minimum detectable differences (MDD) in connection with the DOECs for taxa assessed in a micro- or mesocosm study. To derive a regulatory acceptable concentration (RAC), it is recommended that for at least eight populations of the sensitive taxonomic groups, the MDDs should be sufficiently low for an evaluation of direct effects. Therefore, the objective of this re-evaluation work was to calculate MDDs for the biological data sets to determine for how many populations of sensitive groups a reliable evaluation of direct effects was possible, and to re-evaluate the effects according to the Aquatic Guidance Document (EPSA 2013).

Due to the function of action of the test item, all taxonomic groups present in the mesocosms were considered for the re-evaluation. Therefore, the analysis was performed for the data sets of phytoplankton, periphyton, zooplankton and macroinvertebrates NOECs and MDDs for the taxa considered for the evaluation were calculated using the one-side Williams-test following the proposal outlined in Brock *et di* (20) S). In addition, the effects of the most relevant taxa were classified according to the current guidance and recommendations in orderic allow an estimation of ETO- and ERO-RAC.

For phytoplankton, mactoinvertebrates and zooplankton, 19 taxa plus pooled data on higher taxonomic levels fulfil the MIDD criterion proposed by Brock *et al.* (2015). Furthermore, the chlorophyll a measurements of phytoplankton and perphytop as web as the macrophyte coverage could be evaluated. If a more strict criterion is applied, *e.g.* that the MDD should be at least once <70% within the first four weeks after the first application, 13 taxa representing populations of macroinvertebrates, zooplankton and phytoplankton allow a statistical evaluation of direct effects: Tubificidae, Chironomini, *Chaoborus spec Simocephalus vetilus, Chydorus sphericus, Eucercus lamellatus*, cyclopoid copepods (and nauplia larvae). *Polyarthra spec.*, *Chramydomonas spec.*, coccoid Chlorophyceae, *Chroomonas spec.*, *Cryptomonas spec.*, (20-30 µm), and Pennales (30-40 µm). Thus, the requirement of the Aquatic Guidance Document (EFSA PPR 2013) that the MDDs should be sufficiently low to allow the analysis of direct affects for at least 8 potential sensitive populations is met by the study.

The following effect erasses were assigned to the different test concentrations:

- At the lowest test concentration of 1.0 μ g/L, no treatment effects were found (class 1).
- At 2.1 µg/L, a slight direct effect on total phytoplankton abundance and a pronounced shortterm promoting effect on the rotifer *Keratella quadrata* were detected (class 2 for the direct effect on the phytoplankton and 3A if the potential temporary promotion of a rotifer species is considered an adverse effect). Other taxa showed no effects.

- At 4.4 µg/L, class 3A effects for total rotifers, total phytoplankton, chlorophyll a and *Cryptomonas spec*. were observed while some other taxa were slightly affected. Thus, the total effect class for 4.4 µg/L is considered 3A.
- At 9.3 μ g/L, more taxa were affected, effects were more pronounced or prolonged and for two algae species, significantly higher abundances than in the controls were found at the end of the study. However, since in general both species were rare and no algae bloom was found at the end of the study, this was not considered to be ecologically relevant. Thus effect class 37 was of chosen as the overall effect class for 9.3 μ g/L.
- At 19.4 μg/L the effect classification was similar to the one for 9.3 μg/L. Fordeeches higher abundances at the end of the study could not be excluded, which was considered as class 2/4A, of for the highest test concentration.

According to EFSA (2013) the ETO-RAC can be derived from the overall class 1 concentration of 1 $\mu g/L$ (nominal for three applications) and would be 0.5 $\mu g/L$ using the recommended assessment factor of 2 in EFSA (2013).

However, if the potential temporary promotion of the rother Keratella and the slight effect (class 2) on total phytoplankton is considered acceptable, the 2.1 ng/L concentration could be used to derive the ETO-RAC, considering that the observed effects here are of low ecological relevance.

Since rotifers and algae seem to be the most sensitive taxa while taxa with a lower recovery potential were found to be less sensitive (Cladocera, Copepoda, Phirononidae, Chaoboridae, Hirudinea, Oligochaeta) the study can also be used to defive an FRO-RAC. As 9.3 µgL, no slight or only effects with recovery within 8 weeks, were found. Thus, the ERO-RAC can be derived using this concentration and would be 3.1 µg/L using an assessment factor of 3.

No clear long-term effects were found at the highest test concentration of $49.4 \ \mu gV$, only for a potential promotion of leeches the effect duration could not be assessed. Thus, the ERO-RAC would be 4.85 $\mu g/L$ applying an assessment factor of 400 consider the higher uncertainty the to data on leeches.

Table CP 10.2.3/03-1 Summary of the effect classification

Taxon or endpoint &	1.0 µg/L	2.1 µc/L	4.4 µg/L	9.3 μg/L	19.4 μg/L
Ctadocera	j d'		2	2	2
Daphnia Longespina		Q v		1	2+
Simocephatus vetulus	jy jo		1	1	2+
Chydorus sphaeticus 5	n y	F F	1	2+	2+
Copepeda 🔍 🔊 🔨		1 🗞	1	1	2
Cyclopoid Copepods	ð "z	, K	1	1	1
Rotifera	1	Ql	1	1	3A
Rotifera Keratelluquadrata		1	3A	3A	3A
Keratell Quadrata		3A+	3A+	3A+	3A+
Polyathra spec.	10	1	1	3A+	3A+
Asplancharspec. U	1	1	1	2	2
Chaoborus spec. (lapvae)	1	1	1	1	1
Synchaeta spec.	1	1	2	2	2
A Shironomidae	1	1	1	1	2
Chironominae	1	1	1	1	2
Deficient Chironomini gen spec.	1	1	1	1	2

Taxo	n or endpoint	1.0 µg/L	2.1 μg/L	4.4 μg/L	9.3 μg/L	19.4 µg/L
	Chaoborus crystallinus	1	1	1	1	1
	Hirundinea	1	1	1	1	2+/44
	Oligochaeta	1	1	1		K S
	Total phytoplankton	1	2	3A	3A	\$3A _\$
	Cryptophyceae	1	1	2	3A 3A	3ÅY S
	Chroomonas spec.	1	1	1	3A 0	SA X
	Cryptomonas spec. 20-30 µm	1	1,07	34	3AO A	3AO ^V
	Chlorophyceae	1		$\mathbf{N}^{\mathbf{v}}, 0^{\mathbf{v}}$	\mathcal{R}' or	2A+ 0
	Chlamydomonas spec.	1 🕵			1 8 *	
	coccoid Chlorophyceae			20° de	2 0	
lcers	Ankyra judayi			A A	©3A+,√	A+
produ	Characium spec.*				2+@A+	2+/40 +
ary I	Closterium cf leibleinii*				3A+/4	3A+/4A+
Primary producers	Diatoms (Bacillariophyceae)	19 8				\mathbb{V}_2
	Achnanthes spec.		1 ~		3A O	3A
	Pennales 20-30 µm 🖉				yĩ "ộ	1
	Cyanobacteria		10, 0,		15	1
	Pseudoanabaena spec.		Я́ _У ́	9 0	ý v	1
	Phytoplankton chloophyl a	N N	1, 9	3A -	3A	3A
	Periphyon chloophyll a	1			1	1
	Total macrophyte coverage	1	1		2	2
Prop	osed fotal effect class	a .	203A	3X	3A*	3A/4A+

Taxa set in bold indicate MDD category ψ taxa which are considered to present a potentially sensitive population. A sign '+' indicates promoting effective ψ ψ ψ ψ ψ

* Increased abundances approxime end of the study on the two appae species were not considered an adverse effect,

i.e. an algae bloom, since the species were not abundant

I. Materialsand Methods

In the outdoor mesocosm study, the test item (Spiroxamine EC 500) was applied three times (on day 0, 7 and 14 of the study). Effects were monitored for 84 days after the first application. The following biological examinations were performed during the study: the abundance of macrophytes (% coverage) and filamentous algae was assessed visually. Moreover, for the determination of the biomass, all macrophyter and filamentous algae were harvested at the end of the study. Determination of chlorophyll a (chl a) was performed for phytoplankton and periphyton. Phytoplankton was also sampled for identification and enumerating. The zooplankton was counted and identified at the species level, if possible. Emergence of insects was assessed by means of emergence traps. Macroinvertebrates were sampled by artificial substrates samplers (ASS). Additionally, macroinvertebrates were investigated using little cages.

The test item was analysed in the water column and in the sediment during the study period. The limit of quantification (LOQ) of spiroxamine in the pond water was 0.102 μ g/L. After each application (on day 0, 7 and 14), the test item dissipated continuously from the pond water. For the two lowest nominal

test concentrations of 1.0 and 2.1 μ g/L, the actual concentrations were below LOQ from day 42 onwards. At the higher nominal test concentrations of 4.4 and 9.3 μ g/L, the measured concentration was below LOQ from day 56 onwards. After day 70, the actual concentration of the test item was below LOQ in all tanks (Figure 1).

For the re-evaluation analysis described in this report, the data sets used for the original statistical evaluation in the study results were provided by the sponsor as excel files. The input data sets are given in Annex 1. The following data sets were re-evaluated: zooplankton, macroinvertebrates in ASS, phytoplankton, phytoplankton and periphyton chlorophyll a, and macrophytes (% coverage). The development of filamentous algae was quantified using categories as described in the original study report. Since the Williams test used for calculation of NOEC and MDD assumes notical distributed data on an interval or ratio scale, these data were not re-evaluated. Note that for a better assessment of filamentous algae, a laboratory bioassay was performed and included in the original study report. In this laboratory study, short term effects occurred at 9.3 μ g/L; thus the overall NOEC for filamentous algae in the laboratory study was stated to be 4.4 μ g/L.

In this re-evaluation the same taxonomic groups were used, as in the original data sets following the recommendations of the guidance document (EFSA, 2013) Univariate statistics was performed on single species level (or the lowest taxonomic tevel identified) as well as on aggregated data like total abundances of organisms at a higher taxonomic level (e.g. family or order level) if these were provided.

The NOECs and related MDDs were calculated by means of the multiple t-tests of Williams (Williams, 1971, 1972). This test is similar to the well-known Domnett est (Dunnett 955, 064) but has slightly more power to detect differences to the controls (Jakr and Hothora, 2012).

If the data did not show a monotonous dose-response relationship, the Williams' test uses a moving average procedure before testing to achieve monotony. The assumption of a monotonous concentration-response can be made here because the focus is on direct effects on sensitive taxa.

The Williams' tests were performed one sided with $\alpha = 0.05$ (5% level of significance).

The abundance data of the organisms were log-transformed by = la(a y + y) before analysis, in order to approximate normality and homoscedasticity (homogeneity of variances) requirements (van den Brink *et al.* 2000). The factor 'a' was selected to achieve a log transformed value close to 1 for the lowest non-zero value in the data set which tesults in log tata sets scaled in a comparable way.

According to Brock efal. (20), MDDs were calculated for the NOECs derived by the Williams' test.

As abundance data were log-transformed for statistical testing, this MDD was also related to the transformed data, *e.* on alog-scale. Because & effects on a log-scale are difficult to interpret, the MDDs were transformed back to the abundance scale anothese MDDs were used for evaluation (see Brock *et al.* 2015). Thus, for example, an MDD of 80 % means that the geometric mean abundance at the NOEC would have to be more than 80 % lower than the geometric mean of the controls to become statistically significant.

In the EFSA guidance doctment (EFSA 2013) no clear criteria are given for MDDs to be sufficiently low for a reliable analysis but choses for effect magnitudes have been proposed.

Qass S	A ANDD	Comment
	100 %	No effect can be determined
the star	<u>90 – 100 %</u>	Only large effects can be determined
C ^{II}	70-90%	Large to medium effects can be determined
III	50-70 %	Medium effects can be determined

Table CP 10.2 4/03-2 A Proposal on Classes of MDDs due to treatment-related declines in abundance/homass

IV <50 %

Based on this MDD classification by EFSA, Brock *et al.* (2015) proposed a criterion for evaluating the MDDs per taxon. They suggest that for a reliable analysis of direct effects on a specific taxon, the following should be given:

- MDD <100 % on at least 5 samplings or
- MDD <90 % on at least 4 samplings or
- MDD <70 % on at least 3 samplings or
- MDD <50 % on at least 2 samplings after the application of the test item.

To apply this criterion, it was counted for each taxon how often (after the first application) the MDD fell in the MDD classes suggested by EFSA, 2013 *a.e.* how often the MDD was below 50 %, 70 % 90 % and 100 %. Based on this count, it was decided if the MDD or terion proposed by Brock *et al.* (2015) was fulfilled.

Each taxon (or endpoint) was assigned to one of the three following categories, as suggested by Brock et al. (2015):

Category 1: The MDDs are sufficiently low for a reliable analysis according to the criterion proposed by Brock et al. 2015 See above). These taxa are considered for the effect classification.

Category 2: The MDD cruterion is not met, but on at least one sampling date (after application) a significant difference (negative or positive) to controls is found. These taxa are checked whether the statistical results indicate an effect of the treatment. If yes, the effects are classified

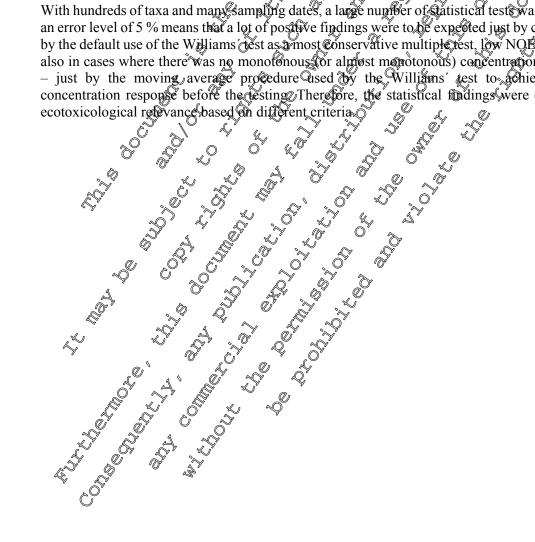
Category 3: The MDD criterion is not thet and no significant deviation to control is found. These taxa are not further considered for evaluation

The biological effects were classified according to the recommendations of the EFSA aquatic guidance document (2013) and Brock *et al.* (2015) which are a modification of the scheme of De Jong *et al.* (2008) now considering also the MDD. In order to differentiate cases when recovery is clearly not shown from cases when recovery cannot be demonstrated because of *e.g.* the taxon is declining or absent in the controls during the recovery period, of the effect was found at the end of the study, or the MDD was too large to demonstrate accovery, such cases were also put into effect class 4 (originally used for cases when the study was too short to test recovery within 8 yeeks). Therefore, class 4 was differentiated into 4A (study too short to analyse recovery) and 4B (recovery could not be assessed due to high MDD or decline of abundance also in the controls). If potential treatment effects were found at the end of the study, these were indicated as 2 - 4A or 3A - 4A because the duration of the effect could not be assessed.

Class 0 (treatment related effects cannot be statistically evaluated) does not fit well with the other effect classes because this is a property of the full data set for a taxon over all treatment levels including the controls while the other effect classes are related to the effect at the different treatment levels. Thus, if treatment-related effects on a taxon cannot be statistically evaluated, class 0 would apply for each treatment level. This is however covered already by the MDD categorisation: all taxa of MDD category 3 are the ones with effect class 0. Therefore, no effect classification was conducted for category 3 taxa.

With respect to the demonstration of "full' or 'complete' recovery, EFSA (2013) states in footnote 33 (p. 121) that 'Advendpoint is considered as recovered if the MDD allows statistical evaluation during the relevant recovery period so excluding MDD class 0) and the conclusion of no statistically significant effect between treated systems and controls is not caused by a decline of that endpoint in controls (*e.g.* at the end of the growing season). If these criteria are violated, a higher effect class has to be selected'.

This would mean that a difference to controls of *e.g.* 95 % can demonstrate full recovery as long as the MDD is <100 % and the difference to control is not significant. This is in contradiction to the specific protection goals listed in the same document where only small effects over months, medium effects over


weeks or large effects over days are considered acceptable for aquatic invertebrates (Table 14, p. 54 in EFSA 2013) while with respect to the MDD, small effects are defined as <50 %, and large effects as 90 - 100 % (Table 31, p. 118 in EFSA (2013)).

Therefore, the more stringent recovery criterion of Brock *et al.* (2015) that 'recovery from treatmentrelated declines in abundance can only be considered if the MDDabu values during the relevant recovery period are <70 % on at least one sampling, or <90 % on at least two samplings, or if the % deviation from controls is less than 20 %' was used in this report.

The aim of this re-evaluation work was to provide data for deriving an ETO-RAC and an ERO-ROC according to the current EFSA aquatic guidance document (2013), is to identify the treatment levels with effect classes up to 3A only based on the identification of the most sensitive taxa. Therefore, the focus of the effect evaluation was on the MDD category 1 taxa. Taxa of category 2 were only discussed if, based on the statistical finding, they were more sensitive than category 1 taxa. Category 3 taxa were not considered further because of high MDD values and missing statistical significance, and, in most ×, , Ø cases, their low abundances.

Note that the MDD evaluation is related to direct effects, J.e. reduction of abundances. If a test iten thas an indirect effect shown as a treatment related increase of abundance, the MDD classification is not applicable because the effects can be larger than 100%. Thus, MDD category 2 taxa can be used for the assessment of indirect effect, even if MDDs are high? A promotion effect is indicated by a '+' sign added to the effect class, e.g. 3A+ indicates a pronounced but temporary pronotion

With hundreds of taxa and many sampling dates, a large number of Qatistical tests was conducted. Using an error level of 5 % means that a lot of positive findings were to be expected just by chance. In addition, by the default use of the Williams dest as most conservative multiple test, low NOPCs can be obtained also in cases where there was no monotonous for almost monotonous) concentration-response relation - just by the moving average procedure used by the Williams' test to schieve a monotonous concentration response before the testing Therefore, the statistical fordings were evaluated for their

Effect class	Description	Criteria
1	No treatment- related effects demonstrated	No (statistically and/or ecologically significant) effects observed as a result of the treatment Observed differences between treatment and controls show no clear causal relationship.
2	Slight effects	Effects concern short-term and/or quantitatively restricted responses usually observed at individual samplings only.
3A	Pronounced short- term effects (effect period < 8 weeks), followed by recovery	Clear response of sensitive endpoints, but full recovery within 8 weeks after the dist application or in the case of delayed responses and repeated applications, the duration of the effect period is less than 8 weeks and followed by full recover? Treatment related effect demonstrated on consecutive samplings.
3B	Pronounced effects longer than 8 weeks but recovery within 8 weeks after last application	Clear response of the endpoint in micro-/mesocosin/experiment repeatedly treated with the test substance and the lasts onger than eight weeks (responses aready start in treatment period), but full recovery of affected endpoint within eight weeks post last application.*
4A	Significant effects in short-term study	observed, but the study is too short to demonstrate complete
4B	Significant short- term effects but MDD too high in vecovery period	Significant short-tern effects demonstrate@out recovery cannot be properly evaluated due to high whDD values in recovery period or the population in the courols is declining or even absent. If significant treatment related response is demonstrated on one sampling but recovery cannot be interpreted due to high MDD this may be indicated as class 2-48. In other case it can be 3A-4B.
5A	Pronounced long- term effect followed by ecover	Clear response of sensitive endpoint, effect period longer than 8 weeks and recovery did no yet occur within 8 weeks after the last application but full recovery is demonstrated to occur in the year of application.*
58 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Pronounced@ong- term effects without recover	Clear response of consitive endpoints (> 8 weeks post last application, and for recovery cannot be demonstrated before termination of the experiment or before the start of the winter period.

Table CP 10.2.3/03-3	Definition of effect classes based on EFSA (2013) and Brock et al. (2015)

*Note that following Brock *et al.* (2015) recovery can only be considered if the MDDs during the recovery period are <70 % on at least one sampling or <90 % on at least two samplings or if the deviation to controls is less than 20 %. If this is not the case, an appropriate higher class has to be selected

The program community Analysis (CA) V4 was used for NOEC, MDD and diversity calculations. A former version of the CA program is described in Hommen *et al.* (1994). Calculations of the CA program have been validated by means of example data and of calculations using MS-ExcelTM (Microsoft® Corp.) and ToxRat® (Vers. 2.09).

II. **Results and Discussion**

Zooplankton

Total zooplankton, the sums for cladocerans, daphnids, copepods and rotifers but also several lower taxa fulfil the MDD criteria proposed by Brock et al. (2015). In total eight taxa representing potentiaty sensitive populations (Daphnia longispina, Simocephalus vetulus, Chydorus) sphaericus, Cyclopoida (adults and copepods as well as nauplia larvae which could not be further determined), Kesttellas quadrata, Polyarthra spec., Asplanchna spec. and Chaoborus spec.) could be evaluated for direct effects according to the MDD criterion proposed by Brock et a. (2015). Tea other taxa belonged to MDD category 2, *i.e.* the MDDs did not meet the criterion but significant deviations to controls were found at o least once after the first application. Ś

Table CP 10.2.3/03-4	% MDDs for the	taxa in the	y zooplan	kton d	ata sel v	which i	met the	criterion	~
proposed by Brock et al.	. (2015). MDD cate	egory 🌡	Ô	2	L.Y	4 N	ð,	°~~	\$

proposed by Broek et al. (2013). Will		y Li Li		-
Zooplankton	Summary &		<u> </u>	
	Min 🔍 🗸	Max 👌 🏒	Mean	MDD Car
Sum of Cladocerans	40		76 2	
Sum of Daphnids	78 0 5	167 5	9705 J. J.	
Sum of Copepods	47, 7 8	\$88 \$7 ~~	73	\mathbb{A}^{1}
Sum of rotifers	30 ~~ (0	96 ~ ~	69	Di
Daphnia longispina 🧳 Õ	84 5 0	167	×106 × ~	1
Simocephalus vetulus		1040 4	85	1
Chydorus sphaeenus	6 3 3 3 56 0 5	14 O	Ô94 √y	1
Cyclopoid Copepces	58 ~ ~	991 S 4	800	1
Copepod Nauplo	50 60 50	88, 5	ŤŹ	1
Keratella quadrata	79	j02 ×	89	1
Polyarthra spec.		1048	88	1
Asplanchna spec.	73 8	¢107 5 7	86	1
Chaoborus spec. bavae		⁰ 213 °	103	1

MDD cat = category based or MDD evaluation according to Brock et al. (2015)

¥ °	\sim \sim		i di la companya di l		
			01	ata set which met the criterion	
Table CP 10,2.3/03-5	% MDDs for	the taxa in the	e zooplankton d	ata set which met the criterion	
proposed by Brock et a	192015 NADD				
proposed by Brock et a	4. (2015) NIDD	category 2	× ×		
*	, , , , , , , , , , , , , , , , , , ,		J.		

Zoepłankton	Summary			
	Min A	Max	Mean	MDD Cat
Graptoleberi Gestudinaria	71	165	123	2
Acroperus harpac	105	166	122	2
Eucercus lametatus	34	157	101	2
Certodapha reticutate	n.c.	n.c.	n.c.	2
Ostracones	77	145	107	2
Testudinella patina	87	158	127	2
Lepadella patella	84	166	112	2

Zooplankton	Summary								
	Min	Max	Mean	MDD Cat					
Synchaeta spec.	85	105	98	2					
Hexarthra spec.	105	171	126	2 4					
Chaoborus spec. pupae	225	246	232						

MDD cat = category based on MDD evaluation according to Ripck et al. (201%)

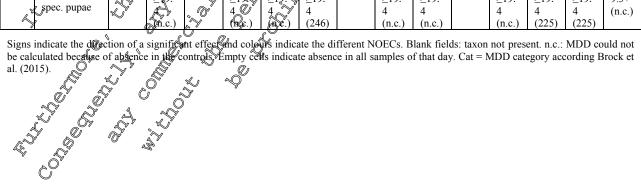

Significantly lower abundances than in the controls on at least two consecutive sampling dates were found for two rotifer species and also for the sum of actifers. The most sensitive axa according to the statistical analysis were *Asplanchna spec*. and *Polyarthra spec*. For *Asplanchna spec*, NOECs of 4,4 and 2.1 μ g/L were found on day 11 and 14 indicating potential short-term effects. However, abundance of *Asplanchna* collapsed in all mesocosms, including the controls daring the first three weeks after the day of the first application. After the first and the third application, the decline in 19,4 μ g/L was not stronger than in the controls and on day 14 there was no clear concentration response relation. Thus, effects of 9.3 and 19.4 μ g/L were considered slight (conservatively, class 2 effects are proposed). The findings of *Asplanchna* later in the mesocosm treated with 19.4 μ g/D supports that the interpretation of no pronounced effects on this species up to the highest test concentration.

Table CP 10.2.3/03-6 NOECs [µg/L] and related % ADDs (b) brackets) for the task in the zooplankton data set

				<i>,</i>	× ~	×		~	<u></u>	- <i>Òg</i>	- 	O			
Macro	ozoobenthos	Days a	fter appl	lication	O`	Ű.	0	r í			Q Y,	Q			
MD D cat	Taxa / day	-14	den de							21	28 28 28 28 28 28 28 20 29	42	56	70	84
1	Ŭ,	(84)	(91)	🖉 (89) 🕵	4 (73)	≥19. 4% (85)		$\geq 19 \bigcirc 4$ (83)	≥19: 4		1+ (53)	9.3+ (78)	≥19. 4 (90)	≥19. 4 (85)	≥19. 4 (89)
1	Sum of Daphnids	≥4 0 ? (121)	$\overset{\geq 1}{\overset{\circ}{4}}$	≥19.0° 4 (€100)	≥19% 4. (T90)	$\overset{\geq 19}{\overset{\wedge}{\overset{\vee}}}_{\overset{\vee}{\overset{\vee}}}_{\overset{\vee}{\overset{\vee}}}_{\overset{\vee}{\overset{\vee}$	219. 4 (101)	(98) (©	≥19. 4 √ (990)	$2^{\geq 19.}_{4}$ (93)	≥19. 4 (84)	2.1+ (78)	9.3- (84)	≥19. 4 (85)	≥19. 4 (85)
1	Support Copepods	≥ 19	≥19 4° (\$5)	≥19. 4 √) 609)	≥19. 4 0 (82)	1 m	Ő	4(72) 4	©19. ≯4 (78)	≥19. 4(75)	≥19. 4(76)	≥19. 4(69)	9.3- (47)	≥19. 4(73)	≥19. 4(64)
1	Sum of Rotifers	≥19,0 4,0 (©)	≥19. 4 (Ø)		2≥19. × 4 (7)√		(())	(30)	2.1- (66)	≥19. 4 (71)	≥19. 4 (96)	<1+ (76)	≥19. 4 (84)	≥19. 4 (84)	≥19. 4 (79)
1	Dap hi ja lon o špina	≥19. 4 (121)	219. 4 (103)	Q19. 4 (100)	4 (101)	(100)	29. (101)	≥19. 4 (98)	≥19. 4 (99)	≥19. 4 (93)	≥19. 4 (84)	2.1+ (84)	9.3- (84)	$\geq 19.$ 4 (155)	$\geq 19.$ 4 (167)
1	Simocephalu s vetulus	(95)	219. 4 (99) L	s≥19. ⊳¥		≥ 19 ⊕ (81)	2.1- (63)	≥19. 4 (88)	≥19. 4 (92)	≥19. 4 (97)	$\geq 19.$ 4 (80)	≥19. 4 (97)	≥19. 4 (89)	≥19. 4 (104)	≥19. 4 (74)
1		×4 4 (85)	20 (90)	≥19. A (95)	≥19. 40 (93)	$\geq 19.$ 4 (85)	$\geq 19.$ 4 (56)	4.4+ (80)	≥19. 4 (98)	≥19. 4 (98)	≥19. 4 (101)	≥19. 4 (107)	$\geq 19.$ 4 (114)	$\geq 19.$ 4 (103)	$\geq 19.$ 4 (104)
1	Copepode Copepode	≥1 . 4 (78)	≥19. 4∠) \$₹\$5)	≥19. 4 (63)	≥19. 4 (86)	$\geq 19.$ 4 (88)	$\geq 19.$ 4 (85)	≥19. 4 (91)	≥19. 4 (89)	≥19. 4 (74)	≥19. 4 (77)	≥19. 4 (87)	≥19. 4 (61)	≥19. 4 (83)	≥19. 4 (58)
1	Coregod Noplii	≥19. 4 (63)	≥19. 4 (74)	≥19. 4 (75)	≥19. 4 (82)	≥19. 4 (72)	$\geq 19.$ 4 (88)	4.4+ (58)	≥19. 4 (80)	≥19. 4 (81)	≥19. 4 (79)	9.3- (52)	9.3- (50)	≥19. 4 (71)	≥19. 4 (77)

Macro	ozoobenthos	Days a	fter app	ication											
MD D cat	Taxa / day	-14	-7	0	4	7	11	14	18	21	28	42	56		80 67 70
1	Keratella quadrata	$\geq 19.$ 4 (29)	≥19. 4 (70)	≥19. 4 (44)	≥19. 4 (82)	≥19. 4 (90)	≥19. 4 (99)	≥19. 4 (79)	≥19. 4 (87)	≥19. 4 (87)_∢	(102)	1+ (92)	14 (86)		≥19. 4 ⊘(85)
1	Polyarthra spec.	≥19. 4 (95)	≥19. 4 (86)	≥19. 4 (72)	≥19. 4 (72)	4.4+ (45)	4.4+ (67)	4.4+ (93)	9.3- (98)	4 44 (95)	$\geq 19.$ 4 (101)	$\geq 1\hat{9}$	≥19: 4 (97)	4.4+ (98)	≤19. 4 Ø
1	Asplanchna spec.	≥19. 4 (99)	≥19. 4 (82)	<1- (50)	≥19. 4 (85)	≥19. 4 (80)_4	44 473)	2.1- (85)	$\overset{\geq 190}{40}_{(107)}$		9.3+0 (n.£.)	9.3+ (n.c.)			
1	Chaoborus spec. larvae	9.3+ (87)	≥19. 4 (169)	≥19. 4 (145)	≥19. 4 (62)	>19. 4 (14)	≥19. ∘ 4 (80)	≥19 4 ~~ (H11)	$\geq 19.$ 4 (92)	∛≥19. 4 ℃ &	>≥19. ~ 4 (100)	4 (950	≤19. 4 (89)	9. 4 (213) 。	$\geq 19.$ 4 (79)
2	Graptoleberis testudinaria	≥19. 4 (274)	≥19. 4 (n.c.)	≥19. 4 (159)	≥19 4 (2,57)	≥19. 4 (a.c.)	219 4 (nC)	≥19. 4 (165)	219. 4 (146)	219.	~©19. D4 (113©	l [©] ″ √ ⁽⁷¹⁾ ≪	4 4 (97) 2	≥ 0 9. \$ \$(98)	$\geq 19.$ 4 (100)
2	Acroperus harpae		$\geq 19.$ 4 (142)	≥19. 4 (1Q)	₽` % ````		(n.c.)	(n.c.)			20. (166)		≥19. 4 (110)	$\geq 19.$ 4 (105)	$\geq 19.$ 4 (106)
2	Eucercus lamellatus		9.3+ (n.c.)	©±19. ∛4 (1¢2)	×19. ¥4 (11%)	@9. 4 (127)	(75)	200. 4 (101)	≥09. Ø	9.30 634)	≥100 4 00114)	≥ 1	<1- (80)	$\geq 19.$ 4 (100)	≥19. 4 (157)
2	Ceriodaphnia reticulata				4 (n.c.)	OW	Ŷ.		9.3¢ (n.c.)		≥19.≪ 4 ≪ (n)	9.3+ (n.c.)			
2	Ostracodes	(198)	$\geq 19.$	20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	Ĵ,	≥195 4 (ħ/c.)	≥19,5 4,0 ¥9,¢.)	9.3+ (n.c)	≥19. 《 4 (145)	$\sum_{i=1}^{2}$	€ <u>≉</u> 19. 4 (112)	≥19. 4 (77)	$\geq 19.$ 4 (94)	≥19. 4 (94)	$\geq 19.$ 4 (93)
2	Testudinello patina	and and a	×°	O Ø	\$.1		≥19. ~ 4 (n⁄o)	$2^{\geq 19.}$ 4 (158)	£19.	2.1+ 2.1-	$\geq 19.$ 4 (137)	<1+ (148)	<1+ (125)	$\geq 19.$ 4 (105)	$\geq 19.$ 4 (87)
2	Lepăgella parella	V. Vo			©_19. 4 (n,	°,			≥19. Ø ∀(n.c.)	≥19. 4 (166)	$\geq 19.$ 4 (137)	1+ (91)	$\geq 19.$ 4 (84)	$\geq 19.$ 4 (98)	$\geq 19.$ 4 (94)
2	Synchaeta spec.				,973- (98) .,	- 20 9. ↓ ♥(105)	≥Ø. 4 (101) 4	2 1 9. (100)	4.4- (85)	≥19. 4 (99)	$\geq 19.$ 4 (99)	$\geq 19.$ 4 (n.c.)	$\geq 19.$ 4 (n.c.)		$\geq 19.$ 4 (n.c.)
2	Hexartho	Ŭ M									9.3- (n.c.)	$\geq 19.$ 4 (171)	$\geq 19.$ 4 (108)	$\geq 19.$ 4 (121)	$\geq 19.$ 4 (105)
2	Chaoborus spec. pupae		≥19. (n.c.)		≥19 4 Ø (R¢.)	≥19: 4 (m.c.)	$\geq 19.$ 4 (246)		$\geq 19.$ 4 (n.c.)	≥19. 4 (n.c.)		$\geq 19.$ 4 (n.c.)	$\geq 19.$ 4 (225)	$\geq 19.$ 4 (225)	9.3+ (n.c.)

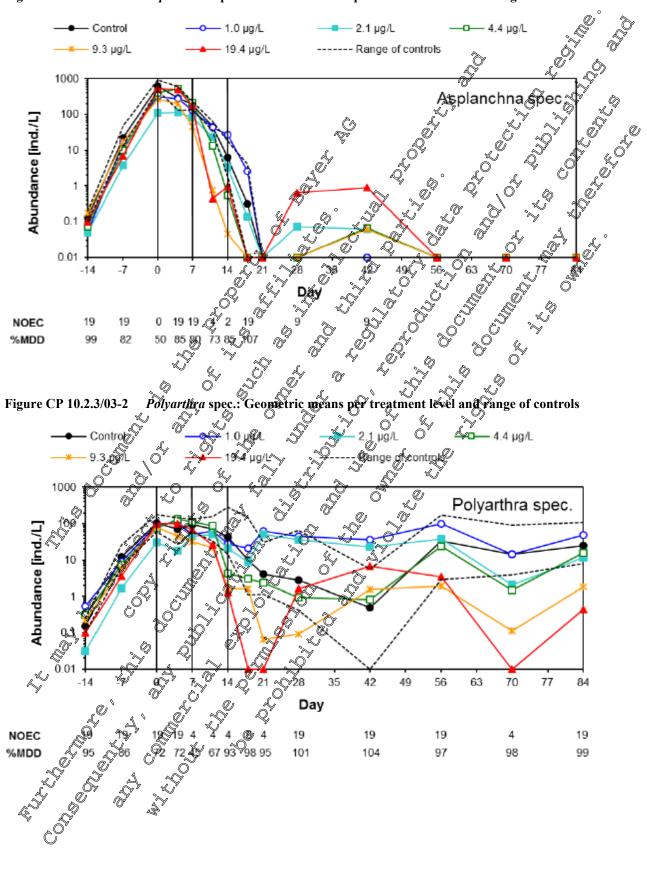


Figure CP 10.2.3/03-1 Asplanchna spec.: Geometric means per treatment level and range of controls

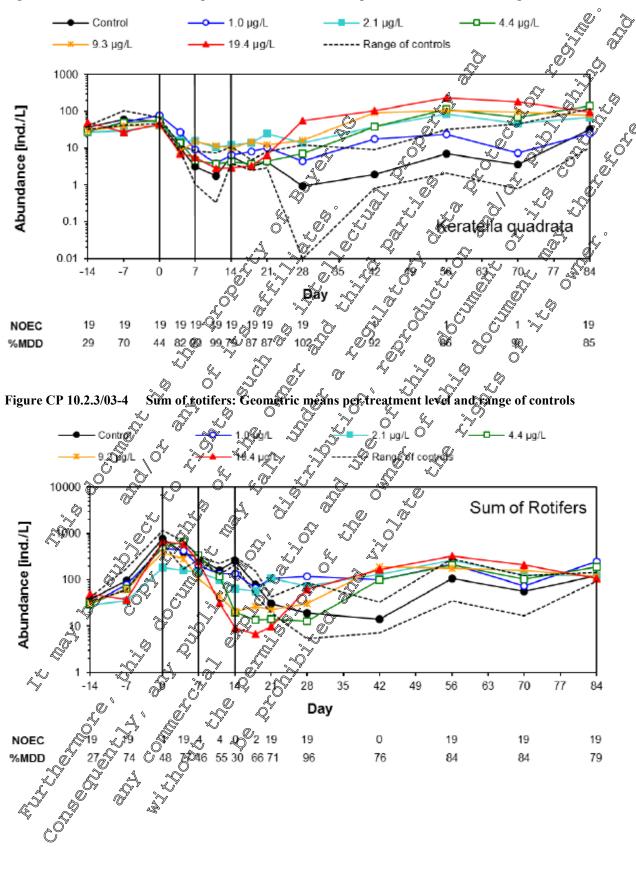
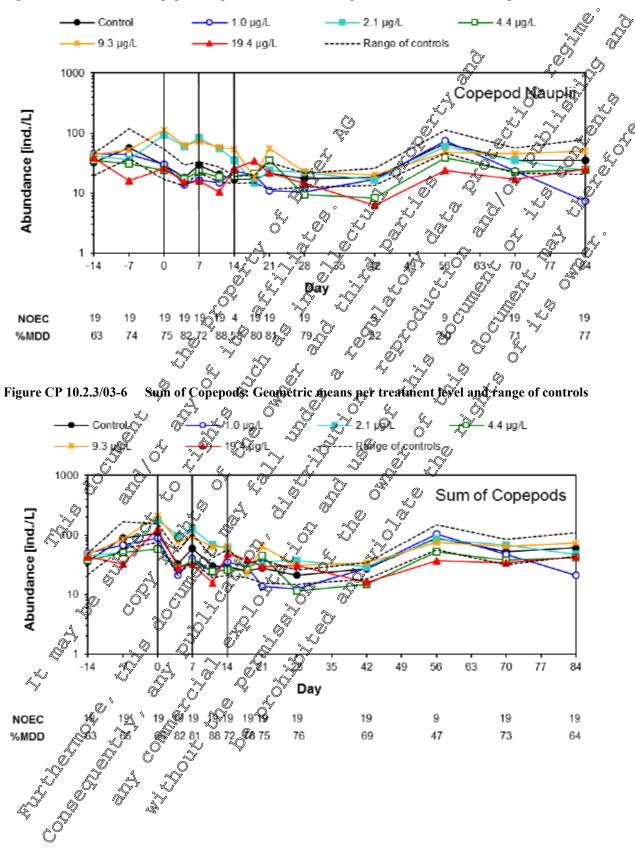



Figure CP 10.2.3/03-3 Keratella quadrata: Geometric means per treatment level and range of controls

Figure CP 10.2.3/03-5 Copepod nauplii: Geometric means per treatment level and range of controls

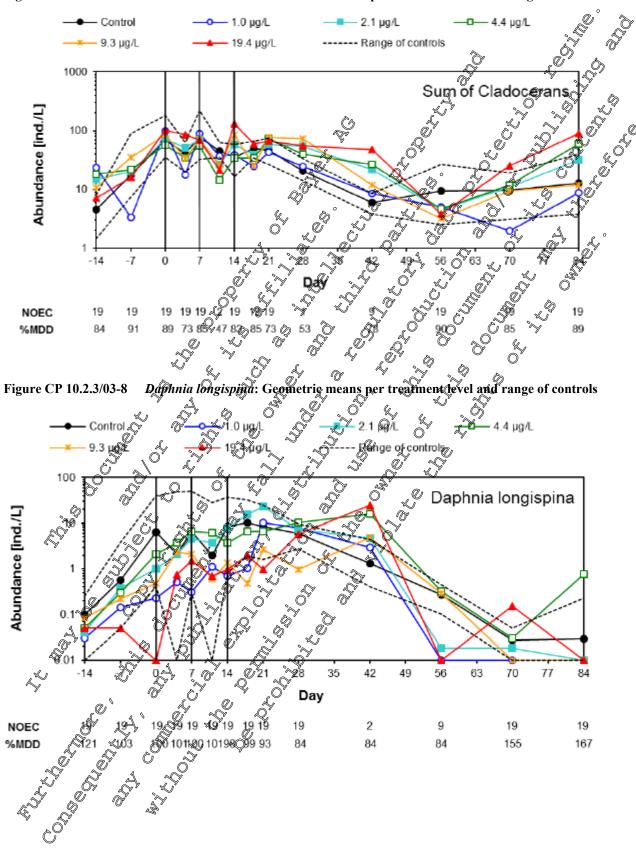


Figure CP 10.2.3/03-7 Sum of Cladocerans: Geometric means per treatment level and range of controls

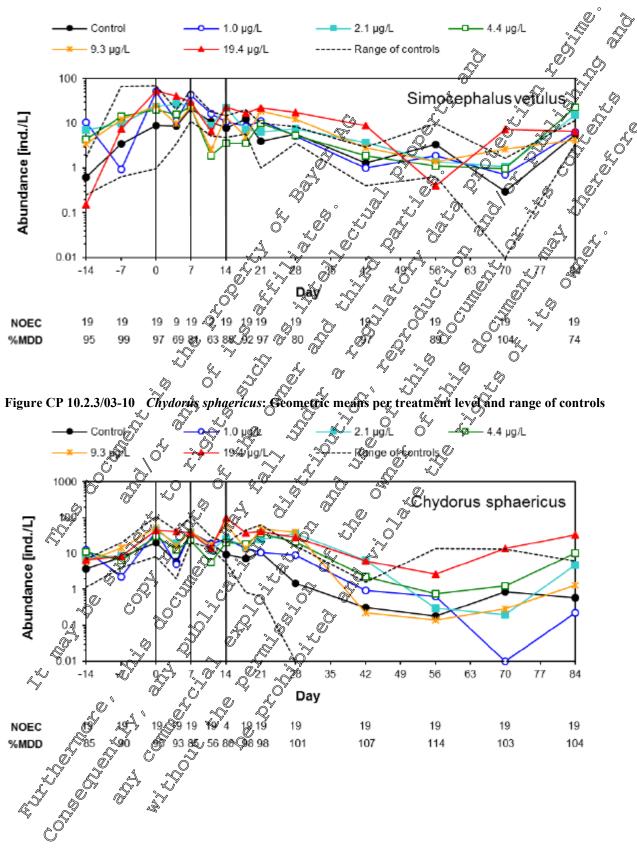


Figure CP 10.2.3/03-9 Simocephalus vetulus: Geometric means per treatment level and range of controls

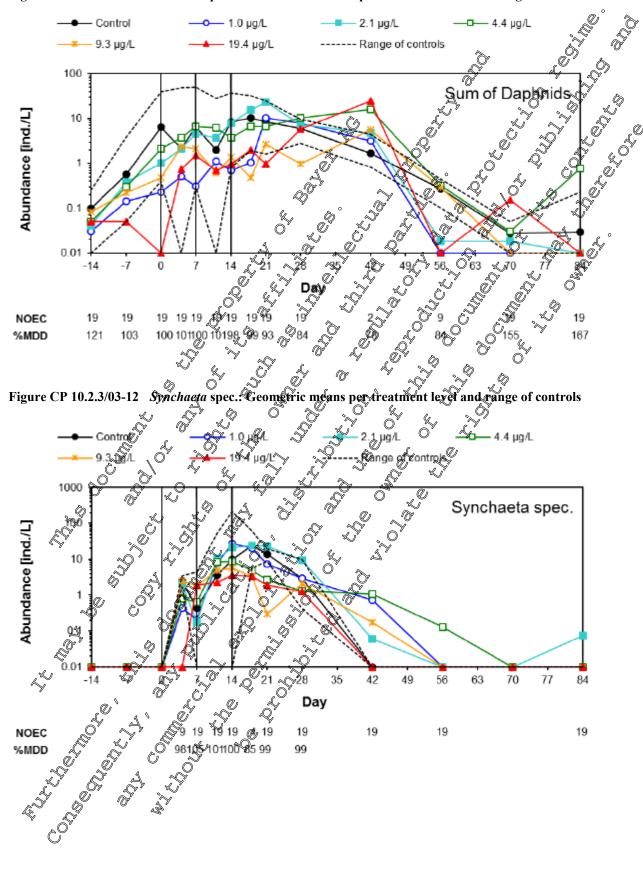
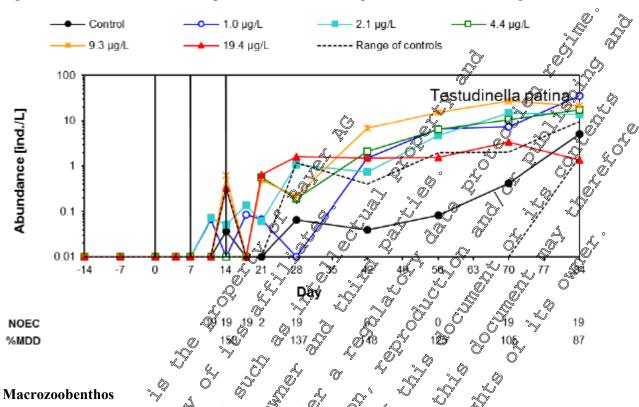



Figure CP 10.2.3/03-11 Sum of Daphnids: Geometric means per treatment level and range of controls

Figure CP 10.2.3/03-13 *Testudinella patina*: Geometric means per treatment level and range of controls

Macrozoobenthos orgânisms, vere sampled using artificial substrate samplers (ASS). In the data set, six taxa fulfil the MDD criterion defined by Brock *et al*, 2015): Chironomidae in total, Chironominae, *Chironomini gen spec. Chirobonus crystallinus* larvae, eeches (Hirodinea) and Oligochaeta.

Table CP 10.2303-7 % M				
Tabla CD 10 28843-7 ~ % MA	De forthe tory in t	the macioinvarte	Brata data sat whi	ch mat the criterion
1 abic C1 10.2 (3903-7 2 7 70 MU	DS IOU INC Casa In	une macioniver es	sol all giala sel will	ch met the criterion
	MDD	<i>v ((((((((((</i>	. 🔍	
proposed by Brock etal. (2015)). Maji category ra	Y OY	sk n	

Zooplantion			_
	Max 🔊	Mean	MDD Cat
Sum of Chironomias	262	112	1
	170	95	1
Sum of leeches 0 0 730 6	226	107	1
Sum of Mgochaeta	138	91	1
Chirenomini gen spece 25 52 52	225	108	1
Chaoborus crysallinus larvae	148	101	1

MDD cat = category based of MDD evaluation according to Brock et al. (2015).

s

Furthermore, for 13 taxa, the MDD criterion was not met, but on at least one sampling date after application, a significant difference to the controls was found (MDD category 2 taxa).

Ŀ,

Table CP 10.2.3/03-8	% MDDs for the taxa in the macroinvertebrate data set which met the criter	rion
proposed by Brock et al	. (2015). MDD category 2	@ °

Zooplankton	Summary			
	Min	Max	Mean 🖉	MDD Cat
Sum of Tanypodinae	71	225	115	
Stylaria lacustris	72	122	975	
Herpobdella octoculata	71	262	QU31	
Gastropoda non det.	n.c.	n.c.		
Gyraulus albus	97	186	1036 Q	
Musculium lacustre	94	218	×167 @ >	2, 2, 2
Pisidium spec	117 Ô	ري 225 کې	186° 6	2 4 0
Caenis spec	65	NZ A	89 5	
Tanypodinae gen spec	71	× _ 225 _ ~	OT 115 7 S	
Tanytarsini gen spec.	086	~~~ 192 [°]		
Culex spec	Q 93 6 C		93 0° č	2 %
Hydrophilidae gen spec	W W	@ 92 L	2 92 °	State of the second sec
Zygoptera Gen spec	4 n.c. 0	y mæ.		2
Dugesia gonocephala	A 84 5	* f*272 ~	152 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2

MDD cat = category based on MDD evaluation according to Brock eval. (2003)

No consistent significant differences to controls over a deast two consecutive sampling dates were found for the taxa in the MASS data set; only on isolated sampling datas NOECs <19.4 μ g/L were detected. Sums of Charonomidae as well as Chironominae were significantly reduced in the highest treatment on

Sums of Chironomidae as well as Chironominae were significantly, educed in the highest treatment on day 28 while similar reduction, were observed on day 21 however without statistical significance. Later, the abundance in the mesocosin treated with 19.4 µg/L was close to control level again. The deviation of the mean abundance in the 2.1 µg/L mesocosins from controls on day 28 was not considered treatment related, because no concentration response relation was given. Thus, only the slight temporary lower abundances at 19.4 µg/L were considered a class 2 effect. For Chironomini, a NOEC of 1 µg/L was calculated buosince the mean abundances at 4.4 and 9.3 µg/L were very close to the control and while the mean abundance at 21 µg/D showed the lowest abundance, also here only the slightly reduced abundance at 19.4 µg/L was considered to indicate a slight treatment effect.

	. A			
Table @P 10.2.3/03-9	NOT CS In O/L	l and related %	MDDs (in brackets)) for the taxa in the
	The states and the		, miebbs (m stuckets)	for the taxa in the
macrozoobenthos data s	et a c	·¥ ∩ ^v		
		a. 1		

Macroz	oobenthos a start	Days at	fter appli	cation								
MDD cat			Ş	0	7	14	21	28	42	56	70	84
, L	Sum of Orironomds ASS	≥19.4 (57)	≥19.4 (82)	≥19.4 (80)	≥19.4 (60)	≥19.4 (64)	≥19.4 (85)	9.3- (55)	≥19.4 (93)	≥19.4 (115)	≥19.4 (262)	≥19.4 (161)
1	Suppof Chironominae SS	1- (43)	≥19.4 (85)	≥19.4 (81)	≥19.4 (61)	≥19.4 (66)	≥19.4 (86)	9.3- (55)	≥19.4 (94)	≥19.4 (171)	≥19.4 (n.c.)	≥19.4 (133)
1	Sum of Leeches ASS	≥19.4 (109)	≥19.4 (145)	≥19.4 (128)	≥19.4 (226)	9.3+ (101)	≥19.4 (83)	<1+ (119)	≥19.4 (85)	≥19.4 (79)	≥19.4 (92)	9.3+ (73)

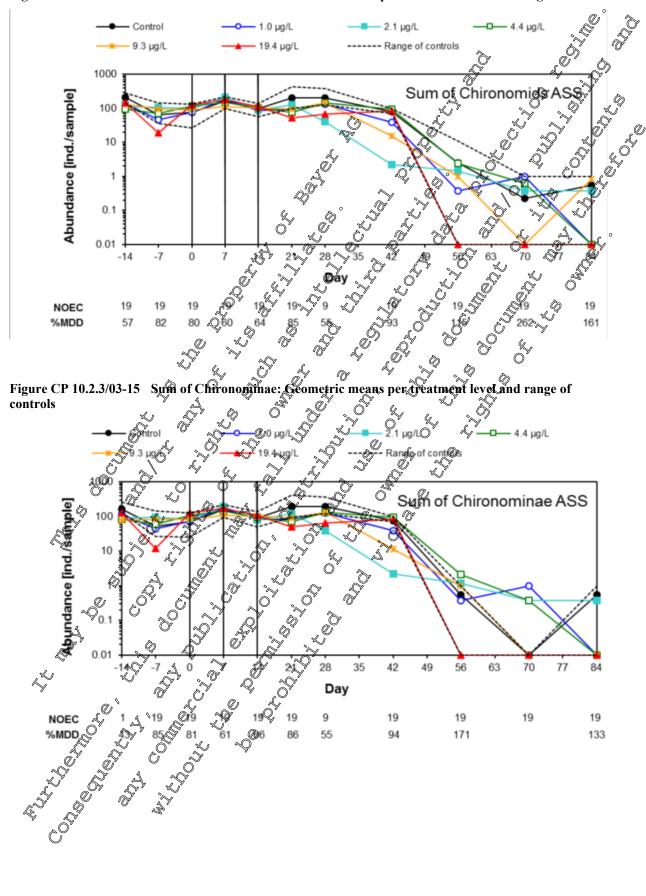
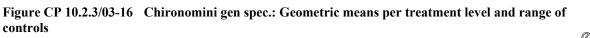
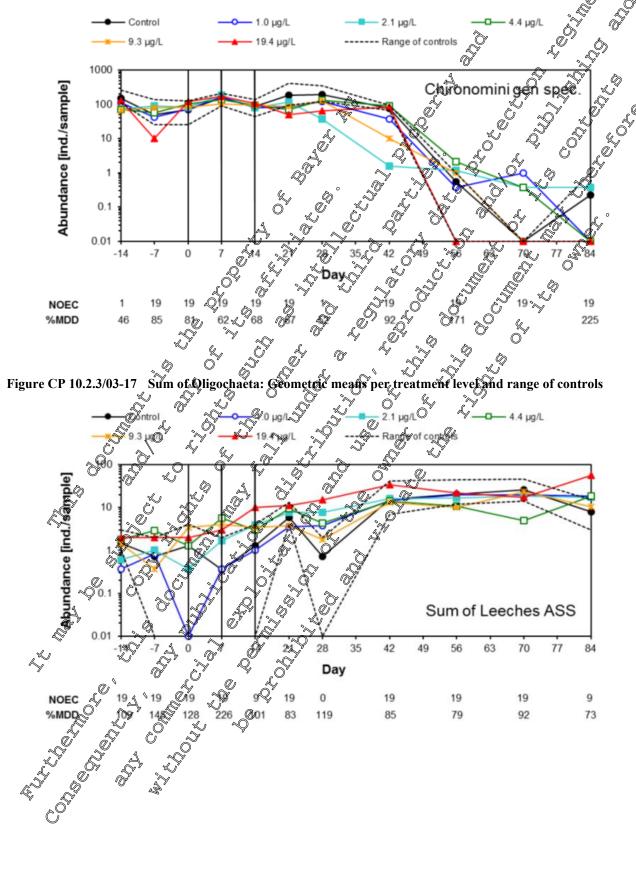
Macroz	zoobenthos	Days after application										
MDD cat	Taxa / day	-14	-7	0	7	14	21	28	42	56	70 °	840
1	Sum of Oligochaeta ASS	≥19.4 (86)	≥19.4 (58)	≥19.4 (61)	≥19.4 (68)	≥19.4 (88)	≥19.4 (80)	≥19.4° (74)	≥19.4 (138)	≥19.4 (114)) (64)	≥ 19.4 (100)
1	Chironomini gen spec.	1- (46)	≥19.4 (85)	≥19.4 (81)	≥19.4 (62)	≥19.4 (68)	≥19.4 (87)	1- 2(52)	≥19.4 (92)	≥19.4 ©171)	>19.4 (9.c.)	≥19.4 ©225)
1	Chaoborus crystallinus larvae	≥19.4 (165)	≥19.4 (134)	≥19.4 (210)	4.4+ (1 4%)	≥19.4 (96)	≥19.4 (10)	≥19.4 (93)	≥19.4 (82)	≥19,4 (890	≥19.4© (90)©	≥19.4 (1129
2	Sum of Tanypodinae ASS	≥19.4 (97)	≥19.4 (195)	≥19.4 (89) .∢	\$19.4 (98)	≥19.4 (102) (93- (71)	≥19.4 ₀(79) √	×19.4 (118)	©19.4 (114)	§19.4	(n.c.)
2	Stylaria lacustris	≥ 19.4 (88)	≥19.4 (61)	≥19.0° (63)	≥ 19.4 (72)	≥19.4 (973)	≥19 2 (16%)	1+ Q	≥19@ (n.d.)	≥19 64 (1922)	≥19 @ (8 Q)	≥19.4 (107)
2	Herpobdella octoculata	≥19.4 (106)	≥19.4 ((147)	∑¥19.4 (127)	گ ≦19.4 ≈ (262)℃) 19.4 (223) (2	€≥19.4 * (100)	*	§19.4 (71)	≥19.4 (79) <i>(</i>	≥19.4 (97)	≥19.4 ° (87)
2	Gastropoda non det.		≥49.4 √(p.c.)		\sim	ð	A		2			9.3+ (n.c.)
2	Gyraulus albus	≥19.4© (1690	≥19,4× (240)√	9.3+ (n.c.)	9.3+ (138)	≫ ≶≥19.4≪ (97) Ø	0″ັ້ ຊ≥19.4 (1300)~)_≥19.4 (1864)	≥19.4 (1690	≥19.4 (1250)	$O_{\geq 19.4}$ (113)	≥ 19.4 (131)
2	Musculium lacustre	Q.	≥19.4 (225)	≥19.4 (n.c.)	319.4 (m.c.)	219.4 (D.c.)	200.4 A(165)	9.4 (218)	19.4 (0146)	219.4 (183)	≥19.4 (94)	≥19.4 (195)
2	Pisidium spec	≥19.4 (\$&3)	≥19.4, (1 2 8)	≥19.4 (n.€.)	≥19.4 (n,s.)	≥19.40 (n.c.¥	≥19.¢ (19€)	≥19.4 (22©)	≥19.4 (117)	≥ 19.4 (203)	≥19.4 (n.c.)	≥19.4 (n.c.)
2	Caenis spec	0"			≥19.4 (n.c.) <i>(</i>	Ş [°] ı.	Å,		≸19.4 S(n.c.)	≥19.4 (n.c.)	≥19.4 (112)	<1- (65)
2	Tanypodinae gen spec	≥1%4 1%7)	≥19.4 (193)	≥19.4 (\$9)	≥19.4 (98)	$\geq 19@$ (102)	9.3- (7P	≥19.4¥ (79¥	≥19.4 (118)	≥19.4 (114)	≥19.4 (225)	≥19.4 (n.c.)
2	Tanytarsini geo spec.	⊘ ≫≥19.4 [°] (99¢	≤19.4 [∧] (113)	≥19.4 °	∑19.4 (186) [▲]	4.4+ (n.c.)	€19.4 (n.c.)	219.4 (n.c.)	≥19.4 (n.c.)			≥ 19.4 (192)
2	Culex &	Ö			<u>S</u>	o (ii.c.)	L.	<1- (93)				
2	Hydrophilidae gen spee		≥19.4 (n.c.)∖	da A			¢ [°]			<1- (92)		
2	Zygoptera Gen spec		(n.c.) O			A A		9.3+ (n.c.)	4.4+ (n.c.)	≥19.4 (n.c.)		
2	Dugesia gonocephate		≥19°.4 (1©)	9.3+2 (n.c)	- S) ≥19.4 (n.c.)	9.3+ (n.c.)	≥19.4 (272)	≥19.4 (n.c.)	≥ 19.4 (134)	≥19.4 (121)	1- (84)

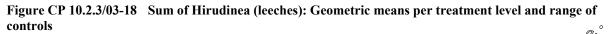
Signs indicate the direction of a significant effect and colours indicate the different NOECs. Blank fields: taxon not present. n.c.: MDD could not be calculated because of absence in the copirols. Effety cells indicate absence in all samples of that day. Cat = MDD category according Brock et al. (2015)

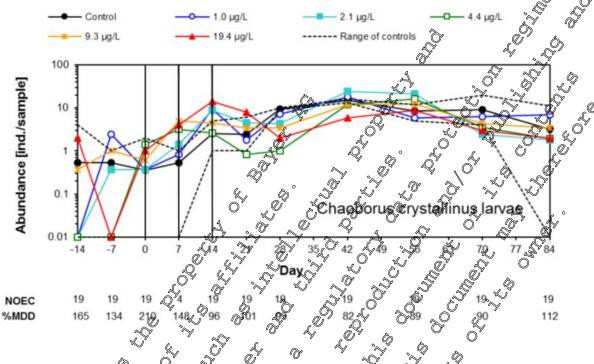
Oligochaeta were clearly not affected until day 42. The deviations form controls later and the single NOEC of <1 μ g/L are assumed to be not caused by the treatment but by chance due to the low numbers in general. Thus effect class 14 was used up to 19.4 μ g/L.

Hirudinea (leeches) and Chapborus crystallinus showed significantly higher abundances than in controls on single samplings. The ODEC of <1 μ g/L for leeches on day 28 is caused by a lower abundance in the control of that ongle date rather than by an increase in abundance in all the treated mesocosms. Therefore, this is not considered as a promotion in all treated mesocosms. However, due to a trend of higher abundances in the mesocosm treated with 19.4 μ g/L over several sampling dates, a potential slight promotion is considered for 19.4 μ g/L. Because significantly higher abundance was also found at the last sampling day, class 2+/4A+ was assumed.

Numbers of Chaoborus crystallinus in the ASS were relatively small (<5 / sample before day 14) and therefore the calculated NOEC of 4 μ g/L on day 7 was not considered to indicate an effect (class 1).


Figure CP 10.2.3/03-14 Sum of Chironomids: Geometric means per treatment level and range of controls



Most of the taxa in MDD category 2 showed a short promotion on single samplings without a difference to the control at the end of the study (e.g. *Horpobdella octoculata, Gyraulus albus, Pisidium spec and Tanytarsini gen spec*). Others were extremely fore (e.g. *Culex spec*) Hydrophilidae). For two taxa (*Caenis spec* and *Dagesia gonocephala*) a significant decrease with a NOEC of 1.0 μ g/L was observed on the last sampling on day 84. However, no clear concentration response could be detected and the taxa were found only on isotated samplings. As also these statistical differences are not characterized by a clear concentration-response, these taxa were not considered for effect classification.

Phytoplankton

The effects on phytoplanktop were evaluated by means of identification and enumerating of the cells using a reversed microscope and by means of measurements of chlorophyll a content.

Phytoplankton counts

Algae of seven classes were identified in the outdoor mesocosm study: Cryptophyceae, Diatomeae, Chlorophyceae, Chrysophyceae, Conjugatophyceae, Cyanobacteria and Euglenophyceae. For four of them plugate total sum of algae, and seven of the differentiated taxa, the MDDs were sufficiently low to allow an evaluation of direct effects. For several other taxa, significant differences were detected despite the MDDs did not meet the criterion defined by Brock *et al.* (2015) (MDD category 2 taxa).

Table CP 10.2.3/0/3-10	\% MDDs for the tax	a in the phytoplankton	counts which met the criterion
proposed by Brock et al.	. (2015). MDD categor	ÿ 1	counts which met the criterion

Phytoplankton & C &	Summary			
	Min	Max	Mean	MDD Cat
Sunivalgae	34	81	60	1
Sum Chorophyceae	42	95	75	1
Sum Chlorophyceae	67	95	79	1
Sum Diatoms	48	101	84	1

Phytoplankton	Summary	Summary								
	Min	Max	Mean	MDD Cat						
Sum Cyanobacteria	75	101	90	1 5						
Pseudoanabaena spec.	75	101	90 🖓							
Chlamydomonas spec.	42	115	94	157 55						
coccoid Chlorophyceae	59	182	101							
Chroomonas spec.	67	136	295							
Cryptomonas spec. 20-30 µm	45	× 93	م ج 76 °							
Achnanthes spec.	75	99								
Pennales 20-30 µm	72 🐇	\$30 \$	× 117,0° Č							

MDD cat = category based on MDD evaluation according to Brock et al. (2019).	
	e C
able CP 10.2.3/03-11 % MDDs for the taxa in the phytoplankton data set which met the criterion	2
proposed by Brock et al. (2015). MDD ategory 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

		V		
Zooplankton	Summary			
	Min O	Max	Mêan 🔗	MDD Cat
Sum_Euglenophyceae		208 4	1 ³⁸ Q	2
Merismopedia spec.	111 2 4 n.co 6 92 0 5	n.c.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	2
Phacus pleuronectis	92 5 5 119 5 5	92,0° %	Q2 5	2
Euglana maa	× 119 5		D ₁₇₀	2
Trachelomonas spec.			178	2
Scenedesmus of Dimorphus O			120	2
Characium@pec.	844 5 ⁷ 90 5 ⁷	Q23 a.	134	2
Ankvrastudavi	90 . S	189 0	125	2
Closterium cf leibleini Cocconeis spec.	1460 2	\$2,48 \$	190	2
Closterium cf leibleini 4	140 - 20 102 - 20 - 20	269	179	2
Synedra ulna	156		159	2
Pennales 30 -40 µm		E 172	116	2
Pennal 70-80 µm	168	203	186	2

MDD cat = category based on MDD evaluation according to Brock et al. (2015).

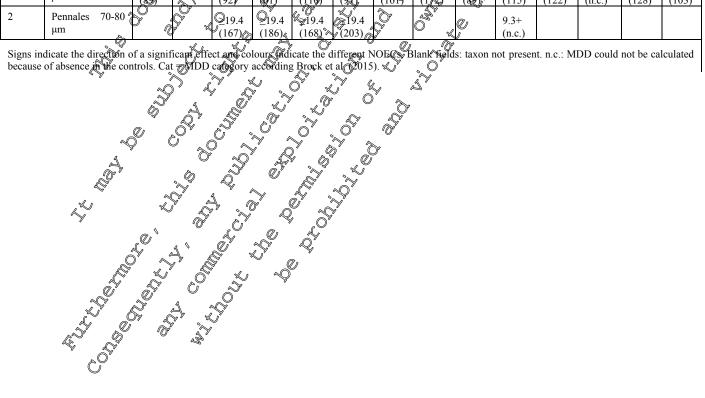
For the sum of agae, significatively reduced abundances in comparison to controls were detected on four consecutive samplings (day 4 - day 14), with NOEC of 1 µg/L on day 11, 2.1 µg/L on day 7 and 4.4 µg/L on day and 14. Upon the last application, on day 14, the sum of algae recovered quickly and no significant effect were detected (effect class 3A for 4.4 µg/L and higher test concentrations; effect class 2 for 2, 1 µg/L)

Cryptophycke wer the most abundant and one of the most affected groups. Prolonged effects (day 4 dav 28) were detected on total Cryptophyceae, in particular on Cryptomonas spec. (20-30 µm) and Chroomenas spec. Until day 28, the Cryptophyceae were affected in the two highest treatments of 9.3 and 19.4 μ g/L (effect class 3A), while the lower abundances at 4.4 μ g/L were only significant on day18 (class 2). However, for Cryptomonas spec. (20-30 µm) significantly lower abundances were detected already in the mesocosms treated with 4.4 μ g/L (day 11 – day 21) with recovery until day 56 (effect

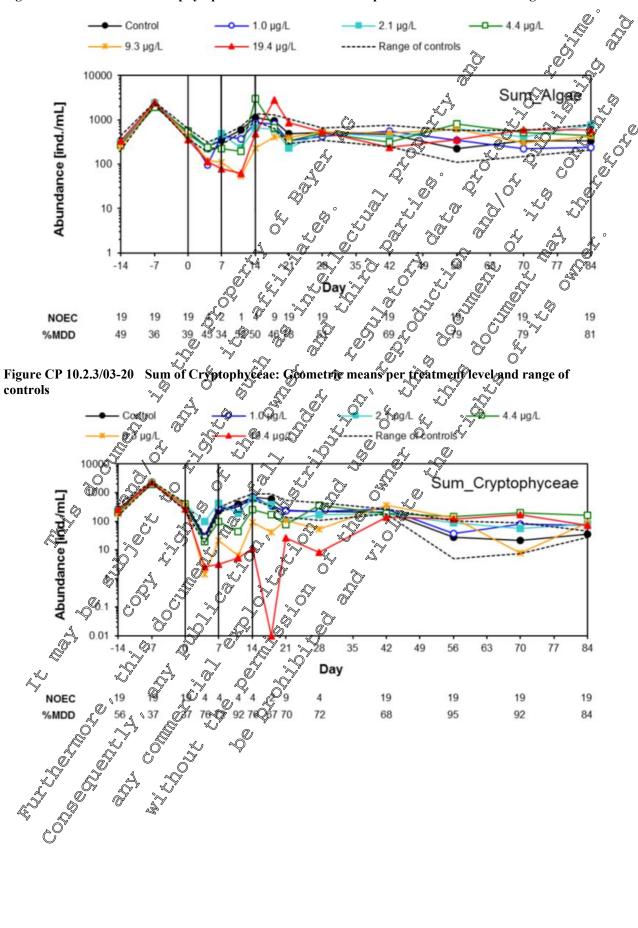
class 3A). Chroomonas spec. was less sensitive, with pronounced short-term effects at 9.3 and 19.4 μ g/L (effect class 3A).

For total Chlorophyceae, significantly reduced abundances were detected on day 4 at the two highest treatments of 9.3 and 19.4 μ g/L and on day 11 in all treatments. However, it seems unlikely that on day 11 all treatment levels had a direct effect since there was clearly no effect after the first and the third application. After the third application, the strongest growth was found in the mesocosm treated with 19.4 μ g/L leading to significantly higher abundances over 2 weeks. Thus, this promoting effect of the three applications was considered more relevant for the effect classification (effect class 3A at 79.4 and 2 at 9.3 μ g/L). On day 7, a NOEC of 1 μ g/L was calculated for the green algae Chlamydon on as spec... This isolated NOEC is considered not to be treatment related as in the higher treatments, the abundances were in the range of controls. Thus, effect class 1 was used for all treatment levels for this species. For the coccoid Chlorophyceae, a significant reduction was detected on two ampling occasions (day 11 and 21) for the three, respectively two highest test concentrations of 19.4, 92 and 4.4 μ g/L and was considered to be an effect class 2.

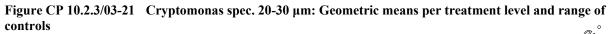
The total Diatoms were not affected exception day 18, when significant differences to the control were detected for the highest test concentration of 19.4 µg/L (effect class 2). For the diatom Achnanthes spec., significantly reduced abundances were detected on day 11, 14, 18, 08 and 42 which was considered as an effect class 2 for 4.4 µg/L and an effect class 3.4 for 9.3 and 9.4 µg/L. For small dennales (20-30 µm), significantly higher abundances with a NOEC of 1 µg/L were detected on day 56. Since these increases showed not concentration-dependent response, it was not considered as an indication of a promoting effect, and class 1 was assumed for all test concentrations.

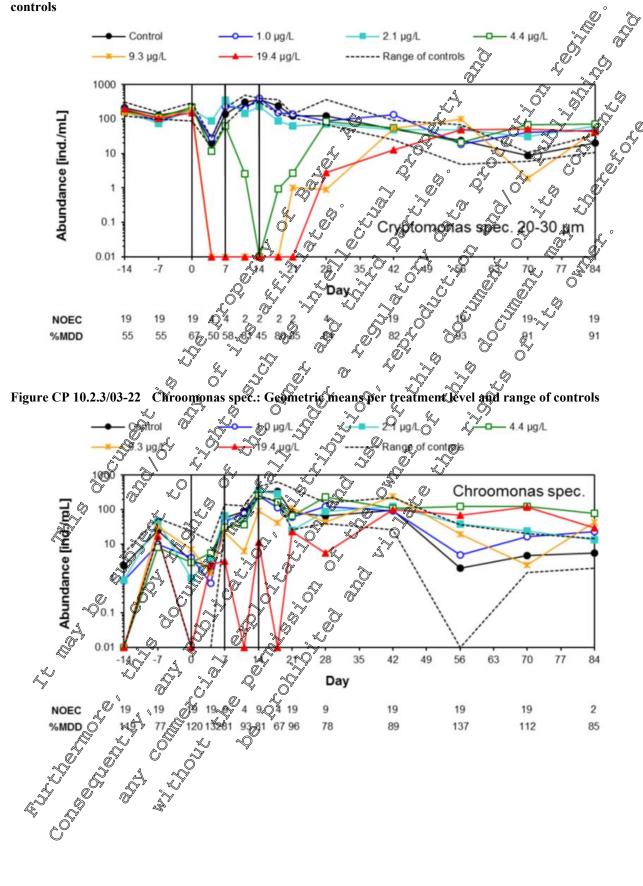

The cyanobacteria in total and the taxon Pseudoanabaena spec. were not affected during the whole study (effect class 1).

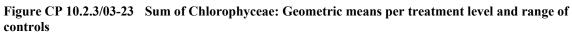
		- 6				<u>v</u>	Š ^y ,	~~	2	0	4				
Macroz	coobenthos	Days	fter appli	ication 0			م^Ç				.,				
MDD cat	Taxa / day	04	<i>b</i>	8	S		JU S	2 44 20		21	28	42	56	70	84
1	Sum algae	≥19.4 (49)	≥19.4 (36)	≥19 Å (39)	4.4- A (450)	21	(52)	4.4- (500)	9.3 (46)	≥19.4 (78)	≥19.4 (51)	≥19.4 (69)	≥19.4 (79)	≥19.4 (79)	≥19.4 (81)
1	Sum Chlorophyceae	≥19.4 (71)	(C) 19.4 ((195)	ØØ.4	4.4- ((54)	219.4 (71)	() () () () () () () () () () () () () (≝¥9.4 (87)	.9.9 ≤(67)	9.3+ (84)	4.4+ (69)	≥19.4 (79)	≥19.4 (88)	≥19.4 (92)	≥19.4 (95)
1	Sum cryptophyceae	≥19.0° (56)	≥19.4 (20)	≥19 (55)	4.4z	4.4- (72)	4.4- O (92)	4.4- (7.6)	2.1- (67)	9.3- (70)	4.4- (72)	≥19.4 (68)	≥19.4 (95)	≥19.4 (92)	≥19.4 (84)
1		* (61)	9.3+ (48)	©19.4 (76) ^	219.4 ∝ 2(69) _C	919.4 (48)	919.4 (81)	≥19.4 >(101)	9.3- (86)	≥19.4 (89)	≥19.4 (87)	≥19.4 (95)	≥19.4 (89)	≥19.4 (88)	≥19.4 (96)
1	Sum cyanobactera	≥19.4 (128)	≥ 09 .4 °€100)	≥19.4 (192)	(69) $\geq 1@4$ (98)	(#85°)	<u>≩</u> 19.4 (†01)	≥19.4 (95)	≥19.4 (99)	≥19.4 (98)	≥19.4 (75)	≥19.4 (82)	≥19.4 (84)	≥19.4 (83)	≥19.4 (91)
1	Pseudoanabaena spec	≥19. 4 (128)	≥19.4 (108)	≥19,4 (102)	$2 \ge 19.4$ (98)	≥19.4 (81)	≥19.4 (101)	≥19.4 (95)	≥19.4 (99)	≥19.4 (98)	≥19.4 (75)	≥19.4 (82)	≥19.4 (84)	≥19.4 (83)	≥19.4 (91)
1	Chlamydomonas spec.	Ø19.4 (157)	≥19.4 (145)	(70)	29.4 (100)		≥19.4 (n.c.)	≥19.4 (102)	≥19.4 (99)	≥19.4 (99)	≥19.4 (78)	≥19.4 (97)	≥ 19.4 (98)	≥19.4 (115)	≥19.4 (114)
1	coccoid Chlorophyceae	≥19 4 (1400)			≥19 (67)	≥19.4 (79)	2.1- (59)	≥19.4 (101)	≥19.4 (95)	4.4- (83)	≥19.4 (113)	≥19.4 (117)	≥19.4 (182)	≥19.4 (99)	≥19.4 (118)
1	spec.	219.4 7(119)	⊴≥19.4 ⊽(77) ×	0 0 0 0 (119)	≥19.4 (132)	9.3- (81)	4.4- (93)	9.3- (81)	4.4- (67)	≥19.4 (95)	9.3- (78)	≥19.4 (89)	≥19.4 (136)	≥19.4 (112)	2.1+ (85)
1	Cryptomonas speci 20-30 duri	≥19.4 (55)	≥19©	≥19.4 (67)	4.4- (49)	4.4- (58)	2.1- (81)	2.1- (45)	2.1- (80)	2 (86)	4.4- (84)	≥ 19.4 (82)	≥19.4 (93)	≥19.4 (91)	≥19.4 (91)
1	Achnanthes spec.	≥19.4 (157)	≥19.4 (121)	≥19.4 (99)	≥19.4 (90)	≥19.4 (79)	4.4- (94)	≥19.4 (99)	4.4- (84)	≥19.4 (95)	2.1- (75)	9.3- (91)	≥19.4 (94)	≥19.4 (91)	≥19.4 (91)

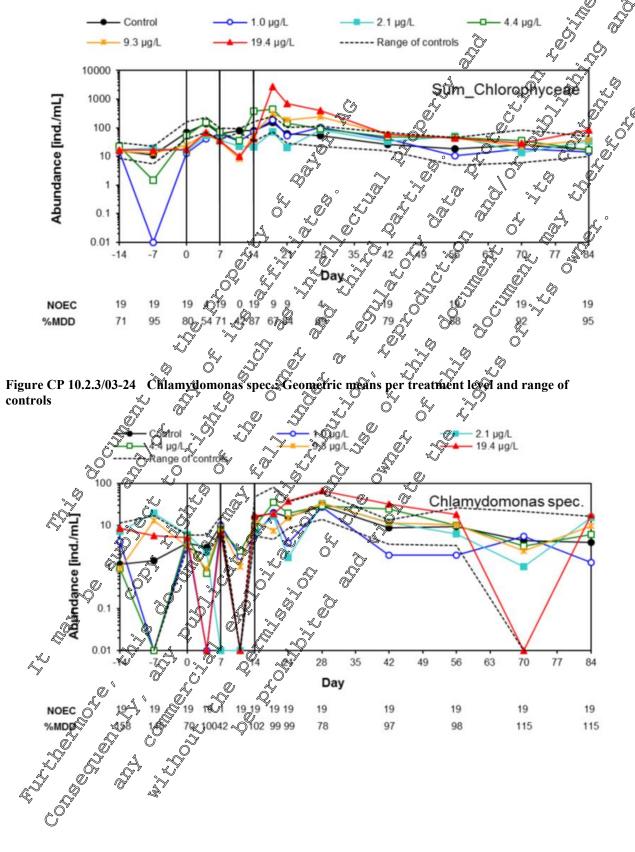

Table CP 10.2.3/03-12 NOF i µg/L and related MDDs (in brackets) for the phytoplankton counts

Macroz	zoobenthos	Days at	fter appli	ication											
MDD cat	Taxa / day	-14	-7	0	4	7	11	14	18	21	28	42	°~	<i>8</i> 0	8 4
1	Pennales 20-30 μm	≥19.4 (81)	≥19.4 (80)	≥19.4 (71)	≥19.4 (89)	≥19.4 (78)	≥19.4 (83)	≥19.4 (230)	≥19.4 (226)	≥19.4 (72)	≥1907 (800	≥19.4 (119)		≥19.4 (98)	≥19.4 (99)
2	Sum Euglenophyceae	≥19.4 (177)		≥19.4 (175)	≥19.4 (208)	≥19.4 (189)		≥19.4 (119)	≥19.4 (173)	≥19.4 (150)	9.3+ (125)	≥19.4 & (n.c _s)©	€≥19.4 (155)	≥19.4 (189)	≥19.4 (111)
2	Merismopedia spec.				9.3+ (n.c.)			C A A		>0.4 (1.c.)					L.
2	Phacus pleuronectis				≥19.4 (n.c.)		Ő	¢)¥	, 0 ×				○″<1- (92)
2	Euglena spec.						Q ^{'y}	o .		©+ >(n.c.)		0.4 (n.c.)	259.4 (221) ^	Ø9.4 Qn.c.)	≥19.4 (119)
2	Trachelomonas spec.	≥19.4 (177)		≥19.4 (175)	≥19.4 (193)	≥19 (189)		(1 1 Ĝ)	$(2240)^{2}$	ad k	≥19,4 (n.c.)	≥19.4 (n.¢)	≥19,4 (249)	≥19.4 (1759	≥19.4 (153)
2	Scenedesmus cf dimorphus	≥19.4 (123)	≥19.4 (45)	≥19.4 (126)	≥19.4 (122)≪	(4.4+ (n.c.) [∧]	≈219.4 ∀(130)	≥19.4 ≫19.4 ≫(136),€	≥19.4 (n.c.)	19.4 √(125)%	(120)	≥19.4 (104)√	\$19.4 (117)	(108)	≥19.4 (n.c.)
2	Characium spec.		≥19.4 (n.c.)	≥19.4 (n.c.)	≥1 0 4 (Q 2)	K,	≥1 9.4 ∘(193)	>19.4 (1.85)	≥1%4/ (10%)	≥1 9:4 ,(105)	4.4	$\geq 10^{-10}$	≥19.4 (Ø\$2)	2.1+ (223)	4.4+ (118)
2	Ankyra judayi	≥19.4 (n.c.)		, A	Q≥19.4 (n.c.) ,≪		≥19.4° (112)	≥19.4 (90)).3+ (93)	$(90)^{4.4+}$	2.1+ (128)	219.4 % (n.c,)	≥19.4 (189)		≥19.4 (170)
2	Closterium cf leibleinii			219.4 (n.c.)	≥ 19.4	ŝ	8 2	4		≥ 1 9.4 °∢248)	≥19.4 (@c.)	≥ 104 (146)	4.4+ (n.c.)	4.4+ (204)	4.4+ (162)
2	Cocconeis spec.	≥19.4 (n.c.)	≥ 19.4 (n.c.)	$\geq 19.4^{\circ}$	≥19.40 (162)		2.1+ (n.@)	≥19.4 (244)	s≥19.4 (n,c.)	≥19. 4 © (1999	×≥19.4 (152)	© J≥19.4 (179)	≥ 19.4 (269)	≥ 19.4 (122)	≥ 19.4 (102)
2	Synedra ulna		Î,	Ĩ,		¢,	Ĵ.	934 (156)	≥ 0 .4 (161)	\$19.4 (n.c.)	≥19.4 (n.c.)				
2	Pennales 30-40 µm	≥193¥ (100)		≥19.2¥ (92¥	≥19.4 (€1)	≥19.4 (119)	≥ 19.4		≥ 194	≥19 4 (89)	⁷ ≥19.4 (115)	≥19.4 (122)	9.3+ (n.c.)	≥ 19.4 (128)	≥ 19.4 (103)
2	Pennales 70-80		\$`	Q19.4 (167)	Q _{19.4}	©¶19.4	(203)	ð		Q	9.3+ (n.c.)				






Figure CP 10.2.3/03-19 Total phytoplankton: Geometric means per treatment level and range of controls



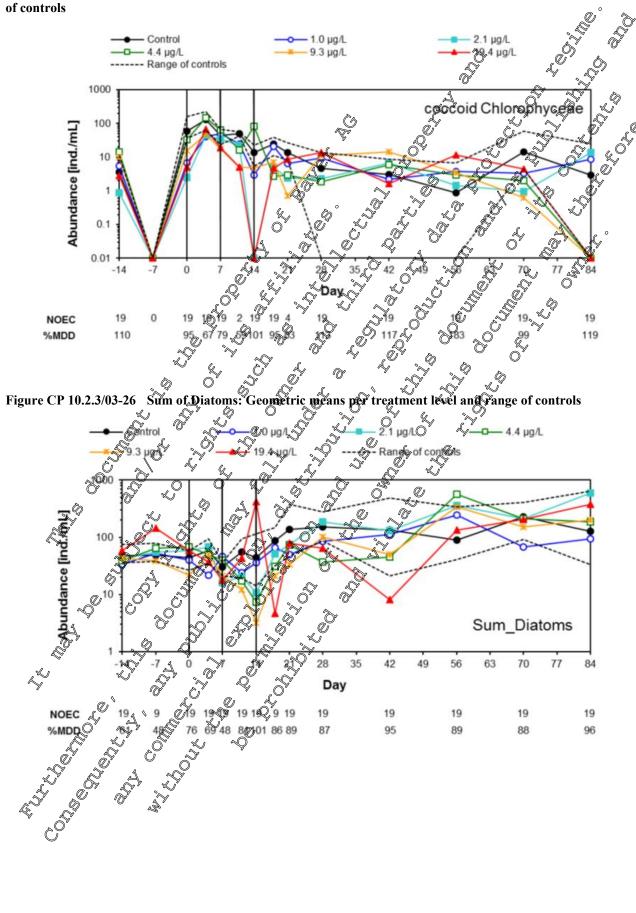


Figure CP 10.2.3/03-25 Sum of coccoid Chlorophyceae: Geometric means per treatment level and range

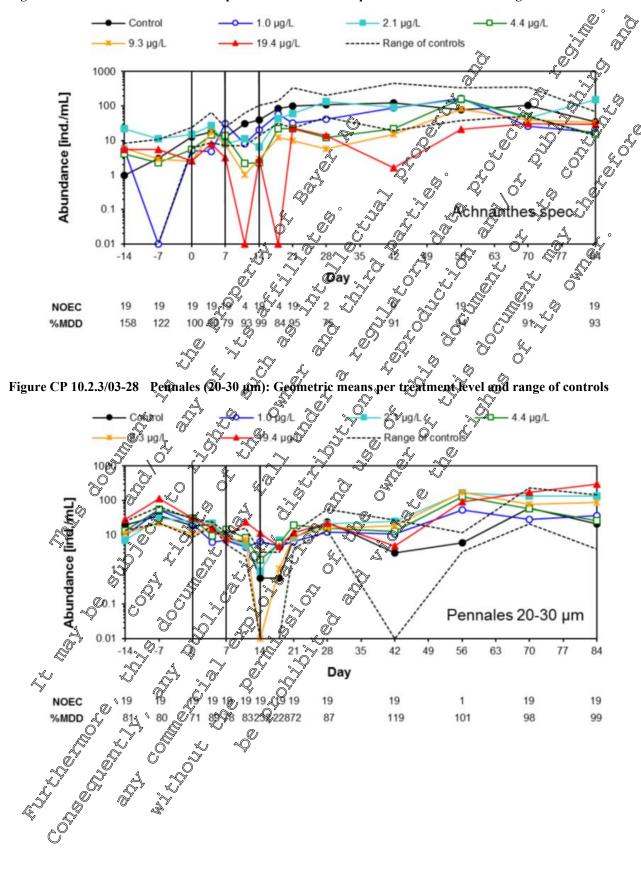
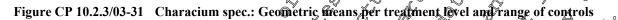
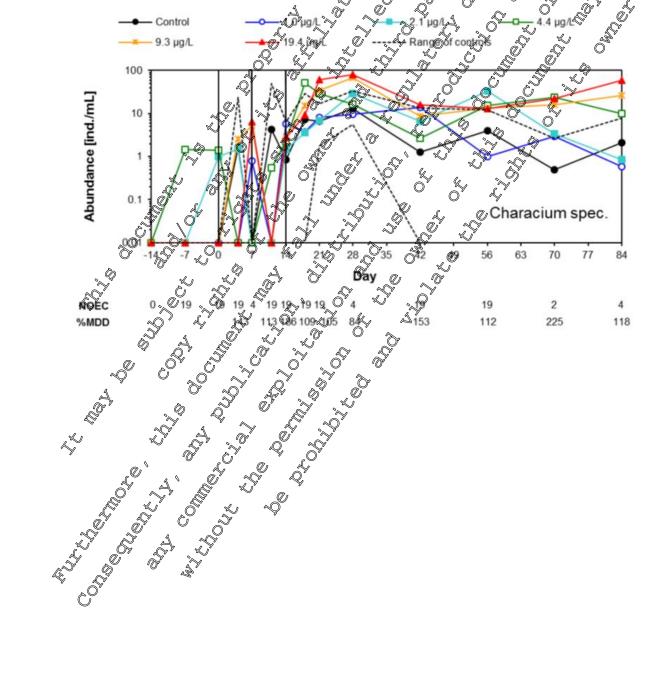


Figure CP 10.2.3/03-27 Achnanthes spec.: Geometric means per treatment level and range of controls

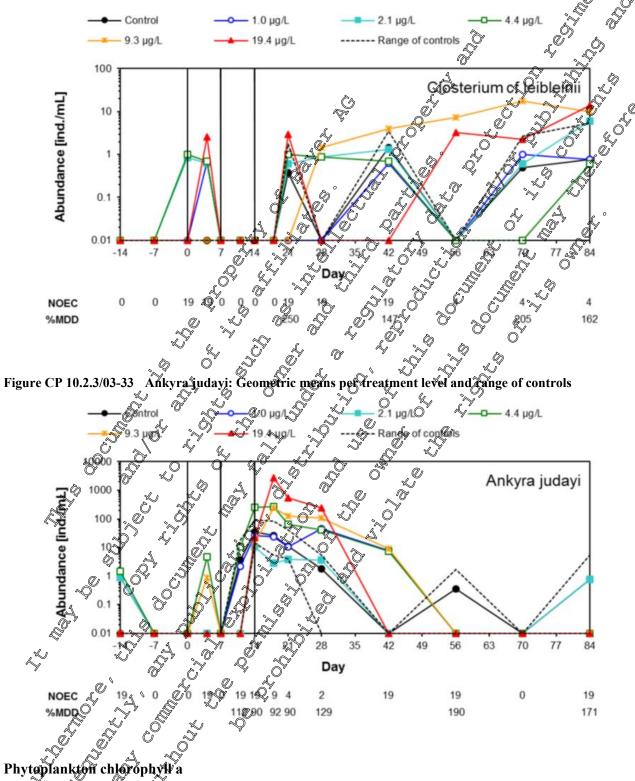
Figure CP 10.2.3/03-29 Cyanobacteria: Geometric means per treatment level and range of controls


Taxa of MDL category 2 showed increased abundances on single samplings with NOECs of 2.1 µg/L and higher such as *Meriotopedia spec., Euglena spec., Trachelomonas spec. Scenedesmus dimorphus, Cocconer spec,* Synedra ulna and Pennales. Since this would not affect the final risk assessment, these taxa were not considered further. However, the green algae *Characium spec., Ankyra judayi, Closterium leibleinii* showed significantly higher abundances than in the controls on 2 or 3 consecutive samplings.



Characium spec. showed significantly higher abundances in the mesocosms treated with 9.3 ad 19.4 μ g/L on day 28 (considered as class 2+), and again on day 70 and 84. Since it could not be assessed if the statistical findings at the end of the study indicate a promotion, class 2+/4A+ was considered for this species and the two highest test concentrations.

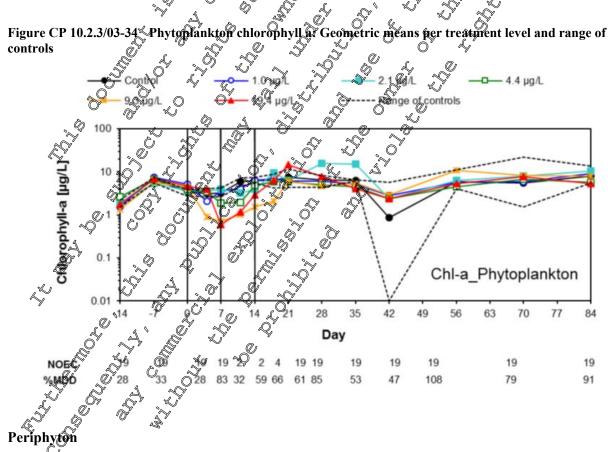
Higher abundances were also found for Clostridium leibleinii over the last three samplings in the two highest test concentrations. To be conservative, this was interpreted as a potential promotion, effect class 3A+/4A+. However, both species were relatively rare and the higher abundances found ache end of the study did not result in a bloom of algae. Thus, the ecological relevance of the observations is considered to be low.


In contrast, Ankyra judayi showed a significant proportion of abundance on day 18, 2 R and 28 with respective NOEC of 9.3, 4.4 and 2.1 μ g/L (effect class 3A+ for 9.3 and 19.4 and effect class 24 for 4.4 μ g/L).

The chlorophyll a concentration was measured on several sampling occasions. The calculated MDD demonstrated that small to medium effects could be determined.

Table CP 10.2.3/03-13	% MDDs for phytoplankton chlorophyll a
-----------------------	--

Phytoplankton	Summary							
	Min	Max	Mean	MDD Car				
Chl-a Phytoplankton	32	108	68	1 4 5				


MDD cat = category based on MDD evaluation according to Brock et al. (2015).

Significantly reduced chlorophyll a concentrations in comparison to the controls were detected on three of consecutive samplings, from day 7 to day 14. Therefore, effects are test concentration of 4.4 µg/L or higher were considered effect class 3A.

Table CP 10.2.3/03-14 NOECs [µg/L] and related % MDDs (in brackets) for phytoplankton chlorophyll a

Phytopl	ankton	Days af	fter appli	cation	ŝ	Ĵ,	** ~	×.		A.	6 ⁶ ,	 & ,		<u> </u>	
MDD cat	Taxa / day	-14	-7	0	4	7		14 ×	18	21	28	42	56 O	70	84
1	Chl-a Phytoplankton	≥19.4 (28)	≥19.4 (33)	≥19.4 (28)	¥.4- (83)	2.1- (32) Ø	2.1- (59) (4.4- \$(66)		019.4 (85)_(G19.4	A.9.4	≪A9.4 ¥(79)	≥19.4 (91)	≥19.4 (56)

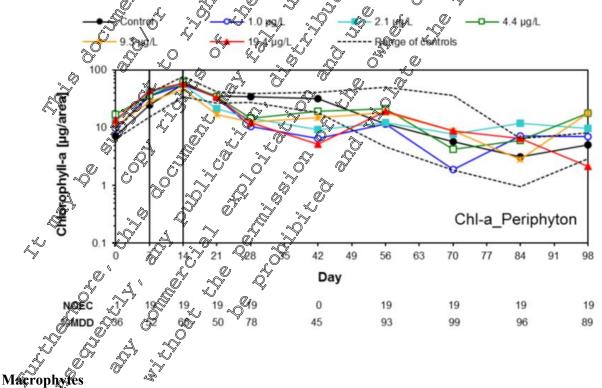
Signs indicate the direction of a significant effect and colors indicate the different OECs (Cat = MD) category according Brock et al. (2015).

The effects on periphyton were examined by measurements of chlorophyll a concentrations. The MDDs calculated for periphyton fulfil the criteria according to Brock *et al.* (2015). On most of the sampling occasions, the MDDs were low enough for small to medium effects to be detected. The periphyton

chlorophyll a determinations showed in all test concentrations a slight but not significant difference to the control on day 28 and a significant difference to the control only on day 42. On both dates, the response was not concentration-related since the deviation of the 1.0 μ g/L mesocosms from contrativas \mathcal{P} very similar to the one of the 19.3 µg/L. Thus, a direct effect of the test item seems to be unlikely class 1).

Table CP 10.2.3/03-15% MDDs for periphyton chlorophyll a

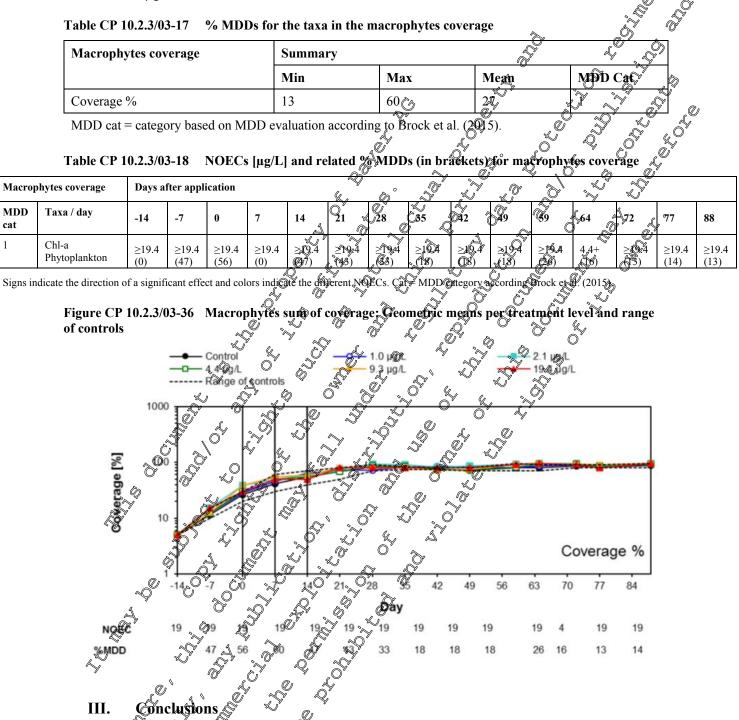
Table CP 10.2.3/03-15	% MDDs for periphyton chl	orophyll a	4	
Periphyton	Summary	Ď		
	Min	Max	Mean	MDD Cat
Chl-a Periphyton	45	<u>4</u> 99	Q 74 .	
		¥ ″		


MDD cat = category based on MDD evaluation according to Brock et al. (2045)

Ô Table CP 10.2.3/03-16 NOECs [µg/L] and related % IDDs in brackets) for periphyton chlorophyll a

Peryph	nyton	Days aft	ter applic	J.		\sim		A.Ô		
MD D cat	Taxa / day	0	7	O^{ν}			(//)2	56	700	098
1	Chl-a Phytoplankton	1+ (36)	≥19.4 (52)	≦19.4 (66)	≥19.4 (579)	≥19.4 (08)	5 ¹ - (45) (Q19.4 Č) ≥19.4 (290	≥19.4 (89)

Signs indicate the direction of a significant effect and colors indicate the different NOE Cat = MDD category according Brock et al. (26)5).


The calculated MDDs for the total macrophytes coverage were sufficiently low to allow an evaluation of direct effects, small to medium effects (MDD 13-60 %) could be determined. No adverse effects on the macrophytes coverage were detected during the outdoor mesocosm study. On day 64 of the study,

MDD

cat 1

significantly increased macrophytes coverage was determined at two highest treatments, resulting in a NOEC of 4.4 µg/L.

An outdoor mesocosm stody to investigate the effects of three applications of spiroxamine EC 500 was re-analysed with respect to MDDs and effect classification according to the most recent guidance (EFSA 2013)

The MDDs of eleven invertebrate and seven algae taxa (plus combined data on higher taxonomic levels) fulfil the@riterion proposed by Brock et al. (2015). If a more strict criterion is applied, e.g. that the MDD should be at least once <70% within the first four weeks after the first application, 13 taxa representing populations of macroinvertebrates, zooplankton and phytoplankton allow a statistical evaluation of direct effects: Tubificidae, Chironomini, Chaoborus spec Simocephalus vetulus, Chydorus sphaericus,

Eucercus lamellatus, cyclopoid copepods (and nauplia larvae), *Polyarthra spec.*. *Chlamydomonas spec.*, coccoid Chlorophyceae, *Chroomonas spec.*, *Cryptomonas spec.* (20-30 µm), and Pennales (30-40 µm). Thus, despite the fact that only 12 test systems were used in the study, a reliable statistical analysis of direct effects was possible for at least eight taxa considered to represent potentially sensitive populations as requested by EFSA PPR (2013).

The following effects were found at the different test concentrations:

- At the lowest test concentration of 1.0 μg/L, no treatment effects were found (class 1).
 At 2.1 μg/L, a slight direct effect on total phytoplankton abundance and a pronounced short term promoting effect on the rotifer Keratella quadrata were detected (class^Q for the direct).
- term promoting effect on the rotifer Keratella quadrata were detected (class of for the direct effect on the phlytoplankton and 3A if the potential temporary promotion of a rother species is considered an adverse effect). Other taxa showed no effects.
- At 4.4 µg/L, class 3A effects for total rotters, total phytoplankton, chlorophyll a and Cryptomonas spec. were observed while some other taxa were slightly affected. Thus, the total effect class for 4.4 µg/L is considered A.
- At 9.3 μ g/L, more taxa were affected, effects were more pronounced or prolonged and for two algae species, significantly higher abundances than in the controls were found at the end of the study. However, since in general both species were tate and no algae bloch was found at the end of the study, this was not considered to be ecologically relevant. Thus effect class 3A was chosen as the overall effect class for 9.3 μ g/L.
- At 19.4 μ g/L the effect classification was similar to the one for 9.3 μ g/L. For leeches, higher abundances at the end of the study could not be excluded which was considered as class 2/4A for the highest test concentration.

According to EFSA (2013) the EPO-RAC can be derived from the overall class ψ concentration of 1 μ g/L (nominal for three applications) and would be ψ 5 μ g/b using the recommended assessment factor of 2 in EFSA (2013).

However, if the potential temporary promotion of the plifer *feratella* and the slight effect (class 2) on total phytoplankton is considered acceptable, the 2.7 μ g/L concentration could be used to derive the ETO-RAC considering that the observed effects here are of low cological relevance.

Since rotifers and algae seem to be the most service axa while taxa with a lower recovery potential were found to be less sensitive (Cladocera, Copepoda, Chironomidae, Chaoboridae, Hirudinea, Oligochaeta) the stud can also be used to derive an ERO RAC. At 9.3 μ g/L, no, slight or only effects with recovery within 8 weeks were found. Thus, the ERO-RAC can be derived using this concentration (9.3 μ g/L) and world be 3.1 μ g/ applying an assessment factor of 3.

No clear long term effects were found at the highest test concentration of at 19.4 μ g/L, only for a potential promotion of leaches the effect duration could not be assessed. Thus, the ERO-RAC would be 4.85 μ g/L applying an assessment factor of 4 to consider the higher uncertainty due to data on leeches.

Assessment and coorclusion by applicant:

The mesocosm study and the re-assessment oudy has been assessed using the checklist presented in the Aquatic Gordance Document (acapted from De Jong *et al.*, 2008) in order to confirm the reliability of the data. The outcome of the assessment is presented below.

Items of the	Notes	Reliability index 1–3
Methodology and test descript		
1. Substance	?	
1.1 Concentration	Identity and amount of a.s. per litre test water?	1

Table CP 10.2.3/93-19 CReliability assessment of the mesocosm study according to EFSA (2013)

		Fully reported (p 19 and 28 of study report0)
1.2 Formulation and purity	Substances in the formulation influencing the working action of the	1 The rep. formulation Spiroxathine
1.3 Vehicle	a.s. should be reported In case a vehicle (other than in the formulation) is used, identity and concentration?	EC 500 wastested
1.4 Chemical analyses	Method, LOQ, LOD, recovery	Builty reported (p248-202) Refer also to analytical methods section of dossier
1.5 Properties	Relevant for potential fate and effects in test system	
2. Test site, duration	Properly characterised and reported	
2.1 Location	Necessary to make a link between the effects and local environmental conditions, representativeness	Fully reported (p 21)
2.2 Test date/duration	Application dates and experimental period?	Fully oported up 25)
2.4 General climatic conditions	Necessary to make a bink between the effects and local climatic conditions	1 Fully reported (p 41)
3. Application	Property characterised and reported	
3.1 Mode of application	Exposure route, spraving or homogenising the as. into the test medium?	1 Folly reported (p 27)
3.2 Dosage and sposure	Actual concentrations during the test Chemical analysis of dosing solution?	1 Fully reported. Chemical analysis of water, sediment and macrophytes
3.3 Application scheme	Necessary to make a timk between the test and the intender use of the PRP	1 Fully reported (p 27)
3.4 Conditions duppg	Weather conditions during application, wind speed and temperature	1 Fully reported (p 41)
4. Test design	Properly designed and seported?	
4.1 Type and size	e.g. outdoor microcosm, outdoor pond or mesocosm dimensions	1 Fully reported (p 21 - 22)
4.24 Pre-treatment 25 5	Proper equilibration?	1 5 months of acclimation prior to dosing
4.3 Treatment period	Number and spacing of treatments?	1 3 applications with a 7-day interval
4.3 Post-treatment	Period long enough to allow expression of effects and recovery?	1 14 week (84-day) duration sufficient to assess effects and potential recovery
4.4 Untreated control	Sufficient number; solvent applied?	1 3 control reps; no solvent required

4.5 Replications	Sufficient replications for proper statistical analysis?	1 3 control reps; 2 reps for 1.0, 2.1.° 4.4 and 9.3 μg/L; a single rep for 19.4 μg/L
4.6 Statistics	Univariate and multivariate techniques applied	1 Fully reported. Also refer to mesocosm re-assessment report
4.8 Dose–response	Number of test concentrations for finding a dose relationship excluding controls)	1 5 test concentrations used in the study
4.9 Quality assurance	Study conducted under GLP?	
5. Biological system	Representative and properly reporte	
5.1 Populations	Enough sensitive/vumerable@pecies@ of the relevant taxonomic group?	1 MDD criteria fulfilled (arleast & sensitive taxa) Refer to re-
5.2 Community	The community/ecosystem 7 representative and complete?	Aquatic ecosystem considered sufficiently represented
6. Sampling	Is sampling adequate for risk assess	nent
6.1 General features	Rolevanco selected measurement	Fully eported (p 29 – 32)
6.2 Actual concentration	Actual concentrations measured in meanum and other compartments or brota?	1 Dilly reported; concentrations measured in overlying water, sectionent and in macrophytes
6.3 Biologica Sampling	Appropriate methods and bequences?	Suitable sampling techniques used for zooplankton, macrozoobenthos, chlorophyll a, algae and macrophytes (p 29 – 32)
Results &		
7. Endpoint of the contract of	Properly reported?	
7.1 Type	Réporte endpoints relevant for objective of study?	1 Fully reported. Also refer to re- assessment report
7.2 Value	Are measured data consistently presented?	1
7.3 Verification of endpoint	Testresults are verifiable and source data reported	1 Fully reported (refer to re- assessment report)
8. Elaboration of results	Are conclusions based on measured of Methodology correct?	lata?
8 DStatistical comparison	Data meet requirements for method used?	1 (refer to re-assessment report)
8.2 Dose–effect relationship	Minimal detectable difference; consistence of response	1 MDD analysis performed (refer to re-assessment report)

8.3 Population-level	Sufficiently reported?	1
responses		Sufficiently reported
8.4 Community-level	Sufficiently reported?	
responses		Sufficiently reported
9. Control		
9.1 Untreated control	Unexpected effects or disappearance	
	of species?	Notimexpected effects
9.2 Solvent control	Possible effects caused by solvent?	A C Q X
	Ly A	No solvent used
10. Classification of effects	Properly derivable	
		, Refer to revassessment report
		where affects are classified in
		accordance with the Aquatic
		Guillance Document
11. Biological meaning of	Sufficiently explained	
		Fullscreported
statistically significant differences	socosm report (FYF 379) have been acted fo	Fully reported
socosin report (FYF 379) have		

1 Reliable - All data are reported, the methodology and the description are in accordance with internationally accepted test guidelines and/or the instructions, all other requirements fulfilled

2 Less Reliable - Not all data reported, the methodology and/or the description are stightly destating from internationally accepted test guidelines or the instructions, without motivation, or not all other requirements fulfilled?

3 Not reliable - Essential data missing, the methodology and/or the description are not invaccordance with internationally accepted test guidelines and/or the instructions without motivation, or not reported, or important other requirements are not fulfilled

Based on the reliability assessment above, it is considered that the mesocosm study was conducted to recognised test orethodology and was sufficiently reported. Taking the results of this study as well as the results of the re-assessment study into account, it is considered that the data are robust and reliable and of sufficient quality to be able to derive an endpoint for use in the aquatic risk assessment.

For phytoplankton, macroinvertebrates and zooplankton, 19 taxa plus pooled data on higher taxonomic levels fulfilled the MDD criterion proposed by Brock *et al.* (2015). Furthermore, the chlorophyll a measurements of phytoplankton and periphyton as well as the macrophyte coverage could be evaluated. If a more strict enterion is applied, e.g. that the MDD should be at least once <70% within the first four weeks after the first application, 13 taxa representing populations of macroinvertebrates zooplankton and phytoplankton allow a statistical evaluation of direct effects: Tubificidae, Chironomin, *Chaoborus spec Simocephalus vetulus, Chydorus sphaericus, Eucercus lamellarus*, cyclopoid copepods (and nauplia larvae), *Polyarthra spec., Chlamydomonas spec.,* coccoid Chlorophyleeae, *Chroomonas spec., Croptomonas spec.* (20-30 µm), and Pennales (30-40 µm). Thus, the requirement of the Aquatic Guidance Document (EFSA PPR 2013) that the MDDs should be sufficiently fow to allow the analysis of direct effect for at least 8 potential sensitive populations is met by the study.

The study is considered by be acceptable and sufficiently robust to derive an ETO-RAC of 0.5 μ g a.s./L (Class 1 effects at 1.0 μ g a.s./L and an assessment factor of 2). The data are also considered sufficient to derive an ERQ RAC of 3.1 μ g a.s./L (Class 3A effects at 9.3 μ g a.s./L and an assessment factor of 3)

Data Point:	KCP 10.2.3/02
Report Author:	
Report Year:	2000
Report Title:	Fate of spiroxamine in enclosures of an experimental ditch
Report No:	HBF/MT 12
Document No:	<u>M-030336-01-1</u>
Guideline(s) followed in	OECD Guidance Document "Freshwater Lentic Field Tests", July 1996 (Dtate)
study:	
Deviations from current	None a c c c c c c c c c c c c c c c c c c
test guideline:	
Previous evaluation:	yes, evaluated and accepted in the second seco
	RAR (2010)
GLP/Officially	Yes, conducted under Gb Officially recognise diesting facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only

Executive Summary

The aim of the study was to assess the fate and partitioning of spiroxamine in an environmentally realistic aquatic system. The study was carried our using four enclosures in an experimental ditch at Renkum, the Netherlands. Two enclosures contained macrophytes and had in upper layer of sediment rich in organic matter, whereas in the two other enclosures macrophytes and the upper layer of detritus were removed.

A single application of the test substance was introduced into the enclosure at two different concentrations of (nominal) 3.5 and 35 μ g a.s./L respectively. The test lasted for 56 days after application of the test substance. The concentrations of the active substance in the water phase, in sediment and in macrophytes were followed over time.

In the enclosure study it was demonstrated that macrophytes affect the initial dissipation of spiroxamine from the water column by sorbing a large proportion of the dosc applied (up to 32 - 41%). In the two enclosures with macrophytes and an organize-rich petritu layer the DT₀ values for spiroxamine in water ranged from 0.9 - 2.0 days. In one of these systems a D ϕ_{50} value of 10.1 days was measured for the total system.

In the two enclosures without macrophytes and an organic rich detritus layer the DT_{50} values of Spiroxamine in water ranged from 3.1 - 5.9 days. Despite the somewhat slower dissipation from water, the DT_{50} value for the total system (9.6 days) was very similar to that in the other type of enclosure.

I. Materials and Methods

Materials⁴ **Test Material** Spirôxamine Lot/Batch # Purity (a.S.) Å8.3%€w/w Description Brown liquid Stability of tes Sufficient based on expiration date compound: Reanalysis/Ex 17 August 2000 dates Density: 1.006 g/mL

Treatments

Test rates:	3.5 and 35 µg a.s./L
Solvent/vehicle:	Tap water
Analysis of test concentrations:	Days 0.17, 1, 3, 7, 14, 28, 56 and 68
Test organisms	
Species:	Macrophytes
Source:	Wild collected
Acclimatisation period:	Not applicable
Feeding:	Not applicable
Treatment for disease:	Not reported
Test design	
Test vessel:	Cylinder (diameter 1505 m height 0.90 m) mate of Solycarbonate
	3.5 and 35 µg a.s./L Tap water Days 0.17, 1, 3, 7, 14, 28, 56 and 68 Macrophytes Wild collected Not applicable Not applicable Not reported Cylinder (diameter 4.05 m height 0.90 m) mate of polycarbonate pervisos to light, which is pushed approx. 0.15 m, water depth is ap
Test medium:	Water depth is approx 19.50 m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Replication:	Duplicate State State
No. of animals/vessel	The heigheof the encloseres above wheel shaled is approx. 0.15 m, water depth is approx. 0.50 m Watek Duplicate 56 days 56 days 8.26 11,50 mg/k Natural light (88 - 524 uE cm ⁻² s ⁻¹)
Duration of test:	56 days
Environmental test	
Temperature:	₹8.8 - \$1.4°C
Dissolved oxygen:	$\sqrt[9]{8.26} 11.50 \text{ mg/k}$
рН: 🏹 着	297 - 954
Photoperiod:	Natural light $(88 - 52^4 \text{ uE cm}^{-2} \text{ s}^{-1})$
Study Design	
The aim of the study was t	o assess the fate amonartitioning of spiroxamine in an environmentally

The aim of the study was to assess the tate an Opartitioning of spiroxamine in an environmentally realistic aquatic system. The study was farried out using four enclosures in an experimental ditch at Renkum, the Netherland Two enclosures contained macrophytes and had an upper layer of sediment rich in organic, whereas in the two other enclosures macrophytes and the upper layer of detritus were removed On May 17 2000 a single application of the test substance was introduced into the enclosures of two different concentrations of (nominal) 3.5 and 35 µg a.s./L, respectively.

The test asted for 56 days after application of the test substance. The concentrations of the active substance in the water phase in sediment and in macrophytes were followed over time.

Results and Discussion

Residue analysis of water

The achieved initial water concentrations in the enclosures were 58 - 94% of the nominal target concentrations. Concentrations measured 4 hour (0.17 days) after application ranged from 58 -

64% and 114 - 116% of calculated initial concentrations in systems with and without macrophytes, respectively. This difference can be explained by fast sorption of spiroxamine to macrophytes. The fact that concentrations observed in enclosures 1 and 2 (without macrophytes) at 4 hours after application were above 100% of the initial concentrations was most probably the result of inhomogeneous distribution of the chemical in the water column during the first hours after application.

Concentrations of spiroxamine in the water of the two enclosures containing macrophytes and any organic-rich upper sediment layer decreased faster (DT_{50water} = 0.9 - 2.0 days) than in the water of macrophyte-free enclosures (DT_{50water} = 3.1 - 5.9 days). Table CP 10.2.3/02-1 Mean spiroxamine concentrations of the water samples

	Mean concentrations	in water (µg a.s./L)		D to the top
Days after application	Enclosure 1 (3.5 µg/L)	Enclosure 3 (0) (3.5 µg/L) (0)	Enclosifice 2 0 7 (35 fug/L)	Enclosure 4 (35Qg/L)
-0.04	<0.2			
0	2.56	3.280		295
0.17	2.93	2,10 8 5	23.6 Nr &	017.2 <u>(</u>
1	2.02	1.13	19.7	10.10
3	1.16	9598 A.	15.5 29 39	41
7	0.55	<0.2 ³ ₂	10.8%	1.43
14	<0.5° °° °°° \$6.2 °°° °°°	<0. 5 5	3.47 0 4	0.40
28	5.2 O 27	×0.2 ~ ~	\$20.2	<0.2
56	<0.2		<0.2	<0.2
				1

e water samples
e water samples

Residue Analysis of Sediment 4

Residues in the sediment openclosures treated with (nominal) 3.5 µg/L spiroxamine were on all sampling days below detection limits. Residues in sediments of enclosures treated with (nominal) 35 µg/L spiroxamine bended to increase during the first days after treatment. Maximum values of 20.3 -32.3 mg/kg were found Starting approximately 1 week after treatment, a steady decline was observed during the remainder of the diservation perfod. Four weeks after treatment residues in the sediment were less than 25% of the observed maximum residues. At the end of the experiment (day 56) residues in the sediment had declined to 13-15% of the observed maximum values.

Overall, the organic rich sediment in the enclosure with macrophytes contained higher concentrations of spiroxamine than the organic-poor sediment of the enclosure without macrophytes.

application 2	Ènclosure 1 (3.5 Ag/L)	Enclosure 3 (3.5 µg/L)	Enclosure 2 (35 µg/L)	Enclosure 4 (35 µg/L)	
	<loq< td=""><td><loq< td=""><td>12.6</td><td>32.3</td></loq<></td></loq<>	<loq< td=""><td>12.6</td><td>32.3</td></loq<>	12.6	32.3	
3	<loq< td=""><td><loq< td=""><td>20.3</td><td>14.4</td></loq<></td></loq<>	<loq< td=""><td>20.3</td><td>14.4</td></loq<>	20.3	14.4	
7	<loq< td=""><td><loq< td=""><td>16.8</td><td>26.7</td></loq<></td></loq<>	<loq< td=""><td>16.8</td><td>26.7</td></loq<>	16.8	26.7	

Table CP 10.2.3 92-2 Mean spiroxamine concentrations of the sediment samples

14	<loq< th=""><th><loq< th=""><th>15.5</th><th>16.3</th><th>]</th></loq<></th></loq<>	<loq< th=""><th>15.5</th><th>16.3</th><th>]</th></loq<>	15.5	16.3]
28	<loq< td=""><td><loq< td=""><td>3.59</td><td>7.4</td><td>٦ گ</td></loq<></td></loq<>	<loq< td=""><td>3.59</td><td>7.4</td><td>٦ گ</td></loq<>	3.59	7.4	٦ گ
56	<loq< td=""><td><loq< td=""><td>3.14</td><td>43</td><td>Ô^y</td></loq<></td></loq<>	<loq< td=""><td>3.14</td><td>43</td><td>Ô^y</td></loq<>	3.14	43	Ô ^y

<LOQ = concentrations of KWG4168 below the limit of detection of the analytical method of 2 μ g/kg

Residue Analysis of Macrophytes

Concentrations of spiroxamine in macrophytes increase Coluring the first days after treatment of enclosures, reaching a maximum concentration approximately 3 days after treatment, Maximum values in the enclosures treated with (nominal) $3.5 \ \mu g/L$ and $35 \ \mu g/L$ were 760 and 8900 μg per kg resh weight respectively. From 1 week after treatment spirovamine concentrations in macrophytes steadily decreased. Two weeks after treatment the concentrations in macrophytes were slightly less than 25% of the maximum concentrations observed 3 days after treatmen (At the end of the experiment (day 56) these concentrations had declined to less than % of the maximum concentration

Table CP 10.2.3/02-3	Mean spiroxaming concentrations of the macrophyte samples	/
----------------------	---	---

	Mean concentrations in macrophytes (μg a s/kg) Enclosure δ (3.5 μg/Ls) G G G G G G G G G G
Days after application	Enclosure & a b b b b b b b b b b b b b b b b b b
	(3.5 μg/LΩ) (3.5 μg/Δ) (3.5 μg/Δ
1	530 4 6500 6 6500
3	250 27 27 27 27 27 27 27 27 27 27 27 27 27
7	A_{10} \mathcal{A}^{γ} \mathcal{A} \mathcal{O} \mathcal{A}^{γ} \mathcal{A}^{0} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}
14 28	$\frac{180}{9}$
56	
Overall Mass Budget	

In the enclosure containing pracrophytes and a top layer of sedurent rich organic material up to 41 % of the total amount of spirovamine applied could be found in the macrophyte compartment and up to 19 % in the sediment compartment. The amount of spiroxamine in water decreased most rapidly, whereas the amounts in sediment took Dongest to decrease The overall DT50 of spiroxamine in the total system was 10.1 days

In enclosures where the upper detritus faver and macrophytes were removed the sediment compartment contained up to 19 % of the space amine applied. The overall DT₅₀ in the total system was with 9.5 days very similar to that in the enclosure with macrophytes.

ĨĬI. Conclusion

In the enclosure study it is demonstrated that macrophytes affect the initial dissipation of spiroxamine from the water column, by sorbing a large proportion of the dose applied (up to 32 - 41%). In the two enclosures with macrophytes and an organic-rich detritus layer the DT₅₀ values for spiroxamine in water ranged from 0.9 2.0 days. In one of these systems a DT₅₀ value of 10.1 days was measured for the total system.

In the two enclosures without macrophytes and an organic-rich detritus layer the DT50 values of spiroxarone in water ranged from 3.1 - 5.9 days. Despite the somewhat slower dissipation from water, the DT_{50} value for the total system (9.6 days) was very similar to that in the other type of enclosure.

Assessment and conclusion by applicant:

The study was conducted in accordance with the guidance in place at the time for mesocosm studies. Essentially this study was a dissipation trial under realistic conditions in order to provide information on the fate of spiroxamine following application to a water-sediment system.

The study is considered acceptable in its own right but is not used directly in the risk assessment and has therefore been submitted as supporting information only.

CP 10.3 Effects on arthropods

CP 10.3.1 Effects on bees

ĉ,⁰

The available data for spiroxamine technical and Spiroxamine EC 500 with bees are presented in the table below. Several acute oral and contact toxicity, tudies are available for honeybees and an acute toxicity data are also available for bumblebees. Two honey bee chronic adult oral LDD₅₀ studies are available using Spiroxamine EC 500 and a 22 day larval repeated exposure toxicity study is also available using spiroxamine technical. Furthermore, two cages tudies and a field study are also available using the representative formulation Spiroxamine EC 500.

Organism	Test frem	Test type	A Endpoints	<i>S</i>	Reference
Adult honey bee (<i>Apis mellifera</i>)	Spiroxamine	Test type	48 h LD ₅₀ (00) μετα.s./bee	EUX EUX	[®] <u>M-008208-01-1</u>
Adult honey bee (Apis mellifera)		Acute or a 🛛 📎 🦯		NEW	<u>M-680761-01-1</u>
Adult honey be (Apis mellifer@)	Spiroxamine EC	Acute oral	483 LD ₅₀ 12.5 μg/bee 56.1 μg a.s./bee	EU	<u>M-008241-01-1</u>
Adult horrey bee (Apismellifera)		Acute oral	48 h LD₅₀ ≯77 "µg/bee (≈39 µg «a.s./bee)	EU	<u>M-008222-01-1</u>
Adult bumble bee (Bombus terrestric)	Spiroxamme	Acute of al	µ&a.s./bumblebee	NEW	<u>M-688128-01-1</u>
Adult honey bee (Apis mellifera)	Spiroxamine	Acute contact	₩8 h LD50 4.2 µg a.s./bee	EU	<u>M-008208-01-1</u>
Adult honey bee (Apis mellifera)	Spiroxamine EC	Acute contact	72 h LD50 59.7 μg a.s./bee	NEW	<u>M-680761-01-1</u>
Actult honey bee (Apis mellifera)		Scute Sontact	48 h LD ₅₀ 30 μg/bee (15 μg a.s./bee)	EU	<u>M-008241-01-1</u>
Adult hone bee	Spirosamine EC	Q [®] Cute contact	48 h LD ₅₀ >200 μg/bee (>100 μg a.s./bee)	EU	<u>M-008222-01-1</u>
Adult Samble See (Bombus terrestris) L	Spiroxamine	Acute contact	48 h LD ₅₀ >100 μg a.s./bumblebee	NEW	<u>M-510841-01-1</u>
the da					

Table CP 10.3.1-1	Summary of bee	toxicity studi	es with spiro	xamme and	Spirozamine EC 500

Organism	Test item	Test type	Endpoints	Reference
Adult honey bee larva (<i>Apis mellifera</i>)	Spiroxamine EC 500	Chronic oral	10-day LC ₅₀ 1864 mg a.s./kg feeding solution 10-day LDD ₅₀ 27.3 μg a.s./bee/day	W <u>M-704650-04/1</u>
Adult honey bee larva (Apis mellifera)	Spiroxamine EC 500	Chronke oral	10-day LQ ₅₀ >100 mg a.s./kg feeding solution 10-day LDD3 A 86 μg s./bec/day NOEDD 4.86 μg a.s.bee/day	M-38628-91-1
Honey bee larva (Apis mellifera)	Spiroxamine	Chronic larva (22 day repeated exposure)	AD ₅₀ > 39 μg a.s./lasya NOED 33 φ a.g./larva	W 5 <u>M-629462-01-1</u>
Honey bee (Apis melliferat)	Spiroxamine EC	Sero ² field (cage) story. Application to flowering <i>Phacelia</i> tonacetifolia in England	there were no significant effects E	U <u>M-008239-01-1</u>
Homey bee (Aprix mellifera)	Spiroxamine & C	Semi ^s field (carge) study. Application to Prowering <i>Phacelia</i> <i>tanacetifolia</i> in Germany	Following a single opplication of KWG 4168 EC 500 to Phacelia at 3.0 L product/ha, there were no significant effects on honeybee mortality, flight intensity or brood when compared to the control	U <u>M-008244-01-1</u>

Organism	Test item	Test type	Endpoints	Reference
Honey bee (<i>Apis mellifera</i>)	Spiroxamine EC 500	Field study. Application to flowering <i>Phacelia</i> <i>tanacetifolia</i>	Following a single application of KWG 4168 EC 500 to Phacelia at 1.5 L product/ha, there were no Significant effects on honeybee mortality, foraging activity, foragi	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$

EU: previously evaluated as part of the original EU review and liste Om EFSA conclusion and DAR NEW: new study or data generated since the previous EU review of previously not submitted Values in **bold** have been used in the risk assessment

Exposure

6 L. The highest single application cate of Spiroxamine EC 500 to grapes is 300 g a.s. ha. This rate has been considered below in the risk assessment for bees and covers the risk assessment for the use of Spiroxamine EC 500 at 2 200 g a.s./ha

Selection of endpoints

L L O Several acute oral and contact 1950 values are available which have been generated using either spiroxamine technical or piroxamine EC 500. For the acute oral toxicity to honey bees, the lowest available LD₅₀ is 6.1 mg a.s./bee (M-00824) 01-14 but concerns over the reliability of this study have been raised therefore this value has not been considered in the risk assessment. Two other studies (<u>M-008208-01-1</u> and <u>M-008222-0101</u>) generated greater than values (>100 and >39 μ g a.s./bee, respectively) and are considered to be valid endpoints but the studies were relatively old and not specifically conducted to OEOD guidelines. For this reason the new acute oral study (M-680761-01-1), which has generated a bound LDs value of 84.3 µgka.s./bee is considered to be the most suitable endpoint for risk assessment. However, the lowest of the valid endpoints (>39 µg a.s./bee) has also been considered here in order to take a conservative approach.

For the acute contact toxicity to horeybees, the towest available LD₅₀ is 4.2 µg a.s./bee which has been taken from an old study (M-009208-04-1) using spiroxamine technical which was not conducted to OECD guidelines but is still considered to be valid. One available study gave an LD₅₀ of >15 μ g a.s./bee (M-008241-01-1) but concerns over the reflability of this study have been raised therefore this value has not been considered further. Another available study gave an LD₅₀ of >100 μg a.s./bee (M-008222-01-1) but the most suitable endpoint for risk assessment is considered to be the bound LD₅₀ of 59.7 μ g a.s./bee from the new acute ontact study (21-680761-01-1). However, in order to take a conservative approach, the Powest endpoint of 4.2 µg æs./bee has also been considered in the risk assessment.

For the chronic adult oral endpoint, two valid studies with Spiroxamine EC 500 are available. In the first study (M-538628-01-1) the LDD₅₀ was determined to be >4.86 μ g a.s./bee/day as there was 0% mortality recorded at the single dose tested of 100 mg a.s./kg feeding solution (equivalent to 4.86 µg a.s./beeday). The NOEDD was therefore 4.86 μ g a.s./bee/day. In a second study (M-704650-01-1) a bound ΩD_{50} value of 27.3 µg a.s./bee/day was established with a corresponding NOEDD of 0.6 µg a.s./bee/day 0.4 is considered justified to take the study with the LDD₅₀ of 27.3 µg a.s./bee/day (NOEDD of 10.6 µg a.s./bee/day) as the chronic adult oral endpoint because this is a bound LDD, which represents the 50% mortality level whereas the study with the LDD₅₀ value ϕ >4.86 µg a.sc/bee/day was simply the order treatment level tested and one which gave rise to no mortality.

For larval toxicity a 22-day repeated exposure study with spiroxamine technical is available a NOED of 33 µg a.s./larva.

Isomers

The risk assessments for bees involves potential chronic exposure of these organisms to regidues in plants therefore it may be necessary to apply an uncertainty factor (UF) to the chronic isk assessments. The acute risk assessment need not have an UP applied as exposure in this scenario is immediate. However, the chronic risk assessment considers exposure over a polonged period therefore potential changes in isomeric ratio needs to be considered. For the bee risk assessments the same approach taken in the residues section for the consumer risk assessment, with respect to isomers, has been followed. Based on the current residues data set for spirogamine there are no indications of significant change in isomer ratios therefore no additional factor need be applied to the risk assessments below (i.e. an UF of 1.0 has been used).

Risk assessment for bees

The EFSA⁸ guidance on bee risk assessmen thas not been noted by the EU leve and is currently under revision. The notifier has therefore presented an acute kisk assessment in accordance with the current SANCO⁹ terrestriat guidance document However, in order to consider the chronic risks to bees, an illustrative assessment of chronic risk has been presented using the existing EU community guidance provided by EPOO $(200)^{10}$.

	Calculation of HQor	for honey bee	s exposed to S	piroxamine EC	500	
Test substance	Ctop	species 2	App. rate (g a.sha)	LD50 oral (µg a.s./bee)	HQoral	Trigger
Spiroxamine®C	Grapes			>39	<7.69	50
4	BBCH B285	Honey bear	300 0	84.3	3.56	- 50
HQ (Hazar Quotier	nt) for adalt oral sposure		3.1-3		-	
A CONTRACTOR	Carculation of HOcont	or howev be	es exposed to S	Spiroxamine EC	500	

⁸ European Food Safety Authority, 2013 (updated 04 July 2014). EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295, 268 pp., doi:10.2903/j.efsa.2013.3295

⁹ SANCO/10329/2002 rev 2 final (17 October 2002). Guidance Document on Terrestrial Ecotoxicology Under council Directive 91/414/EEC

¹⁰ EPPO 2010: EPPO Standard PP 3/10 (3) Environmental risk assessment scheme for plant protection products. Chapter 10: honeybees. Bulletin OEPP/EPPO Bulletin 40: 323-331

Test substance	Crop Group	Species	App. rate (g a.s./ha)	LD50 contact (µg a.s./bee)	HQcontact	Trigger	<i>S</i>
Spiroxamine	Grapes	Honorboo	200	4.2	71.4		<i>S</i>
Spiroxamine EC 500	BBCH 13-85	Honey bee	300	59.7	5 0 2		

HQ (Hazard Quotient) for adult contact exposure. HQ values shown in bold breach the relevant trigger

For oral exposure the HQ values are below the trigger value of 50 thereby demonstrating no unacceptable acute risk to honey bees, *via* oral exposure following the proposed uses of Spiroxanane EC 500 to grapes at 300 g a.s./ha.

For contact exposure the HQ value is below the trigger value of 500 vhen the LDto of 59.7 μ g as bee we considered thereby demonstrating no unacceptable acute risk to honey bees via contact exposure, following the proposed uses of Spiroxamine EC 500 to grapes at 300 g as ha. When the technical material LD₅₀ of 4.2 μ g a.s./bee is considered the HQ value is >50 thereby indicating possible acute risks. However, it should be noted that the data with the formulation are considered to be more relevant and that there are three acute contact endpoints available for Spiroxamine EC 500 with LDS values of 15, 59.7 and >100 μ g a.s./bee, respectively and all of these values would result in HQ values below 50. Thus, the weight of evidence would suggest that the acute risks to honey bees, via contact exposure, is acceptable. Furthermore, higher tiet data are available which can be used as supporting information to demonstrate acceptable risks to honey bees following the proposed uses of Spiroxamine EC 500.

It should also be noted that when the rate of 200 g $\frac{1}{200}$ s./ha/is considered in the risk assessment, all HQ values are below the trigger of 50 even when the contact LD_{50} value of 4.2 µg a.s./bee is used.

Ø)

Chronic toxicity to honeybees,

Spiroxamine EC 500 is intended to be used in grape ymes during a period when the vines may be flowering. However rines are not highly attractive to best that will seldom visit the crop due to the fact that it does not produce nectar. The reason for this is that vines are wind pollinated and do not require animal pollination for fruit set or production and, as such, vine prowers do not employ beekeepers to locate their hives at the edge of vine are vines.

Bees may collect pollet from times but cannot collect nector and as there is no sugar stimulus, means that returning bees will not perform a wagele dance to inform other bees of the location of such plants. The fact that vines are not highly attractive to bees means that they will only visit to collect pollen if there is a lack of other pollen sources nearby which also offer a nectar reward. As vines do not provide a source of nectar there is negligible exposure to foraging bees and exposure may only be possible *via* pollen. In the colony there is only a limited storage of pollen as pollen foraging is stimulated by brood demands so consequently there is a rapid turnover of collen with fresh supplies being provided from a wide range of plants. These factors therefore severely limit the long-term exposure of bees to applications of Spirovamine EC 500.

A chronic risk assessment has been presented below in accordance with the EPPO scheme. Although the EPPO guidance gives procedures based on systemic product applied by soil or seed treatments, the methodology balso suitable for the chronic risk by spray application.

The chronic risk assessment below considers exposure *via* pollen only as nectar is not considered to be a viable route of exposure to be from vines.

The chronic rest assessment for adult honeybees and honeybee larvae is based on the generic worst-case residue value of 1 mg a.s. Kg plant matrix in pollen, as specified in the revised EPPO scheme (2010) and determines the ratio between the NOEDD (oral) and the exposure by means of a TER calculation. For adult honeybees, the exposure was assessed through the amount of residues that may be ingested by a bee in one day. The ratio between the NOEDD (μ g a.s./bee/day) and the exposure (in μ g a.s./bee/day) was calculated using the following formula:

NOEDD_{oral} (µg a.s./bee/day)

```
TER_{chronic,adult} =
                      Residues ingested by a bee in one day (\mu g a.s./bee/day))
```

As the available endpoint for larvae is expressed over the total developmental period, the exposure for larvae was assessed through the amount of residues that may be ingested by the farvae over that period. For larvae, the ratio between the NOED (in μg a.s./larva) and the exposure (in μg a.s./larva) was calculated using the following formula:

$$TER_{chronic, larvae} = \frac{NOED_{oral} (\mu g \ as / larva)}{Residues ingested by a larva (\mu g \ as / larva)}$$

Data for consumption of nectar and pollen by adult honey bees and honey beelarvae are given in the EFSA Opinion on bees (2012)¹¹. According to the EFSA Opinion the maximum amount of polten an adult bee consumes per day is 300 mg/bee/day. For honey bee largae the maximum amount of pollen consumed by a larva is stated as 2 mg/5 days.

To calculate the residue intake of spiroxanine by adult beney bees and hone bee larvae, the consumed amounts of pollen are multiplied with the generic residue value in Dectar and posten of 1.0 mg a.s./kg (equivalent to 0.001 µg a.s./mg). Thus, addit honeybees that consume 200 mg bee/day of pollen will therefore be exposed to 0.3 µg a.s./bc/day (800 mg/bee/day x 0.001 µg a.s./mg). Larvae wilk be exposed to 0.002 µg a.s./larva through the consumption of poller.

TER values have been calculated in the table below and are compared to the TER trigger value of 1, as stated in the EPPO scheme.

10.3**A-4**

Ø \bigcirc Route of Stage of Trigger Ň**ŎĔ**DD **X**OED Residue intake TER development êxpoşure value Ô °S Adult 10.6 µg a.s. Avee/daw ug a stbee/day 35.3 1 Larvae μg a@/larva 0.002 µg a.s. Jarva 16500

Chronic risk assessment for honesbee adolts and Parvae from exposure to spiroxamine via pollen

The TER values are both greater than the regger value of 1 therefore the chronic risks to honeybee adults and larvae, from consumption of potentially contaminated pollen, are considered to be acceptable. Thus, the chronic risks to bees following the proposed uses of Spiroxamine EC 500 on grapes are considered to be acceptable.

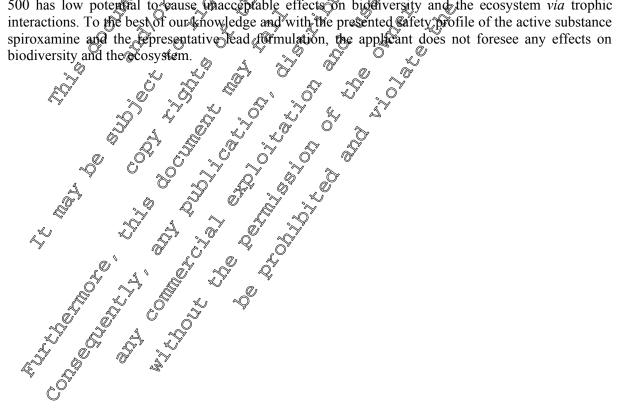
Higher-tior risk assessment

A higher-tier risk assessment is not considered to be necessary as acceptable acute and chronic risks have been demonstrated in the risk assessments above. However, reference is made to the available data which support the conclusion that the risk to bees following the use of Spiroxamine EC 500 are acceptable.

Higher-tier, that in the form of two cage tests and a field study are available using Spiroxamine EC 500. Although these studies do not meet some of the current requirements for higher-tier bee studies, they are considered to be valid in their own right and can be used to help support the risk assessment

¹¹ EFSA Panel on Plant Protection Products and their Residues (PPR) (2012). Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2012; 10(5) 2668

and to demonstrate an acceptable risk to bees following the proposed use of Spiroxamine EC 500. All three studies used the bee attractive crop, *Phacelia* and all three studies tested at rates far exceeding the proposed rate of 300 g a.s./ha. All three studies demonstrated that there were no significant effects on N honey bees following application of Spiroxamine EC 500.


Residues decline data in nectar and pollen are available for Spiroxamine (M-765722-01-1). In the stury, Spiroxamine EC 500 was applied twice to *Phacelia tanacetifolia* (at pre-flowering and flowering growth stages) in semi-field tunnel conditions at a rate of 300 g a.s./ha with a 10-day interval. Two trials were? conducted in Germany and three trials in Spain. Sampling occurred shortly after the second application, 8 hours, 1, 2, 3, 5 and 7 days after the second application. The study has been sumparized in Section CP 10.3.1.5 below. The results confirm that residues of spiroxardine dissipated relatively goickly, following application. These results are considered to be suitable for use in a refined risk assessment where required.

Bumble bee data

Acute oral and contact toxicity data are available for bumble sees. The acute oral LD50 thas been established to be >59 µg a.s./bumble bee and the acute contact LD_{50} has been established to be >100 µg a.s./bumble bee. The data demonstrates that bumble bees are no more acutely sensitive than honey bees to the effects of spiroxamine.

Biodiversity No relevant scientifically peer-peviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxic bogical perspective, of bees Therefore, it is considered that the potential impact of the active substance on blodiversity and the ecosystem, including potential indirect effects via alteration of the food web, are covered by the risk assessment for bees in this section.

The risk assessment for bees does not indicate a need for higher tigrassessment not mitigation measures. Therefore, the applicant concludes that the use of the representative lead formulation Spiroxamine EC 500 has low potential to cause macceptable effects on biodiversity and the ecosystem via trophic interactions. To the best of our knowledge and with the presented safety profile of the active substance

CP 10.3.1.1 Acute toxicity to bees

Data Point:	KCP 10.3.1.1.1/03
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500: Effects (acute contact and ofal) on honey bees (Apris and ofal) on honey
Report No:	
Document No:	<u>M-680761-01-1</u>
Guideline(s) followed in study:	Regulation (EC) No. 1107/2009 Directive 2003-01 (Canada/PMRA) US EPA OCSPP 8502020, 859.supp OECD 213 and 214 0 998)
Deviations from current	
test guideline:	The maximum temperature: during exposure phase of the experiment in both tests was 27.7 °C for 2 hours and one minute which was outside of the range of $2S \pm 2$ °C °C
Previous evaluation:	No, not previously submitted
GLP/Officially	Yes, conducted under GLP/Opticially recognised terming facturities
recognised testing	
facilities:	
Acceptability/Reliability:	By es O D D D D D D D D D D D D D D D D D D

CP 10.3.1.1.1 Acute oral toxicity to bees

Executive Summary

Honeybees (Apis mellifera L.) were exposed to Spiroxannine FC 500 in a 72-hour contact toxicity study and a 48-hour oral toxicity study. Exposure was at dose levels up to 400 up a.s./bee in the contact study and up to 89.7 og a.s. bee in the oral study A reference rate of 12 µg dimethoate/bee was used along with a water control This was in accordance with the amended OECD213 and 214 (1998) guidelines. The 72-hour NOED and D₅₀ values for the contact test were 17.1 and 59.7 µg a.s./bee, respectively. est were 53.0 and 84.3 μg a.s./bee, respectively. The 48 hour NOED and LDs values for the oral

I. and Metho Materials

Materials Spiroxamit Test Material Lot Batch #: **Purity:** Description ot reported Stability of compound ¢ Reamalysi May 2020 date 1.004g/mL (20°C) Treatments

Test rates:

Contact (nominal): 400.0, 181.8, 82.6, 37.6 and 17.1 µg a.s./bee Oral (nominal): 200.0, 100.0, 50.0, 25.0 and 12.5 µg a.s./bee

	Actual dose levels in the oral test: 89.7, 81.3, 53.0, 26.8 and 13.3
	μ g a.s./bee
Solvent/vehicle:	Contact: Adhäsit (0.5%) in water
	Oral: 50% w/v sucrose solution
Analysis of test	None
concentrations:	
Test organisms	
Species:	Adult female worker honeybees, Apis mellifera L.
Source:	Honey bee colonies, disease-free an Queen-right bred by ibacon go
Acclimatisation period:	None reported
Feeding:	50% w/v sucrose solition (500g/L ap water) ad libitum given a solition (500g/L ap water) ad libitum given a solition of the so
Treatment for disease:	μg a.s./bee Contact: Adhäsit (0.5%) in water Oral: 50% w/v sucrose solution None Adult female worker honeybees, Apis mollifera L. Honey bee colonies, disease-free and queen-right, bred by ibacon None reported 50% w/v sucrose solution (500g/L tap water) ad libitum given directly after treatment using syringes. None reported Stainless steel chambers, 8cm x 6cm x 4cm (length x height x width), front-plate is a removable glass steet. Boffom rate is perforated with
Test design	
Test vessel:	Stainless steel chambers, 8cm x 6cm x 4cm (length x height x width).
۵	Front plate is a removable glass skeet. Bortom plate is perforated with 98 vontilation holes of diameter 1 mm
×	
Replication:	Hest units per est item dose evel control and reference item dose
No. animals/Sessel;	10 per test mit
	Contact: 72 hours
	Oral: 48 hours & S . C
Environmental test 🔬	
conditions	10 per test unit Contact: 72 hours Oral: 48 hours 25 z = 27.7 C 58.7 - 65.3%
Temperature 7	⁷ 25 2 27 27 2 C
Relative humidito:	58 .7 - 65.3% - 5 5
Photoporiod:	Darkness (except during observation)
Study Design	Series win 25 500 in contact and and tests over 72 and 48 hours

Honeybees were exposed to Spiroramin EC 500 in acute contact and oral tests over 72 and 48 hours, respectively. The test organisms were adult tempte worke. *Apis mellifera* L. bred in house. The honeybees were kept

The test organisms were adult lemale worker *Apis mellifera* L. bred in house. The honeybees were kept in test units and the contact application was conducted outside of the test unit. Temperature and relative humidity were kept at 2502 to 25.7 °C and 58.7 to 65.3%, respectively throughout the test period. The bees were kept ad darkness except during observation.

The bees were housed in stainless steel chambers, 8cm x 6cm x 4cm with a front plate made from a removable class sheet. The bottom plate was perforated with 98 ventilation holes 1.0 mm in diameter. Ten bees were housed in each unit and three test units were used per test item dose level, control and reference item dose level.

A preliminary contact toxicity test with 100, 10 and 1.0 μ g a.s./bee was performed. Based on the results the dose levels for the definitive test were adjusted appropriately. Bees were anaesthetised for 20 seconds

with CO₂ until they were completely immobilised immediately before application. Thirty bees were treated with each concentration of the test item of 400.0, 181.8, 82.6, 37.6 and 17.1 µg a.s./bee by topical application for 72 hours.

The test item was applied as one 5μ L droplet of spiroxamine EC 500, dissolved in tap water with 0.5, % Adhäsit, to the dorsal bee thorax using a calibrated pipette. The reference item was applied as one 3μ L droplet of dimethoate, dissolved in tap water with 0.5 % Adhäsit. For the control, one 5μ L droplet of tap water containing 0.5 % Adhäsit was used. A 5 μ L droplet was chosen in deviation to the dispersion of the test item;

In the oral test, the bees were starved for 20 minutes prior to test. Thirty worker bees were exposed for 48 hours to target doses of 200.0, 100.0, 50.0, 25.0 and 12.5 μ g as bee by feeding. The test item and reference item were applied in 50% w/v sucrose solution, which was used as carrier in the oral test. For the control, pure 50 % w/v sucrose solution was offered to the bees.

The treated food was offered in syringes, which were weighed before and after introduction into the cages. In practice, uptake of the treated 50% w/v sucrose solutions differs slightly from the nominal 20 mg/bee and results are therefore given based on the measured consumption.

In both tests, the number of dead bees were observed at $4 (\pm 0.5)$, 24 and 48 (±2) hours and also at 72 (±2) hours for the contact test. Belavioural abnormalities (*e.g.* comiting, apathy, intensive cleaning) were observed at 4 (± 0.5), 24 and 48 (±2) hours in both tests and at 72 (±2) hours in the contact test.

II. Results and Discussion

Validity criteria according to the OECD 253 (1998) and OECD 214 (1998) guidelines were met:

- Average mortality for the total number of controls must not exceed 10% of the end of the test (actual: 0% in the control in both contact and oral tests)
- The 24-hr LD₅₀ of the tox estandard to be 0.10 to 0.39 μg a.s./bee for the contact test and 0.10 to 0.35 μg a.s./bee for the oral test (actual: 24 hr LD₅₀ 0.26 and 0.5 μg a.s./bee in the contact and oral tests, respectively)

In the contact test dose levels of 400.0181.8 82.6, 57.6 and 17.1 ag a.s./bee led to dose dependent mortality of 100.0, 96.7, 56.7, 53.3 and 3.3% at test termination (72 hours). No mortality occurred in the control group. The contact toxicity test was prolonged for turther 24 hours up to 72 hours due to increasing mortality between 24 and 48 hours.

Table CP 10.3.1.1.1/03-to Nortality and behaviour of thoneybers exposed to Spiroxamine EC 500 for 72 hours (contact set)

Nominal A concentration	Mean mo	Q,				umber o I behaviour		displaying
(µg a.s./bee)	A Hours		48 Bours	72 hours	4 hours	24 hours	48 hours	72 hours
Test item	î Î Î	0 <u>~</u> 9						
400.0	J.3.3	80.0	J 600.0	100.0	86.7	20.0	0.0	0.0
181.8	4 ~	6 .7	96.7	96.7	86.7	16.7	0.0	0.0
82.6 5 3756 5		40.0	53.3	56.7	56.7	13.3	0.0	0.0
3756 5	0.0	26.7	33.3	33.3	30.0	0.0	0.0	0.0
17.1 ^C	0.0	3.3	3.3	3.3	3.3	0.0	0.0	0.0

Nominal concentration	Mean mo	Mean mortality (%)			Mean number of bees displ abnormal behaviour (%)			displaying
(µg a.s./bee)	4 hours	24 hours	48 hours	72 hours	4 hours	24 hours	48 hours	72 Å
Control	•			•		- S		
water + 0.5 % Adhäsit	0.0	0.0	0.0	0.0 Č	0.0	0.0	0.0 0	
Reference								
0.30	13.3	56.7	66.7	7.0.90	6.7	0.0	0.0	CP C
0.20	6.7	40.0	43.3 &	46.7	10.9	Ø0.0		\$0.0 °
0.15	6.7	33.3	33.3	40,00	0.0		3.3 ×	0.0
0.10	0.0	3.3	6.7	76 .7	0.0	0.0	0.00	00.0

Actual dose levels achieved in the oral test were \$9.7, 81/3, 53(9, 26,8 and 13.3 µg a.s./bee. The maximum nominal dose levels of the test item could not be achieved, because the beer did not ingest the full volume of treated sugar solution even when offered over aperiod of six hours. Mortality occurred at the two highest dose levels with 60.0% mortality at the 89.7 µg a.s./bec and 46.7% at the 81.3 µg a.s./bee dose groups at test end. No behavioural abnormalities were found in the test item treated groups. Table CP 10.3.1.1.1/03-2 Mortality and behavioural hone/bees exposed to Spiroxamine EC 500 for 48 hours (oral test)

Nominal concentration 🦼	Mean port	ality (%)		Mean anmb abnormal beh	ery of bees	displaying
(µg a.s./bee)	4 hours 2	24 hours	48 frours 🖂	4 hovers	24 hours	48 hours
Test item		O Ky	S ^Y A			
89.7	3.3	60.04	60.0	23.3	0.0	0.0
81.3 2	6 .7	46.7		.6.O	0.0	0.0
53.0 3 26.8	0.0	0.0	Kain 🌫 🕐		0.0	0.0
26.8	Q0 5	B in		0.0	0.0	0.0
13.3	0.0 0	0.0	0.0	0.0	0.0	0.0
Control						
water + 0.5 % Adhäsit		0.0	×0,0 ¥	0.0	0.0	0.0
Reference						
0.32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33.2 0 0 0	96.7 Ø	96.7	36.7	0.0	0.0
0.16		53.3	60.0	6.7	0.0	0.0
0.32 0.16 0.08 0.08	0.0 0.0	3.3	6.7	3.3	0.0	0.0
	0:0	0.0	0.0	0.0	0.0	0.0

The following LD₁₀, LD₂₀, LD₅₀ and NOED values were determined in this study:

Table CP 10.3.1.1.1/03-3 LD_x and NOED values for honeybees exposed to Spiroxamine EC 500 in contact and oral tests

Parameter		Value (µg a	a.s./bee)	
	24 hours	48 hours	72 hours	
Contact LD ₅₀	102.9	61.1	59.7	
Contact LD ₂₀	35.9	33.0	32.5	
Contact LD ₁₀	20.7	Q3.9	2 3 .7	
Contact NOED	17.1	(¹⁰ 17.1 (¹⁷ (¹⁷) (¹⁷⁾ (¹⁷⁾ (¹⁷⁾ (¹⁷⁾ (¹⁷⁾ (¹⁷⁾ (¹⁷⁾		5 5 T
Oral LD ₅₀	84.3	0 84.3		
Oral LD ₂₀	72.5			
Oral LD ₁₀	67.0	67.05		, Q
Oral NOED	53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0			

III. Conclusion

In an acute contact and ora toxicity test with honeybees using Spirovanine EC 500, the 72-hour contact LD_{50} value was 59.7 µg a.s./bee and the 48-hour oracl LD_{50} value was 84.3 µg a.s./bee.

m

Assessment and conclusion by applicant:

Validity criteria according to the OECD 213 (1998) and OECD 214 (1998) guidelines, to which the study was conducted were met:

- Average mortality for the total number of compols must not exceed 10% at the end of the test (actual: 0% in the control in both contact and oral cests)
- The 24-hr LD₅₀ of the toxic standard to be 0.10 to 0.3 μg a.s./bee for the contact test and 0.10 to 0.3 μg a.s./bee for the oral test (actual) 24 hr LD₅₀ 0.26 and 0.15 μg a.s./bee in the contact and oral tests (respectively)

The study is therefore considered to be acceptable.

The 72-hour contact LD₅₀ value was 59.7 µg a.s./bee and the 48-hour oral LD₅₀ value was 84.3 µg a.s./bee

Data Point:	KCP 10.3.1.1.1/01
Report Author:	
Report Year:	1997
Report Title:	Testing toxicity to honeybee - Apis mellifera L. (laboratory) according to EPPO Guideline No. 170 (1992) KWG 4168 EC 500
Report No:	97 10 48 001
Document No:	<u>M-008222-01-1</u>
Guideline(s) followed in	EPPO 170 (1992)
study:	
Deviations from current	None
test guideline:	
Previous evaluation:	yes, evaluated and accepted
	RAR (2010)
GLP/Officially	Yes, conducted und GLP/Qifficially/recognised testing factifities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes y y y y y y y

Executive Summary

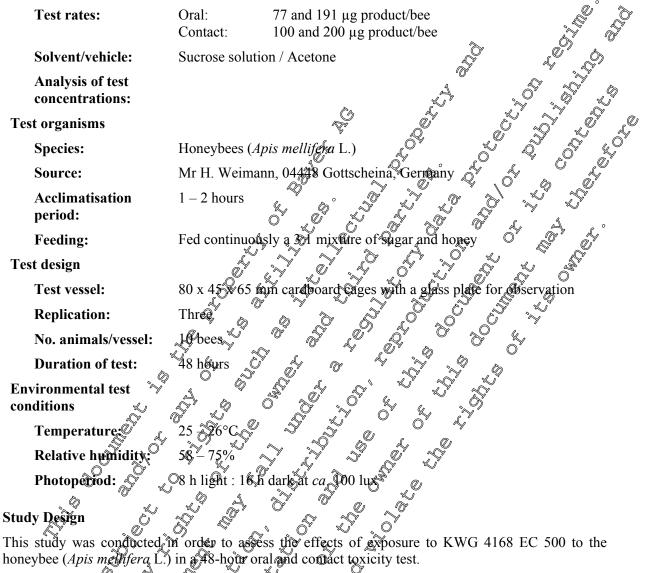
Honeybees (*Apis mellifera* L.) were exposed to KWG 4068 EG500 in a 48-bour oral and contact toxicity study.

Test rates of 77 and 191 μ g product/bec were used for the oral test and fates of 100 and 200 μ g product/bee were used for the contact test.

In the oral toxicity test bees were feed a defined quantity of a 50% aqueous sucrose solution containing 0.5 or 1.0% w/v test frem in ca. 0.2 mL test solution. In the contact toxicity test, 1 μ L test solution with 10 or 20% test item w/v in acetone were applied topically to the thorax of an aesthetised bees.

KWG 4168 EC 500 caused an overall low to moderate mortality up to the top dose levels of 191 µg product/bee in the oral toxicity test (67 %) and oc 200 µg product/bee on the contact toxicity test (37 %).

LD₅₀ categoriation was not performed due to the limited number obdoses tested but has been considered to be $>77 \ \mu g$ product/bee ($>39 \ \mu g$ as./bee) for the oralitest and $>200 \ \mu g$ product/bee ($>100 \ \mu g$ a.s./bee) for the contact test


I. Materials and Methods

Materials

Test Material ≰⊾ot/Batch ≠ 5.5 g/J **Purity:** Description leatsyellow liquid Vot reported Stability of test compound: Reanabysis/Exp 23 July 1997 date: Density: 1.007 g/cm^3

Treatments

Test vessels were 80 x 45 x 65 mm cardboard cages with a glass plate for observation, to which were added ten bees for each of the three replicates pervices.

In the oral-toxicity test, bees were fed a defined quantity of a 50% aqueous sucrose solution containing 0.5 or 1.0% w/v test item in Q_2 . 0.2 mL test solution. The feeding tube was re-weighed at most three hours after introduction in order to ascertain the exact quantity of test solution consumed. The actual dose applied was 77 and 191 µg productive, respectively.

In the contact toxicity test, 1 test solution with 10 or 20% test item w/v in acetone were applied topically to the thorax of maesthetised bees. This is equivalent to 100 and 200 μ g test item/bee, respectively

Dimethoate was dised as a positive control at rates of 0.20, 0.24, 0.28, 0.32, 0.36 and 0.40 µg Dimethoate EC 400/bee.

Bees were assessed for mortality and sub-lethal effects after 24 and 48 hours.

II. Results and Discussion

Validity criteria were not assessed as part of the study report.

In the oral toxicity test, mortality of 27 and 67% was observed 48 hours post-exposure to 77 and 191 μ g product/bee, respectively.

Table CP 10.3.1.1.1/01-1 Bee mortality over 48 hours after	oral exposure to KWG 4168 EC 500
Table CI 10.5.1.1.1/01-1 Dec mortanty over 40 nours after	or an exposure to is it of 4100 EC 500

Test item concentration	Dose applied (µg	Mortality (%	ó)	à china chin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(%)	formulation/bee)	24 h	4	48 h	5 5 N
Control (sucrose)	-	0 0		0	
0.5	77	23		27 🦉	
1.0	191	<u>367</u>	Q 6°	670	

In the contact toxicity test, mortality of 33 and 37% was observed 48% hour post-exposure to 100 and 200 µg product/bee, respectively.

Test item concentration (%)	Dose applied (µg Mortahiy (%) 24 h
Control (sucrose)	
10	
20	

LD₅₀ calculation was not performed due to the limited number of doses tested but has been considered to be >77 µg product/bee (39 µgo).s./bec) for the oral est and >200 µg product/bee (>100 µg a.s./bee) for the contact test.

In the reference test of LD values of 0.34 and 0.30 µgD imethoate EC 400/bee were determined after 24 and 48 hours, respectively. Contact LD₅₀ values of 0.22 and 0.16 µg Dimethoate EC 400/bee were determined after 24 and 48 hours, respectively.

III. Conclusion

Honeybees (*Apis pellifera* \tilde{L} .) were exposed to $\tilde{K}WG = 168$ BC 500 in a 48-hour oral and contact toxicity study.

 LD_{50} calculation was not performed due to the limited number of doses tested but has been considered to be >77 µg product/bee (>39 µg a.s./bee) for the oral test and >200 µg product/bee (>100 µg a.s./bee) for the contact test.

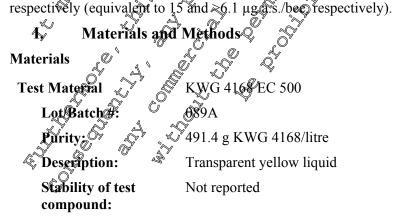
Assessment and conclusion by applicant:

The study wa conducted in 1997 and therefore pre-dates the OECD 213 and 214 test guidelines. Validity criteria according to the OECD 213 (1998) and OECD 214 (1998) guidelines have been assessed:

• Average mortality for the total number of controls must not exceed 10% at the end of the test (actual 0% of the oral test and 7% in the contact test)

The 24-hr LD_{50} of the toxic standard to be 0.10 to 0.30 µg a.s./bee for the contact test and 0.10 to 0.35 µg a.s./bee for the oral test (actual: 24-hr LD_{50} 0.22 and 0.31 µg Dimethoate EC 400/bee in the contact and oral tests, respectively)

The test methodology and procedures used in this study are consistent with current OECD test guidelines. The reference test results (24-hr LD_{50} 0.22 and 0.31 µg Dimethoate EC 400/bee in the contact and oral tests, respectively) have been expressed in terms of the formulation but are considered to be equivalent to 0.08 and 0.12 µg a.s./bee in the contact and oral tests, respectively. Thus, the oral test result is within range and the contact test result is ever so slightly below the range but is considered to still demonstrate sufficient sensitivity of the test organism.


The study is therefore considered to be acceptable.

The LD₅₀ was considered to be >77 μ g product/bee (>39 μ g a.s./bee) for the oral test a product/bee (>100 μ g a.s./bee) for the contact test.

Data Point:	
Report Author:	
Report Year:	
Report Title:	KWG 4168 6 500 Acute toxicity to honey bees Apis melliferation
Report No:	BAY 170/942957 5 5 5 5 5 6 6
Document No:	<u>M-008247-01-1</u>
Guideline(s) followed in	Pesticides Regulations 1986, Forking Document 7/3
study:	EPA Duideline 1989, Subdicision L, Series 41-1;
	EPPO Guideline 2992, No. 170
Deviations from current	
test guideline:	
Previous evaluation:	yes evaluated and accepted Data And Accepted
	$DAR (1997), RAR (2016) \sqrt{2}$
GLP/Officially	Ves, conducted and conder GLP/Qf icially recognised testing facilities
recognised testing	
GLP/Officially recognised testing facilities:	
Acceptability/Reliability:	
Ö.	

Executive Summary

Honey bees (*Apis melliferd*) were exposed to KWG 4168 EC 500 in 48-hour acute contact and oral toxicity tests. For the contact and oral toxicity tests KWG 4168 EC 500 was administered either topically to the ventral thorax or as part of a feeding solution at an application rate of 6.25, 12.5, 25, 50 and 100 μ g product/bee. The reference item, dimethorate, was administered in doses of 0.025, 0.050, 0.10, 0.20 and 0.40 μ g as /bee. A solvent control, acetone was also administered to a group of the test organisms. The 48-hour LD₅₀ values for contact and oral administration were 30 and >12.5 μ g product/bee,

Reanalysis/Expiry date:	16 December 1994
Density:	Not reported
Treatments	
Test rates:	Oral: 6.25, 12.5, 25, 50 and 100 μg product/bee
	Contact: 6.25, 12.5, 25, 50 and 100 µg product/bee
Solvent/vehicle:	Acetone
Analysis of test concentrations:	16 December 1994 Not reported Oral: 6.25, 12.5, 25, 50 and 100 μg product/bee Contact: 6.25, 12.5, 25, 50 and 100 μg product/bee Acetone No Honey bee, Apicmellifera Mr. R. Baker, 19 Abbotts Crescent, St Ives, Cambridgeshire, bK. None. Bees were dosed within a hours of removal from hive. In oral test, after the test solutions had been taken the bees were movided with 20% suggest a solution.
Test organisms	
Species:	Honey bee, Apiomellifera
Source:	Mr. R. Baker 19 Abbotts Crescent, St Ives, Cambridgeshire, K.
Acclimatisation period:	None. Bees were dosed within 2 hours of removal from hive.
Feeding:	Mr. R. Baker 19 Abbotts Crescent, St Ives, Cambridgeshire, EK. None. Bees were dosed within 2 hours of removal from hive. In oral test, after the test solutions had been taken the bees were provided with 20% sucrose solution None reported
Treatment for disease:	None reported
Test design	
Test vessel:	Öcylindrical wire mesh cages 11.5 cm long x 4.0 cm in diameter
Replication:	This was the same for the reference them $\frac{1}{\sqrt{2}}$
No. animals/versel: *	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Duration of test:	As hours of a standard and a standard a st
Environmental test	This was the same for the reference them. 10 48 hours 5 - 26 C Darkness except during essential procedures
Temperature:	\$\$ - 26°C 7 5 5
Photoperiod:	Darkness except during essential procedures
Study Design	

This study was conducted in order to assess the acute toxicity of KWG 4168 EC 500 on honeybees in oral and contact tests over 48 hours.

Female honeybees were collected from the have and kept in cylindrical wire mesh cages 11.5 cm long x 4.0 cm in diameter. Yen bees per cage were tested.

For the contact test, one cage as a time, the bees were anaesthetised with CO_2 and a 1.0 μ L droplet of the appropriate difficient of the cest substance was applied to the ventral thorax of each bee using a microspecter oringe λ

A $50 \ \mu\text{L}$ argued of the test solution for the oral test was added to 950 μ L of 20% w/v sucrose solution. This solution was then administered as a single 0.2 mL dose per cage (10 bees). The bees were assumed to have received similar doses of 20 μ L per bee.

The test vessels were kept at 25 °C with a relative humidity of 53 - 27%.

Five concentrations of the test item (6.25, 12.5, 25, 50 and 100 μ g product/bee) were administered to each group of 10 bees in triplicate. The solvent control (acetone) and control groups were also replicated in triplicate. The same study design was kept for the reference item (dimethoate) which was tested at concentrations of 0.025, 0.050, 0.10, 0.20 and 0.40 μ g a.s./bee with a solvent control and control, allow tested in triplicate.

The bees were observed after 24 and 48 hours for incidence of mortality.

II. Results and Discussion

Validity criteria were not assessed as part of the study report.

For the oral test, concentrations greater than 12.5 ag a.s./bee were not fully consumed as the test organisms found these doses impalatable.

Mortality at the highest dose administered (100 μ g a.s./bee) was 17% and 98% after 48 hours for oral and contact administrations, respectively.

Table CP 10.3.1.1.1/02-1 Cumulative mortality			$C \otimes C = C \otimes C$	
I ADIE CP 10.5.1.1.1/02-1 CUMULATIVE MORTAIL	v tor nonev nee	s exposed took w	G 4408 EC SU	J 108 48 nours
	,, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~~,			

Nominal concentration	Cumulative mo	rtality per replicat	e (%)	
(µg product/bee)	24 hours 🔬 🔨		48 hours	Coñtact
Â	Orato Q	Contact 5	Oral	Contact
Control		*0 ~~*		ð
Solvent control	6.7 5 0 63 6	3.3	\$6.7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10
6.25	67 6	Ø3.3 0 ⁵⁷ (c)	6.7	20
12.5 25	MO Q S	33.5		43.3
	23.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		23	50
50 0 0 0	06.7 4	50 0	16.7	50
		90 ²⁷ ~	⁹ 16.7	93.3
····	No. I			

Initial topulation: 10 bors per collicate

In the reference test mortality at the highest dose administered $(0.40 \ \mu g a.s./bee)$ was 93.3% and 100% of bees after 48 hours for oral and contact administration, respectively.

Table CP 10:39.1.1/02-2	Cumulative mortality	for honey bees	exposed to dimethoate for 48 hours
			•

Nominal correction	ion Comulative n	nortality per rep	licate (%)	
(µg a.s.%L)	24 hours	Ş'	48 hours	
N OF	Oral Oral	Contact	Oral	Contact
Control		0	10	10
Solvent coppol		10	3.3	13.3
0.025	33.3	40	36.6	46.6
0.05	36.6	86.6	43.3	86.6
0.10	66.6	96.6	73.3	100
0.20	93.3	96.6	100	100
0.40	90	100	93.3	100

Nominal concentration	Cumulative mo	rtality per replica	ite (%)	
(μg a.s./L)	24 hours		48 hours	<u> </u>
	Oral	Contact	Oral	Contact of
Initial population: 10 bees per replica	ate		Å	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Table CP 10.3.1.1.1/02-3 48-hour LE) 50 for honeybees	<u>ی</u>	X	
	LD50 (µg/bee)	T.	<u> </u>	
	Oral		O ^v Contact	
KWG 4168 EC 500	>12.5	Å [°]	\$30 Q	
	(>6.1 μg a.s./be		مَحْ (15 µg a.s.)	bee) (v y
Dimethoate (reference item)	0.040		0.027	
III. Conclusion				

In an acute contact and oral toxicity test with hone wees using Spiroxamine EC 300, the 48-hour oral LD₅₀ was >12.5 µg product/bee (>6() µg ag /bee) and the 48-hour contact LD was \$ µg product/bee $(15 \ \mu g \ a.s./bee)$.

Assessment and conclusion by applicants

The study was conducted in 1994 and therefore pre-dates the OECD 212 and 214 test guidelines. Validity criteria according to the OECD 213 (1998) and OECD 214 (1998) widelines have been assessed: 0

- Average mertality for the fotal member of controls most not exceed 10% at the end of the test 0 (actual: 9% in the control in both contact and oral tests)
- The 24 hr Lie of the toxicstandard to be 0.10 to 0.30 be a.s. bee for the contact test and 0.10 to 0.35 μ g a.s. bee for the oral test factual 24-hr LD₅₀ 0.027 and 0.040 μ g a.s. bee in the contact and oral tests, respectively

The test methodology and procedures used in this study are consistent with current OECD test guidelines. However, it is clear that the criterion for survival has been met but the LD₅₀ values achieved in the reference test are almost one ofder of magintude lower than the recommended ranges in the current OECD guide wes. The results of the study are therefore considered to be potentially unreliable and as a cesult the study has been submitted as supporting information only.

The 48-hour oral LD₅₀ was >125 μ g product Bee ($\gtrsim 6.1 \mu$ g a.s./bee) and the 48-hour contact LD₅₀ was 30 µg product/bee (15 µg a.s. bee)

Acute contact toxicity to bees **CP 1**[°]0.3.1.1.2

Please refer to Section CP 163.1.1 For summaries of the available acute contact toxicity tests.

Data Point:	KCP 10.3.1.2/01
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500: Chronic oral toxicity test on the honey bee (Apis mellifera
	L.) in the laboratory
Report No:	143091136
Document No:	<u>M-704650-01-1</u>
Guideline(s) followed in	Regulation (EC) No. 1107/2009
study:	Directive 2003-01 (Canada/PAIRA)
	US EPA OCSPP 850.SUPP OECD Guideline 245 (20)7)
	OECD Guideline 245 (20)7)
Deviations from current test guideline:	None $\begin{pmatrix} y & y \\ y \\$
Previous evaluation:	
GLP/Officially	Yes, conducted under CLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes of the second secon

CP 10.3.1.2 Chronic toxicity to bees

Executive Summary

Honeybees (*Apis mellifera* L.) were exposed to five concentrations of Spiroxamine EC 500 by continuous and *ad libitum* feeding over a period of 10 days. Nominal test concentrations were 5000, 2000, 800, 320 and 128 mg a.s./kg/feeding solution (equivalent to 100, 40 0) 16.0, 6.40, 2.56 µg a.s./bee/day).

The analytical recovery rates of the active substance spiroxamine in the feeding solutions were within a range of 57 % to 20%. The results have been corrected for the analytical recovery rate. When adjusted for analytical recovery the test concentrations were 5005, 1480, 646, 224 and 91 mg a.s./kg feeding solution. In the oral toxicity test actual consumed doses were determined to be 39.1, 34.1, 13.1, 7.70 and 3.98 μ g a.s./bee/day. When adjusted for analytical recovery the actual consumed doses were 39.1, 25.2, 10.6, 5.39 and 2.84 μ ga.s./bee/day.

Mortality levels of 900% and 26.7% occurred in the concentration groups of 5000 and 2000 mg a.s./kg feeding solution (corresponding to a mean dictary dose of 39.1 and 34.1 μ g a.s./bee/day).

The active substance, a imethoate was used as a toxic standard. When applied at a concentration rate of 1 mg a.s./kg feeding solution (corresponding to an actual mean dietary dose of 0.016 μ g a.s./bee/day), this caused a continuous increase in morality reading to 100% mortality at study day 6.

The NOEC was determined to be 646 mg/s.s./kg/eeding solution. The NOEDD was determined to be 10.6 mg/s.s./bee/day.

The LC₅₀ was determined to be 1864 ang a sky feeding solution and the LDD₅₀ was determined to be 27.3 μ g a.s./bes/day A

I. Materials and Methods

Materials

	L ^Y
Test Material	Spiroxamine EC 500
Lot Batch #:	EM4L018425
Purity:	50.0%
Description:	Yellow liquid

Reanalysis/Expiry date:	09 May 2020
Density:	1.004 g/mL
Treatments	
Test rates:	Nominal: 5000, 2000, 800, 320 and 128 mg a.s./kg feeding solution, corresponding to: 100, 40.0, 16.0, 6.40, 2.56 µg a.s./bee/day 50% w/v sucrose solution Yes. Analysis of feeding solutions on each day of the test
Solvent/vehicle:	50% w/v sucrose solution and a construction of the construction of
Analysis of test concentrations:	Yes. Analysis of feeding solutions on each day of the test of the solutions of the test of the solutions of
Test organisms	
Species:	Apis mellifera I Hymenoptera, Apidae 2 days old from a queen-right colony
Source:	In-house culture in the second s
Acclimatisation period:	Apis mellifera I. Hymenoptera, Apidae 2 days old from a queen-right colony In-house culture At least 0 day Statistics steel came (ca are 6 yed cm)
Feeding:	Ad libitum 50% ($@/v$) sucrose solution containing the test item, the reference item of untraited $@$
Treatment for disease:	reference item of untreated $\frac{1}{\sqrt{2}}$ \frac
Test design 🔬	
Test vessel: 🖉 🚽	Standerss steel cages (ca_{1} & x 6 x 4 cm)
Replication	3 replicates per test item dose level controls and reference item dose
Replication; No. animals/vessel: Duration of test: 🔬	910 pertest vessel a a a a a
Duration of test: 🔬	10 days a by a a
Environmental test	Standers steel cages (ca , δ x 6 x 4 cm) 3 replicates per test item dose level controls and reference item dose 10 per test vessel δ 10 days δ 33 C
Temperature:	36°C C C C C
Relative fumidity:	
Photoperiod:	Darkness (except during observation)
Study Design	
Young worker honey heed	daw old at vest invitation) from <i>Anis mellifera</i> L, were exposed to a control

Young worker honey bees (2 days old at test initiation) from *Apis mellifera* L. were exposed to a control treatment, one reference item freatment and five concentrations on Spiroxamine EC 500 by continuous and *ad libitum* freeding over period of 10 days.

Four brood combs with scaled brood from four hives in which bees were visibly starting to emerge were used in the test. These combs contained pollen which was used as a first feeding source for the freshly hatched bees. The combs were taken from the hive and adult bees were removed. The combs were transferred to the laboratory and placed into a hatching box. The box was placed into an incubator for one day to let the bees hatch under test conditions. The next day the hatched bees were collected and randomly assigned into cages (test units) in groups of 10 bees. The following day the test was initiated (Day 0, first dose administration) with 1-2 days old worker honey bees. Moribund bees were rejected and replaced by healthy bees prior to first feeding.

The bees were housed in cages made of stainless steel (*ca*. 8 x 6 x 4 cm) and incubated at 33°C. Each treatment group consisted of 30 organisms (divided into 3 replicates, containing 10 test organisms each).

The control group were fed with untreated aqueous sucrose solution and the treatment groups were fed with sucrose solution containing the test item. Spiroxamine EC 500 was administered at nominal concentrations of 5000, 2000, 800, 320 and 128 mg a.s./kg feeding solution, equivalent to 400, 460, 16.0, 6.40 and 2.56 µg a.s./bee/day, respectively. The reference item group were exposed to 1 mg a y/kg feeding solution of BAS 152 11 I (dimethoate 400 g/L).

The bees were fed *ad libitum* with a 50 % (w/v) sucrose solution containing the test item test item group), the reference item (reference item group) or the sugar solution only (control group). The feeding solutions were provided in syringes and daily replaced by freshly prepared solutions.

In order to adjust for possible evaporation of tear solutions from the feeders, 3 cages were set up containing pre-weighted syringes filled with sugar solution in absence of bees. The syringes were weighted and replaced daily. The evaporation figure was determined daily by weighting feeders from separate cages without honey bees. The measured difference was subtracted from the measured uptake to adjust the values for the loss by evaporation.

The daily food consumption per bee was calculated by the number of surviving bees per assessment and the amount of food consumed on the pollowing assessment day.

Duplicate samples of the feeding solutions of the test item (5 concentrations) and control were taken for chemical analysis on day 0-9.

Mortality and behavioural abnormalities were recorded daily after application (start of feeding) during the 10-day exposure period. The offonic offects of Spiroxamine EC 590 were evaluated by comparing the results of the test item group to those of the treatment groups. The software used to perform the statistical analysis was for Rac Professional, Version 3.2.1, b To Rat Solutions ombh.

Analytical method

Samples of feeding solution were analysed using the validated analor cal method <u>M-704650-01-1</u>, report reference <u>M-704650-00-1</u> (see Doc MCP Section 5).

II. Results and Discussion A

Validity Criteria according to the OECD 245 guideline (20)?) were met.

- The average mortality across replicates for the intreated control should be ≤15% (actual: 6.7% on Day 10)
- The average mortality across replicates for the reference substance should be ≥50% (actual: 100% by Day b)

The analytical recovery rates of the active substance spiroxamine in the feeding solutions were within a range of $\sqrt{7}$ % to 120%. The results have been corrected for the analytical recovery rate.

When adjusted for analytical recovery the test concentrations were 5005, 1480, 646, 224 and 91 mg a.s./kg feeding solution.

In the oral toxicity test actual consumed doses were determined to be 39.1, 34.1, 13.1, 7.70 and 3.98 μ g a.s./bee/day. When adjusted for analytical recovery the actual consumed doses were 39.1, 25.2, 10.6, 5.39 and 2.94 μ g as./bee/day.

Mortality levels of 100% and 26.7% occurred at the nominal concentration groups of 5000 and 2000 mg a.s./kg/feeding solution (corresponding to a mean dietary dose of 39.1 and 34.1 μ g a.s./bee/day), respectively, at test termination. This effect was statistically significant compared to the control (Step-down Control Control Control (Control of Control of Con

No mortality occurred in the 800, 320 and 128 mg a.s./kg feeding solution (corresponding to a mean dietary dose of 13.1, 7.7 and 3.98 µg a.s./bee/day, respectively). There was 6.7% mortality in the untreated control group (50% w/v sucrose solution) at the end of the 10 day testing period.

The reference item (dimethoate) at a concentration of 1 mg a.s./kg feeding solution (corresponding to an actual mean dietary dose of 0.016 µg a.s./bee/day) caused a continuously increasing mortality leading to 100% mortality at day 6.

Treatment	Mean n	nortality ((%)		Å	8	.0 ⁹	*		
group (mg a.s./kg)	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7 .	Day	Day 9	Day 10
5000	0	56.7	80	96.7	900	100	100	200 2	100	100
2000	0	0	0	3.3 0	6.70	E	\$10 \$	16.7	20	26.7
800	0	0	0				0	89	0	
320	0	0	0	¢, 03	0 2	0,4		70 J		C. Sr.
128	0	0	0 0	0	20 ⁶ / ⁵	X ~		0,5		Ø0
Reference item: 1.0	0	0		\$73.3 \$	96.7	1005		9100 ¢	100 **	100
Control	0	0	0 &	30	\$y.3 v	3.3 🗳	3.3	,3 ⁽³⁾	3.3	6.7

to 10070 mon	itunity at a	uy 0.		1	A.	~Q	Ô
Table CP 10.	3.1.2/01-1	Summary of mortality data	following exposu	ire to Spiroxam	ine EC 500		, s ,
		······································		Q.		Y 0, ⁷	
			W .				

On day 2, behavioural abnormalities (e.g. moriburg and affected bees) were observed in the highest dose level group of 5000 mg/a.s./kg/feeding solution. On day 10, a single bee in the 2000 mg a.s./kg feeding solution treatment group was affected. No behaviour abnormalities occurred in the treatment groups of 800, 320 and 28 mg a.s./kg feeding solutions. On day , one bee in the control group was affected. Ô 0

Table CP 103.1.2/01-2 Summary of behaviou a abnot malities following exposure to Spiroxamine EC 500 \sim ~

Treatment		ural abno	ormalities		, y y y	Å				
group (mg a.s./kg)	Dag	Day 2	Bay 3 K	Day 4	Day 5	Dery 6	Day 7	Day 8	Day 9	Day 10
5000	Ç C	16.70		Ô, ô	× 0 ×	0	0	0	0	0
2000	0		Ĩ.		Q	0	0	0	0	3.3
800	0					0	0	0	0	0
320	0	00			0	0	0	0	0	0
128		ð Ø	0	0 ~~	0	0	0	0	0	0
Reference			20 20 2	9 3.3	0	0	0	0	0	0
Control	, a d		0	0	0	0	0	0	3.3	0

Table CPDr0.3.1.2/01-3 Summary of mortality and endpoints following exposure to Spiroxamine EC 500

Apis mellifera carnica

Test Object	
-------------	--

Ľ

Treatment Group	Concentration [mg a.s./kg feeding solution]	Dietary Dose ¹ [µg a.s./bee/day]	Mortality at day 10 ^{-2,} [% Mean]	Corrected Mortality at day 10 ³ [% Mean]	
Spiroxamine EC 500	$5000(5005)^4$	39.1 (39.1) ⁵	100.0 (*)	140.0	
Spiroxamine EC 500	2000 (1480) ⁴	34.1 (25.2) ⁵	26.7 (*)	\$21.4 \$	
Spiroxamine EC 500	800 (646) ⁴	13.1 (10.65	0.0((n.s.)	12 -712 G	
Spiroxamine EC 500	320 (224) ⁴	7.70 (5.39) ⁵	Q 0 (n.s.)	\$7.2 ×	
Spiroxamine EC 500	128 (91) ⁴	3.98 (2.84) ⁵	0.0 (n.s.) 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Water control	-	0 [°] - , 0 [°] , 0 [°] , 0 [°] , 0 [°]			
Reference Item	1.0	لاي 0.00p6 مي	1000	\$≫100.0	
	Endpoint a	t test termination (da	y (9) °°		
LC ₅₀			LC ₂₀ , C		
1864 mg a.s./kg feeding solution	27.3 μg.os./bee	kay 1377 mg	a.s. kg feeding 222	2.2 Ge a.s./bee/day	
LC_{10}			ŇOEC O	NÔÆDD	
1127 mg a.s./kg feeding solution		s s s	olution 🖓	0.6 Jg a.s./bee/day	

¹mean dose per bee per day; dose measured based on consumed feeding solution ~ ²Mortality at study termination 10 days after start of first foeding

³Corrected mortality was ealculated by control mortality using Abbott's formula (1925)

⁴Values in parentheses were corrected dietary concentrations based on the mean values of the dose verification ⁵Values in parentheses were corrected dietary doses based on the mean values of the dose verification

Statistics:

LC_{50/20/10}: using the Weiffull analysis. The LD₆₀ Calculation was carried out taking into account the mortality data

corrected by control mortality using Abbott's formula (1925). <u>NOEC/NOEDD</u>: Step-down Coobran-Armittage Test Procedure, one-spied greater, $\alpha = 0.05$

n.s. = no statistical significant difference compared to the control, * statistically significant difference compared to the control ($\alpha = 0.05$),

III. Conclusion

were exposed to piroxamine EC 500 in a 10-day chronic feeding Adult honeybees (Apis methifer test.

and NGEDD were determined to be 646 mg a.s./kg feeding solution After 10 days exposure, the NOE and 40.6 µg a.s./bee/day, respectively.

The LC₅₀ was determined to be 1864 mg a 57kg feeding solution and the LDD₅₀ was determined to be 27.3 µg a.s./b€€/day.ª

and conclusion by applicant:

Validity criteria according to the OECD 245 guideline (2017), to which the study was conducted, were met

The average mortality across replicates for the untreated control should be $\leq 15\%$ (actual: 6.7% on Day 10)

The average mortality across replicates for the reference substance should be \geq 50% (actual: 100% by Day 6)

The study is therefore considered to be acceptable.

The LDD₅₀ was determined to be 27.3 µg a.s./bee/day. The NOEDD was determined to be 40.6 a.s./bee/day.

	V O O O Y
Data Point:	KCP 10.3.1.2/02
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500E G Assessment of effects on the adult honey bee, Apris
	mellifera L. in a 10 days chronic feeding test under laboratory conditions
Report No:	S14-00173
Document No:	<u>M-538628-01-1</u>
Guideline(s) followed in	GLP compliant study based on GECD 013 (1998) and CEB No. 230
study:	with modifications and current recommendations of the ring test group (2017)
Deviations from current	None of the first
test guideline:	
Previous evaluation:	No, not previously submitted O
GLP/Officially	Yas conducted under GLP/Officially recognised desting facilitie
recognised testing	
facilities:	
Acceptability/Reliability:	Yes A A A A A A A A A A A A A A A A A A A
Executive Summary	

Executive Summary

The objective of this study was to determine the effects of the test item Spiroxamine EC 500E G on the honey bee, Apis mellifera L., in a 40-day phronic feeding test under Kaboratory conditions. The No Observed Effect Concentration (NOEC) and the No Observed Effect Dietary Dose (NOEDD) were determined at the end of the test period. Furthermore it was demonstrated that the median Lethal Concentration (LC₅₀) and the median lethal dietary dose (LDD₅₀) was greater than the tested dose.

Honey bees were exposed to a 50 % aqueoux sucrose solution containing one concentration of Spiroxamine EC 500E G by continuous and ad libituat feeding over a period of 10 days. The control group was fed with untreated sperose solution. Mortality and sub-lethal effects were assessed during the 10-day exposure period. The chronic effects of Sporoxamine EC 500E G were evaluated by comparing the results of the test item group to those of the control group.

The LC₅ after 10 days of continuous exposure was determined to be higher than 100 mg a.s. spiroxafnine/kg feeding solution. The corresponding LDD₅₀ (Lethal Dietary Dose), based on the actual consumption of the respective feeding colutions, was determined to be >4.86 µg a.s./bee/day. The NOEDD was determined to be 4,86 µg a.s./bee day.

I.	Materiads an	deviethods 4
Materials	fe di b	
Test Mat	eriat A	Spiroxamine EC 500E G
Zot/I	Batch #: 🖓 👔	∉ EDFL021571
👋 Purit	y analysed:	Content of active substance (analysed) = 501.1 g/L
Desc	ription:	Liquid / yellow to brown

Stability of test compound:	Sufficient for the test purposes \mathcal{Q}°
Reanalysis/Expiry date:	04 Feb 2015
Density:	1.00 g/cm ³
Treatments	
Test rates:	100 mg a.s. spiroxamine/kg feeding solution
Solvent/vehicle:	50% (w/v) aqueous sucress solution $\sqrt{2}$
Analysis of test concentrations:	Yes. Mean measured concentration of spiroxamine in the larval diet of was 74%
Test organisms	
Species:	Apis mellifera, , , , , , , , , , , , , , , , , , ,
Source:	Colonies located at testing facility – priginally obtained from Khus Hampel Mühlhausenetstr. 1/17, 75233 Tiefenbrond Germany
Feeding:	Sufficient for the test purposes 04 Feb 2015 1.00 g/cm ³ 100 mg a.s. spiroxamine/kg feeding solution 50% (w/v) aqueous sucrose solution Yes. Mean measured concentration of spiroxamine in the larval diet was 74% Apis mellifera Colonies located at testing facility – originally obtained from Khus Hampek Muhlhauseneistr. 1/1/75233 Tiefenbront Germany Ad libitum – The definitive test item feeding solution was prepared every day by dilating the stock solution with 50% (w/v) aqueous sucrose solution
Test design	
Test vessel:	Cages made of stainless steel (pase: 8 cm x 4 cm; height: 6 cm)
Test medium:	Cages made of stainless steel (base: 8 cm x 4 cm; herght: 6 cm) Bees exposed via the diet
Replicates	
Number of	
Replicates Number of organisms per vessels Duration of test;	
Duration of test:	A A A A
Environmental test	
conditions	
Temperature:	32.0, t& 33.8°67 , Or , O
Relative humidity:	32.0. to 33.8° 6 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
Photoperiod:	Sonstant darkness except during the assessments
Study Design	Constant darkness except during the assessments
	vas to determine the effects of the test item Spiroxamine EC 500E G on the
- HOLEV DEE 41845 MOLNIDVA	w in a wo-day watchic require rest under taporatory conditions. The No

The objective of this study was to determine the effects of the test item Spiroxamine EC 500E G on the honey bee, *Apis meltifera* 12 in a 40-day chronic feeding test under laboratory conditions. The No Observed Effect Concentration (NOEC and the No Observed Effect Dietary Dose (NOEDD) were determined at the end of the test period. Honey bees were exposed to a 50 % aqueous sucrose solution containing one concentration of Spiroxamine EC 500E G by continuous and *ad libitum* feeding over a period of 10 days. The control

Honey bees were exposed to a 50 % aqueous sucrose solution containing one concentration of Spiroxamine EC 500E G by continuous and *ad libitum* feeding over a period of 10 days. The control group was ted with untreated sucrose solution. Mortality and sub-lethal effects were assessed during the 10-day exposure period. The chronic effects of Spiroxamine EC 500E G were evaluated by comparing the results of the test item group to those of the solvent control group.

In the control group the honey bees received an untreated 50 % (w/v) aqueous sucrose solution, *ad libitum*. Over a test period of 10 days, honey bees were fed continuously and *ad libitum* with a 50 % (w/v) aqueous sucrose solution, containing the test item Spiroxamine EC 500E G at the concentration level of 100 mg a.s. spiroxamine /kg feeding solution. The abbreviation a.s. refers to the analysed content of the active substance spiroxamine (501.1 g/L). A reference rate (dimethoate; Tradename Perfekthion) at 0.9 mg a.s./kg feed was also tested.

The test organism was the honey bee, *Apis mellifera* (Hymenoptera, Apoidea). The test was carried out with young adult worker bees (newly hatched; 1 to 4 daysold) from a healthy colony descended from a breeding line of a beekeeper in Tiefenbronn, Germany (Klaus Hampe), Mühlhauseherstr 9/1, 75/33 Tiefenbronn, Germany). The colonies were examined for a reportable bee epiderate by an authorised bee specialist and were inspected periodically according to the standard bee-keeping practices by an experienced apiarist. The hives used for honey bee collection for this test was dequately fed, healthy, as far as possible disease-free and queen-right.

For the preparation of the test item feeding solution, the test item Spirotamine EC 500E G was first dissolved in tap water in order to obtain a stock solution. The amount of test item needed for the darky preparation of the stock solution was weighted in advance and then stored tightly closed under convand dark conditions in the refrigerator (6 ± 02 °C) until use. The definitive test item feeding solution was prepared every day by diluting the stock solution with 50% (w/w) aqueous sucross solution.

The feeding solutions were offere **D***ad libitum* to each sage of **D** bees in plastic syndres (Omnifix®, 5 mL, B. Braun, Melsungen, Germany). The tip of each syringe was removed so that the bees had access to the feeding solution.

The number of dead bees in the individual test units was recorded every 24 h (\pm 1h) during the 10 days test period. Sub-lethal effects as symptoms of poisoning or any abnormal behaviour in comparison to the control were recorded according to the following categories; moribund, affected, cramps, apathy and vomiting.

The daily consumption of feeting solution per bee was calculated by dividing the total daily consumption per replicate by the number of living bees at the beginning of the respective feeding interval.

For the statistical comparison of the food consumption, non-counded mean values per replicate over the entire test period were taken. Data of food consumption were statistically analysed by using the Student-t-test (left-sided, $\alpha = 0.05$) depending on the results of the presents of Shapiro Wilks and F-Test ($\alpha = 0.05$). Statistical calculations were made by using the Statistical program TOXRAT Professional 2.10.

Samples of the feeding polutions prepared freshly every day throughout the 10 days continuous feeding period were taken dany for tibsequent chemical analysis in order to reveal the actual concentration of the test item.

Analytical method

Samples of feeding solution were analysed using the validated analytical method MR-15/063, report reference M-527552-01-0 (see Boc MCP Section 5).

II. Results and Discussion

The study was conducted to the OECD Guideline proposal: Honey bee (*Apis mellifera* L.), chronic toxicity test (10 day feeding test in the laboratory). Submitted to OECD for Evaluation, 20 November 2013.

The study was considered valid because:

- The mean mortality in the control was ≤ 15 % at the end of the test (actual: 2.5%).
- The mean mortality in the reference item group was ≥ 50 % at the end of the test (actual: 100%).

The average actual concentration of Spiroxamine EC 500E G over a period of 10 consecutive days per individual test item treatment level was 74 % of the nominal concentration. No residues of Spiroxamine EC 500E G above the LOQ (10 μ g/kg) were found in any of the control samples.

The mortality in the control group was 2.5 % at the final assessment after 10 days and thus remained within bounds of the validity criterion of 15 % mortality.

Mortality in the reference item treatment group increased during the test period and reached 100 % (corrected 100 %) after 10 days. Exceeding the 50 % mortality threshold set as validity criterion the reference item treatment group showed that the test design is suitable to determine oxic effects of a chronic exposure scenario.

After 10 days of continuous exposure to the concentration level oD'00 mg a.s./kg feeding solution, per mortality could be observed (corrected -2.6 %). A ODD_{50} value of >4.86 µg a.s./bee/day and a NOEDD at 4.86 µg a.s./bee/day could be determined.

In the control group and at the concentration level of 100 mg a.s./kg feeding solution no remarkable sublethal effects could be observed.

		Cumunu				<u> </u>		<u></u>	S.	0
Treatment	E1	E2	F3	E 4 %	E5 🔊	F6	2 2 2 2 7 2 7	E8	E9 3	E10
(mg a.s./kg)		0		Cunculative					°~y ⊌	
			C 🖉	unculative	mortality	(%)		, v ,	Õ	
Control	0.0	, 6 50	0.0		0.0	2.5	2.5	2.5	2.5	2.5
Spiroxamine 1	EC 500E	\vec{p}^1		Ő (× ×		, S		
100 ²	0.0	0.0	\$Ø.0 ~	Ø 0.0 Ŝ	0.0	Ø.0		0.0	0.0	0.0
Perfekthion			y' V K			Ŷ				
0.9	0.0	0,00	Ø.0 [°]	× 22.5 ¢	57.0	67.5	82.5	97.5	97.5	100.0
			Corre	rted cumula	tive mort	Dity (%)	ř			
Spiroxamine	EC 500E			\$. ×) ^v W					
100	0.0	0.0	0.0		Ø ô	-2.6	-2.6	-2.6	-2.6	-2.6
Perfekthion	<u>o</u> so			N A	\$ \$,				
0.9	0.0	20 ²⁰ ~	0.0		50.5	66.7	82.1	97.4	97.4	100.0
E Assessment	Č,		i O'							

Table CP 10.3.1.2/02-1 Cumulative mogality and sub-lethal effects (

E Assessment

C Control; 50 % (w/ aqueous sucrose solution containing Spiroxamine EC 500E G

¹ Feeding solution: 50 % (w/v) aqueous sucross Colution containing Spiroxamine EC 500E G

² Determined to be the NOEC based on mortality (a statistical evaluation according to the Fisher's exact test was not conducted as non-creased mortality in the test item treatment group compared to the control group was observed)

After 10 days of continuous exposure, by considering the actual food consumption of the honeybees, the accumulated notifinal uptake of Spiroxamine EC 500E G at the treatment level of 100 mg a.s./kg feeding solution was 48.6 µg a.s./bee.

The corresponding average daily dose was therefore 4.86 μ g a.s./bee. The overall mean daily consumption of feeding solution (i.e. the average consumption/bee over 10 days) was not statistically significantly different (lower) when compared to the untreated control group (48.6 mg/bee/day at 100 mg a.s. spiroxamine/kg feeding solution, compared to 41.2 mg/bee/day in the control group).

 \sim

Table CP 10.3.1.2/02-2	Mean consumption of feeding solution per treatment group per day during the
test period	Ø

Treatment	Mean consumption of feeding solution (mg/bee/day)										
(mg a.s./kg)	A1	A2	A3	A4	A5	A6	A7	A8	QA9	A10	V x
С	38.7	34.5	39.2	43.1	40.3	40.1	42.8	41.7	49.0	43-1	ÅĴ?2
Spiroxamine	EC 500F	E G ¹				Ĉs		L. V	×		
100	63.6	39.2	42.2	43.0	50.6	40.8	64.90	, 47.7	46	47.0	48.6
Perfekthion					^	×.	Â.	<u>~</u> °			
0.9	33.0	38.5	25.2	22.7	30.0	27.7	40.3	39.6	103 C	N. N	35.0
A Applica	ition										
C Control	; 50 % (w/v) aque	ous sucr	ose s <u>o</u> luti	on 🖉	<u> </u>	Q',	ð. 0			
¹ Feeding	g solution	w/v) aque n: 50 % (v	v/v) aque	egas sucré	ose solut	ion como	ning Spi	roxamine	EC,50	0E ₄ G	A C
x Overall	mean co	onsumptio	n of fee	ting solut	ion (calc	ulation b	ased on re	plicate	gues)	Ĵ,	0
			Q.	ď			, ^x				
able CP 10.3.	1.2/02-3		iptake o	f føst iter	n durin	the test	period	ð	°	<u> </u>	
reatment	Mean	uptake		m (µg a.s	./bee/da	y) 🐬	ala on	. O)	
(mg a.s./kg)	A1	A D	Â	A4	A5		AZ S	A8	A9	A10	DD
Spiroxamine	EC 500F	SG ¹) Õ			× 4		0) /		
100	6.36	3,92	<u>4</u> 2	A.30	\$.06	\$ 4.08	, 6.49 ⁰	4.77	4.60	4.76	4.86
Perfekthion	Ö.	»\°	Ϋ́́́			, S	Q.	Ĵ.			
0.9	0.03	0.04	0.02	0.02	\$0 .03	0.03	0.04	0.04	0.09	0.07	0.03
A Applica	tion			Ĵ Ĉ	> * "(. 6			1	1
¹ Peeding	g solution	¢. 50 % ¢	v/v) aque	eoussacra	ose solut	ion conta	inying Spir	roxamine	EC 50	DE G	
DD Dietary	dosen	μg _a a.s./be	eæay ,		by C		9				
able CP 10.3.		<u></u>		ř.	Ô.	Â.	/1				
			· 🔊	0.		')P			est day	S	
Treatment (mg a.s&kg)	A		/	n uptake					1		1
(mg a.s.kg)	Ś		Å2 ~	A	. AQ '	A5	A6	A7	A8	A9	A10
Spiroxamine	EC 5001		<u>.</u> <u>(</u>)	<u> </u>		-		-	-		
100	¢ 5	.36	10.3	14:\$	18.8	23.9	27.9	34.4	39.2	43.8	48.6
Perfekthion			× 4	~Ç							
0.9		,03 0) .07	0.09	0.11	0.14	0.17	0.21	0.25	0.34	0.41
A Applica	Zion (C			1	1	1	I	1	1		1
¹ Feeding	.₀ g solutio	n: 50 % (v	v/v) aque	eous sucre	ose solut	ion conta	ining Spir	roxamine	EC 50	DE G	
ê Î		,									

Conclusion

The continuous *ad libitum* feeding of honey bees in the laboratory over a period of 10 consecutive days with the test item Spiroxamine EC 500E G at the concentration level of 100 mg a.s. spiroxamine/kg feeding solution resulted with no adverse effects regarding mortality and behaviour.

The cumulative control mortality was 2.5 %, as determined at the final assessment after 10 days. The cumulative mortality at the treatment level of 100 mg a.s./kg feeding solution was 0.0 % (corrected 26 %) at the final assessment.

The overall mean daily consumption of feeding solution (i.g. the average consumption/bes over 10 days) was not statistically significantly different (lower) when compared to the untreated control group (48.6 mg/bee at 100 mg a.s./kg feeding solution compared to 41.2 mg/bee jt the control group).

The NOEC for mortality after 10 days of continuous exposure was determined to be 100 mg a @ spiroxamine/kg feeding solution. The corresponding NOEDD, based on the actual consumption of the respective feeding solutions, was determined to be 4.86 µg a.s. bee/day.

The LC₅₀ after 10 days of continuous exposure was determined to be >100mg as /kg feeding solution. The corresponding LDD50 (Lethal Dietary Dose) based on the actual consumption of the respective feeding solutions, was determined to be #4.86 µg/a.s./bee/day

Assessment and conclusion by applicant

The study was conducted to the QECD Guideline proposal: Doney See (Apis methiera L), chronic toxicity test (10 day feeding test in the laboratory). Sobmitted to QECD for Evaluation, 20 November 2013. The validity criteria of the current QECD 245 (2017) guideline are the same as those used in this study and have been met: X \bigcirc

- The average mortality across replicates for the untreated control should be $\leq 15\%$ (actual:
- The average mortality across replacates for the reference substance should be $\geq 50\%$ (actual:

The $\widehat{\mathsf{NOE}}$ was determined to be 4.86 µg

the notice of the providence o

Data Point:	KCP 10.3.1.2/03
Report Author:	;
Report Year:	2015
Report Title:	Determination of spiroxamine in feeding solutions from a chronic feeding tost of
_	spiroxamine EC 500E G on the honey bee (Apis mellifera L) in the laboratory
	(Study number: S14-00173; Eurofins)
Report No:	MR-15/063
Document No:	<u>M-527552-01-1</u>
Guideline(s) followed in	not specified
study:	
Deviations from current	None
test guideline:	
Previous evaluation:	No, not previously submitted 🥎 🖉 🖓 🖉
GLP/Officially	Yes, conducted under GLP/Officially recognised testing faculties
recognised testing	
facilities:	
Acceptability/Reliability:	Yes in the second secon

Executive Summary

The purpose of the study was to determine the effects of the test item Spirotamine PC 500E G on the honey bee (*Apis mellifera* L.) in an oral feeding test in the laboratory Bees were exposed to 50% aqueous sugar solution containing the test item Spiroxamine EC 500E G or to an untreated sugar solution by continuous and *ad libitum* feeding over a period of 10 days. The objective of this study was to determine the residue levels of spiroxamine in the feeding solution.

For the purpose of this study, it was only necessary to take an aliquot (1 g) of the feeding solutions and to dilute the samples with accionitrite water (4/1) including 1.6 mL of 5250 gC cysteine hydrochloride solution. Thereafter, aliquots of the diffuted samples enriched with internal standard solution were subjected to reversed phase thigh. Performance Triquid Chromatography (HPLC), coupled with electrospray and mass spectrometry (MS/MS) detection without a further clean-up step. Method validation was done with a full set of recoveries at the LOQ and 10 x COQ level at 150 mg/kg.

The mean actual concentration of spinoxamine in the feeding solution was 74% of the nominal. No residues of spiroxamine above the LOD were found in any of the control samples.

I. Study Design

The analytical method 01013 1001 areas developed for the determination of residues of BYF00587, Prothioconazole, Triflox strobid, Spiroxamine (KWG4168) and the metabolites BYF00587, desmethyl, JAC 6476 desthio (SXX0665) and CGA321113 in/on plant materials.

Due to the fact that the concentration level of spiroxamine is very high it was only necessary to dilute the sugar solutions before the measurement.

For recovery, control and reated samples, 1 gof the corresponding feeding solution was filled up to 40 mL with acetoniri'le/water (4/1) including 56 mL of a 250 g/L cysteine hydrochloride solution. An aliquot of 200 fL was filled up to 1 mL final volume with 100 μ L ISTD solution (10 μ g/L) and 700 μ L methanol/water (4/6). If precessary dilute the samples again and fill up with ISTD solution (1 μ g/L) to final volume.

An aliquot of the solutions was subjected to HPLC-MS/MS without a further clean-up step. Spiroxamine was detected using electrospray ionization in the positive ion mode (ESI+). Residues were quantified using integral stable labelled standards.

The limit of quantitation (LOQ) for spiroxamine is 0.01 mg/kg (= $10 \mu g/kg$) for the sample material aqueous sugar solution, corresponding to the lowest fortification level of successfully conducted recovery experiments. The limit of detection (LOD) was estimated to be at least 30% of the LOQ.

For spiroxamine recoveries were performed in feeding solution at the LOQ (0.01 mg/kg), at 10-fold LOQ level (0.1 mg/kg) and at 15000-fold LOQ level (150 mg/kg). Recovery experiments were performed by spiking control samples with defined amounts of spiroxamine. Fortification levels and recovery data are given in the following tables. As a control material for feeding solution Mili-Q-20 Water/Api Invert Solution (1/1; 2015-03-30) was used for validation.

Results and Discussion II.

sidues in the ontro All residues in control samples used for recovery determination were below LOD. control and treated samples of feeding solution are shown in the table below. Ŕ

L.

Т	able CP 10.3.1.2/03-1	Actual concentrations of	f spiroxamine i	n the feedin	ig solutions	of the cont	rø) 🦷
g	roup		A A			A	
	Sampla ID	Spirovomino Nominal	Snirovan		ual Snira	vaminos 1	Actival

Sample ID	Spiroxamine Nominal (mg/kg)	mg/kg) (% of nominal)
C-0DBA1-A1	- 2, 7	
C-0DBA2-A1	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C-0DBA3-A1	- 20 0 %	
C-0DBA4-A1	- 0 5 8	
C-0DBA5-A1		
C-0DBA6-A1		
C-0DBA8-A1	-4 . 8 . 19 . N	
C-0DBA8-A1 C-0DBA9-A1		SOD C -
C-0DBA10-01		
Pa	a = 0 $M = 0$ $M = 0$	

Lippit of Quantification = 001 mg/kg for spiroxamine. LOQ Limit of Deteor LOD DBA = days before application

ctual concentrations of sproxamine in the feeding solutions of the test item Table CP 10.3.4.2/03 treatment group , Ô Ö

		, W	
Sample ID	Spir.oxamine Nomiosi	Spiroxamine Actual (mg/kg)	Spiroxamine Actual (% of nominal)
T1-0DBA1-A1		75.3	75
T1-0DBA201		71.6	72
T1-0DB33-A15	0900 5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	70.4	70
T1-00BA4A		67.0	67
AT-0DB 43-A1	£100	79.9	80
T1-00BA6-A1	100	77.0	77
T1-0DBA7-A1	100	73.8	74

C

Sample ID	Spiroxamine Nominal (mg/kg)	Spiroxamine Actual (mg/kg)	Spiroxamine Actual (% of nominal)
T1-0DBA8-A1	100	75.9	
T1-0DBA9-A1	100	76.7	£ ~
T1-0DBA10-A1	100	70.2	

LOQ = Limit of Quantification = 0.01 mg/kg for spiroxamine

LOD = Limit of Detection = 0.003 mg/kg for spiroxamine

DBA = days before application

*For the calculation of "% of nominal concentration" as it appears in the Gult table above mrounded values were used. Therefore, minor deviations may occur between the values shown above and when the values given in the residue results column are used for calculation.

III. Conclusion

The purpose of the study was to determine the effects of the test item Spiroxamine EC 500E © on the honey bee (*Apis mellifera* L.) in an oral feeding test in the aboratory. Bees were exposed to 50% sugar solution containing the test item Spiroxamine EC 500E G or to an untreated sugar solution by continuous and *ad libitum* feeding over a period of 10 days. The objective of this study was to determine the residue levels of spiroxamine in the feeding solution.

Regarding spiroxamine, analysis of the feeding solution followed the provisions of the Bayer CropScience method 01043/M001.

For the purpose of this study, it was only necessary to take an aliguot (kg) of the feeding solutions and to dilute the samples with acetonin the water (4/1) including 1.6 mL of 250 g/L cysteine hydrochloride solution. Thereafter, aliguots of the diluted samples enriched with integral standard solution were subjected to reversed phase High, Performance (Liquid Chromatography (HPLC), coupled with electrospray and mass spectrometry (MS/MS) detection without a further clean-up step. Method validation was done with a full set of recoveries at the 50Q and 10 xLOQ level at 150 mg/kg.

The Limit of Quantification (EOQ), defined as the dowest validated fortification level, of spiroxamine was 0.00 mg/kg in the feeding solution, respectively; the corresponding Limit of Detection (LOD) was always 0.003 mg/kg

All results of the method validations were in accordance with the general requirements for residue analytical methods; therefore, the employed method was validated successfully.

The mean actual concentration of spiroxamine in the weding solution was 74% of the nominal.

No residues of spiroxaptine above the LODSvere band in any of the control samples.

Assessment and conclusion by applicant:

The study report presents the analysical method and the results of the analysis for the 10-day oral toxicity study with the study is considered to be acceptable.

Please refer to the Analytical Methods section of the dossier for a full assessment of the analytical method used

CK10.3.13 Effects on honey bee development and other honey bee life stages

No larval toxicity data are available with Spiroxamine EC 500. However, a study is available using spiroxamine technical. Please refer to Document M-CA Section 8 for full details.

CP 10.3.1.4 Sub-lethal effects

Additional studies on sub-lethal effects have not been conducted and are not considered to be necessar

CP 10.3.1.5 Cage and tunnel tests

CP 10.3.1.5 Cage and tunner tests Residues decline trials in nectar and pollen have been conducted under semi-fred tunnel test con A summary of the study has been provided below.

Data Point:	KCP 10.3.1.5/03
Report Author:	
Report Year:	
Report Title:	Determination of resolutions of spirox while in nectar and policy of Phacelia
	tanacetifolia after two applications of spiroxamine EC 500 in a semi-field tunnel
	residue study in Central and Southern Europe in 2020 2
Report No:	S20-02289 X X X X X X X
Document No:	M-763122-00-1 (, , , , , , , , , , , , , , , , , ,
Guideline(s) followed in	
study:	accordance with Regulation (EC) No 1207/2009 (Oct 2009)
	SANGO/825/00 (2014)
	$S \Delta N = 0 $ (2000) $I = 0$ (2000) $I = 0$
	EC (2018) Technolal guidelines for determining the magnitude of pesticide
	residue On honey and setting Maximum Residue Levely in honey
~~~	$\frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}$
Deviations from current	Notes of the of
test guideline:	
Previous evaluation	No, notoreviously submitted
test guideline: Previous evaluation	
	Yes, conducted under GLP Officially recognised testing facilities
recognised testing	
lacinues.	
Acceptability/Reliability	Yes y y
Executive Summary	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
~Q ·	

Residues of spirozamine were determined in pectar and pollep from Phacelia tanacetifolia plants under semi-field conditions. The study comprised five separate semi-field residue trials conducted in Germany (2 sites) and Spain (2 sites) in 2020, Each site comprised two plots (one untreated and one treated with Spiroxamine EC 500). The tunnels used per plot had ap area of 200 m² each. Two bee hives were placed at the end of each tunnel. Spiroxamine EC 500 was applied at the nominal application rate of 0.6 L product/ha (corresponding to 300 g a.s./ha) in 200 L water/ha for both applications and all trials. On each sampling day for ager bees were collected for the preparation of nectar from their honey stomachs for residue analysis. On each sampling day poten from Phacelia tanacetifolia retrieved by the bees was collected using sollen traps. Sampling occurred shortly after application, 8 hours after application, 1, 2, 3, 5 and 7 days after apple ation. Residues of spiroxamine enantiomers A1, A2, B1 and B2 were determined by HRLC-MSMS detection. The Limit of Quantitation (LOQ), defined as the lowest validated Fortification level, was 0.01 mg/kg (10 µg/kg, sum of four enantiomers) for all analysed samples. The corresponding respective Limit of Detection (LOD) was determined to be 0.003 mg/kg  $(3 \mu g/kg, sum of four enantromers)$ . Residues in control samples of pollen ranged between <0.01 mg/kgand 0.0110 mg/kg (sum of four enantiomers). No residues of the analytes above the LOQ were found in any of the control samples of nectar. The residues found in pollen and nectar on the 5 tested sites are presented in the following tables.



Table CP 10.3.1.5/03-1	Residues of spiroxamine in pollen (sum of four enantiomers) found on each trial	
site [mg /kg]		

ite [mg /kg]			<u> </u>
Sample ID L20-02289	Sample type	Sample weight [g]	Residues of spiroxamine (sum of four enantiomers) [mg/kg] 5
	Trial S	20-02289-01 (Germany)	
01-C-S1-P-A	С	0.220	
01-C-S1-P-R	С	Q.198	
01-T-S1-P-A	Т	© 0.200	
01-T-S2-P-A	Т	0 [°] 5 [°] 5 [°] 5 [°]	5.22¢ A
01-T-S3-P-A	Т	0.201	A . 0 240
01-T-S5-P-A	T	6 . 200 × ~ ~	
01-T-S6-P-A	R Q		
01-T-S7-P-A		0.202 ⁵	0.799
	Trice S	20-02289-02 (Germany)	
02-C-S1-P-A		0.2027 04	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
02-C-S1-R-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.01
02-T-S -A		0.200	71.9
02-75-82-P-A		0.238	20.6
02-T-S3-P-A			3.63
02-T-S5-P-A		\$0.245 \$0.245 \$	8.95
02-T-\$9-P-A		0201	0.193
0207-S7-P-A		0.200	0.172
	Toal	S20692289-03 (Spain)	
03-C-S1_PA	C C	0.211	0.0110
03-T-S1-P-A		0.201	37.9
05-T-S2, D-A	T T	0.229	22.1
03-T483-P-A	T	0.201	4.59
©́г 93-Т-S5-Р-А	Т	0.237	2.25
03-T-S6-P-A	Т	0.201	1.13



#### Page 367 of 567 2021-03-31 Document MCP - Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

03-T-S7-P-A	Т	0.217	1.10
	Trial	S20-02289-04 (Spain)	
04-C-S1-P-A	С	0.201	
04-T-S3-P-A	Т	0.232	A 21.4 5 5 5
04-T-S5-P-A	Т	0.20	
04-T-S6-P-A	Т	<b>2</b> 01	Ö ^{1.13} Q O ² K
04-T-S7-P-A	Т	Q 0.200 ~ ~	
	Trial	S20-02288205 (Spain)	
05-C-S1-P-A	C L		A 5 ⁵ ≤0.01 ³ ³
05-T-S1-P-A	Т	40.192 × 4	
05-T-S2-P-A		0430	
05-T-S3-P-A		0.251	9.32
05-T-S5-P-A		0,200 0,194 0,194	29 J.23
05-T-S6-P-A	0 ~ 0		<u>لا</u> م
05-T-S7-P-A	64 39 J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	g/kg 🐒 0.569

 $C = Control, T = Traiment, OQ = Limit of Quantification = 4.01 mg/kg (= 10 rg/kg <math>\leq 100$  ppb, sum of four enantiomers) for spiroxamine, LOB = Limit of Detection = 0.003 mg/kg (= 3.09/kg = 0.005 mg/kg = 0.005 mg

Sample ID L20-02289	Sample type '	Sample weight [g]	Residues of Spiroxamine (sum of four enantiomers) [mg/kg]
	N al	20-02289-00 (Germany)	
01-€-S1-NFB-A		0.200	<0.01
01-T-S1-NFB-A		0.200	0.700
01-T-S2-54B-A-		0.200	0.252
01-T 3-NFB A	T C	0.200	0.116
QT-T-S4 AFB-A	Х Т	0.200	0.0268
01-7-85-NFB-A	Т	0.200	0.00943
01-T-S6-NFB-A	Т	0.186	<0.01



#### Page 368 of 567 2021-03-31 Document MCP – Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

		Γ			
01-T-S7-NFB-A	Т	0.200	<0.01		
Trial S20-02289-02 (Germany)					
02-C-S1-NFB-A	С	0.200			
02-T-S1-NFB-A	Т	0.200	<u>م</u> 0.163 کې کې کې		
02-T-S2-NFB-A	Т	0.20			
02-T-S3-NFB-A	Т	£200	0.0313 Q 0 Q		
02-T-S4-NFB-A	Т	Q 0.200	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		
02-T-S5-NFB-A	Т	0 0 200 5 0	×0.01		
02-T-S6-NFB-A	Т	0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200			
02-T-S7-NFB-A	Т	v, v _v.∠0v _v~			
	Q [°] Trial	S20-02289-03 (Spain)			
03-C-S1-NFB-A	C S	0.200	$\forall a = 0.0 h^{\vee}$		
03-T-S1-NFB-A	¢ ¢' , ^S	0,200	Q 117		
03-T-S2-NFB-A		0.200	<u>لا</u> م محمد محمد محمد محمد محمد محمد محمد مح		
03-T-S3-NFB	4 .9° .7°		0.0562		
03-T-S4-NPB-A		0 × 0.198, ×	0.0247		
03-T-\$9-NFB-A		0.200 <i>(</i> )	×		
03-1-S6-NFB-A		× ~ 0,200 ~~	<0.01		
03-T-S7-NFBA		0.200	<0.01		
		S20-02289-04 (Spain)			
04-051-NFB-A	C C	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<0.01		
44-T-S1-NFB-A		0.200	0.221		
04-T-S2-NBB-A		0.200	0.445		
04-T-SENFB		0.200	0.104		
040-S4-NB-A	T	0.200	0.0193		
\$4-T-\$5-NFB-\$	Т	0.200	<0.01		
0€-P-S6-NFB-A	Т	0.200	<0.01		
04-T-S7-NFB-A	Т	0.200	<0.01		



	Tria	1 S20-02289-05 (Spain)	
05-C-S1-NFB-A	С	0.200	<0.01
05-T-S1-NFB-A	Т	0.200	\$ 0.0471 \$ \$
05-T-S2-NFB-A	Т	0.133	A 0.0777 5 5 4
05-T-S3-NFB-A	Т	0.16	
05-T-S4-NFB-A	Т	£200	
05-T-S5-NFB-A	Т	0.200	
05-T-S6-NFB-A	Т	^م ر (0.200 مر)	
05-T-S7-NFB-A	T K		$\lambda$ $\delta^{\text{g}} \leq 0.01$ $\delta^{\text{g}}$ $\delta^{\text{g}} \leq 0.01$ $\delta^{\text{g}}$ $\delta^{\text{g}}$

C = Control, T = Treatment, LOQ = Limit of Quantification =  $0.04 \text{ mg/kg} \neq 10 \text{ µg/kg} = 10 \text{ µg/kg} = 10 \text{ µg/kg}$ , support four enantioners) for spiroxamine, LOD = Limit of Detection = 0.04 mg/kg = 3 µg/kg = 3 µg/kg is a spiroxamine of four enantioners) for proxamine

#### I. Materials and Method

#### Materials

**Study code:** S20-02289-05 Ôr Spiroxamine F.C **Test Material** EMAL02704 Lot/Batch # C R O 500 g/12 (nominal) Actual Content of A9 (analysed) active@ngredients g/I Description liquid 🌾 Å **∜e**llow∂c Stability 6 compound: Reanalysis/Ex date: Density: cmQ(anal) Treatment Norminal: 0.6 L product/ha (corresponding to 300 g a.s./ha) in 200 L water/ha Tap water Application: Calibrated boom sprayer Calibrated bar sprayer - 5 / (2.5 m) - 5 / flat fan, 50 cmHYPRO green (F110-015) spacing (XR 110 01 VS)



### Test design

Test design					
Test system:	Phacelia tanacetifoli a	Phacelia tanacetifoli a	Phacelia tanacetifoli a	Phacelia tanacetifoli a	Phacelia tanacebifoli a
Cultivar / Variety:	Balo	Natra	Stala	Stala	Stala 3
Location:	76297, Stutensee, Baden- Württember g, Germany	75177, Pforzheimc Baden- Württember g, Germany	Valencia Spain 20 km	46820, Anna, Valencia, Spaio	02640 Almansa; Albacete, Spain
Distance between trials:	>20 km	>20 kmc		≥ 20 km ~	√>204km °
Planting or seeding date:	2020-03-09	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2020-02-11	2020 02-05	2020-05-26
Seeds per ha:	15 kg sæds/ha~	15 kg seeds/ha	seeds/ha	seeds/ha	10 kg ∀seeds/ha
Plot size (width x ) length):	5  m x 40  m	5 km x 40 km	5 př x 40% m 5 169.4 m ²	5 m x 40 m	5 m x 40 m
Treated area:	185 mc	۲ ۲ 185 ش ² خ م	$169.4 \text{ m}^2$ $0^3$	169⁄4 m ²	$169.4 \text{ m}^2$
Closest distance between control and treated plot(s): *			20 m 4	25.7 m	27.3 m
Monimum distance to the edge of the field:	Âm Î Î Î Î Î	3 m 5 [°]	20 m 20 m 20 m 20 m 4 5 20 m 4 5 20 m 4 5 20 m 5 20	2 m	12.45 m
Soil type USD . Test organisms:	Coamy Sand	Silt, Or	Sandy loam	Sandy clay loam	Sandy loam
length): Treated area: Closest distance between control and treated plot(s): Monimum distance to the edge of the field: Soil type(USDA): Test organisms; Environmental test conditions Temperature (C): Humidity (%): Daily precipitation		Control of the second s	ellifera L.)		
Temperature (C):	2.0 - 29.2 C	7.9 - 36.9	9.7 - 32.3	8.7 - 35.9	11.8 - 40.8
Hunnidity (%):	26.2 - 93.7	20.1 - 99.8	0.0 - 100.0	23.0 - 100.0	15.6 - 100.0
Daily Precipitation	0.0 - 7.1	0.0 - 24.0	0.0 - 4.0	0.0 - 14.06	0.0 - 0.8
Study Design					



Residues of spiroxamine were determined in nectar and pollen from *Phacelia tanacetifolia* plants under semi-field conditions. The study comprised five separate semi-field residue trials conducted in Germany (2 sites) and Spain (3 sites) in 2020 (please refer to the table above for details on the location and field sites). Each site comprised two plots (one untreated and one treated with Spiroxamine EG 500). Specifications of the plots were provided in the above table per site. The tunnes used per plot had on area of 200 m² each, with 2 rows of treated *P. tanacetifolia* (2.2 m x 37.0 m) divided by a 0.6 m uncultivated inter-row. Two bee hives and a water supply were placed at the end and middle of each tunnel respectively. Weather data (air temperature, humidity and precipitation) were recorded at the field site of each trial. During sowing and residue sampling the climatic conditions were measured with portable equipment or weather stations at the trial sites (GLP data). For the period between sowing and start of measurement at the field site weather data from an official weather station were taken (non GLP).

Spiroxamine EC 500 was applied using a calibrated sprayer. The nominal application rate was 0.6 L product/ha (corresponding to 300 g a.s./ha) in 200 L water/ha for both applications and all trials. Before application, the sprayer was calibrated and the duration of spraying per plot was calculated according to the output. The actual amounts of the product and spray volume applied were determined by recording the amount of spray solution prepared and the amount remaining after the application. The application rate was calculated based on the hominal content and density. No additional adjuvants, surfactants or mixing partners were used for the application's Actual applied spray volume was within a spray tolerance of  $\pm 10\%$ . For all trials and both applications the deviations ranged between -2.23 % and +3.66 %.

#### Sample processing:

On each sampling day forager bees were contected for the preparation of nectar from their honey stomachs for residue analysis. The hive entratees were seared before the sampling and the forager bees were subsequently collected as they returned to the hive using modified hoovers ("bee vac"), or using tweezers if only few bees are returning after sampling, the bives were re-opened. On each sampling day an A-sample of at least 150 bees was collected. If possible an R-sample of at least 150 bees was taken on each sampling day, too.

For the preparation @nectation honey stomaches for determination of sugar content, forager bees were sampled in the control on each sampling day. One sample of at least 50 bees was taken per sampling day. No sample was taken of the sample of a sample was taken of the sample of a sa

On each sampling day pollen from *Phacelia tanacetifolia* retrieved by the bees was collected using pollen traps. The prives in each tannel were equipped with collen traps. Bees strip off the pollen when passing a grid. This pollen grid was only inserted on sampling days. After collection of the pollen the grid was removed. On each sampling day, an A-sample and an R-sample of at least 0.2 g pollen was collected.

Control samples were taken before the test item treatment samples or were taken by different personnel, and different equipment was used

All samples were transported on dry ice from the field to the test facility/test site. Samples were stored deep frozen within 12 hours after sampling. The field samples were stored in a freezer at -18 °C or below until preparation of the examination samples. The forager bees were shipped to the Study Director for preparation of horey stornachs and sugar content determination. The maximum storage interval from sampling to extraction was 16 days. Storage at the Analytical Test Site from sample receipt until lab sample preparation was at  $\leq 18$  C. The maximum interval from extraction to analysis at 1 °C to 10 °C with given exceptions was 2 days.

For the preparation of honey stomachs from forager bees for residue analysis the total amount of bees per sample was counted. At least 75 bees of the A-sample were prepared. If the minimum amount of prepared nectar was not obtained from the sub-sample A, sub-sample R was prepared and added to sub-sample A, until the requested amount of 200 mg nectar was achieved. The duration of any samples



remaining outside of the freezer did not exceed 2 hours. Honeybees from the control group (C) were processed first. Once this task was completed, then the process was started with the honeybees from the test item treatment group (T). The total number of prepared honeybees and the sub-samples used was recorded. For the preparation of honey stomachs from forager bees for sugar content determination the total amount of honeybees per sample was counted. The amount of at least 12 forager bees was prepared. The sugar content was determined immediately after preparation by a digital refractometer in the laboratory.

Sample schedule Sampling of the different matrices was performed according to the following schedule: Table CP 10.3.1.5/03-3 Matrices sampling schedule for trials S20-02289-01 to -055

Sampling	Timing	Treatment/ Plot	Commodity	Quantity	(mõn) per	Sample
code	8	O O		subsample		type
		A		A C	RO	
S1	0DAA2 (shortly after	С, Т. Оч су	Forager bees	\$150 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Residue Sugar
	application)		Polles 6	0.2	©2g ∕. [™]	Residue
	0DAA2		Forager bees	150	07 150 0	Residue
S2	(8 h after v		Forager bees	950 J	Dr.	Sugar content
	application)		Rollen > O	Ø⊉g ♪	0.2 g	Residue
			Forager bees	150	150	Residue
S3	ODAAO		Forages bees	50	-	Sugar content
			Pollen	0.2 g	0.2 g	Residue
			Foragerabees O	150	150	Residue
S4			For ger bees	50	-	Sugar content
	š [°] o, s		borager bees	150	150	Residue
S5 2	2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C		For ger bees	50	-	Sugar content
U.	~ 1		Pollen	0.2 g	0.2 g	Residue
L.			Forager bees	150	150	Residue
S6	$\square$ .		Forager bees	50	-	Sugar content
			Pollen	0.2 g	0.2 g	Residue
			Forager bees	150	150	Residue
S6	7(£1)DAZZ	Т	Forager bees	50	-	Sugar content
Č			Pollen	0.2 g	0.2 g	Residue

Table CP 10.3.1.5/03-3 Matrices sampling schedule for trials S20-02289-01 to

DAA: days after application

Residue analysis and analytic methods



The analytical method M01480/M001 was developed to determine the residues of spiroxamine (AE 1344293) in/on honey, pollen and nectar as sum of its four enantiomers A1, A2, B1 and B2 by HPLC–MS/MS detection.

The samples were diluted/extracted with a methanol/water mixture (3/1, v/v). After filtration of the raw extract, an aliquot was analyzed by high performance liquid chromatography chromatographed under chiral reverse phase column chromatography and detected by Tandem Mass Spectrometry with electrospray ionisation. Residues were quantified using solvent standards with an isotopic stable labelled internal standard. For details on sample preparation for pollen and nectar please refer to the study report.

The method validation was done with a set of recoveries at the LOQ (5 x 0.0 mg/kg, sum of four enantiomers) and 10 x LOQ (5 x 0.10 mg/kg, sum of four enantiomers) by el.

Full validation data is documented within the method 01480/M001 (chiral method) for polletvand pectar. A full set of validation recoveries (one control sample, at least 5 repetitions each at two fortification levels) at the LOQ (0.01 mg/kg, sum of four enanthomers) and at the 10 fold LOQ level (0, r0 mg/kg, sum of four enanthomers) was also performed within this study, corresponding to 0.0027 mg/kg and 0.027 mg/kg for enanthomers A1 and A2 and 0.0023 mg/kg and 0.023 mg/kg for enanthomers IA1 and B2 (chiral method). In order to check, the performance of the methods (concriterent recovery determinations were included in each set of analyses (at least one fectovery for fen study samples).

Recoveries were performed by spiking pollen and nector with the test items. For control material pollen provided by the laboratory and synthetic nector (prepared by dissolving 24.0° glucose and 12.0 g fructose in water and filling up to 100 mL with water) was used for validation and concurrent recoveries.

The apparent residues in the control samples used for the performance of recoveries were below 30% of the LOQ. Recoveries were not corrected for apparent residues in the control samples used for these recoveries.

The mean recovery values (method validation) of the spiroxan the enantiomers (chiral method) in pollen ranged between 9% and 107% with relative standard deviations between 9.3% and 17.3%. The overall mean recoveries of the analytes ranged between 98% and 104% and the corresponding overall relative standard deviation (RSD) ranged between 10.9% and 12.6% (n= 10 for each analyte).

The mean recovery values (method valuation) of the spiroxamine enantiomers (chiral method) in nectar ranged between 91% and 105% with relative standard deviations between 2.6% and 12.5%. The overall mean recoveries of the analytes ranged between 94% and 100% and the corresponding overall relative standard deviation (RSD) ranged between 6.4% and 19.2% (p = 10 for each analyte).

The Limit of Quantitation (EQQ), defined as the dowest validated fortification level, was 0.01 mg/kg (10  $\mu$ g/kg, sum of four enautionners) for all analysed samples. The corresponding respective Limit of Detection (LOD) was determined to be 0.003 mg/kg  $\mathcal{G}$   $\mu$ g/kg, sum of four enantiomers). Therefore, all results of the concurrent recoveries were in accordance with the general requirements for residue analytical methods.

### Analytical method

Samples of nectar and poller were analyse Quising the validated analytical method 01480/M001, report reference  $M_{2} 63118 J_{1-1}$  (see Doc MC & Section 4).

### II. Results and Discussion

Residues in control samples of pollen ranged between <0.01 mg/kg and 0.0110 mg/kg (sum of four enanthomers). No residues of the analytes above the LOQ were found in any of the control samples of nectar. The residues found in the control and treated nectar and pollen samples are shown in the following tables. The results were not corrected for concurrent recoveries.



# Table CP 10.3.1.5/03-4 Summary of residues of spiroxamine in pollen (sum of four enantiomers) found on each trial site [mg /kg]

Sample ID L20-02289	Sample type	Sample weight [g]	Residues of Spiroxamine (sum of four enantiomers) [mg/kg]
	Trial S	20-02289-01 (Germany)	
01-C-S1-P-A	С	0.225	
01-C-S1-P-R	С	Q.198	
01-T-S1-P-A	Т	\$ 0.200 \$	
01-T-S2-P-A	Т	0,202	5.22¢ A
01-T-S3-P-A	Т	0.201	A , S 3,40 S
01-T-S5-P-A	Т	\$ 0.200 × ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
01-T-S6-P-A			
01-T-S7-P-A			0.79
	Tria S	20-02289-02 (Germany)	
02-C-S1-P-A		0.2027	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
02-C-S1-R-A		× 39217 5	<0.01
02-T-SP-A		0.200	71.9
02-75-S2-P-A			20.6
02-T-S3-P-A			3.63
02-T-S5-P-A		0.245	8.95
02-Т-\$©-Р-А С		0801	0.193
0207-S7-P-A		\$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.172
	Toal	S20692289-03 (Spain)	
03-C-S1		0.211	0.0110
03-T \$1-P-A		0.201	37.9
05-T-S2-D-A	T	0.229	22.1
03-T483-P-A	J T	0.201	4.59
₿3-T-S5-P-A	Т	0.237	2.25
03-T-S6-P-A	Т	0.201	1.13



#### Page 375 of 567 2021-03-31 Document MCP – Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

03-T-S7-P-A	Т	0.217	1.10
	Trial	S20-02289-04 (Spain)	
04-C-S1-P-A	С	0.201	
04-T-S3-P-A	Т	0.232	
04-T-S5-P-A	Т	0.200	21.4 5 5 5 5 1.13 5 5 5 0 1.13 5 5 5 0 5 0 5 5
04-T-S6-P-A	Т	201	
04-T-S7-P-A	Т	0.200	
	Trial	I S20-02280-05 (Spain)	
05-C-S1-P-A	C K	× × 0,197 ~	A 6 ⁵⁷ ≤0.01 ⁵⁰ ⁵⁰
05-T-S1-P-A	Т	4 40.192 × 4	
05-T-S2-P-A		0430 5 ⁷	
05-T-S3-P-A		0.251	9.3 °
05-T-S5-P-A		0,200 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,194 0,	29 29 2923
05-T-S6-P-A			\$ \$ \$ 1.48
05-T-S7-P-A	6 3 T	0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.194 0.	0.569

C = Control, T = Treatment OQ = Limit of Quantification = 401 mg/kg (= 10 mg/kg ×10 ppb, sum of four enantiomers) for spiroxamine, LOD = Limit of Detection = (Q03 mg/kg (= 3 mg/kg = 0 ppb, sum of four enantiomers) for spiroxamine

Table CP 10.3.1.5/03-5	ummary of	residues of	spiroxamine	nectar (sum	of four enantiomers) found
on each trial site [mg/kg]		¢		, O ^y	

Sample ID L20-02289	Sample type of	Sample woight [g]	Residues of Spiroxamine (sum of four enantiomers) [mg/kg]
	Trial S	20-02289-00 (Germany)	
01-€-S1-NFB-A		\$ 0.200	<0.01
01-T-S1-NFB-A		0.200	0.700
01-T-S2-54 B-A-	E R	0.200	0.252
01-T 33-NFB A	T ST	0.200	0.116
QT-T-S4 AFB-A	κ ^γ Τ	0.200	0.0268
01-7-85-NFB-A	Т	0.200	0.00943
01-T-S6-NFB-A	Т	0.186	<0.01



#### Page 376 of 567 2021-03-31 Document MCP – Section 10: Ecotoxicological studies Spiroxamine EC 500 (500 g/L)

			1
01-T-S7-NFB-A	Т	0.200	<0.01
	Trial S	20-02289-02 (Germany)	
02-C-S1-NFB-A	С	0.200	
02-T-S1-NFB-A	Т	0.200	A 0.163 0 0 0
02-T-S2-NFB-A	Т	0.20	
02-T-S3-NFB-A	Т	£200	0.0313 Q 0 Q
02-T-S4-NFB-A	Т	Q 0.200	
02-T-S5-NFB-A	Т	0 [×] 0.200 × 5	× × 0.01
02-T-S6-NFB-A	Т	0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200 × 0.200	
02-T-S7-NFB-A	Т	v, v _v.∠0v, v _v∾	
	Q [°] Trial	S20-02289-03 (Spain)	
03-C-S1-NFB-A	C S	0.200	$\forall a = \forall < 0.0 d$
03-T-S1-NFB-A	¢ (° , °	0,200	Q 117
03-T-S2-NFB-A		0.200	<u>لا</u> م محمد محمد محمد محمد محمد محمد محمد مح
03-T-S3-NFB	4 .9° .7°		0.0562
03-T-S4-NB-A		0.1 <b>99</b>	0.0247
03-T-\$9-NFB-A	τ, t		<0.01
03-1-S6-NFB-A		0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0	<0.01
03-T-S7-NFBA		0.200	<0.01
		S20-02289-04 (Spain)	
04-051-NFB-A	² C	۵.183 م م	<0.01
64-T-S1-NFB-A		0.200	0.221
04-T-S2-NB A		0.200	0.445
04-T-SENFB		0.200	0.104
040-S4-NB-A	Т	0.200	0.0193
04-T-\$5-NFB-A	Т	0.200	<0.01
0€-P-S6-NFB-A	Т	0.200	<0.01
04-T-S7-NFB-A	Т	0.200	<0.01



Tria	l S20-02289-05 (Spain)	@. [°]	~
С	0.200	<0.01	<i>S</i>
Т	0.200	\$ 0.0471 \$ \$	0
Т	0.133	A 0.0777 & S	Ì,
Т	0.16		, ô ^r
Т	200		
Т	Q 0.200		
Т	× 0 -0		
Т			
	C T T T T T T T T	T     0.200       T     0.133       T     0.165       T     0.200       T     0.168	C     0.200     <0.01       T     0.200     0.0471       T     0.133     0.0777       T     0.165     0.0704       T     0.165     0.0704       T     0.200     0.0128       T     0.200     0.0128       T     0.200     0.0128       T     0.200     0.0128       T     0.200     0.0128

C = Control, T = Treatment, LOQ = Limit of Quantification =  $0.04 \text{ mg/kg} \neq 10 \text{ µg/kg} = 10 \text{ µg/kg}$  suprof four enantioners) for spiroxamine, LOD = Limit of Detection = 0.03 mg/kg = 3 µg/kg = 3 µg/kg suprof four enantioners) for phroxamine

#### Sugar content determination

The sugar content of nectar sampled from forager bers was determined by a digital refractometer. The sugar content was in a range from 30.1% to 44.4% for Trial 01, from 21.3% to 61.0% for Trial 02, from 11.9% to 42.2% for Trial 03, from 12.3% to 44.1% for Trial 04 and from 8.7% to 32.3% for Trial 05.

#### **III.** Conclusion

The mean recovery values (method validation) of the spiroxamine enantiomers (chiral method) in pollen ranged between 98% and 107% with relative standard deviations between 3.3% and 17.3%. The overall mean recoveries of the analytes ranged between 98% and 104% and the corresponding overall relative standard deviation (RSD) ranged between 10.9% and 12.6% (n \$10 for each analyte).

The mean recovery values (method validation) of the spiroxamine enantiomers (chiral method) in nectar ranged between 91% and 105% with relative standard deviations between 2.6% and 12.5%. The overall mean recoveries of the analysis ranged between 90% and 100% and the corresponding overall relative standard deviation (BSD) ranged between 90% and 1 & 2% (n $\approx$  10 for each analyte).

The Limit of Quantitation (LQQ), defined as the lowest validated fortification level, was 0.01 mg/kg (10  $\mu$ g/kg, sum of four enantiomers) for all analysed samples. The corresponding respective Limit of Detection (LQD) was determined to be (1003 mg/kg (3 $\mu$ g/kg, sum of four enantiomers).

#### Assessment and conclusion by applicant

The study followed the analytical Guidance Document, SANCO/3029/99 rev. 4 and the criteria for method validation were all met. Thus, the analytical results are considered to be valid and acceptable for use in the risk assessment.

The study was conducted taking into consideration the requirments of modern guidance on residues decline triats. The sampling regime was considered to be suitable (0 hours, 8 hours, 1, 2, 3, 5 and 7 days after application) as frequent sampling timepoints were used which spanned the estimated  $DT_{50}$  value therefore the tesults are considered suitable for kinetic modelling for  $DT_{50}$  values.

Fire trials were conducted therefore it is considered that a sufficient number of trials are available in order to derive mean DT₅₀ values for spiroxamine in pollen and in nectar for use in a risk assessment.

The study was conducted in *Phacelia* which was chosen as it is known to be a bee attractive crop and one that produces both nectar and pollen.

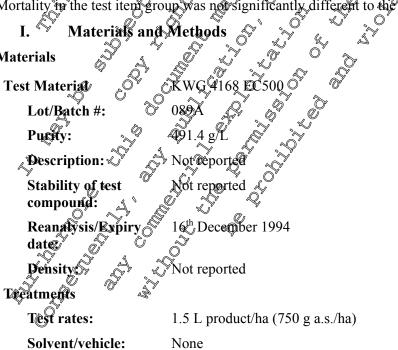


The study is considered to be acceptable.

Two cage tests using Spiroxamine EC 500 have been conducted which are summarized below.

Data Point:	KCP 10.3.1.5/01
Report Author:	
Report Year:	
Report Title:	Field evaluation of the toxicity of KwG 4108 EC 500 to to reaging notes bees
	(Apis mellifera) under cage test field conditions
Report No:	BAY 171 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
Document No:	<u>M-008239-01-1</u>
Guideline(s) followed in	None of the second seco
study:	
Deviations from current	None A A A A A A
test guideline:	
Previous evaluation:	yes, evaluated and accepted and
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only S

#### **Executive Summary**


In a semi-field cage test the effects of KWG 4168 PC 500 on hopeybees were assessed. The behaviour and mortality of the colonies was observed over S days after treatment.

The flowering crops (Placelia tranacetifolia) were reated with 1 & L product/ha of the test substance and the hives were placed adjacent to the plot within mesh cages

Ø KWG 4168 EC 500 did not significantly affect bee behaviour when compared to the control group. Mortality in the test item group was not significantly different to the control group.

#### I. Material

Materials





Analysis of test concentrations:	No
Test organisms	
Species:	Honey bee, Apis mellifera, queen-right colonies
Source:	Not reported
Acclimatisation period:	Honey bee, <i>Apis mellifera</i> , queen-right colonies Not reported Colonies were introduced to the cage and crops 3 days ption to treatment Bees were reported to be in good condition at test start.
Treatment for disease:	Bees were reported to be in good condition at test start. Mesh cage 4 x 2 x 2 m 4 per treatment One coloring per cage 8 days
Test design	
Test vessel:	Mesh cage $4 \times 2 \times 2 \times 2 \times 3$
<b>Replication:</b>	Mesh cage $4 \times 2 \times 2 \text{ m}^{\circ}$ $3 \times 3 \times 2 \text{ m}^{\circ}$ $3 \times 3 $
No. animals/vessel:	One cology per cage 2
<b>Duration of test:</b>	Mesh cage 4 x 2 x 2 m 4 per treatment One colorizy per cage 8 days 4 days
Environmental test conditions	
Temperature:	
C4	
This study was conducted in semi-field cage conditions of	n order to assess the foxicity of KWG 4108 EC 500 on honeybees under ver 8 days 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Baa hiyas waraalaactor th	a adga by the pot plot of the flow of the area of the contraction in the

Bee hives were placed on the edge of the tost plot of the flowering crop, *Phacelia tanacetifolia*. The hives and crop plot were within fine mesh cages (4 x 2 x 2 m) to kee four foreign bees and ensure test bees did not escape. Temperature and humidity were measured at a nearby weather station and temperatures ranged between \$1.8 and 23.3 °C. One nucleus hive colony including bees and brood was set up meach tent three days before application.

One plot was treated with the test substance, another with a reference item, Hostathion (420 g a.s./ha) and a further untreated control was used.

The test substance was sprayed on the flowering crop during bee flight, at a dose of 1.5 L/ha (750 g a.s./ha) using a plot sprayer.

The cage size was 8 m²

Assessments for metality foraging activity, behavior, brood and colony size were made before and up to 7 days after application. The offects of the meatment on the bees were assessed in order to include a potential influence on the brood. Bee foraging activity and bee behaviour was measured at 2-hr intervals on the day of meatment, 3 times a day on day 1 and 2 after treatment, twice a day 3 days after and once a day on day 5 and 7 after reatment. Deal bee traps were placed at the entrances of three hives to collect dead bee which were counted at the same time as the behaviour observations. Colony condition was observed one day before treatment and 8 days after.

# A. Results and Discussion

The guidelines according to EPPO 170 (1992) were followed in this study.

KWG 4168 EC 500 did not significantly affect bee behaviour when compared to the control group.



Treatment group	Timing	Number of bees/plot
Water	Before application	73.3
	1 day after application	98.0
	7 days after application	
Test item	Before application	
	1 day after application	
	7 days after application	69.5 Q & A & A
Reference	Before application	
	1 day after application	189.5 J 20 J 2 A
	7 days after application	

#### Table CP 10.3.1.5/01-1 Number of honeybees observed foraging after exposed to KWG 4168 EC 500

The number of deaths recorded in the treatment group was higher that the number of beodeaths observed in the control but not significantly different.

Table CP 10.3.1.5/01-2 conditions after 8 days

Treatment group	Timing Number of bees/plat
Water	Before application 189.8
	$\mathcal{O}$ day after application $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$
	7 days after application 988
Test item	Before application 241.8
	1 days after application of 21.8
	Adays after application 7 287.8
Reference	Before application 254.
Reference	Ray after application 79.5
	7 days after application 240.5

There was no effect on colony size or condition when assessed over 8 days after application.

#### Colony size after & days of exposure to KWG 4168 EC 500 under semi-field Table CP 10.3.1.5/01-3 conditions Ô

Treatment group	No vive bees/hive		No dead bees/hive	
		8 DAT	-1 DAT	8 DAT
Water of the second	2804.8	2715.8	325.3	11.9
Test item	² 2745.5	3031.8	1800.5	66.5
Reference	2508.8	3367.5	584.3	23.3



A very slight increase in mortality after application of the test substance could be observed compared to the negative control, but not when compared to pre-application mortality. Therefore this effect was not considered to be treatment-related. Regarding the other test parameters no negative effects could be observed. In contrast the toxic reference caused strong mortality, reduction of bee flight and behavioural impact.

#### III. Conclusion

Following application of KWG 4168 EC 500 to Phacelia at 1.5 L product ha, there were no significant effects on honeybee mortality, foraging activity, behavior, brood and corony size when compared to the control. õ¥

#### Assessment and conclusion by applicant:

O The study appears to have been conducted in accordance with EPPO 170 although no guideline is specifically referenced in the study report. The study not longer meets many of the required test parameters currently expected from a higher tier bee stody as detailed in QECD 75 as well as the recommendations of the EFSA (2013) Bee Guidance Document. The most notable deficiency is the absence of any analysis of residues in the crop plant and in the neetar and poller collected from the forager bees and/or from the hives themselves. The area of the orges used in the study was relatively small and, although colony assessments were made, specific assessments for the development of the brood were not performed. Thus, the test design adopted in this study is not considered to meet current requirements.

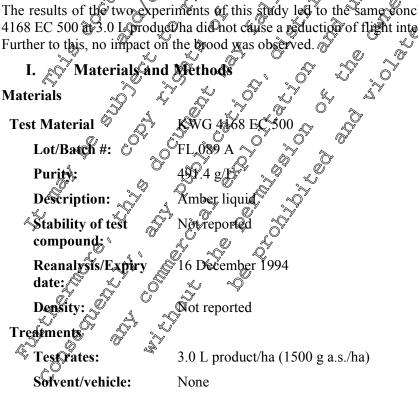
The crop used in this stude was Phacelia which although not the specific crop in question, is accepted to be a bee attractive crop and is therefore considered to be suitable suitable suitable suitable crops. The application rate used by this study (13 L product/ba; equivalent to norminally 750 g a.s./ha) is greater than the proposed application rate of 300 g a.s. Dia for Spiroxamine EC 500 and therefore covers the potential risks, interms of application rate, following this use.

On balance, this study is not considered to be sufficient on its own to address the potential risks from exposure to Spiroxamine EC 509 and has therefore been submitted as supporting information only. However, as a bee attractive crop was used and because the tested rate exceeds that proposed for Spiroxanine EC 500@the resolts have been considered as part of a weight of evidence argument.

the sufficience is a last herefore is en is therefore is en is therefore is en is used and because is the source is as the so



Data Point:	KCP 10.3.1.5/02
Report Author:	
Report Year:	1994
Report Title:	1994 Toxicity testing of KWG 4168 EC 500 to honey bees (Apis mellifera L.)
Report No:	459900
Document No:	<u>M-008244-01-1</u>
Guideline(s) followed in	BBA, VI, 1991
study:	
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted Q
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing facilities:	Yes, conducted under GLP/Officially recognized testing facilities
Acceptability/Reliability:	Supportive only


#### **Executive Summary**

In a semi-field cage test the effects of KW@ 4168 EC 500 on honeybes were assessed. The behaviour and mortality of the colonies was observed for \$2 hours following application. (M)

The flowering crops (Phacelin Ganacerifolia) were reated with 20 L product/ha of the test substance during daily bee flight and two tests, one week apart, were conducted Additional cages were exposed to crops treated with water and with Perfekthion, a.s. 400g/L dimethoater were used as control and reference treatments, respectively.

KWG 4168 EC 500 and not significantly affect be behaviour when compared to the control group. Mortality in the test stem group was not significantly differend to the control group.

The results of the two experiments of this study led to the same conclusion that application of KWG 4168 EC 500 at 3.0 L product ha dichot cause a reduction of flight intensity or mortality to honey bees. Further to this, no impact on the brood was observed.





Analysis of test	No
concentrations:	
Test organisms	
Species:	Honey bee, <i>Apis mellifera</i> Christoph Mohr, Goethestr. 19, D-64354 Reinheim Bees were allowed to acclimatise to their new home range prior to test substance application None reported 2 3 cages, 4m x 3m/x 2m (bength x width x height), metal frame covered with synthetic gauze (hole diameter 2mm) One colony of bees per test cage in a hive with three elaborated honeycombs, containing about 5000 bees.
Source:	Christoph Mohr, Goethestr. 19, D-64354 Reinheim
Acclimatisation period:	Bees were allowed to acclimatise to their new home range prior to test substance application
Treatment for	None reported
disease:	
Test design	
e	
<b>Replication:</b>	
_	
Test vessel:	3 cages, 4m x 3m x 2m (length x width x height), metal frame covered with synthetic gauze (bole diameter 2mm) One colony of bees per test cage in a hive with three elaborated
No. animals/vessel:	honeycounds, containing about 2000 bees.
<b>Duration of test:</b>	D2 hours by the
Environmental test	
conditions	
Temperature:	First experiment: 8532°C
S, O	Second experiment: 13.8-31.6°C 40 - 100% < 2  m/s = 2  m/s ordecto assess the effects of KWG4168 EC 500 on honeybees under semi-
Relative bomidity	40 - 100% $3%$ $3%$ $3%$ $4%$
Wind velocity	$\tilde{r} < 2 \text{ m/s}$
Study Resign	40 - 100% > 2 m/s order to assess the effects of KWC 4168 EC 500 on honeybees under semi-
This study was conducted in	order to assess the effects of KWG 4168 EC 500 on honeybees under semi-
field cage conditions over 72	at different times in three big cages ('tents') placed in the field. One colony
of bees was present per test	
The study was performed w	it <i>Phacetia tanacetifold</i> Benth. as the crop plant. The cages were placed a few days before the experiment began. The bees were allowed to
acclimatise to their new ho	the range. Daily mortality and bee flight intensity was recorded prior to
application of the test item.	
Temperature, fative humid	by, cloud cover and wind velocity were recorded with a MICROMEC 4-
	surement of Comperature, relative humidity and wind speed was taken every
10 minutodi	× × ×

10 minutes The first cage was treated with the test substance at 3.0 L product/ha (equivalent to 1500 g a.s./ha), the second with beference substance (Perfekthion, a.s. 400 g/L dimethoate) and the third with water as a negative control.

A portable compression sprayer with an extension tube porting four spraying nozzles was used. Spray was administered whilst the bees were in flight. KWG 4168 EC 500 was applied in an amount of 40 mL/m² of a 7.5 mL/L dilution corresponding to 3.0 L/ha in a spray volume of 400 L/ha water. The



reference substance Perfekthion was applied in an amount of 40 mL/m² of a 2.5 mL/L dilution corresponding to 1.0 L/ha in a spray volume of 400 L/ha water. The negative control was sprayed with common tap water (40 mL/m²), corresponding to a spray volume of 400 L/ha.

The bees were exposed for 72 hours. The second test was preformed one week after the first experiment.

After start of the experiment observation and recording of mortality, behaviour and flight of the bees was continuous for the first 60 minutes. Further observations and recording of dead bees in the traps attached to the hives as well as recording of the flight intensity and behaviour took place every two hours until the evening of the first day. Observations and recording were continued at Days V, 2 and 3 for three times a day. The mortality at the edges of the cages was recorded every day in the evening. Any observable cases of poisoning or behavioural abnormalities of the bees were recorded.

#### II. Results and Discussion

After application in both tests, the number of foraging bees of the test substance beated and negative control tent were comparable. The flight intensity of the bees under the impact of the positive control substance was relatively low and had almost ceased by the end of the tests.

In the first test, by the third day flight intensity was higher in the test substance treated cage than in the negative control. The fact that the highest number of foraging bees were observed in the test substance treated tent was probably caused by a relatively high population density of the corresponding colony. However, in comparison to the days prior to application, no effect on the flight density can be related to the test substance application in gither test.

Table CP 10.3.1.5/03-1 for 72 hours	Flight den	sity of hou	eybees/ex		o K₩G	4168	EC 500	) under field	l conditions
for 72 hours		o _k y		- e		S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L.	

	4			¥
		Number of oraging	worker bees observed	
Test 1		Before application	Directly after	72 hours after application
Control		100 200	3	15
Test item		413 NY N		51
Reference item			6	0
Test 2			Å ^v	
		25, 25, 2	15	20
Test item $\sqrt[n]{0}$ (			15	21
Reference them			11	1

In the first test, after 24 hours exposure 10200% more bees died in the reference item tent than on the day before the test began this was 2740% in the second test. Mortality of the bees exposed to KWG 4168 EC 500 only increased a small amount compared to the negative controls and remarkably less than compared to the reference item cages.

# Table CP 10.3.1.5/03-2 Nortality of honeybees exposed to KWG 4168 EC 500 under field conditions for 72 hours

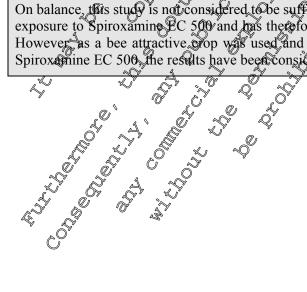
	Dead honeybees (% of dead bees observed 1 day prior to test)			
Test 1 S	24 hours after application	72 hours after application		
Control	67	17		
Test item	100	200		



	Dead honeybees (% of dead bees observed 1 day prior to te		
Test 1	24 hours after application	72 hours after application	
Reference item	10200	7200	
Test 2			
Control	100		
Test item	129	214 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Reference item	2740	Q 310 2 Q 5 4	

The assessment of the bees and brood of the colonies involved in this study did out give any indications for intoxications or other impacts of the test substance.

#### III. Conclusion


The results of the two experiments of this study led to the same conclusion that application of KWG 4168 EC 500 at 3.0 L product/ha (1500 g/s.s./ha) did not cause a reduction of flight intensity or mortality to honey bees. Further to this, no impact on the brood was observed.

#### Assessment and conclusion by applicant:

The study was conducted to an older BBA test guideline, which tas since been superseded by more up to date test guidelines. The study no longer meets many of the required test parameters currently expected from a higher tier bee soldy as detailed in OECD 75 as well as the recommendations of the EFSA (2013) Bee Guidance Document. The most notable deficiency is the absence of any analysis of residues in the crop plants and in the nectar and poller collected from the forager bees and/or from the hives themselves. The area of the cages used in the study was relatively small and, although colony assessments were made specific assessments for the development of the brood were not performed. Thus, the test design adopted in this study is not considered to meet current requirements.

The crop used in this study was *Phacelia* which, although not the specific crop in question, is accepted to be a bee attractive crop and is therefore considered to be a suitable surrogate for arable crops. The application rate used in this study (3.0 L product/ka; equivalent (0 nominally 1500 g a.s./ha) is greater than the proposed application rate of 300 g a.s./ha for Spiroxamine EC 500 and therefore covers the potential risks, in terms of application rate, following this one.

On balance, this study is not considered to be sufficient on its own to address the potential risks from exposure to Spiroxamine EC 500 and has therefore from submitted as supporting information only. However, as a bee attractive prop was used and because the tested rate exceeds that proposed for Spiroxamine EC 500, the results have been considered as part of a weight of evidence argument.

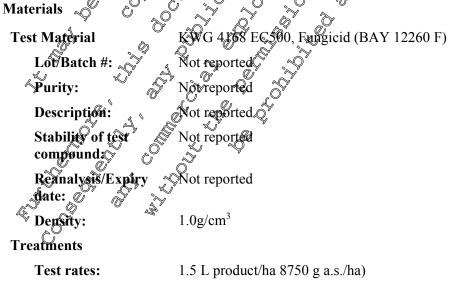




Data Point:	KCP 10.3.1.6/01
Report Author:	
Report Year:	1995
Report Title:	Testing toxicity to honeybee - Apis mellifera L. under field conditions - KWG 4168 EC 500, fungicid (BAY 12260 F)
Report No:	95 10 48 500
Document No:	M-008232-01-1 BBA-Richtlinie VI, 23-1 (1991)
Guideline(s) followed in	BBA-Richtlinie VI, 23-1 (1991)
study:	
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted
GLP/Officially	
recognised testing	No, not conducted under ger/Oraciany recognised testing factages
facilities:	No, not conducted under GEP/Officially ocognised testing facilities
Acceptability/Reliability:	Supportive only by the second

### CP 10.3.1.6 Field tests with honeybees

#### **Executive Summary**


In a field study the effects of KWG 4168 EC 500 or hone bees were assessed Hives of honey bees (*Apis mellifera*) were placed adjacent to fields of flowering crops treated with KWG 4168 EC 500. The bees were allowed to forage over 5 weeks and behaviour and mortality of the colonies was observed.

The flowering crops (*Phacelia fanacetifolia*) were treated with 1.5 L product/ha (750 g a.s./ha) of the test substance during daily bee flight and four hives were placed regime to the field. Four hives situated in an apiary were used as a control

The test substance did not cause any mortality in the field test in comparison to the control. In particular, the test substance did not affect the proper laval development. The collected pollen proved that foraging took place in the treated field.

The results and recorded observations and not provide evidence that an application of KWG 4168 EC 500 to Advering *Phacelia* address L product has affected bee coordines in terms of mortality, foraging activity, behavior, colony strength and brood development under field conditions.

# I. Materials and Methods





Solvent/vehicle:	None
Analysis of test concentrations:	No O O
Test organisms	
Species:	Honey bee, Apis mellifera
Source:	Honey bee, <i>Apis mellifera</i> purchase from the bee-keeper Mr. Mehlhorn (Seidewitz) on 09.06.95
Acclimatisation period:	Honey bee, <i>Apis mellifera</i> purchase from the bee-keeper Mr. Mehlhorn (Seidewitz) on 09.06.95 Bees were allowed to sufficiently forage prior to test substance application None reported
Treatment for disease:	None reported
Test design	
<b>Replication:</b>	4 hives were used for exposure to the test item of
No. animals/vessel:	None reported 4 hives were used for exposure to the test item Each have had a colory with well-developed comps. 10 2 frames with 4-10 broods 3 weeks 8 - 29°C treated field
<b>Duration of test:</b>	3 Weeks de an
r lot size:	40.25 ma 2 4 6 4 6
Environmental test 🔊 📎	
conditions 🔬	A G G G G G G G G G G G G G G G G G G G
	8 - 29°C treated field
Relative humidity	Treated field $31 - 100\%$
Wind velocity	4 hives were used for exposure to the test item Each have had a colony with well-developed combs. 10 42 frames with 4-10 broods 3 weeks 0.25 ha 8 - 29°C treated field 6 27°C control apiary Treated field 31 – 100% Control apiary: 28 – 100% Control apiary: 28 – 100%
Study Design	
This study was conducted in	order to assess the effects of KWG 4168 EC 500 on honeybees under field

This study was conducted in order to assess the effects of KWG 4168 EC 500 on honeybees under field conditions over 3 weeks.

Bee colonids were placed on the edge of the ten field of the flowering crop, *Phacelia tanacetifolia*. The field was chosen so that bees could mainly for age in the field in which their hive was placed. Four hives of well-established colonies were placed of the edge of the crop field 5 days prior to application of the test substance. The control was located in the apiary. Temperature and humidity were measured continuously and temperatures tanged between 8 and 29°C at the treated field site and 6 and 27°C at the apiary.

The test substance was sprayed on the flowering crop during daily bee flight at a dose of 1.5 L product/ha (750 g a.s./ha) in 300 I/ha water using a tractor-mounted sprayer in favourable weather. Hives were protected from direct contamination during spraying. Actual volume sprayed was 95.3% of nominal.

The effects of the beatment on the bees were assessed over a period of 3 weeks in order to include a potential influence on the brood. 1.5 m gauze strips were placed in front of the hives and dead bee traps were placed at the entrances of three hives to collect dead bees. Observations were made at the entrance of hives to assess the foraging activity of the bees.



#### II. Results and Discussion

The guidelines according to EPPO 170 (2010) were followed in this study.

Foraging activities within the treated plots were quite high at the beginning of the experiment with the proportion of collected pollen from the plot at 77%. This decreased to just 17% of collected sollen by the end of the 3-week study.

# Table CP 10.3.1.6/01-1 Pollen collected by honeybees exposed to KWG 4168 EC 500 under field conditions

	Proportion collected pollen from Phacelia (%)
Before application	
1 week after application	
2 week after application	
3 week after application	

No impacts on honeybee behaviour were observed during the 2 week study beriod. There was no excessive deadfall observed in the hives exposed to the test subsance and the second state of the second sta

# Table CP 10.3.1.6/01-2 Mortality of honeybees exposed to KWG 4168/EC 509 under field conditions after 22 days

Concentration of test s	ıbstance (I dia)	a) Dead hopeybees/trap	
Control		6 578 6 2 5 4 1 5	
1.5			

All colonies, both the control and the test hives, showed well-filled beeverys before application of the experiment. These weeks after application of one case a deviation of the population density regarding the beeways could be observed, because the queen swarped some day before the end of the experiment.

# Table CP 10.3.1.6/01-3 Population density of honeybres exposed to KWG 4168 EC 500 under field conditions

Concentration of test Average number of well filled beeways	
substance (L/ha)	22 days after application
	(23 days after for control)
Control 9.25 3 0 2 2	9.25
	8.5*

* The Queen swarmed 1 week before evaluation of one hive

Neither in the head-bee traps for at the final evaluation of the comb brood damaged larvae or pupae of the bees were discovered eggs and young larvae, which were present in high number at the beginning of the experiment, developed very well. No damaged stages of honeybees or malformed young bees could be observed. The beeways between the frames of all hives were well filled at the pre- and the final evaluation.



	Average number of brood combs		
substance (L/ha)	6 days before application	22 days after application (23 days after for control)	
Control	7.5	7.5*	
1.5	5.75	7.75	
* 1 0 1			

Table CP 10.3.1.6/01-4 Brood	status of honeybees exposed to KWG 4168 EC 500 under field conditions
------------------------------	-----------------------------------------------------------------------

* The Queen swarmed a few days before evaluation in one hive

#### III. Conclusion

The results and recorded observations did not provide evidence that an application of KWG 4168 EC 500 to flowering *Phacelia* at 1.5 L product/ka affected be colonies in terms of mortality, foraging activity, behavior, colony strength and brood evelopment and er held conditions

### Assessment and conclusion by applicants

The study was conducted in accordinc with EPPO but no longer meets many of the required test parameters currently expected from a higher tier bee study (including the recommendations of the EFSA (2013) Bee Guidance Document). The most notable deficiency is the absence of any analysis of residues in the crop plants and in the nectar and pollen collected from the forager bees and/or from the hives themselves. The plot size used in the study was relatively small and, although colony assessments were made, specific assessments for the development of the bidod were not performed. Thus, the test design adopted in this study is not considered to meet current requirements.

The crop used in this study was *Phacelia* which, although not the specific crop in question, is accepted to be a bee attractive crop and is therefore considered to be suitable surrogate for arable crops. The application rate used in this study (1.5 L product/ha, equivalent to nominally 750 g a.s./ha) is greater than the proposed application rate of 300 g a.s./ha for Spiroxanine EC 500 and therefore covers the potential risks, in terms of application rate, following this use.

On balance, this study is not considered to be sufficient on its own to address the potential risks from exposure to Spiroxamine BC 500 and has therefore been submitted as supporting information only. However, as a bac attractive crop was used and because the tested rate exceeds that proposed for Spiroxamine EC 500, the results have been considered as part of a weight of evidence argument.

## CP 10.3.2 Effects on non-target arthropods other than bees

The table below summarise the available data for non-target arthropods, all of which has been conducted using the representative formulation spiroxamine EC 500. Glass plate, extended test and semicfield data are available with a range of formar and soil NTA species. Furthermore, six field trials are available for mites.

Organism Testmen	Test type	Endpoints		Reference
Trephlodroaus pyri 500	Tier I Laboratory test glass plates (2D)	LR ₅₀ 240 g a.s./ha ER ₅₀ >180 g a.s./ha	EU	<u>M-025030-01-1</u>

#### Table CP 10, 2-1 Supermary of NTAEstudies with Spiroxamine EC 500



Organism	Test item	Test type	Endpoints		Reference
Typhlodromus pyri	Spiroxamine EC 500	Tier I Laboratory test glass cages (coffin cells) (2D)	LR ₅₀ <741 g a.s./ha	A Co	M-008503-01-15
Aphidius rhopalosiphi	Spiroxamine EC 500	Tier I Laboratory test glass plates (2D)	LR ₅₀ 80.1 g a.s./ha £R ₅₀ >30 g a.s./ha	EU	M-030620-01
Coccinella septempunctata	Spiroxamine EC 500	Tier I Laboratory test glass plates (2D)	LR ₅₀ <73 <b>g</b> a.s./ha		A4-008516-01-K
Coccinella septempunctata	Spiroxamine EC 500	Tier I Laboratory test glass plates (2D)	LR 750 g as./ha @ER ₅₀ %50 g a.s./ba		5 <u>4-027</u> 579-01-1,°
Chrysoperla carnea	Spiroxamine EC	Tier & Laboratory test glass plates (2D)	TAB50 <7.3 g		<u>91-008545-01-1</u>
Chrysoperla carnea	Spiroxatone EC	Tier I Latoratory test glass place (2D)	LBG >1660 g ♂ &s./ha ⊘ ER ₅₀ ≯1600 g a.s./ha		<u>A1-033924-01-1</u>
Pardosa spp.	Spiroxonine EO	Tier Loporatory test	6x ₅₀ <731 g a.s./ha ER@>731 g a.g/ha	ζ ζ ζ ζ ζ ζ Έ U	<u>M-008519-01-1</u>
Bembidion tetraçopum	Spirexamine EC	Ther I Laboratory test (2D)	LR ₅₀ (A1 g a.s./hg) (C EB ₅₀ >741 g (C) -741 g	EU	<u>M-008726-01-1</u>
Typhlodromus pyr	Spirôxaminc EC	The II Extended Aboratory test natural substrate (2D)- grapsvine	LR ₅₀ >510 g a.s./ha ER ₅₀ >510 g d.s./ha	EU	<u>M-462852-01-1</u>
Aphatus rhopalosiphi	Spiroxanaure ECC	Fier II Extended Taboratory test natural substrate (3D) – barey Seedlings	$LR_{50} > 741 \text{ g}$ a.s./ha $ER_{50} > 741 \text{ g}$ a.s./ha	EU	<u>M-008715-01-1</u>
Aphidius rhopalosiphi			LR ₅₀ >900 g a.s./ha ER ₅₀ >900 g a.s./ha	EU	<u>M-289317-01-1</u>
Aphidius rhopalosiphi	Spiroxamine EC 500	Tier II Extended laboratory test; (2D); two applications	LR ₅₀ >737 g a.s./ha ER ₅₀ >737 g a.s./ha	EU	<u>M-008522-02-1</u>



Organism	Test item	Test type	Endpoints		Reference
Bembidion tetracolum	Spiroxamine EC 500	Tier II Extended laboratory test; (2D); two applications	LR ₅₀ >1482 g a.s./ha ER ₅₀ >1482 g a.s./ha	EQ Q	<u>M-008529201-1</u>
Coccinella septempunctata	Spiroxamine EC 500	Semi-field conditions (3D); two treatments on bean plants (	No effects on metamorphosis fecundity and hatch rate at 2x 737 g a.s. ha	EU	<u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>
Aphidius rhopalosiphi	Spiroxamine EC 500	Semi-field condition (3D); winter wheat 6°	No effects on mortality at 794 g a.s. a x		<u>M-008839-019</u>
Typhlodromus pyri	Spiroxamine EC	Fielderfial in vines, Germany	Pour apprications (totaling, 1297 g a.s. (ba) with an interval of weeks did not lead to a reduction of predatory mite populations		2 2 2 2 2 2 2 2 2 2 2 2 2 2
Typhlodromus prof			Six applications (216, 426, 550, 607, 754 and 889 mL/ha@with an interval of approximately two weeks due lead to populations of the predatory putes reducing 60 59% of the control level	EU	₽ <u>M-008496-01-1</u>
Typhlodromusyyri	Spiroxappine EC	Field trial in Field trial trials and trials a	Four applications (965, 275, 330 and (740 g/a.s.ha) led to 25% effect after the 3 rd application	EU	<u>M-008505-01-1</u>
Typhlodromo pyri	Spiroxanine.E	Field trial in Field trial in Field trial in Games, Germany	Four applications (300, 721, 738 and 732 mL/ha) with an interval of approximately two weeks led to populations of the predatory mites that were 12% lower than the control level	EU	<u>M-024960-01-1</u>



Organism	Test item	Test type	Endpoints	Reference	
Typhlodromus pyri	Spiroxamine EC 500	Field trial in vines, Germany	Six applications (302, 283, 756, 762, 735 and 769 mL product/ha) with an interval of approximately two cycecks led to populations of the predatory potes being reduced by 59% when compared to the control level		
Amblyseius abberans	Spiroxamine EC	Field trial in Ovines, Southern Italy	Three applications of 300 g.a.s./ha led to an 185% effect on the predatory mites four weeks after the final treament		

EU: previously evaluated as part of the original EU review and listed in 10 SA conclusion and IXAR

The evaluation of the risk for mon-target arthropods was performed in accordance with the recommendations of the Guidance Document on Terrestrial Ecoloxicology", as provided by the Commission Services (SANCOA10329/2002 rev. 2 (final), October 17, 2002), and in consideration of the recommendations of the guidance document ESCOPT 2. As required, artisk assessment for both in-field and off-field exposure have been conducted.

#### Isomers

In terms of organism exposure, the critical highest predicted concentrations in the environment will occur immediately or very shortly after application therefore the effects of potential changes in the isomer ratios over time in the environment are not considered to be relevant to the NTA risk assessment. However, even if exposure to esidues over a prolonged period of time were to occur, according to the current residues data set for spiroxamine there are no indications of a significant change in isomer ratios therefore no additional factor need be applied to the risk assessments below (*i.e.* an UF of 1.0 has been used).

#### Risk assessment for in-field exposure

The representative GAP for Sproxamine EC 300 includes both a single or two applications of either 200 g as ha or 300 g a.s./ha to grapes therefore all of these uses have been considered in the risk assessment.

The in-field exposure (predicted environmental rate, PER) is calculated according to ESCORT 2 using the following equation:

PERM-FIELD # Application rate (ga.s./ha) x MAF

The MALS is a generic multiple application factor which is used to take in to account the potential buildup of applied obstances between applications based on the application interval,  $DT_{50}$  value and number of applications.

The maximum in-field exposure (Predicted Environmental Rate, PER_{IN-FIELD}) to foliar-dwelling or soildwelling organisms assumes the worst-case scenarios of 100% crop interception and 0% crop interception, respectively.



The predicted exposure rate (PER) for in-field exposure of both foliar and soil-dwelling non-target arthropods for the uses in grapes (1 x 200 g a.s./ha, 2 x 200 g a.s./ha, 1 x 300 g a.s./ha and 2 x 300 g a.s./ha) are summarised in the table below.

	Application	Application			Soil & S
Сгор	rate (g a.s./ha)	MAF ¹	PERMIN-FIELD (ga.s./ha)		PER Field
	1 x 200	1.0	200	1.0.	200 0 2
Cronos	2 x 200	1.7		×1.9 0 0	3860 25
Grapes	1 x 300	1.0 5	3000 0		\$300 \$ 50
	2 x 300			1.9. 0 4	570 57 570 57

#### Table CP 10.3.2-2PER for in-field exposure following the uses of Spiroxamine EC 500

¹: MAF = Multiple Application Factor (Appendix III )

The potential risk to in-field non-target arthropods based on Tiev I studies is assessed by calculation of the hazard quotient (HQ = exposure toxicity) with the predicted environmental rate (PER) and the lowest lethal rate (LR₅₀) values according to the following formula, Q

In-field HQ =  $U_{R_{IN}-FIELD} = U_{R_{IN}-FIELD} = U_{R_{IN}-FIELD}$ 

The HQ trigger for Tier Daboratory studies is 2. For the extended faboratory Tier II studies the risk is considered acceptable if the PER_{IN-HELD} concentrations are below the test concentrations resulting in 50% effects.

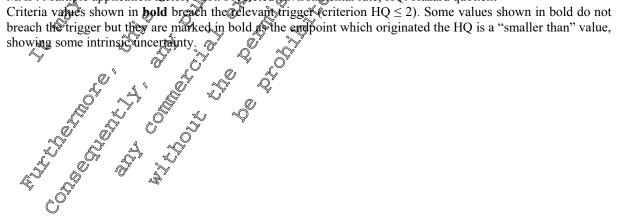
For *Chrysoperla* and *Coccinella* there the moto than one standard hooratory study available and these have potentially conflicting results. For completeness, all available standard laboratory data have been considered in the Tiery risk assessment below.

The Tier I in-field risk assessments for one and two applications of 200 g a.s./ha to grapes are presented in Table 10.3.2-3 and Table 10.3.2-4 respectively. The Tier I in-field risk assessments for one and two applications of 300 g a.s./ha to grapes are presented in Table 10.3.2-5 and Table 10.3.2-6, respectively.

Table CP 10:3.2-3 Tier I in field risk assessment for the proposed use of Spiroxamine EC 500 in grapes (\$ 200 g a.s./ha)

Brahes (2					
Intended use	Grapes	Q 29			
Product .	Spirox	mine FC 500			
Application rate (g.a.s./h	1 ×200	<u> </u>			
MAF S	Ŏ	\$			
Test species	LR	Foliar	Foliar	Soil	Soil
Test species	(gʻals./ha)	PER _{IN-FIELD} (g a.s./ha)	HQ _{IN-FIELD}	PER _{IN-FIELD} (g a.s./ha)	HQ _{IN-FIELD}
AphidiusOhopalosiphi	80.1		2.50		2.50
Typhlodromus pyri	240	200	0.833	200	0.833
Bembidion tetracolum	>741		<0.270		<0.270




Pardosa spp.	<731	>0.274		>0.274
Chrysoperla carnea	<737	>0.271		>0.271
Chrysoperla carnea	>1600	<0.125	~	<0.125
Coccinella septempunctata	<731	>0.274		>0.274
Coccinella septempunctata	>750	<0,267	, ,	×0.267

MAF: Multiple application factor; PER: Predicted environmental rate; HQ: Kazard quotient Criteria values shown in **bold** breach the relevant trigger priterion HQ  $\leq Q$ . Some values shown bold to not breach the trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but they are marked in hold on the relevant trigger but the relevant trigger bu breach the trigger but they are marked in bold as the endpoint which originated the HQ is a "smaller than" value showing some intrinsic uncertainty.



grapes (2 x 200 g a.s./ha)			A R	Ŵ Q,		
Intended use	C	Grapes	fine <b>EC</b> 500 ~	Fofiar C	Soil	
Product	S	piroxa	mne KC 500 🔬			ÇÖ
Application rate (g a.s./ha	a) 2	:×200°				
MAF	1		alð, 1.9 (sðil)			°∕γ
Test species	LR50	°~	Foliar	Fofiar 🖉	Soil	Soil
Tier I	(g a.s./h	a)&	PER IN-FIELD		(gaa.s./ha)	HQ _{IN-FIELD}
	801	×_Q	A s.s./ha	4,20 %		4.74
Typhlodromus pyri	80.1 240			¥.42		1.58
Bembidion tetracolum	۵ <b>7</b> 41 گ	×,		\$ <0.459 5 \$0.465 5 \$		<0.513
Pardosa agricola	<73	°₹		<b>*0.465</b>	a.	>0.520
Chrysoperla carnea	<737	ĝ	<b>3</b> 40 2	2×100 3	380	>0.516
Chrysoparia carnea 🛛 🔍	>1600			<0.213		<0.238
Coccinella	<7.3¥			<b>≫0.465</b>		>0.520
Coccinella septempunctate	7505			<0.453		<0.507

MAF: Multiple application factor; PDR: Predicted environmental rate; HQ: Hazard quotient Criteria values shown in **bold** breach the clevant virigger (criterion HQ  $\leq 2$ ). Some values shown in bold do not





Table CP 10.3.2-5	Tier I in-field risk assessment for the proposed use of Spiroxamine EC 500 in	1
grapes (1 x 300 g a.s./ha		_

grapes (1 x 300 g a.s./ha)					-	O° 🗞
Intended use		Grapes				
Product		Spiroxa	mine EC 500		ð	
Application rate (g a.s./h	a)	$1 \times 300$			- OF	
MAF		1.0			× ·	
Test species Tier I	LR50 (g a.s.	/ha)	Foliar PER _{IN-FIELD} (g a.s./ha)	Forfar HQin-Field	Soil PERIN-FIELD (g a.s./ha)	Soil C HOM-FIELD
Aphidius rhopalosiphi	80.1			3.75		3.75
Typhlodromus pyri	240			1.25		1,29 5
Bembidion tetracolum	>741			<0,405		<0.405
Pardosa agricola	<731			<b>9.410</b>	] 🔊 🔊	>0.410
Chrysoperla carnea	<737	6		>0.407 0		<b>\$0.407</b>
Chrysoperla carnea	>1600			\$09188 °		<0.188
Coccinella septempunctata	<731					>0.410
Coccinella septempunctata	>75 <b>6</b>			50.400 ×		<0.400

MAF: Multiple application factor; PER: Predicted invironmental tate; HQ: Hazard quotient Criteria values shown in **bold** breach the relevant trigger (criterion HQ  $\leq 2$ ). Some values shown in bold do not breach the trigger but they are marked in bold as the endpoint which originated the HQ is a "smaller than" value, showing some intrinste uncertainty.

showing some intrinste uncertainty. Table CP 10.3.25 Tier I in-field risk assessment for the proposed use of Spiroxamine EC 500 in grapes (2 x 300 g a.s. fra)

		A A A	<u>X</u>				
Intended use Product Spiroxamine EC 500 Spiroxamin							
Product Spiroxamine EC 500							
Application rate (g.s.s./na)							
MAF							
Test species 🖓 🗘	L850 (g'a.s./ha)	Foliar 🔊 🥎	Foliar	Soil	Soil		
Tier I	(g'a.s./ha)		HQIN-FIELD	PERIN-FIELD	HQIN-FIELD		
		(g a.a.////a) 🔬 🛸		(g a.s./ha)			
Aphidins rhopalosiphi	80 ×		6.37		7.12		
Typhlodromus popi			2.13		2.38		
Bembidion terracolum		Ø	<0.688		<0.769		
Pardosa gricol	×731	510	>0.698	570	>0.780		
Chrysperla comea	<73,7		>0.692		>0.773		
Chrysoperla carnea	â ⁸ 1600		<0.319		< 0.356		
Coccinel ⁹ a septempunctata	<731		>0.698		>0.780		



Coccinella >750 septempunctata	<0.680	<0.760
-----------------------------------	--------	--------

MAF: Multiple application factor: PER: Predicted environmental rate: HO: Hazard quotient Criteria values shown in **bold** breach the relevant trigger (criterion  $HQ \le 2$ ). Some values shown in bold do not breach the trigger but they are marked in bold as the endpoint which originated the HQS a "smaller than" valoe, showing some intrinsic uncertainty.

For all of the proposed GAP uses of Spiroxamine EC 500 the HQ values based on the induator species, Aphidius rhopalosiphi, are greater than the trigger value of 2 therefore further risk assessment as necessary. Furthermore, several of the HQ values for the other species are also greater that the trigger value of 2. A Tier II risk assessment has therefore been conducted and presented below.

Q

#### Tier II risk assessment

Extended laboratory test data are available for two foliar-dwelling and two soil-dwelling species. This includes the two standard indicator species and then at least one additional species therefore the requirements of ESCORT 2 have been fulfilled. For Aphidius repairements, two extended laboratory tests are available as well as a semi-field study. All available extended laboratory test date have been considered in the Tier II risk assessment Ø

The Tier II in-field risk assessments for one and two applications of 200 ga.s./h.c. grages are presented in Table 10.3.2-7 and Table 10.3.2-8, respectively. The Tier II in field osk assessments for one and two applications of 300 g a.s./ha to grapes are presented in Dable 10, 3.2-9 and Table 10, 9.2-10, respectively. Ø Ľ Ø ×,

Ô ð Tier Rin-field risk assessment for the proposed use of Spiroxamme EC 500 in Table CP 10.3.2-7 m  $\frac{1}{2} \frac{1}{2} \frac{1}$ 

grapes (1 x 200 g a.s./ha)		··· · · · · · · · · · · · · · · · · ·	
Intended use	Granes		
Product Application rate (ga.s./ha) MAF	Spirovamine EC 500		
Application rate (ga.s./ha)			
MAF O	¥.0 4 ~		Ş.
Species Species			
			predicted rate?
Aphidias hopalosiphi	>900		Y
Aphidius rhopalosiph 4	>74 . O . L		Y
Aphidius rhopalosophi (semi- field)			Y
Typhlodromus pyri	>510 ~ ~		Y
Bembidion tetracolum	31482 (2 x apps)	L.	Y
Pardosa spp	¥>72,7 (2 x anobs) ≈∩	×	Y
Cocinella septempinetata	≈197 (2 gapps)		Y

MAF: Multiple applie r, PER Predicted environmental rate

--auon factor, PER Predic



Table CP 10.3.2-8	Tier II in-field risk assessment for the proposed use of Spiroxamine EC 500 in	
grapes (2 x 200 g a.s./ha)		, '

Intended use	Grapes	
Product	Spiroxamine EC 500	
Application rate (g a.s./ha)	$2 \times 200$	
MAF	1.7 (foliar); 1.9 (soil)	A . 5 8 . 9
Species	LR ₅₀ /ER ₅₀ (g a.s./ha)	PER FIELD <50% effects at (g a.s./ha) predicted pate?
Aphidius rhopalosiphi	>900	A C Y C Q
Aphidius rhopalosiphi	>741	
<i>Aphidius rhopalosiphi</i> (semi- field)	>737	Foliar 340
Typhlodromus pyri	>510	
Bembidion tetracolum	>1482 (2 & apps)	Seil 380 0 2 2 2
Pardosa spp	>737 (@x apps)/	
Cocinella septempunctata (semi-field)	>731 (2 x apps)	Set $\frac{1}{380}$ $\frac{1}{5}$

Table CP 10.3.2-9 Tier II in-field risk assessment for the proposed ase of Spiroxamine EC 500 in grapes (1 x 300 g a.s./ha)

grapes (1 x 500 g a.s./na) 😽	A		4
Intended use	Grapes Sproxamine EC 500		
Product	Spipoxamine EC 500		
Application rate (g a.s. (ha)	1× 300 × 3		9 9
MAF O			Ĵ
Intended use Product Application rate of a.s./ha) MAF Species		POR _{IN-FHELD}	<50% effects at predicted rate?
Aphidius rhopalosiph	>900 5 27	& S	Y
Aphidius rhopalosiphi 🔬	Ø41 , V		Y
Aphidius rhopalosiphi (Semi-	>7376° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		Y
Typhlodropus pyri	\$10 4 Q	300	Y
Bembidton tetracolum	>1482 (2 x apps)	<b>*</b>	Y
Pardosa spp	>787 (2 x apps)		Y
Cocinella septempunctatd	©737 (2 x*apps)		Y

MAF: Multiple application factor; PER. Predicted environmental rate



Table CP 10.3.2-10	Tier II in-field risk assessment for the proposed use of Spiroxamine EC 500 in	
grapes (2 x 300 g a.s./ha)		,0

Intended use	Grapes			
Product	Spiroxamine EC 500		ð	
Application rate (g a.s./ha)	$2 \times 300$		F	
MAF	1.7 (foliar); 1.9 (soil)		4	. 5 ⁴ . 5 ⁴ . 9
Species	LR ₅₀ /ER ₅₀ (g a.s./ha)	PER Field (g a.s./ha)		Seffects at Steel Steel
Aphidius rhopalosiphi	>900	10°		Ý ^Y Č
Aphidius rhopalosiphi	>741		e que de la companya	Y O O
Aphidius rhopalosiphi (semi- field)	>737			ŶŸ ^z Ÿ
Typhlodromus pyri	>510	Foliar 310		N O O
Bembidion tetracolum	>1482 (2 & apps)	Seil 570		Y, S
Pardosa spp	>737 (@x apps)	Seil 570 5	N Q	j O
Cocinella septempunctata (semi-field) AAF: Multiple application facto	>731 (2 x apps)			Y. L

Criteria values shown in **bold** breach the relevant trigger

For both uses at 200 g a s that and for the single application of 300 g a.s./ha the PER values are below the LR/ER₅₀ values therefore it can be concluded that there will be <50% effects a the predicted in-field exposure rates and that the in field risk to NTA populations is therefore acceptable for these uses. No further in-field risk considered to be necessary for these uses of Spiroxamine EC 500.

For two applications of 500 g a s./ha an acceptable in-field risk has been demonstrated for all species with the exception of *Ophlodromus pyri* which indicates potential risks to NTA populations based on the soil PER_{in-field} value. The LR₅₀ and EK₅₀ in the extended *D. pyrl* study is >510 g a.s./ha and the maximum MER value for this proposed use is 570 g a.9./ha. In the *T. pyri* study there was 0% mortality (control corrected) and only a 20.9% reduction in reproduction, relative to the control, at the highest rate tested of 510 g a.s./ha. Thus, it is likely that the true LR₅₀ and ER₅₀ value would be greater than 570 g a.s./ha, thereby demonstrating an acceptable risk. However, this cannot be confirmed therefore a refined in-field risk assessment has been presented below.

# Refined risk assessment for T.pyri at 2,x900 g.a.s./ha to grapes

In accordance with ESCORT 2 acceptable in the eld risks can be concluded if the potential for recovery (*i.e.* LR/ $\mathbb{R}_{50}^{50}$  >PER_{IN-FR2D}) can be demonstrated within one year. In order to do this the degradation of spiroxamine residues has been taken into account in order to show that the PER_{IN-FIELD} will reduce rapidly to below the toxicity threshold volue of \$10 g a.s./ha.

Dissipation of spiroxamine residues wave been demonstrated to be relatively rapid. In several foliar decline studies on ceteals the overall geomean  $DT_{50}$  value has been determined to be 3.03 days (M-759383-01-1) and in study 1-090880-01, residues were measured on potential food items associated with vineyards which gave a  $DT_{50}$  of *ca*. 4 days for weed heads. These values are considered to demonstrate the rapid dissipation of spiroxamine residues in the environment.

Acceptable task to to har NLAs has already been demonstrated in the Tier II risk assessment but potential concern was indicated for soil-dwelling NTAs. The  $DT_{50}$  of 4 days has therefore been taken as an illustrative example of the decline in residues that soil-dwelling organisms may be exposed to following the application of Spiroxamine EC 500. The table below presents the PER values for soil over time considering a  $DT_{50}$  of 4 days.



	0	
Day from last application	Soil PER (g a.s./ha)	Risk acceptable?
0	570	N S
1	479	
2	403	Y Y Y
3	339	
4	285	
5	240	
6		Y W WY
7	0 1 <b>69</b> 5 64	

#### Table CP 10.3.2-11 Decline in PER_{in-field} values for soil following application of Spiroxamine EC 500

It is clear that after only one day following the last application of Spirovamine FC 500 (2 x 300 g a s ha) that the predicted exposure will have reduced to a level below the ER50 and LR50 value of 510 g a s./ha which would thereby allow for an acceptable risk to NTA populations, based on the extended *T. pyri* test results, to be concluded as the potential for recovery has been demonstrated in well under one year.

Even if the worst case reported soil  $DT_5$  walue of 56.6 days from the Environmental Fate Document M-CA Section 7 is used in the calculations, the PER_{in-flut} value reduces to below 500 g as the after only a 10-day period. Thus, it is considered that the potential for recovery has been demonstrated here and that the in-field risk to NTA populations following two applications of 300 g as the are acceptable.

# Risk assessment for off-field exposure

Effects on non-targer errestrial plants are of concern in the off-field environment, where plants may be exposed to spray drift. The amount of spray drift reaching off-crop habitats is calculated using the appropriate percentile estimates, which depends on the number of applications, and is derived from the BBA (2000¹²) values from the spray drift predictions of Ganzelaneier & Rautmann (2000¹³).

Off-field forbar PER values have been calculated from in-field foldar PERs in conjunction with drift values as shown in the following equation:

The model used to estimate spray drift was developed for drift onto a two-dimensional water surface and, as such, does not account for interception and dilution by three-dimensional vegetation in off-crop areas. Therefore, a vegetation distribution or dilution factor is incorporated into the equation when calculating PERs to be used in contanction with toxicity endpoints derived from two-dimensional (glass plate or leaf disc) studied A dilution factor of 10 is recommended by ESCORT 2. For 3-dimensional studies, *i.e.* where spray treatment is applied onto whole plants, the dilution factor of 10 is not used, as any dilution over the dimensional vegetation surface is accounted for in the study design.



- ¹² BBA (2000) Bundesanzeiger Jg. 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain.
- ¹³ Ganzelmeier H., Rautmann D. (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2000, Pesticide Application. Public domain.



The drift rate (predicted environmental rate, PER_{off-field}) associated with grapes has been calculated based on spray drift predictions for one application using 90th percentile drift values and for two applications using 82nd percentile drift values. This gives drift rates of 8.02% at 3 m for grapes (late) and 7.23% at 3 m for grapes (late) for one and two applications, respectively. These equate to drift factors of 9.0802° and 0.0723 for one and two applications, respectively.

The predicted exposure rates for off-field exposure (PER_{off-field}) have been calculated according to ESCORT II and summarised in the table below. The default distance of 3 m for whes has been considered in the calculation of the PER, both with and without a vegetation distribution factor (to be used in conjunction with two dimensional and three dimensional exposure test data, respectively)

Table CP 10.3.2-12	PER for off-field exposur	o fallowing the	us of Snirov	mino FC 500
1 abic C1 10.3.2-12	I EK IOI OII-HEIU EXPOSUI	e Ionowing the	uses of Sparox	annae ECOU

Сгор	App. rate (g a.s./ha)	PER _{IN-FIELD} (foliar) (g a.s./ha)	Drift     Vegetation       % Drift     factor       % Drift     factor       (percentile)     factor       drift/100     factor       (XDF)     VDF ¹
	1 x 200	200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Grapes	2 x 200	340 Q	
	1 x 300	300	
		540 O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹ For lab test endpoints obtained with 3-D exposure, directly comparable to the distribution of spray drift deposit in 3-D vegetated off-fight environment  $\mathcal{D}$   $\mathcal{D}$ 

² With dilution factors of 10 for labsest endpoints obtained with 2 between to adjust for distribution of spray drift deposit in 3-10 vegetated off-field environment

For the risk assessment, the predicted environmental fate is compared with the toxicity endpoints according to the following formula:

Off-field 
$$H_{0} = \frac{P_{R_{0FF-FIELD}}}{P_{R_{50}}} (g.a.s./ha)$$
 Correction factor

The HQ trigger for ther I laboratory studies is 2. For the extended laboratory Tier II studies, the risk is considered acceptable if the PEROFF-FIER concentrations are below the test concentrations resulting in 50% effects?

ESCORT 2 recommends that a correction factor of 5 be used when assessing extended laboratory studies, or 10 for Tier I data, to accound for extrapolation from testing just two representative species, to the species diversity expected in off-crop areas.

The Tier I off field risk assessments for one and two applications of 200 g a.s./ha to vines are presented in Table 10.3.2-12 and Table 10.3.2-13 respectively. The Tier I off-field risk assessments for one and two applications of 300 g a.s. ha to grapes are presented in Table 10.3.2-14 and Table 10.3.2-15, respectively.



0

Table CP 10.3.2-13	Tier I off-field risk assessment for the proposed use of Spiroxamine EC 500 in	
grapes (1 x 200 g a.s./ha)		

				^U` ^>
Intended use	Grapes			
Product	Spiroxamine EC	500	, ⁽¹⁾	
Application rate (g a.s./ha)	$1 \times 200$		, P	
MAF	1.0		×,	
Test species Tier I	LR50 (g a.s./ha)	PER OFF APELD (g a.s./ha)	Corrected PEROFF-FIELD ¹	C HOOFF-FIELD
Aphidius rhopalosiphi	80.1			
Typhlodromus pyri	240	«. » »		0.0667
Bembidion tetracolum	>741			<0.00216
Pardosa agricola	<731			>0.0219
Chrysoperla carnea	<737			>0.0217
Chrysoperla carnea	>1600 0 4			20.0100
Coccinella septempunctata	<73 f			>0.0219
Coccinella septempunctata	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			<0.9213

MAF: Multiple application factor; PER: Predicted environmental rate; HQ: Hazard quotient Criteria values shown in **bol** potentially brach the relevant trigger (criterion  $HQ \leq 2$ ). Some values shown in bold do not breach the trigger but they are marked in bold as the ordpoint which originated the HQ is a "smaller than" value, showing some intrinsic uncertainty.

¹ Correction factor of 10 applied for use with grandard aboratory data to account for the inter-species variability in sensitivity (ESCORT 2)

Table CP 10.3,214 Tier J off-field risk assessment for the proposed use of Spiroxamine EC 500 in grapes (2 x 200 g a.s./pa)

Intended use	Grapes 0	S IS	$\sim$	
Product >	Spiroxamine RE	500 N N		
Application rate (ga.s./ha)	2 200 27			
Intended use Product Application rate (gyl.s./ha) MAF	f (foliar)			
1		PER OFF-PIELD	Corrected	
Tier I	(gas./ha)	(g) a.s./h@)	PER _{OFF-FIELD} ¹ (g a.s./ha)	HQ OFF-FIELD
		~~~~~~	(8	
Aphidius rhopalosiph 🖉 🔬	80.1			0.307
Typhlodromus pyri	240 .	Õ		0.103
Bembidion tetracolum	Ø741,~Ş - Q			<0.0332
Pardosa agrecola	<7,3,1 ~	2.46	24.6	>0.0337
Chrysopella carica	<u>ð</u> 37	2.46	24.6	>0.0334
Chrysoperla Connea	>1600			<0.0154
Coccinella Septempunctate	<731			>0.0337
Coccinella septempunctata	>750			<0.0328

MAF: Multiple application factor; PER: Predicted environmental rate; HQ: Hazard quotient

Criteria values shown in **bold** potentially breach the relevant trigger (criterion $HQ \le 2$). Some values shown in bold do not breach the trigger but they are marked in bold as the endpoint which originated the HQ is a "smaller than" value, showing some intrinsic uncertainty.

¹ Correction factor of 10 applied for use with standard laboratory data to account for the inter-species variability

Table CP 10.3.2-15	Tier I off-field risk assessment for the proposed	use of Spire	xamine EC 500
grapes (1 x 300 g a.s./ha)	Tier I off-field risk assessment for the proposed)	A	Ů, Ô, Ô

Grapes	- T	Ő	
Spiroxamine EC	500	Ó¥ ×	
1 × 300	A	Q 6° A	
1.0	· ////		
LR ₅₀	PER OFFIELD	Corrected	
(g a.s./ha)		(g a.s./ha)	HO OFF-FHT 20 5 9 0.30%
80.1			0.30%
240			0,400
>7410 0	\$ \$ \$		0.0325
			>0,0330
₹737 <i>%</i> گ			>0.0327
l a l			<0.0151
\$731 9			>0.0330
>756			<0.0321
	Spiroxamine EC 1×300 1.0 LR ₅₀ (g a.s./ha) 80.1 240 741° 737° 737° 51600	Spiroxamine EC 500 1 × 300 1.0 LR50 (g a.s./ha) 80.1 240 >741Q 241 2.41 2.41 0 0 0 0 0 0 0 0 0 0 0 0 0	Spiroxamine EC 500 1×300 1.0 LR ₅₀ (g a.s./ha) 80.1 240 77410 77376 2.41 73766 77500 77500 77500 77500 77500 77500 77500 77500 77500 77500 77500 77500 77500 775000

MAF: Multiple application factor, PER: Predicted environmental sate; HQ. Hazard quotient Criteria values shown in **bold** potentially breach the relevant trigger (priterion HQ ≤ 2). Some values shown in bold do not breach the brigger, but they are marked in bold as the endpoint which originated the HQ is a "smaller than" value, showing some intrinsic incertainty.

¹ Correction factor of 10 applied for use with standard laboratory data to account for the inter-species variability in sensitivity (ESCORT 2)

Table CP 10.3.2-16 Tier I off field risk assessment for the proposed use of Spiroxamine EC 500 in grapes (2 x 300 g &s./ha)

grapes (2 x 500 g ass./na)	S d à			
Intended use	Grapes			
Product	Spiroxamme EC			
Application rate (g a. s. ha)	2*× 300			
MARE S	Spiroxamile EC 2×300			
Test species		TER OFF-FIELD	Corrected	
	(g a.s./ha)	(g a.s./ha)	PER _{OFF-FIELD} ¹ (g a.s./ha)	HQ off-field
Aphidius Dopalos phi	89.1			0.461
	240			0.154
Bendidion Cotracolum	>741	3.69	36.9	<0.0498
Pardosa agricola	<731	3.09	30.9	>0.0505
Chrysoperla carnea	<737			>0.0501
Chrysoperla carnea	>1600			<0.0231

Coccinella septempunctata	<731		>0.0505		
Coccinella septempunctata	>750		<0.0492	Ů	ð

MAF: Multiple application factor; PER: Predicted environmental rate; HQ: Hazard quotient Criteria values shown in **bold** potentially breach the relevant trigger (criterion HQ \leq 2). Some values hown in bold do not breach the trigger but they are marked in bold as the endpoint which originated the HQ is a "smaller than" value, showing some intrinsic uncertainty.

¹ Correction factor of 10 applied for use with standard laboratory data to account for the inter-species variability? in sensitivity (ESCORT 2)

For all of the proposed GAP uses of Spiroxamine EC 500 the H@ values based on the *Pardosa*, *Chrysoperla* and *Coccinella* data cannot confirm acceptable risks due to the 'less than' toxicity alues A Tier II risk assessment has therefore been conducted and presented below.

Tier II risk assessment

The Tier II off-field risk assessments for one and two applications of 200 g as./ha to grapes are presented in Table 10.3.2-16 and Table 10.3.2-17, respectively. The Tier II off-field risk assessments for one and two applications of 300 g a.s./ha to grapes are presented in Table 10.3.2-18 and Table 10.3.2-19, respectively.

Table CP 10.3.2-17	Tier II off-field	risk 🖓	issessment	for the p	roposed is	se of Spir	oxamine J	2 © 500 in
grapes (1 x 200 g a.s./ha)		Čo -		à s		. 0	õ v	,

grapes (1 x 200 g a.s./na)				. ~
Intended use	Grapes			^k
Product	Spiroxamine EC 500 1 × 200 6 71.0 6	0 4		\$ ``
Application rate (g a.s./ha)	1×200 \$			'
MAF	Fr.0 0 0			
Species		PEROFF-FRELD	Corrected	<50% effects at
S O	(gra.s./ha)	• (ga.s./ha)	PEROFF-FIELD ²	predicted rate?
		Ý 🔊 🖉	(g a (s./ha)	
Aphidius rhopalosiph &	>900	1600	\$0.0	Y
Aphidius kopalosiphi 🔬	\$141 \$ O		80.0	Y
Aphidikis ⁴ rhopalosipht (semi- field)	>737		80.0	Y
Typhlodromus pyg	\$510 × 10	160 2	8.0	Y
Bembidion tetracolum	>1480 (2 x mps) C	1.60	8.0	Y
Pardosa spp 🔍 🖉	797 (2 xoapps) 0		8.0	Y
Cocinella septempunctata (semi-field)	>737 (2 x apps)	16.0 ¹	80.0	Y

MAF Multiple application factor; PER: Predeted environmental rate

¹ Study incorporated 3-Dimensional exposure therefore no vegetation distribution factor (VDF) applied

² Correction factor of 5 applied for use with extended laboratory data to account for the inter-species variability in sensitivity (ESCORT 2).

Table CP 10.3.2-18	Tier II off-field risk assessment for the proposed use of Spiroxamine EC 500) in	
grapes (2 x 200 g a.s./ha)		<i></i>	

Intended use	Grapes			
Product	Spiroxamine EC 500		ð	
Application rate (g a.s./ha)	2×200		S.	
MAF	1.7 (foliar); 1.9 (soil)		4	5° 5° 4
Species	LR50/ER50	PER of -FIELD	Corrected	50% effects at
	(g a.s./ha)	(g a.s./ha)	PDROFF-FIELD ²	predicted rate?
		é	(Qg`a.s./ha)	
Aphidius rhopalosiphi	>900	2 4.6 ¹	1230 0	Y Y
Aphidius rhopalosiphi	>741	24.6 ¹	193 0 ?	Y Y
Aphidius rhopalosiphi (semi- field)	>737	\$4.6 ¹ \$	123 0 0	
Typhlodromus pyri	>510	2,467 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12,3 0 4	Y S
Bembidion tetracolum	>1482 (@x apps)	246	P12.3 5	YO YO
Pardosa spp	>737@2 x apps)	2.46	12.3	A A
Cocinella septempunctata (semi-field)	>737 (2, £apps)	2061	P23 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Y Y

¹ Study incorporated 3-Dimensional exposure therefore no vegetation distribution factor (VDF) applied ² Correction factor of 5 applied for use with extended laboratory data to account for the inter-species variability in sensitivity (ESCORT 2) 0

K Table CP 10.3.2-19 Tier II off-field risk assessment for the proposed use of Spiroxamine EC 500 in grapes (1 x 300 g as ha)

Intended use	xamine EC 500			
	xamine EC 500	O	L.	
Application rate (g a.s./ha)		\$* £\$. \$		
MAF &				
Species	ERS	POR ROFE-FIELD	Corrected	<50% effects at
	, 0, °	(g a.s./ha)	PER _{OFF-FIELD} ² (g a.s./ha)	predicted rate?
Aphidius rhopalosiphi 🏾 🖉 🦉 👀	Ar ar	20.11	121	Y
Aphidiu Thopalosiphi 2 5741	U Z v	24.1 ¹	121	Y
Aphidius rhopalosiphy (semi- field)		24.11	121	Y
Typhlodromus pyri 4,>510		2.41	12.1	Y
Bembidion terracolum S >1482 Pardosa spr 2 5 \$137	2 (2 x apps)	2.41	12.1	Y
	(2 apps)	2.41	12.1	Y
Cocinella (semi-field)	(2 x apps)	24.1 ¹	121	Y

MARMultiple application factor; PER: Predicted environmental rate

¹ Study incorporated 3-Dimensional exposure therefore no vegetation distribution factor (VDF) applied

² Correction factor of 5 applied for use with extended laboratory data to account for the inter-species variability in sensitivity (ESCORT 2)

Table CP 10.3.2-20	Tier II off-field risk assessment for the proposed use of Spiroxamine EC 500 in	n
grapes (2 x 300 g a.s./ha)		0

grapes (2 x 500 g a.s./na)				O N
Intended use	Grapes			
Product	Spiroxamine EC 500		ð	
Application rate (g a.s./ha)	2×300		S.	
MAF	1.7 (foliar); 1.9 (soil)		4	
Species	LR ₅₀ /ER ₅₀ (g a.s./ha)	PER of -FIELD (g a.s./ha)	Corrected PO Roff-field ²	pretheted rate?
			(g [°] a.s./ha)	
Aphidius rhopalosiphi	>900	3 6.9 ¹	1850 0	A Y
Aphidius rhopalosiphi	>741	36.9 ¹	185 0 2	Y , Y
Aphidius rhopalosiphi (semi- field)	>737	\$6.9 ¹	185 0 0	
Typhlodromus pyri	>510	3,69%	18,5 0	Y S
Bembidion tetracolum	>1482 (@x apps)	369	P18.5 5	J Y YO
Pardosa spp	>737@2 x apps)	¥3.6925 ~ @	185	A AND
Cocinella septempunctata (semi-field)	>737 (2, Capps)	3001 0	985 ~ ~	Y Y K

MAF: Multiple application factor, PER: Predicted environmental rate

¹ Study incorporated 3-Dimensional exposure therefore no vegetation distribution factor (VDF) applied ² Correction factor of 5 applied for use with extended laboratory data to account for the inter-species variability in sensitivity (ESCORT 2) series and the series of the s Ô \bigcirc

It is clear that for all proposed uses of Spiroxamine EC 500 that the PER OFF Spelo values are below the LR₅₀ and ER₅₀ values for all species for which data are available. Thus, the off-field risk to NTA populations following use of Spiroxamine EC 300 is acceptable. Ű

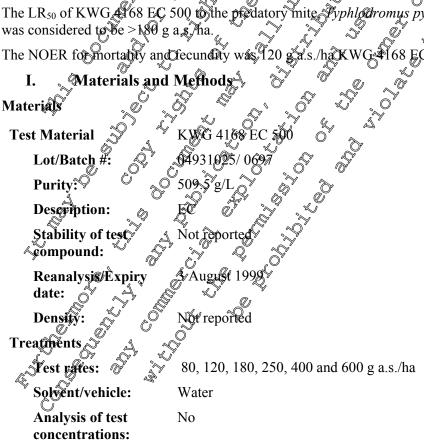
Biodiversity

CP 10.3.

No relevante scientifically peer reviewed open iterature could be bund on spiroxamine or its major metabolites, from an acotox cological perspective, on non-target arthropods (other than bees). Therefore, it is considered that the potential impact of the active substance on biodiversity and the ecosystem, including potential indirect effects in alteration of the food web, are covered by the risk assessment for non-target arthropods (other than bees) in the section.

With respect to the NPA in field and NTA off-field risk assessments, which demonstrated acceptable in-field risks at tier 1 and ver 2 level for NTA and acceptable off-field risks for NTA without the need for risk partigation, the applicant coricludes that the use of the representative lead formulation (Spiroxanine EC 500) has a low potential to cause unacceptable effects on biodiversity and the P 10.3.2 The formulation of the second sec ecosystem via trophic interactions To the best of our knowledge and with the presented safety profile of the spiroxamine a.s. and the representative lead formulation, the applicant does not foresee any unacceptable effects on biodiversity and the ecosystem with spiroxamine.

Data Point:	KCP 10.3.2.1/01
Report Author:	; 🖉 🖉
Report Year:	2000
Report Title:	KWG 4168 EC 500: A laboratory dose-response study to evaluate the effects on
	the predaceous mite Typhlodromus pyri Scheuten (Acari, Phytoseiidae) in solution ventilated glass cages
Report No:	B020TPL
Document No:	<u>M-025030-01-1</u>
Guideline(s) followed in	Bakker et al. (1992), Baier et al. Engtested guide in prep, Overmeer (1988)
study:	SETAC/ESCORT (1994).
Deviations from current test guideline:	3 replicates used per test item preatment instead of 5
Previous evaluation:	yes, evaluated and accepted $\sqrt{2}$
	RAR (2010)
GLP/Officially	Yes, conducted under GLP/Officially recognised testing factities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes \mathcal{A} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y}


Executive Summary

The effects of a repeated spray application of 80 to 600 g a. The KWG 4168 EC 500 on the mortality and reproduction of Typhlodronus pyr Scheuten were tested over and 19 days respectively.

Statistically significant increases were observed in mortality, when compared to the control, at dose concentrations of 180, 2500400 and 600 g a.s. that These doses resulted in corrected mortalities of 25, 59, 90 and 94%, respectively. At a dose rate of 180 ga.s./har statistically significant reduction of 46% in the mean number of eggs/capita/day was observed, when compared to the control.

The LR50 of KWG 4768 EC 500 to the productory mite Pyphlotromus pyri, yas 240 g a.s./ha. The ER50 was considered to Be > 180 g a s ha

The NOER for mortality and fecundaty was 120 500.

Test organisms	o
Species:	Typhlodromus pyri Scheuten (Acari: Phytoseiidae)
Source:	Strain bred in the lab, originally from apple in the Province of Zeeland, The Netherlands
Acclimatisation period:	1-day old protonymphs were kept under same conditions as breeding
Feeding:	Pollen of broad bean. Test organisms fed every 2-4 days throughout, and a set of the set
Treatment for disease:	Pollen of broad bean. Test organisms fed every 2-4 days throughout, 2
Test design	
Test vessel:	Ventilated glass cage consisting of a bottom glass plate (10 x 5 x 0.3 cm; 3 holes = 0.6 cm), a top glass plate (10 x 5 x 0.15 cm), a middle part of inertimaterial (10 x 5 x 0.3 cm, inner open surface approximately 2.4 x 7.5 cm, slope of inner side 45°) Test units for determining effects on oviposition rates were glass plates (9 cm) of which an inner circle (2.8 cm) was treated on day 0 rogether with the glass cages. These glass plates were stored under similar conditions as the glass cages during the mortality phase \checkmark
Test medium:	Water, D by o by a so a so
Replication:	3 (6 test concentrations water control, toxic standard)
No. animals/vessel:	
Duration of test:	14 days 25 , 5 , 5 , 6 , 0
Environmental test	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Temperature:	26.9 ± 0.5 C during exposure phase, 35.7 ± 0.4 °C during fecundity
Photoperiod:	Photoperiod of 18 hour light : 6 hour dark
Study Design	
This study was conducted in mortality of <i>Typhlodromus</i> p	order to assess the effects of KWG 4168 EC 500 on the reproduction and yr over 14 days
The test organisms used were	yr over 14 days
used 2 2	

Glass test vessels and glass ovidesition vessels were sprayed with dilutions of the test concentration (80, 120, 180, 250, 400 and 600 g cs./ha) and the toxic standard. The mean spray deposit on the glass surface was 2.09 mg cm². After the residues had dried 20 *T. pyri* were added to each replicate vessel. A water control group was used. For the toxic standard, dimethoate was used at a rate of approximately 0.6 mL a.s./ha.

The test was split into two phases. After 7 days, mortality was recorded within the groups of *T. pyri* (exposure phase). The surviving *T. pyri* were then transferred to the oviposition vessels where reproduction was calculated after a further 7 days (fecundity phase). The fecundity phase was conducted at the 120 and 180 g a.s./ha rates only.

Temperature was measured at 8-hour intervals during the exposure phase and continuously during the fecundity phase to ensure that test vessels were kept at 26.5 ± 0.5 °C and 25.7 ± 0.4 °C, respectively. Light intensity was measured once during each phase.

II. Results and Discussion

Validity criteria according to the guidelines to which the study was conducted were met:

- Mean mortality (dead and escaped) to be <20% in the control on day 7 (actual: 15%);
- Cumulative mean number of eggs produced per febrale in the control between days 7 and 14 fe be ≥4 (actual: 9.94);
- Cumulative mean mortality (corrected) of organisms exposed to the toxic standar to be 50% on day 7 (actual: 100%).

Corrected mortality refers to mortality due to the test item and excludes other causes of mortality, such as escaped mites. At the highest dose rate, 94% of test organisms thed due to exposure to KWO 4168 EC 500. Statistically significant increases were observed in mortality at dose concentrations of 480, 250, 400 and 600 with mortalities of 25, 59, 90 and 94%, respectively.

Table CP 10.3.2.1/01-1	Summary of montality

KWG 4168 EC 500 (g a.s./ha) Mean (%) Standard deviation (%) Corrected mertality (%) Water control 15 7 70 0 0 7 Toxic standard 100 7 0 7 100 7 80 17 7 7 7 2 7 120 15 7 7 7 7 7 7 7 180 37 7 </th
Water control 15 10 0 0 0 0 0 Toxic standard 100 0 0 100 100 80 17 3 5 2 2 120 37 37 37 37 37 180 5 5 5 5 250 65 65 5 59
100 30 17 37 35 47 25 120 37 47 19 5 47 25 180 37 47 19 5 47 $25*$ 250 65 67 418 $59*$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
250 0 65 0 18 5 59*
$400 \qquad $
600 2 95 95 2 95 2 94*

* Statistically different from water control performance

At a dose rate of 180 g a.s. the a statistically significant reduction of 46% in the mean number of eggs/capita/dag was observed, when compared to the control.

Table CP 10-3.2.1/01-2 Summary of mean number eggs per capita, produced daily

KWG 4168	Observation day		*		
KWG 4168 EC 500 (g a.s./ha)			14	Cumulative total per female	Reduction relative to control
Water controp	0.28	1,37	1.68	9.94	-
e V	9.00 0.57	¥1.08	1.25	6.87	31%
180 2 6	0.00 0.20	0.90	1.12	5.37	46%*

* Statistically different from water control performance

IIIC^{O[°]} Conclusion

The LR₅₀ of KWG 4168 EC 500 to the predatory mite *Typhlodromus pyri* is 240 g a.s./ha with 95% confidence limits of 216 to 266 g a.s./ha.

The NOER for mortality and fecundity of KWG 4168 EC 500 on the predatory mite Typhlodromus pyri was 120 g a.s./ha. At a dose rate of 180 g a.s./ha a statistically significant reduction of 46% in the mean number of eggs/capita/day was observed, when compared to the control. The ER_{50} was therefore considered to be >180 g a.s./ha.

Assessment and conclusion by applicant:

Validity criteria according to the current IOBC test method by Blümer al. (2000) residual contact test with the predatory mite Typhlodronus pyri Scheuten (Acari: Phytoseuitae) regulatory testing of plant protection products" were met:

- Mean mortality (dead and escaped) to be <20% in the control on day 7 (a tual: 15%)
- Cumulative mean number of eggs produced per female in the control between days 7 and to be ≥ 4 (actual: 9.94);
- Cumulative mean mortality (corrected) of organisms exposed to the toxic standard to be \geq 50% on day 7 (actual: 100%).

The study was conducted before the IORC test methods were formalised by the test method used in this study is highly consistent with the method of Blümel et al. (2000) and the current validity cateria have all been met. The study is therefore considered acceptable. It is noted that this jest used only three replicates per test item treatment whereas the current test method recommends five replicates. The results are still considered to be suitable for use on the Fer I rok assessment. It should also be noted that a more recent extended laboratory study is also wailable.

The LR50 was determined to be 240 g a.s. ha. The ER50 was considered to be 180 g a.s. ha.

Q	
Data Point:	KCP 163.2.140 ~ 2 0
Data Point:	
Report Year:	1894 0 6 5 6 2
Report Title:	*Desting the effect of KWG 4168 on the predaceous mite Typhlodromus pyri
<u> </u>	Scheuten (Acati: Phytoseiidae) using ventilaged glass cages (coffin cells)
Report No.	MB007 & S S
Document No:	MJ08573-01-1 ~ ~ ~
Guideline(s) followed in	TOBC-Working Group "Pesticides and Beneficial Arthropods"
study:	
Deviations from current	The study does not comply with prrent guidelines.
test guideline	
Previous exaluation:	byes, evaluated and accepted
	$\mathbf{D} + \mathbf{D} \otimes \mathbf{V} = \mathbf{O} \cdot \mathbf{T} \otimes \mathbf{V} = \mathbf{O} \cdot \mathbf{O} \otimes \mathbf{O} = \mathbf{O} \otimes $
GLP/Officially	Yesyconducted under GLP/Officially recognised testing facilities
recognised testing	A & Y
facilities:	
Acceptability/Reliability:	Supportive@nly
E	

Executive Summary

~Ő Two strains of Typhlodiomus pyri were exposed to KWG 4168 to assess the effects on reproduction and mortality. One strain had a degree of OP-resistance and the other was sensitive to organophaphates (OP). Both strains were exposed to residues equivalent to a rate of 741 g a.s./ha and the tolerant strain was also exposed to the reference substance (parathion at 2.67 g a.s./ha) as well as a water only control.

Mean wenile mortality in the KWG 4168-treated group of OP-tolerant and OP-sensitive individuals were 99.0 and 95.7%, respectively. Juvenile mortality of the water treated group is significantly different

from the juvenile mortality in all the three other treatments. The average number of eggs/female/sampling period was 0.7 for the OP-sensitive females exposed to KWG 4168. The LR₅₀ was therefore determined to be <741 g a.s./ha. I. **Materials and Methods** Materials **Test Material** KWG 4168 EC 500 Lot/Batch #: 089A 494.0 g/L **Purity: Description:** Not reported Stability of test Not reported compound: **Reanalysis/Expiry** 17 March date: **Density:** 1.00^{4} ppm a.s. v/v) Treatments **Test rates:** Solvent/vehicle: Analysis of test concentrations **Test organisms** Two strains of Typhlodromus pyri **Species:** OP-resistant strain collected from apple in the Province of Zeeland, Source: TheNetherlands P-sensitive strain or ginates from individuals collected from O S stnut in Amsterdam Acclimatisatio one reported period: oller of broad Feeding ia faba I. Treatment for ie repor disease: Test design offinæells': Sottom glass plate (10 x 5 x 0.3 cm; 3 holes 0 = 0.6 cm), Test vessel top glass plate (10 x 5 x 0.15 cm), two long glass sides (7.6 x 1.2 x 3 cm), two short glass sides Replication No. animals/vessel 20 to 25 2 weeks Duration of test: Environmental test conditions **Temperature:** $25.2 \pm 0.51^{\circ}C$

Photoperiod:

Continuous darkness

Study Design

This study was conducted in order to assess the effects on mortality and reproduction of reproduces of KWG 4168 EC 500 on *T. pyri* over 14 days.

Two strains of *T. pyri* were used, one organo-phosphate (OP)-resistant and one OP-sobilities and a mixture of larvae and protonymphs that differed maximally 24 hours of age were used in the study.

These test organisms were placed in 'coffin cells' that had been sprayed with 7410 ppm KWG 4168/EC 500, with 5 replicates per treatment group. The cells were kept at $25.2 \pm 0.42^{\circ}$ during the mortality phase of the study and at $25.2 \pm 0.51^{\circ}$ C during the teproduction phase measured at 8 h intervals and kept in continuous darkness. Food (broad bean poten) was administered throughout the study.

Mortality was assessed after 3 and 7 days. Eggs/from surviving females were counted on day 7, 10 and 14.

II. Results and Discussion

No control validity criteria have been reported or assessed in the study report. The study report dvalidity criteria according to guidelines by Blümel *et al.* (2000) "laboratory residual contact tests with the predatory mite *Typhlodromus pyp*." Scheuten (Acari, Phytosofidae) for regulatory testing of plant protection products". Some of the criteria were met:

No female individuals of the tolerant strain strain strived the juvenile exposure to KWG 4168. Therefore, no effect on adult reproduction could be determined.

Mean juvenile mortality in the KWG 4168-treated group & OP-tolerant and OP-sensitive individuals were 99.0 and 95.7%, respectively. Invenile mortality of the water treated group is significantly different from the juvenile mortality in all the three other treatments. The average number of eggs/female/sampling period way 0.7 for the OP-sensitive females exposed to KWG 4168.

Table CP 10.32 1/02-1 Mortality and productivity of *T. pori* expessed to residues of KWG 4168 EC 500 residues

Test item	Mean mortality (%) 🖓 Estandard deviation	Eggs/female
Water control	14.2 2 0 2 99 A	1.9
KWG 4168 OP-Colerant		-
(741 g a.s./ha)		
KWG 4168 OP-Sensitive	95.7* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.7
(741 g a.s.Aya)		
Reference item	54.2* 0 17.4	-
		1

* staristically significant

III. Conclusion

The LR₅₀ of *T. pyre* exposed to KWG 4058 EC 500 was determined to be <741 g a.s./ha.

Assessment and conclusion by applicant:

Value of the value of the current IOBC test guideline by Blümel *et al.* (2000) "laboratory residual contact test with the predatory mite *Typhlodromus pyri* Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products" have been assessed. Some of the criteria were met:

• Cumulative mean mortality (corrected) of organisms exposed to the toxic standard ≥50% on day 7 (actual: 54.2%)

Mean mortality (dead and escaped) <20% in the control on day 7 (actual: 14.2%)

The following criterion from the guidelines were not met:

Cumulative mean number of eggs produced per female, in the control between days 7 $14, \ge 4$ (actual: 1.9)

Not all of the validity criteria have been met but, according to Blümel et al. (2000), reproductive assessments should not be conducted if the mortality is >50%. Thus, the reproductive content is not considered appropriate here therefore the study is considered to be valid. This study pre-dates the IOBC test guidelines and the test method used in this study is no longer the current test method. However, the results are still considered suitable for use in the risk assessment, an supporting information, to demonstrate the fact that the Tier LLR₅₀ is <741 ga.s./ha.

Data Point:	KCP 10.3.2.1/02
Report Author:	
Report Year:	
Report Title:	A laboratory test to determine the effects of spiroxamine EC 500 on the parasitic
	wasp, Aphidiug, rhopalosiphi 👌 🖧 🖉 🖉 🖉 🖉
Report No:	BAY @9-17 & O & O & O & O & O & O & O & O & O &
Document No:	<u>Mr080680-01-1</u>
Guideline(s) followed in	ESCORT (Barre at al.) 1994 0
study:	
Deviations from current	None of the state
test guideline:	
Previous evaluation 2	yes, evaluated and accepted 5
S	$\delta RAR(2010) \ll^{\nu} \sim \sqrt{2}$ $\delta \sim \sqrt{2}$
GLP/Officially	Yes, conducted under GLP(Officially recognised texting facilities
GLP/Officially C recognised testing facilities:	
facilities:	
Acceptability/Reliability:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ê, Î Î	K K A A V O
Acceptability/Reliability	

Parasitic wasps, Aphidius rhop dosiphi, were exposed to Spiroxamine EC 500 at concentrations of 30, 60, 120, 240 and 480 gQ.s./has The wasps were exposed for 48-hours to assess the effects on mortality and reproduction.

Mortalities compared to the control were observed a 0, 33, 89, 100 and 100% in the 30, 60, 120, 240 and 480 g a.s./ha treatment@rates of Spicexamine EC 500, respectively. Statistically significant reductions in fecundity were observed at concentrations of 30 and 60 g a.s./ha.

The PR₅₀ after 48 hours sposure was calculated to be equivalent to 80.1 g a.s./ha (with 95% confidence limits of 63.7 and 100.4 g a.s./ha). The ER₅₀ was considered to be >30 g a.s./ha.

I.	Material	s and	Methods	¥
Material	Ĵ.	e O		
Test			Spiroxamine	EC 500
& Lot	Satch #:	A.	0778	
Purit	ty:		498.5 g/L	
Desc	ription:		Not reported	

Stability of test compound:	Not reported
Reanalysis/Expiry date:	21 April 2000
Density:	1.005 g/mL
Treatments	
Test rates:	30, 60, 120, 240 and 480 g a.s./ha (60, 120, 240, 480 and 960 mL) w
Solvent/vehicle:	Water A Q Q A A A C Q
Analysis of test concentrations:	Not reported 21 April 2000 1.005 g/mL 30, 60, 120, 240 and 480 ga.s./ha (60, 120, 240, 480 and 960 mL product/ha) Water No Wasp, <i>Aphidius rhopalosiphi</i> , (flymenoptera: Braconidae) PK Niitzijingszechten Industriestrasse 38, 73642 Welzhern, Germany Not reported Exposure phase: 1:3 honey/water solution Fecundity phase: <i>BropaloStphum padia</i> and <i>Metopolorbium dirhodum</i>
Test organisms	
Species:	Wasp, Aphidius rhopalosiphi, (Dymenoptera: Draconidae)
Source:	PK Niitzungszuchten Industriestrasse 38, 73642 Velzheim, Germany
Acclimatisation period:	Not reported a start of the sta
Feeding:	Sxposure phase: 1:3 honey/water soution
	Fecundity phase: RiopaloSiphum padi and Metopolophium dirhodum
Treatment for the disease:	Fecundity phase: <i>RitopaloSiphum padi</i> and <i>Metopolophium dirhodum</i> Wlk
Test design	
Test vessel:	Treated glass plates fitted to a square frame (10 x 10 cm external dimensions) made from aluminum dasing (1.8 x 0.5 cm in cross-
Replication:	dimensions) made from aluminium casing (1.8 x 0.5 cm in cross-
No. animals Sessel:	
Duration of tests	De hours in a f
Environmental test	10 52 hours $79 - 22^{\circ}C$ 4700 - 6500 lux for a 16 h photoperiod.
Temperature:	19 - 22°C 47 40°
"Photoperiod:	4700 - 6500 lux for a 16 h photoperiod.
Photoperiod:	
This study was conducted in	n order to assess the effects on mortality and fecundity of Spiroxamine EC

This study was conducted in order to assess the effects on mortality and fecundity of Spiroxamine EC 500 on wasps (*Aphidius rhop dosiphi*) over 48 hours.

The adult ways used in the bioassay were less than 24 hours old. These were placed individually onto glass in steel frames that had been treated and dried. Ten wasps were exposed to each treatment concentration per replicate.

The test item was applied to glass plates at concentrations equivalent to 30, 60, 120, 240 and 480 g a.s./ha (60, 120, 240, 480 and 960 mL product/ha). A water control was used as was a reference item, Dimethoate 40 (400 g/L dimethoate) applied at 0.12 g a.s./ ha (0.3 mL product/ha).

The condition of the wasps was assessed at 2, 24 and 48 h. They were recorded as being:

- Live alive and apparently unaffected
- Affected still upright and attempting to walk but showing signs of reduced co-ordination
- Moribund on their back or side, still twitching •
- Dead no longer moving •

An assessment was then made on the fecundity of the surviving wasps, using females from the and from the treatment groups of the test item at which \$50% mortality was seen. The wasps 10 per treatment) were confined individually with aphid-infested parley plants (untreated) for a further 24 hours and then removed. The numbers of parasitised aphids that developed were recorded 11 days later

II.

Validity criteria according to the study report were met.

Mortality in the control group $\leq 13.3\%$ (actual 10%) Mortality in the reference item group $\geq 50\%$ (actual 10%) Mummies per female produced in the control group ≥ 5 (actual: 92.6) Number of female wasps producing no numpries ≤ 2 tactual 0) control treatment, three wasps were dead at 48 bours. (MDO) ties of 0, 33, 89, 100 and 000% in the 20 • Number of remain wasps producing no mummers $\leq (actual 20)$ is a single wasps were dead at 48 bours (90% mortality). This compared with mortalities of 0, 33, 89, 100 and 200% in the 30, 60, 120, 240 and 480 g a.s./ha treatment rates of Spiroxamine EC 500, respectively The 48th LRS for Spiroxamine EC 500 against Aphidius rhopalosiphi was calculated to be 80.1 g a sha (95% CL: 63.7 - 200.1 g a.s./ha).

All of the wasps in the toxic reference treatment@vere dead at 48 hours (100% mortality).

Table CP 10.3.2.1/03-1 Mortatity (%) of wasps after exposure to Spiroxamine EC 500 for 48 hours

Concentrations (g as./ha)
Control $\mathcal{O}' \qquad \mathcal{A}' \qquad \mathcal{A}' \qquad \mathcal{O}' \qquad \mathcal{O}$
Concentrations (g a s/ha) Concentrations (g a s/ha)
$30 \qquad 30 \qquad$
30 Reference item

Fecundity was assessed for the 30 and 60 g as that treatment groups as these had mortality less than 50%

The mean number of mummes produced per female was 92.6 in the control and 60.7 and 35.3 in the 30 and 60 g a. treatment reterior of Spiro Camine EC 500, respectively. Thus, reduction in reproduction relative to the control was 34% and 62% for the 30 and 60 g a.s./ha treatments, respectively. These were both statistically significant. The ER₅₀ was considered to be >30 g a.s./ha.

Feeundity of wasps after exposure to Spiroxamine EC 500 for 48- hours. P 10 3.2.1/03-2

Concentrations (g a.s./ha)	Mean number mummies produced per female	Standard deviation
Control	92.6	30.6

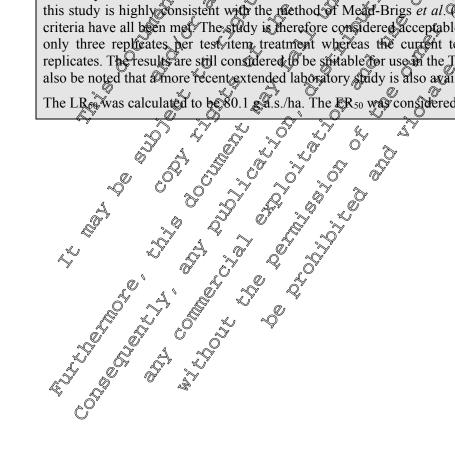
Concentrations (g a.s./ha)	Mean number mummies produced per female	Standard deviation	
30	60.7*	15.6	S.
60	35.3*	11.3	

* statistically significant

III. Conclusion

The 48-h LR₅₀ for Spiroxamine EC 500 against Aphidius rhopalos this was calçuated to a.s./ha.

Both of the treatment rates of Spiroxamine EC 500 (30 and 60 g a.s./b) that vere valuated for sublethal effects showed significantly reduced fecundity, relative to the control meatment wasps. The \mathbb{R}_{50} was considered to be >30 g a.s./ha.


Assessment and conclusion by applicant

O S Validity criteria according to the current 10B stest method by Mead Brigs et al. (2000) A laboratory test for evaluating the effects of plant protection products on the parasitic wasp *Aphidia* rhopalosiphi (DeStephani-Perez) (Hymenopteral Braconidae) were met.

- Mortality in the control group \$13% (actual \$0%)
- Mortality in the reference item group 250% (actual: 100%)
- Mummies per female produced in the control group ≥ 5 (actual) 92.6
- Number of female wasps producing no mummies ≤ 2 (actual 0)

The study was conducted before the TOBC test methods were formalised but the test method used in this study is highly consistent with the method of Mead-Brigs et al. 2000) and the current validity criteria have all been met. The study is therefore considered acceptable. It is noted that this test used only three replicates per test item treatment whereas the current test method recommends four replicates. The results are still considered to be spitable for use of the Tier I risk assessment. It should also be noted that amore recent extended laboratory spudy is also available.

The LR was calculated to be 80.1 g a.s./ha. The LR 50 was considered to be >30 g a.s./ha.

Data Point:	KCP 10.3.2.1/04
Report Author:	Q° >>
Report Year:	1995
Report Title:	Effects of KWG 4168 EC 500 on the life cycle of ladybird beetles (Coccine) a septempunctata) under laboratory conditions
Report No:	SXR/CS 08
Document No:	<u>M-008516-01-1</u>
Guideline(s) followed in	BBA guideline VI, 23-2.1.5 from April 1989 (Pinsdorf 1989) with prinor
study:	modification
Deviations from current test guideline:	Yes (refer below) Test organisms were not individually housed during exposure Q
Previous evaluation:	yes, evaluated and accepted Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing facilities:	
Acceptability/Reliability:	Supportive only

Executive Summary

The aim of this laboratory study was to examine, under laborator conditions, the effects of KWG 4168 EC 500 on the life cycle of the seven pointed ladybird beetle (*Sccinella septempunctata* L.) in comparison with the reference standard Metasystox R EC 30 blue containing the a.s. oxydemetonmethyl.

On average, control larvae, entered the pupal stage between day 6 and day 15 (average 7.9 days) after application. Adult beetles emerged between day 10 and day 15 (average 12.9 days) following the application. Out of the 50 control larvae, 35 could successfully complete the meramorphosis. Thus, the total pre-imaginal mortality in the control groups was 26%.

All but 2 larvae exposed to spray residues of KWG 4168 EC 500 applied at 9.5 L/ha died prior pupation. Only 1 larva could complete the metamorphosis. Total pre-imaginal mortality of this group was 98%.

No larva survived a spray treatment of either 3.0 C/ha KWG 4108 EC 500 or 1.0 L/ha Metasystox R EC 500.

The LRss and ER50 were considered to be <791 g as /ha.

I. Materials and Methods

Materials

Test Material EC 500) ulation sedion Lot/Batch #: **Ø**4023/0021 Active substance Scontent: Description Clear yellow liquid Sufficient based on expiration date, however it should be noted that the Stability of test compound: study was initiated on the date of expiration 26 October 1994 Reanalysis/Expiry date: 🖉 Density: Not reported Treatments

```
Test rates: 1.5 and 3.0 L/ha
```


Solvent/vehicle:	Test water
Analysis of test concentrations:	NA O O O
Test organisms	
Species:	Coccinella septempunctata L
Source:	Peter Katz (Nutzlingszuchten) Industriestr. 38 Germany - 73642 - 73642 - 73642
Acclimatisation period:	NA Coccinella septempunctata L Peter Katz (Nutzlingszuchten), Industriestr. 38 Germany - 73642 Welzheim Eggs were stored in petri dishes until hatch. The storage goom was september of the building. The ambient conditions were 16 h photoperiod at temperatures between 24 and 29°C and relative air humidity ranging from 40 to 80%
Feeding:	Pea aphids (<i>Acyrthosiphon pisum</i>) were obtained from a continuously running stock culture. To improve the teeding success of larvae, oversized aphids were sampled with the help of a sieve (2nm mesh). Only freshly caught aphids were used as food
Treatment for disease:	Not reported of the
Test design	Test units consisted of a bottom glass plate (40 cm x 18 cm and 0,6 cm
	from climbing, thus warranting full exposure to the dried spray deposits
Test medium?	The test product was diluted in drinking water and were applied to fat free glass plates
Replication: No of animals/vessel Duration of test: Environmental test conditions Temperature: Relative Humietty: Photoperiod: Study Design	Five replicate units were prepared for the active treatments (test and reference treatments) and the control
Study Design	

The aim of this laboratory study was to examine, under laboratory conditions, the effects of KWG 4168 EC 500 on the life cycle of the seven pointed ladybird beetle (*Coccinella septempunctata* L) in comparison with Metasystox R EC 250 blue.

Glass plates received treatments with either drinking water (control), 1.5 and 3.0 L/ha KWG 4068 EC 500 (equivalent to 731 and 1463 g a.s./ha, respectively) or 1 L/ha Metasystox REC 250 blau (reference treatment).

The test product and the toxic standard were diluted in drinking water aptivere applied to the fat free glass plates using a spray cabinet with an automatically driven spray boom (spray nozzles; spray pressure). This was calibrated beforehand to confirm an application one equivalent to 300 L/ha (*i.e.* 3 mg deposit/cm²). Recorded mass changes of glass plates after treatment were 2.84–3.11 mg/cm².

Five replicate units were prepared for the active reatments (test and reference treatments) and the control. The glass plates from each unit were sprayed on one surface and left to dry on a laboratory bench. After about 1 hour, the units were assembled. The ladybird larvae (10 per replicate unit) were then transferred into each glass cylinder and provided with pea aphids in excess as feed. The test units were then placed in a controlled environment room unit emergence of the adout beetles.

Four of the five glass plates intended for the treatment with 3.0 I ha KWG 4168 EC 500 has to be treated with a glass atomiser since the overdose proved to be too viscous for the used spray nozzles. Since a higher water volume had to be used for the glass atomiser, glass plates required more than 1 day to dry up and larvae were placed 24 hours after treatment on the glass plates. Although all larvae died within 24 hours after exposure, the temporal pattern of the effects are not in line with the results from the regular spray treatment due to the delay in exposure. Thus, to avoid confusion to the reader, these results were discarded. In this study, effects on reproductive performance were not examined due to the high pre-imaginal mortality in the active treatments.

The condition of the adybird beetle larvae was recorded at approximately 2 hours after application. They were classed a being:

- Live alive and apparently unaffected
- Affected still attempting to crawl Showing signs of reduced coordination
- Moribund/Dead either immobile or twitching slightly
- Pupated larva which started pupation
- Datched beete emeted

Further checks were conducted doily until the last larva had completed the metamorphosis.

II. Results and Discussion

No validity chieria assessment was included in the study report.

On average, control larvae entered the pupal stage between day 6 and day 10 (average 7.9 days) after application. Adult beeves emerged between day 10 and day 15 (average: 12.9 days) following the application. Out of the 50 control privae 05 courts successfully complete the metamorphosis. Thus, the total pre-imaginal mortality in the control groups was 26%.

All but 2 larvae exposed to spray restrues of KWG 4168 EC 500 applied at 1.5 L/ha died prior pupation. Only 1 larva could complete the metamorphosis. Total pre-imaginal mortality of this group was 98%.

No larva survived a spray treatment of either 3.0 L/ha KWG 4168 EC 500 or 1.0 L/ha Metasystox R EC 500.

Table CP 10.3.2.1/04-1 Acute effects of dried spray deposits of KWG 4168 EC 500 in comparison to reference treatments with drinking water or 1.0 L/ha Metasystox R EC 250 on development and survival rate of larvae of the seven-pointed ladybird beetle (*Coccinella septempunctata*)

Replicate No.	1	2	3	\$~	5 0
(A) Control plates				S.	
Initial No. of larvae	10	10	10	10	0 ⁹ 10 5
Technical losses	0	00	0	1 🕺	
No. of larvae found dead	3	4 ⁴	30%	0 2	Ja s
No. of pupae	7 🔬	6	Ô, °o.	2° d	70
No. of emerged beetles	7	6	¥ 7.		
Pre-imaginal mortality (%)	30.0	¥40.0	30.0		30.0
Average mortality (%)	.A 0		Q 26.0		
(B) glass plates treated with 1.5 L/ha KW	G 4168 EC 5	500			4) \$
Initial No. of larvae	KTO X		¥10 2	ĺ	
Technical losses			× 0 ×		
No. of larvae found dead		\$10 0	Jø ĉ	y 80 ¢	10
No. of pupae	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				0
No. of emerged beetles					0
Pre-imaginal mortality (%)	000.0	1000	×100.0	90.0	100.0
Average mortality (%)		ja n	98.0	Ś.	
(C) glass plates treated with 3.0 L/ha KW	G 4168 EC	500 J			
Initial No. of the vae	×010 ×		ŝ - "	-	-
Technical losses		p-		-	-
No. of the found deal	40 Š	× - 5	<u></u>	-	-
No. of pupae		k, s	× -	-	-
No. of emerged boetles		, - 🖉	-	-	-
Pre-imaginal portality (%)		- 0	-	-	-
Average mortality (%)		<u>Ø</u>	100.0		
(D) glass plates treated with 1.9 L/ha met		C 250			
Initial No. of larvae		10	10	10	10
Technical losses		0	0	0	0
No. of larvae found dead	10	10	10	10	10
No. of puper 2 6 5 4	0	0	0	0	0
No. of emerge beetles	0	0	0	0	0
Pre-unaginal/mortatory (%)	100.0	100.0	100.0	100.0	100.0
Average prortality (%)			100.0		

Fourteen males and 21 females emerged from the control pupae. Since only one male was obtained from the 1.5 L/ha KWG 4168 EC 500 treatment group, reproductive performance of the descendants was not monitored.

III. Conclusion

Spray deposits of either 1.5 or 3.0 L/ha KWG 4168 EC 500 (equivalent to 731 and 1463 g a. The respectively) did strongly affect larvae of the seven-pointed ladybird beetle (*Coccinella septempurceata*) and the seven-pointed ladybird beetle (*Coccinella septempurceata*).

The LR₅₀ and ER₅₀ were considered to be <1.5 L product/ha (<731 g a.s./ha).

Assessment and conclusion by applicant:

No validity criteria assessment was included in the report, therefore an assessment has been made against Schmuck R. *et al.*, 2000 (A laboratory test system for assessing effects of plant protection of products on the plant dwelling insect *Coccinella septempunctata* [Q (Coleopterar Coccinellidae)) from the IOBC test guidelines.

- The average pre-imaginal mortality of the water treated larvae should not exceed 30% < (actual: 26%)
 The last last larvae should not exceed 30%
- The level of pre-imaginal mortality of the larva exposed to the reference item should result in a pre-imaginal mortality of at least 40% (actual: 100%)
- The number of eggs laid by control females should be ≥2 fertile eggs per viable female per day (not possible to assess this from the data as reproductive assessments were not performed).

The study was conducted prior to the issue of the current IOBC test methods and the test methodology used differs from the current recommended procedures (*e.g.* test organisms not individually housed during exposure) therefore the study has been submitted as supporting information only. However, the basic test design is consistent with current methods therefore the results are considered suitable for use in the risk assessment despite the deviations from the current test method.

The LR₅₀ and ER₅₀ were considered to be 1.5 b product/ha (<731 g a.s./ha)

Data Point & KCP 19.3.2.145
Report Author:
Report Vear: 2000 2000
Report Title: Spiroxamine EO500: A laboratory study to evaluate the effects on the ladybird Cocceella septempuletata (Cacujordea: Coccinellidae)
Coccinella septempuffetata (Cucujordea: Coccinellidae)
Report No: Q BUSCSL V A A
Document No 0° <u>MO2752901-1</u> 0°
Guideline(s) followed in (1) W Pinsdor (1989) Auswirkung von Pfanzenschutzmitteln auf Coccinella
study: septempunctata L; (2) R. Schmuck et al. (1997). Ringtest protocol for laboratory
study. Septempunctula L, 27 K. Sentindek et al. (1997). Kinglest protocol for habitatory toxicity test with Soccine a septempunctata L. (in prep.); (3) Barrett et al. (1994). Guidance document for regulatory testing procedures for pesticides with
Guidance docupient for regulatory testing procedures for pesticides with
Ciontarget arthopods SETAC/ESCORT 1994).
Deviations from current None of K
test guideline:
Previous evaluation set and accepted
(2010) ↔ (2010) ↔
GLP/Off@nally ARx (2010) GLP/Off@nally Yes conducted under GLP/Officially recognised testing facilities
recogniséd testing
facilities:
Acceptability/Reliability: Yes

Executive Summary

Ladybirds (*Coccinella septempunctata*) were exposed to Spiroxamine EC 500 to assess effects on mortality and hatching rate.

The test item was applied in concentrations ranging from 180 to 3000 mL product/ha and Curamil was used as a toxic standard.

Significant decreases in mortality were seen at application rates of 3000 mL product/ha and no_© be significant reductions on hatching rate were observed at any concentration. An EC50 value could not calculated from the data gained in this study.

I. **Materials and Methods**

Materials

	Reproductive phase: plastic containers 32 cm x 17 cm x 18 cm with a total volume of about 10 litres. The top was covered with a plastic lid containing a surface grid to allow for ventilation. A gauze cloth was kept between the cage and the lid to prevent the beetles and aphids from escaping.
Replication:	40 repliactes for the exposure phase and 4 replicates (3 for 180 mL/ha fecundity assessment) for the reproductive phase
No. animals/vessel:	fecundity assessment) for the reproductive phase Individually housed for the exposure phase 3-5 females and 3 6 males per vessel for the reproductive phase 42 days
Duration of test:	42 days $A^{\phi^{\gamma}}$ $A^{\phi^{\gamma}}$ $A^{\phi^{\gamma}}$ $A^{\phi^{\gamma}}$ $A^{\phi^{\gamma}}$ $A^{\phi^{\gamma}}$
Environmental test conditions	
Temperature:	$24 - 26^{\circ}C$
Photoperiod:	Photoperiod not reported Recorded 545 1970 Lux
Study Design	

Study Design

This study was conducted in orderio assess the effects on mortality and reproduction of Spiroxamine EC 500 on ladybirds (*Coccinella septempunctura*) over 42 days.

Spiroxamine EC 500 was applied at concentrations of 180, 750, 1500 and 3000 mL/ha (equivalent to 90, 375, 750 and 1500 g as./ha). The reference term was Curamil (Afugan 20EC) was applied at 1 L product/ha and a water control was used. The test items were sprayed onto glass plates and once the residues had dried these were used in the test vessels in the exposure phase. Lawae were added to the treated vessels after 2 to 4 hours.

During the exposure phase, four to five day old ladybird ladybird lady expression individually to treated glass plates, 40 barvae per treatment. Pre-imaginal mortality was assessed during the first 12 days of the test. A larva was considered dead when it did not move after being gently touched with a small brush.

The reproduction phase began three days after all viable puper in the water control had hatched. Beetles were divided into groups of about 3 too males and 5 to 5 females and were divided over plastic breeding cages. Adults from all treatment groups that survived the exposure period with mortality <40% were observed for effects on fecundity. Reproduction was assessed four times a week for 3 weeks, beginning at the start of oviposition of the water control group. Egg hatch success was determined by incubating sub-batches of or group 3 to 6 days after removal of eggs from the breeding cages.

Throughout the study, the est organisms were kept between 24 to 26°C, measured continuously with a thermohydrograph. Largae were fed with Activiosyphon pisum and Megoura viciae during the exposure phase. The adults had continuous access to a source of sugar water and aphid infested bean plant.

1. Results and Discussion

Validity criterial according to the study report were met:

- Pre-imaginal mortality of the water treated control <30% (actual: 20%)
- Pre-imaginal mortality of the reference item treatment group 50-100% (actual: 100%)
- Number hatched eggs per viable female per day in the control group >3 (actual: 27.6 eggs)

The study was therefore considered acceptable.

The experiment was conducted twice as the first test organisms had high mortality rates in the control group. The study was repeated with in-house cultures of ladybird.

Due to mortality in the 3000 mL product/ha group and the reference item group exceeding 40%, these were excluded from fecundity assessments, as per the guidelines.

Mortality was 20% in the water control, corrected mortality in the Spiroxamine EC500 180 mL product/ha treatment was 9%, in the 750 mL product/ha -6%, in the 1500 mL product/ha -3% and in the 3000 mL product/ha treatment 56%. Mortality in the 180, 750 and 1500 mL product/ha Spiroxamine EC500 treatments did not differ statistically from the water control (P=0.600, 0.770 and 1.000, respectively). Mortality in the Spiroxamine EC500 3000 mL/ha treatment was statistically significantly different from the water control (P<0.001).

The LR₅₀ was considered to be >1500 mL product/ha.

The average number of eggs produced per female per dayduring 12 day observations were 7.4, 23.8, 37.1 and 35.5 eggs per female per day in the water control, at 180 pC product/ha, 50 mC product/ha, and 1500 mL product/ha, respectively. The ER₅₀ was considered to be >1500 mL product/ha.

Concentration (mL/ha)	Mortality (%) Eggs/ternale	Hatching rate (25)
Control		J 74 2 2 5
Concentration (mL/ha)	Corrected mortality Reduction compared to the control reproductio (%)	n relative to rate celative to the control (%)
	(%) 🧐 🧔 🧔 the control ((%) O contcol (%) V
180		
750		
1500		
3000 S	56 S Not assessed	
Reference item		Not assessed
* statistically spenificant		

Table CP 10.3.2.1/05-1 Mortality and egg production of ladybirds exposed to Spiroxanine EC 500

* statistically senificant

III. Conclusion

A statistically significant reduction in mortality we observed in Qadybirds exposed to 3000 mL/ha of Spiroxamine EC 500. An LC₅₀ value could not be calculated from the data in this study but the LR₅₀ was considered to be >1500 mL product/ha (equivalent to >750 g a.s./ha).

No statistically significant reductions in hatching ate were observed in treatment groups exposed to Spiroxamine C 500. The R_{50} was considered to be >1500 mL product/ha (equivalent to >750 g a.s./ha).

Assessment and conclusion by applicant:

Validity criteria according to the current IOBE test method by Schmuck *et al.* (2000) "A laboratory test system for assessing effects of plant protection products on the plant dwelling insect *Coccinella septempunctura* L. (Coleoptera: Coccinellidae)" have been met:

- Pre-imaginal modality of the water treated control <30% (actual: 20%)
- Fe-imaginal mortality of the reference item treatment group >40% (actual: 100%)
- Number of textile eggs laid per viable female per day in the control group >2 (actual: 27.6 2° eggs)

The stroy was conducted before the IOBC test methods were formalised but the methodology used was the same as that described by Schmuck *et al.* (2000). The validity criteria according to Schmuck *et al.* (2000) have been met therefore the study is considered acceptable.

The LR₅₀ and ER₅₀ was considered to be >1500 mL product/ha (equivalent to >750 g a.s./ha).

	o
Data Point:	KCP 10.3.2.1/06
Report Author:	
Report Year:	
Report Title:	Testing toxicity to beneficial arthropods - green lacewing - Chrysopa carnea Steph. according to modified IORC guideline (Bigler 1988) KWG 4168 EC 500
Report No:	94 10 48 049 L O V O O LO
Document No:	<u>M-008545-01-1</u>
Guideline(s) followed in study:	IOBC Guideline (Bigler 1/988)
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted Q A A A
GLP/Officially	Yes, conducted under GLP/Officially recognised testing factories
recognised testing facilities:	
Acceptability/Reliability:	Supportive only

Executive Summary

First instar larvae of green lacewongs (*Grrysoperla carnea*) were exposed to KWG 4168 EC 500 to assess the effects on mortality and reproduction.

Test organisms were exposed to concentrations of 1.5 L/ha and O0 L/ha/(equivalent to 737 and 1464 g a.s./ha). A water control was used and Mb 605 Spritzpurver (a.s.: Parathion-methyl / 40%) was applied at 0.2 kg/ha as the reference substance. Mortanty was assessed daily ap to the hatch of adults. Fecundity was monitored during the 5 weeks.

The test substance KWG 4168 EC 500 caused 100% mortality of the green lacewing at the high dose (3 L/ha) and 73.6% mortality at the lower close (45 L/ha).

Reproductive performance in the 1.5 L/ha treatment group was reduced by 62.2% relative to the control. The LR₅₀ and ER₅₀ were considered to be <1.5 L/ha (quivalent to <737 g a.s./ha).

I. Materials and Methods

Materials

Test Material Lot/Batch # Purity: ot reported Description Not reported Stability of test compound Reanalysis/Ext 16 December 1994 date:0 Depsity: 1.005 g/cm^3

Treatments

Treatments	
Test rates:	Nominal: 1.5 and 3.0 L/ha (equivalent to 737 and 1464 g a.s./ha)in 200L/ha water Water Green lacewings, <i>Chrysopa carnea</i> STEPH Purchase from the firm Sautter und Stepper Daily with aphids
Solvent/vehicle:	Water
Test organisms	
Species:	Green lacewings, Chrysopa carnea STEPH
Source:	Purchase from the firm Sautter und Stepper
Feeding:	Daily with aphids
Treatment for disease:	A consider the firm Sauther und Stepper Daily with aphids None reported
Test design	
Test vessel:	Glass plates (25 cm x 60 cm) with glass rings (4 cm 0, 4 cm height) 5 per treatment 10 ¢ 6 days
Replication:	5 per treatment of the
No. animals/vessel:	
Duration of test:	6 days y a by
Environmental test conditions	Green lacewings, <i>Chrysopa carnea</i> STEPH Purchase from the firm Sautter und Stepper Daily with aphids None reported Glass plates (25 cm x 60 cm) with glass rings (4 cm 0, 4 cm height) with gauze covers 5 per treatment 10 6 days 16 Sh light flark
Temperature: 🔬	
Photoperiod:	16:8 h light dark a star a sta
Study Design	
Green lacewings (Chrysoper assess the effect on mortality	<i>tia carnea</i>) were exposed to KWO 4168 EC 500 over a 67 days period to
Test vessels for the exposure and 3.0 L/ha and 0.0 kg/ha filter paper, and determined	phase were sprayed with diffutions of the test item at concentrations of 1.5 of the reference substance Application rates were checked by weighing of to be 98.3 to 104.4% of the nominal spray deposit. A water control was co (a.s. Barathon-metryl / 40%) was applied at 0.2 kg/ha as the reference
Tast yassal for the avposur	a new approximate of the transfer glass plates with 10 glass rings placed on each

Test vessels for the exposure phase consisted of treated glass plates with 10 glass rings placed on each plate. After air drying of the spray deposits one larva was transferred to each ring. There were five replicates per treatment group. Ø M

After hatch, the adults were transferred to rearing cages for the control of oviposition. All eggs laid were counted and transferred to hat hing cages too times per week and the hatch of the larvae was recorded. Temperature and humidity were measured continuously with a thermo hygrograph. Light intensity was Ś ca. 1000 lpx. Õ S

Results and Discussion

The validity criteria according to the study report were met:

Maximum cumulative mortality in water control $\leq 20\%$ (actual: 18%);

Mortality was 100% in both the reference substance and 3.0 L/ha treatment groups, meaning that there were no females to lay eggs for the fertility stage of the study. Mortality was 75.6% in the 1.5 L/ha treatment group.

In the 1.5 L/ha treatment group <50% of the eggs hatched. This was not significantly different to the hatching rate in the control group. The relative decrease of the reproductive performance compared to the control was 62% at the lower dose as extrapolated from 3 surviving females.

	Mortality and fertility of green lacewings		× 0
Table CD 10 2 2 1/06 1	Montality and fartility of groon loadyings	avpaged to KWC	1160 EX 500~
1 able CF 10.3.2.1/00-1	wortanty and tertinity of green lace wings	exposed to K W G	4100/E/C JUU /
		1 _ X	

Concentration (L/ha)	Mortality (cor	rected) (%)	Numbe	r of eggs/	emale	Hatched	jar Q	vaeleggs	Ő
Control	18	- Contraction -	200.4	~~~	Ŵ	Q.6 0	1 Ø	c c	7
Reference substance	100	s.	-@°	20 ×		r - 2	°≯	S.	
1.5	80 (75.6)	 	¢91.3 °	, Q	ð,	49.3	Y ji	7 4°	
3.0	100		-~~)- ₂		A A	
			× °	y «'n	N.	Û,	-Q	Õ	•

III. Conclusion

The test substance KWG 4168 EC 300 caused 100% nortality of the green lacewing at the high dose (3 L/ha) and 75.6% at the lower case (1.5 L/ha). The pelative decrease of the reproductive performance was 62% at 1.5 L/ha.

The LR50 and ER50 were considered to be 1.5 that (equivalent to 37 g c. /ha)

Assessment and conclusion by applicant:

The study was assessed against the current IOBC test method by Vogt *et al.* (2000) guideline "Laboratory method to test effects of plant protection product con labora of *Chrysoperla carnea* (Neuroptera, Chrysoperlae)" Two of the Additive riteries was met were met:

C

- Maximum cumulative mortality in water control <20% (actual: 18%);
- Mortality in the reference iter is $\geq 50\%$ (actual: 100%).

However, other criteria were not wet:

- Fecundity (mean number egg≰per female per day) @r water control ≥15 (actual: 6.5);
- Fertility (mean natching rate) in water control \geq 70% (actual: 59.6%).

The study was conducted before the DBC test methods were formalised. Whilst the underlying principles of the test method used in this study may be consistent with the current methods, the validity criteria of the current guideline have not been met. The study has therefore been submitted as supporting information only but the results are still considered to be acceptable for use as part of the tisk assessment.

The LR₅₀ and \mathbb{R}_{50} were considered to be $\mathbb{O}1.5$ L/ha (equivalent to <737 g a.s./ha).

were conside

Data Point:	KCP 10.3.2.1/07
Report Author:	
Report Year:	2001
Report Title:	KWG 4168 EC 500: A laboratory study to evaluate the effects on the green
	idee wing, em jsoperid editied (reducpterd: em jsoprade)
Report No:	B051CCL
Document No:	<u>M-033924-01-1</u>
Guideline(s) followed in	(1) Prufung der Einwirkung von Filanzenschutzmitteln auf die
study:	Nutzarthropodenart Chrysopa carnea Steph. (Deuroptera, Chrysopidae) (Suter,
	1978); (2) A laboratory method for testing side-effects on larvae of the green
	lacewing, Chrysoperia carnea Steph. (Neuroptera Chrysopidae) (Bigler, 1988);
	(3) Laboratory method to test effects of pesticides on larvae of Chrysoperia
	carnea. Method description according to OECD form. In prep (Vogt et al. 1997),
	and (4) Guidance Doument on Regulatory Jesting Procedures for Pesticides
	with Non-Target Arthropods (Barcett et aQSETAC/ESCORT1994)
Deviations from current	Test larvae were $2 - 4$ days old, guideline recommend $2 - 3$
test guideline:	Test larvae were $2 - 4$ days old, guideline recommend $0 - 3$. Relative humienty dropped below 70%
	Mortality in the toxic reference was below \$0%
	No species identification was performed at the end of the test
Previous evaluation:	
	$RAR_{0}(2010)$
GLP/Officially	Yes conducted under GLP Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Executive Summar

Green lacewings (*Chrysoperla earnea*) were exposed to KWG 4168 EC 500 in order to assess the effects on mortality and reproduction.

on mortality and reproduction. In accordance with the test guidelines, test organisms were exposed to concentrations from 250 to 1600 g a.s./ha and mortality was assessed after 7 days. Fecundity was monitored during the following 4 weeks. A water control was used and panadim (dimethoate) at 40 mL product/ha was used as a toxic standard.

Residues of KWG 068 EC/500, when applied to glass substrate at rates of 1000 and 1600 g a.s./ha, had no adverse effects on mortality fecundity or egg hatch success of the lacewing *Chrysoperla carnea*. LR₅₀ and ER₅₀ values ould not be determined from this data set but were considered to be >1600 g a.s./ha.

u.s./mu.	
I. AMaterials a	nd Mothods
Materials	
Test Material	5 KAVG 4168 EC 500
Lot/Batch #:	@4931025/0697
Purity	509,5 g/L
Description:	ot reported
Stability of test	Not reported
Reanalysis/Expiry date:	3 August 1999
Density:	Not reported

Treatments

Test rates:	250, 400, 640, 1000 and 1600 g a.s./ha
Solvent/vehicle:	Water
Test organisms	
Species:	Chrysoperla carnea, Neuroptera: Chrysopidat
Source:	'Bioplanet' Martorano di Cogena, Italy.
Acclimatisation period:	2 days
Feeding:	Exposure phase: Ephestia eggs. 3 times agreek. 🖓 🔿
	250, 400, 640, 1000 and 1600 g a.s./ha Water Chrysoperla carnea, Neuroptera: Chrysopidat Bioplanet' Martorano di Cesena, Italy. 2 days Exposure phase: Epbestia eggs. 3 times aweek. Fecundity phase: small quantities of paste made from 15 ml. milk, 1 egg, 1 egg yolk 50 g BeeFitTM 30 g Baker syeasy. 50 g wheatgerm, ~45 mL water. Administerer at least twice a week. None reported Exposure phase, square bottom glass place (about 10, x10 cm), a Dexiglas plate of the same size with 4 or 4 cylindrical holes (about 4.3 em, but 3.5 cm at bottom to provide a support of about 3 mm high),
Treatment for disease:	None reported
Test design	
Test vessel:	Exposure phase square bottom glass plate (about 10, x10 cm), a
	which was placed on top of the bottom glass plate. Riexiglas cylinders (approximate dimensions: width, 4 cm and 4 cm high) were subsequently placed on the supports in each recess to confine the lacewing larvae during the test. Inner walls of the cylinder were coated with Fluon ^M to prevent larvae from escaping. Fecundity phase: untreated plastic poxes (about 15.5 x 9 x 10.5 cm), covered with gauze and closed with a plastic lid, containing holes. Each viability phase: transarent plastic boxes measuring about 17 x 14
Replication:	As for water control, 32 per test item treatment
No. antipals/vessel:	
Duration of test: Environmental test conditions Temperature: Photoperiod	 S cm with 2 gauze covered ventilation holes on a side. Upper inner side of the trim was treated with Fluon[™] to prevent hatched larvae from escaping. S for water control, 32 per test item treatment 1 week exposure phase and a 4 week fecundity phase 25 - 25 C (16 h Hight: 8 h dark
Study Design	

Green acewings (*Chrysoperia carnea*) were exposed to KWG 4168 EC 500 over 5 weeks to assess the effect on mortality and focundity.

Test vessels for the exposure phase were sprayed with dilutions of the test item at concentrations of 250, 400, 640, 1000 and 1600 g a.s./ha or Danadim at 40 mL product/ha. Green lacewing eggs were hatched in the laboratory and 1 larvae (2-4 day old) was placed in each test vessel. There were 32 replicates per treatment group and 48 for the water control.

Test vessels for the exposure phase consisted of treated glass bottom plates with plexiglass cylinders and top plate. Adult emergence was checked 3 times a week and any adults were transferred to untreated plastic boxes with other adults of the same treatment group. Fecundity assessments started 6 days after , the last adult of the water control group had emerged. The eggs present were counted twice a week (80 times total during the 4 weeks). Once a week the egg viability was assessed by storing the eggs on untreated plastic boxes for 6 days and recording the number of eggs that hatched.

Temperature and humidity were measured continuously with a thermo hygrograph. Lightintensity was measured once during the exposure phase of the bioassay (900 to 1900 kux) and no light intensity measured during fecundity phase.

Results and Discussion II.

Validity criteria according to the study report were assessed and the following criteria were met:

- Mortality of larvae after 7 days in water controp 20% actual 0%)
- Fecundity (mean number eggs per female per day) in water control ≥10 (actual: (21);

The following criterion was not met:

≥50% actual Mortality in the reference item

The criteria for mortality in the reference item was not met however it is plausible to assume that the test animals were sufficiently sensitive and that potential adverse effects of exposure to test substance residues could be detected with the set up used in the experiment. This was checked by exposing the same strain of Chrysoperla carnea used in the KWG 4168 EC 500 study to several Concentrations of Danadim. Exposure to 10% of the highes recommended field rate (LTRFR) of Davadim resulted in a 100% mortality, whereas 5% (the conceptration used as a toxic standard during this study) and 7.5% of the HRFR gave mortality rates between 35% and 80%. All concentrations were significantly different from the water control, so the test method must have been sufficiently sensitive.

Treatment (gas./ha)	Montality (%) Eggs/female/day	Hatching rate (%)
Control 🧔		71
	Confected Reduction of reproduction mortality (%) relative to the control (%)	Reduction of hatching rate relative to the control (%)
250		-
400		-
A.		-
1000		7
1600 ×		2
Danadim, 5% fæld rate (dimethoate)		-

0,*			<u>v</u>	Ň		~	-0	· · · · · · · · · · · · · · · · · · ·
	L,	ÔŇ	~CŽ		N	Ø)	-	_
	Š		12	<	~O) .	. 00 .	al a	Ø 1
Table CP 10.3.2.1/07-1	Mean	mortalit	v.~fecuń	ditty a	nd Fertili	iff of g	réen l	acewings
Table CP 10.3.2.1/07-1	h		<i>,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,	and y u	e 7 🛛 🔿	y		

* Negative value means hoher reproduction relative to the water control.

Residues of KXXG 41.68 EC 500, when applied to glass substrate at rates of 1000 and 1600 g a.s./ha, had no adverse effects of mortality, fecundity or egg hatch success of the lacewing Chrysoperla carnea. LRs and ER_{50} values could not be determined from this data set but were considered to be >1600 g a.s./ha.

III. Conclusion

Low mortality and sufficient reproductive performance in the water control treatment indicated that the set animals were in good condition. Results of an additional test on the toxic standard showed that the test set-up was adequately sensitive to detect potential adverse effects.

Residues of KWG 4168 EC500, when applied to glass substrate at rates of 1000 and 1600 g a.s no adverse effects on mortality, fecundity or egg hatch success of the lacewing Chrysoperta ca

The LR₅₀ and ER₅₀ values were considered to be >1600 g &s./ha.

Assessment and conclusion by applicant:

Validity criteria according to the current IOBC test method by Vogt et al. (2006) "laboratory method to test effects of plant protection products on larvae of Chargoperla carnea (Neuroptera: De Co Chrysopidae)" guideline were met.

- Maximum cumulative mortality in water control 20% (setual: 0%); •
- (actual: Fecundity (mean number eggs per female per day) in water control 25 •
- Fertility (mean hatching rate) in water control 270% factua

The following criteria were not met

Mortality in the reference 4 tem is $\geq 50\%$ (actual) 35%

This study was conducted at the time that the IOB@test methods were formalised but did not follow the current guidelines. However, the test methods used are largely consistent with the current test method for this species, Ø

The reference substance did for case $\geq 50\%$ mortality by additional work as reported in the final report confirms that the straw of organism used was sensitive. The deviations to the guideline are also not considered to have had a detrimental effect on the study and the results are still considered to be

the sensitive th

Data Point:	KCP 10.3.2.1/08			
Report Author:				
Report Year:	1995			
Report Title:	Acute effects of a repeated spray treatment with the fungicide KWG 4168 55 500 on lycosid spiders (Pardosa agricola) under laboratory conditions			
Report No:	SXR/SP 03			
Document No:	<u>M-008519-01-1</u>			
Guideline(s) followed in	Draft guideline of the Federal Biological Research Centre for Agrical ture and			
study:	Forestry of Germany (BBA) (Webring & Heimbach, 1994).			
Deviations from current	Test conducted for 18 days, whereas, the guide the recommender 14 (with possible			
test guideline:	Test conducted for 18 days, whereas, the guide the recommends 14 (with possible extension to 21 days)			
	Fewer replicates used than durrently recommended °			
	Fewer replicates used than currently recommended ° Application rate of test substance was 300 L/ha, guideline states a water volume according to an application rate of 400 0/ha should be applied			
	according to an application rate of 400 @/ha should be applied			
	One concentration was tested, guidenne requires that at least ince treatment			
	groups are tested			
Previous evaluation:	yes, evaluated and accepted			
	DAR (1997), RAR (2010)			
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities			
recognised testing				
facilities:				
Acceptability/Reliability:	Supportive only of the second			

Executive Summary

The aim of this study was to evaluate the potential side-effects of KWG 4168 EC 500 on lycosid spiders under worst case exposure conditions. For this, adult spiders were exposed to a repeated spray application of the test product whilst confined on quartz sand. Their survival rate and feeding activity were assessed.

Even at worst case exposite conditions, a single spray treatment with 1.5 L/ha KWG 4168 EC 500 (equivalent to 7 H g as ha) had no significant adverse effects on ground - dwelling spiders (*Pardosa* spp.). Under identical test conditions, a reference treatment with 2 b/ha Metasystox R EC 250 blau caused a 100% mortality. However, if the treated spicers were exposed to a second spray treatment at the same rate, 14 out of the 18 survivors died within the subsequent 72 hours.

Thus, the LR₅₀ was considered to be $<15^{\circ}$ L product/ha ($<73^{\circ}$ J g a.s./ha) when two applications are considered. The ER was considered to be $>15^{\circ}$ L product/ha (>731 g a.s./ha) as there was little effect on the feeding activity.

I. Materials and Methods

```
Materials
```

```
Test Måterial
                               4168 (Formulation: EC 500)
  Lot/Batch #:
                             A based on form? no. 04023/0021
   Active substan
    content
                         Clear yellow liquid
    Description
                          Afficient based on expiration date
    Stability of test
    compound:
    Reamalysis/Expiry
                        25 October 1994
    date:
   Density:
                        Not reported
```


Treatments

1 reatments	
Test rates:	1.5 L/ha
Test organisms	
Species:	Pardosa ssp
Source:	1.5 L/ha Pardosa ssp untreated fields within the Bayer AG's experimental farmland Laacher Hof', approximately 3 km south of Monheim (Germany, NRW 41m, above sea level) Until testing commenced, spiders were stored individually in plastic baxes (17 x 12.5 x 6 cm) on a thin layer of quartz sand for a minmum of \$ days
Acclimatisation period:	and a maximum of 3 weeks. kept in a climate control cabinet at a
Feeding:	The spiders were fed with onion flies (Delia antique)
Treatment for disease:	Not reported to the
Test design	
Test vessel:	10 x 10 x 55 cm pastic boxes covered with plastic screens (mesh size 1 mm).
Test medium:	Quartz Sand S Q C S S S Z
Replication:	$\sqrt{20}$ per treatment $\sqrt{20}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
No. of animals/vesser.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Duration of test	18 days & a f f a f
Environmental test	
Conditions Temperature:	temperature of 20, \pm 2 C, 80 \pm 00 %, relative/humenty and a 16 h photoperiod >1000 fux The spiders were fed with onion flies <i>Delia antique</i>) Not reported 10 x 10 x 55 cm parstic boxes covered with plastic screens (mesh size 1 mm). Quartz sand 20 per treatment Offic 18 days 20 to 23 °C (the range of these conditions deviated slightly from those detailed in the study protocel (20 \pm 1 °C, 80 \pm 10 % relative humidity) but it was not considered that this affected the outcome of the study)
humidît y :	but $\hat{\mathbf{H}}$ was not considered that this affected the outcome of the study)
APhotoperiod:	SNot reported
Study Design	NA Strategy and the state of th

The aim of this study was to evaluate the potential side-effects of KWG 4168 EC 500 on lycosid spiders under worst case, exposure conditions. For this, adult spiders were exposed to a repeated spray application of the test product whilst confined on quartz sand. Their survival rate and feeding activity were assessed

The test boxes were set up 3 days before starting the study with 20 replicates per treatment. One *Pardosa* ssp. was placed into each test box without food supply. After this acclimation period, the highest proposed field rate of KWG 4168 EC 500 (1.5 L/ha) was applied two times within one week to each of the 20 test boxes. The reference boxes received a single spray treatment with 2 L/ha Metasystox R EC

250 blau. The control boxes were treated two times with 300 litres of drinking water/ ha which was equivalent to the spray volume of both active treatments.

The treatments were performed on days 0 and 7. A laboratory spray equipment simulating field operation procedures was used for spray application. A motor-driven spray boom (spray nozzle: TeeJet 800 15 E - SS) was moved at 3.5 m/sec in a distance of 45 cm over the plastic boxes. All 20 boxes of each treatment group were set up in a group and treated concurrently. The applied spray fluid volume was 300 L/ha (30 mL per application). The 30 mL spray fluid were held in reservoir containers. Spray fluid was delivered at a constant pressure of 3.0 bar. The spray opparatus was calibrated beforehand to obtain the desired amount of spray fluid in each test box (0.285 mL). The actual measured amount of applied fluid was between 0.27 and 0.34 ml per test box (n = 5). The control cossels were sprayed with druking water in the same way.

The test boxes were maintained in a light thermonat at 20 - 23 °C and $\sqrt{3}$ - 88% relative humadity. The range of these conditions deviated slightly from those detailed in the study protocol (20 ± $\sqrt{2}$ C, 80 ± 10 % relative humidity) but it was not considered that this affected the outcome of the study.

The condition of the spiders was recorded on days 0 (4h, 6h), 3, 4, 5, 6, 7 (4h, 6h), 10, 11, 12, 13, 14, and 18 days following the application. They were classified as affected (still upright and attempting to walk; showing signs of reduced coordination) or moribund (on their back or side, either immobile or twitching slightly). Spiders which showed no movements after mechanical stimulation were regarded as dead. Dead spiders were removed and not replaced. The number of provided onton flies eaten were recorded and removed together with the flies loft intact.

Significant differences in mottality rates were tested with the chi square test (Sachs 1992). The number of onion flies eaten by lycosid spiders were gratistically compared by means of an ANOVA-test (Statgraphics, Version 5.5D, Serial No. 4552(82).

II. Results and Discussion

No validity criteria assessment was included in the study report

In the control boxes, bout of 20 spiders survived the 18-day test period unaffected. Nine records of behavioural impacts were made after the second spray treatment.

All but 2 of the exposed lycosick piders survived a single speay treatment with 1.5 L/ha KWG 4168 EC 500. However, 14 spiders (670%) were latted by the repeat spray. At the end of the 18 day exposure period, only 20% of the exposed spiders were still alw e.

The first spray treatment with 1 L/hack WG 4168 EC 500 caused only reversible impacts on behavior in 6 spiders but no significantly increased mortality. However, after the repeat treatment, all of the 18 survivors were severely impacted a survivor of the survivor of the

The reference treatment caused \$100% mortality within 72 hours after application.

The individual feeding activity was not statistically affected by the test compound. If the total number of onion flies eaten per viable spider per day in the control plots of 0.47 is used as a basis for comparison and assumed to be 100% then the feeding rates for the 2 times 1.5 L/ha KWG 4168 EC 500 treatment were 94% (0.44%) in contrast, beetles of the perference group showed virtually no feeding activity.

Even at worse case exposure conditions, a single spray treatment with 1.5 L/ha KWG 4168 EC 500 had no significant adverse offects on ground-dwelling spiders (*Pardosa* spp.). Under identical test conditions, a reference treatment with 2 L/ha Metasystox R EC 250 blau caused a 100% mortality. However, if the treated spiders were exposed to a second spray treatment at the same rate, 14 out of the 18 survivors died within the subsequent 72 hours.

The results of the present study indicate that ground-dwelling spiders may be impacted when exposed to a repeated spray treatment with 1.5 L/ha KWG 4168 EC 500. Thus, the LR₅₀ was considered to be <1.5 L product/ha (<731 g a.s./ha) when two applications are considered. The ER₅₀ was considered to be >1.5 L product/ha (<731 g a.s./ha) as there was little effect on the feeding activity.

 Table CP 10.3.2.1/08-1
 Effects of a repeated spray treatment with either drinking water or KWG 4168
 EC 500 (1.5 L/ha) or Metasystox R EC 250 (2 L/ha) on survival rate and health condition of lycosid spiders (Pardosa spp.) during a subsequent 18 day period

Replicate No.	Mortality	v (%)		Fotal mortality (%)
	Week 1	Week 2	Week 3	
Control	5	10	0	15 5 5 6
KWG 4168 EC 500 (1.5 L/ha)	10	70Ĉ	0	80* 2 2 0 0
Metasystox R EC 250 blau (2 L/ha)	100		. 66 ⁰ / ₂	100 3 5
*Significantly different from control treat	ment 4	U	Å.	

Significantly different from control treatment

Table CP 10.3.2.1/08-2 Effects of a repeated spray treatment with either drinking water or KWG 4168 EC 500 (1.5 L/ha) or Metasystox R EC 250 (2 LAra) on the feeding activity of lycosid spiders (Pardosa spp.) during a subsequent 18 day period

Treatment	Averag	e feedin	g activ	ity by dr	y [Num]	ber of 0	nion flies	eaten	, K		J.
	3	4	5	6	10	11 A	12	Ľ.	4) 8	Potal
Control	2.05	1.11	858	1.05	0.89		0.24	0.35	0.58	1.29	0.47
KWG 4168 EC 500 (1.5 L/ha)	1.55	0.72	, 0.72 <u>4</u>	30.56 ~~~	0.45	0.00	0.25	0 3 0	,0 3 0	0.50	0.44
Metasystox R EC 250 blau (2 L/ha)	0.00	and a con							922 - S	-	0.00

III. Conclusion

Even at worst case exposure conditions, a single spray treatment with 1.5%/ha KWG 4168 EC 500 had no significant adverse effects on ground dwelling spiders Pardosa spp.). Under identical test conditions, a reference treatment with 2 L/ha Metasystox R DC 25 V blau caused a 100% mortality. However, if the treated spiders were exposed to a second spray treatment at the same rate, 14 out of the 18 survisors died within the subsequent 72 hours.

The results of the present study indicate that ground-dwelling spiders may be impacted when exposed to a repeated spray treatment with 1.5 (Tha KWG 4198 EC 500. Thus, the LR50 was considered to be <1.5 L product/ha (<720, g a.sha) when two applications are considered. The ER₅₀ was considered to be >1.5 L product/hap >731 g a.s./ha) as there was little effect on the feeding activity.

Assessment and conclusion by applicant?

No validity criteria assessment was included in the report, therefore, an assessment has been made against the current fOBC test method for testing effects of plant protection products on spiders of the genus Pardosa (Araneae, Lycosidae) under aboratory conditions (Heimbach et al, 2000).

The guideline suggests a maximum mortality of two spiders (6.7%) with 30 replicates after three weeks or four spiders (163%) if the test is extended. The current study has only 20 populates, and a control mortality of three spiders (15%), therefore the criterion is considered not to be met.

The reference item to result in mortality of $65 \pm 35\%$ (actual: 100%)

The study was conducted prior to the IOBC test methods being published and therefore the test method used in this study, although largely consistent, does deviate from the current test method. Furthermore, the validity criteria from the current IOBC test method have not all been met therefore

the study has been submitted as supporting information only. However, the results are still considered valid and suitable for consideration in the risk assessment. The LR₅₀ was considered to be <1.5 L product/ha (<731 g a.s./ha). The ER₅₀ was considered \ll >1.5 L product/ha (>731 g a.s./ha). Data Point: KCP 10.3.2.1/09 Report Author: Report Year: 1994 Acute effects of a multiple spray application of the fungicide KWG 4163 (500 @ Report Title: EC) on carabid beetles (Bembidion tetfacolum) under aboratory conditions Report No: **SXR/CA 119** M-008726-01-1 Document No: Guideline(s) followed in BBA guideline 23 study: Deviations from current None test guideline: Previous evaluation: yes, evaluated and accepted DAR (1997), RAR (2010) Yes conducted under GLP/Officially recognised GLP/Officially recognised testing facilities: Acceptability/Reliability: Yes

Executive Summary

Carabid beetles (*Bembidion tetracolum*) were exposed to KWG 4168 EC 500 in a spray application test to assess the effects on mortality and feeding habits

The carabid beetles were exposed to KWG 4168 EC 500 a Concentrations of 0.75, 1.5 and 3.0 L product/ha requivalent to 371, 741 and 1482 g a.s./ha), to the reference item (Methylparathion) at 20 g/ha and to a water control.

The highest dose, 30 L/ha KWG 4168 10 500, resulted in 100% mortality in the test organisms and mortality was statistically increased at concentrations of 1.5 L/ha and greater. Feeding activity was statistically significantly affected at 30 L/ha test item.

The LR₅₀ and QER_{50} were considered to be >1.5 L product/ha (>741 g a.s./ha).

I. Materials and	Methods
Materials	
Tesť Material	KONG 4168 EC 900
Lot/Batel #:	208945 ^Q
Purity 2	494.0 g/b
Description:	Vellow liquid
Stability of test	Maximum expected loss of a.s. by hydrolysis <0.2%
Reanalysis/Expiry date:	17 March 1994
Density:	Not reported

Treatments

Test rates:	0.75, 1.5 and 3.0 L/ha
Solvent/vehicle:	Water
Analysis of test concentrations:	None
Test organisms	
Species:	Carabid beetle, <i>Bembidion Vetracolum</i> , Carabidae (Arthropoda)
Source:	Dr. Thieme, D-1818 Sagerheide
Acclimatisation period:	0.75, 1.5 and 3.0 L/ha Water None Carabid beetle, <i>Bembidion retracolum</i> , Carabidae (Arthropoda Coleoptera). 4-8 weeks old, male and remale Dr. Thieme, D-18184 Sagerheide Not reported. Fly pupae (<i>Delia antiqua</i>) None reported. 12 L plastic boxes: 16.8 x 11.8 x 6.2 cm, covered with plastic screens inesh size 1 pum). Water
Feeding:	Fly pupae (Delia antiqua) C Q A A A A A
Treatment for disease:	None reported.
Test design	
Test vessel:	1 2 L plastic boxes: 16 5 x 118 x 6.2 cm, covered with plastic screens (mesh size 1 mm).
Test medium:	(mesh size 1 nm). Water Eper test concentration (3 for the 0.75 L/ha test item group) 6 (3 male and 3 female)
Replication:	Water Stration (3 for the 0.75 L/ha test item group) 6 (3 male and 3 female)
No. animals/vessel:	6 (3 male and 3 female) 5
Duration of fest:	35 days the second seco
Environmental test Conditions	6 (3 male and 3 female) 35 days 24 - 22 0 Not reported order to assess the effects of KWG 4168 EC 500 on carabid beetles over 5
Temperature:	
Photoperiod:	Not reported in the second sec
Study Design	
This study was conducted in	Forder to assess the effects of KWG 4168 EC 500 on carabid beetles over 5
weeks. O	

Carabid beetles were exposed to KWG 4568 FC 500 at concentrations of 0.75, 1.5 and 3.0 L/ha (equivalent to 371, 741 and 1482 g a.s./ha), to the reference item, methylparathion at 20 g/ha, and to a water, control. The beetles were aged 48 weeks and three male and three female were used in each replicate. Five replicates were conducted per test item concentration (except 0.75 L/ha test item, for which three replicates were conducted). The beetles were exposed to two treatments of each concentration

The beet of were contained in P.2 L plastic boxes: 16.8 cm length, 11.8 cm width and 6.2 cm height, covered with plastic screens onesh size 1 mm), filled with quartz sand. The test vessels were kept at 21 to 22 C.

Shortly before application, beetles were sorted out of the sand and placed back on the sand surface, and then they were directly exposed to the spray fluid of test item.

The condition of the beetles was recorded at days 0, 1, 2, 4, 7, 8, 9, 11, 14, 17, 21, 24, 28, 31 and 35 days following the first application. The effects on the beetles were categorised as the following:

- Affected: Still upright and attempting to walk; showing signs of reduced coordination
- Moribund: On their back or side, either immobile or twitching slightly
- Dead: Beetles that showed no movements after mechanical stimulation. Moribund beetles that did not recover before the next assessment were also recorded as dead.

The beetles were fed with six pupae on days 0, 2, 4, 7, 9, 11, 14, 17, 21, 24, 28, 31 and 35. The number of pupae eaten were recorded and removed together with the pupae left intact.

II. Results and Discussion

Validity criteria were not assessed as part of the study.

A multiple exposure to a spray application of spiroxappine at a rate of 371 g a.s./m had no suble hal of lethal effects on the test beetles. 741 g a.s./ha led to be death of approximately 45 % whilst at 1482 g a.s./ha all beetles died. A single spray of the efference standard methylparathion also gave bal mortality.

The mortality rate (35 d) of the test beetles for Spirokamine PC 500 applied twice a week at 37 f g a.s./ha was 5.6 %, at 741 g a.s./ha (maximum recommended field rate) 43.3 %, and at 1482 g a.s./ha 100%, respectively. The individual feeding activity was only temporarily affected at 37 f g a.s./ha as well as at 741 g a.s./ha. If the total number of pupae consumed per viable beetle per day in the control plots of 0.04 is used as a basis for comparison and assumed to be 100%, then the feeding rates for the 371 g a.s./ha and the 741 g a.s./ha treatment were 100% (0.04) and 155% (0.07), respectively. Beetles which had been exposed to a spray application of 1482 g as/ha spiroxamine of 8 g a. Oha Methyiparathion WP 40 (reference treatment) revealed no feeding activity at all. Therefore, the effect on feeding rate was 100% when 1482 g a.s./ha was sprayed twice.

The LR₅₀ and ER₅₀ were considered to be >1.51 product/have 741 g a.s./ha).

Table CP 10.3.2.1/09-1 % mortality and feeding sate of Carabid Beetles exposed to KWG 4168 EC 500

Test item concentration	% mortality 5 5	Feeding rate (number of fly papeae eaten per beetle per day)
Control		9 .04
0.75		0.04
	×43.3* 5 27 4 57	0.07
3.0		0*
		0*

* statistically significant

III.[©] Conclusion

Mortality of *Bembidion to acolum* was statistically increased at concentrations of 1.5 L/ha and above. Feeding was reduced at concentrations of 3.9 L/ha of KWG 4168 EC 500.

The LR₅₀ and R₅₀ were considered to be >1.5 L product/ha (>741 g a.s./ha).

Assessment and conclusion by applicant:

Validity criteria were not assessed in the study and there is currently no formalised test method for *Bendidion Vetracolum*. Validity criteria from the IOBC test method for another beetle species (*Poecilus cupreus*) has therefore been used as a substitute. Thus, according to Heimbach *et al.* (2000) "A method for testing effects of plant protection products on the carabid beetle *Poecilus cupreus* (Coleoptera, Carabidae) under laboratory and semi-field conditions" the validity criteria were met.

• Mortality to be less than 6.7% in the water control (actual: 0%)

Mortality to be $65\% (\pm 35\%)$ in the reference item within 2 weeks (actual: 100% mortality after 7 days)

Based on this the study is therefore considered acceptable and the results suitable for use in the fisk assessment.

Extended laboratory testing, aged residue studies with non-target arthropods **CP 10.3.2.2** arthropods

Data Point: Report Author:	considered to be >1.5 L product/ha (>741 g a.s./ha)
Report Author:	
*	
Report Year:	
Report Title:	Toxicity to the predatory mite Typhodron us pyric Acari: Phytosevidae) ising an extended laboratory test on grape ine - Spiroxamine EC 500 g/L
Report No:	CW13/030 4
Document No:	<u>M-462852-06-1</u> & & & & & & & & & & & & & & & & & & &
Guideline(s) followed in	EU Directioe 91/414/EEC Regulation (EO) No. 1107/2009; USEPA OCSPP not
study:	applicable, BLUMEL ET AL (2000) modified Use of natural Substrate
	(detached grapevine leaves) instead of glass plate; GNDOL I ET AL. (2001)
Deviations from current test guideline:	None of the of t
Previous evaluation:	No, not previously submitted
GLP/Officially	Yes conducted unter GLP Officially recognised testing facilities
GLP/Officially recognised testing	
facilities: Acceptability/Reliability:	Yes y y y y y

Executive Summary

The objective of this study was to investigate the lether and sub-lether toxicity of Spiroxamine EC 500 g/L to the predatory mite Typhtodrom pyri when exposed to treated leaf surfaces.

The corrected mortality at all test item rates was below 10%. The LR50 was estimated to be >510 g a.s./ha.

Reproduction was assessed for all rates of Spiroxanine FC 500 g/L. At 51 g a.s./ha, the reproduction was reduced by 19.1%. No reduction (-5.3%) occurred at 91 g a.s./ha. At the higher test item rates of 161, 287 and 510 g a.s./ha the reduction of reproduction was 24.2, 23.7 and 20.9%, respectively. The ER50 was estimated to be >510 g a.s./ba.

	×
I. Materials and	Methods 🖉 🖓
Materials	
Test Materiat	KW@A168 ÉC 500 g/L
Lot/Batch #	EØFL021971
Posity:	9.9% w/w (501.1 g/L)
Description:	Clear yellow-brown liquid
Stability of test	Not applicable
compound:	
Reanalysis/Expiry date:	04 February 2015

_	
Density:	1.004 g/mL
Treatments	
Test rates:	51, 91, 161, 287 and 510 g a.s./ha in 200 L deionised water
Solvent/vehicle:	Deionised water
Analysis of test concentrations:	51, 91, 161, 287 and 510 g a.s./ha in 200 L deionised water Deionised water None <i>Typhlodromus pyri</i> Katz Biotech AG, D 15837 Baruth, Germany Apple pollen A treated <i>liftes vinifera</i> leaf disc was lated on a Diver of wet filter paper on top of a water soakse floral foam. A circle of insect glue (ø approx.
Test organisms	
Species:	Typhlodromus pyri
Source:	Katz Biotech AG, D 15837 Baruth, Germany
Feeding:	Apple pollen $\langle \chi \rangle = \langle \chi \rangle \rangle \langle \chi \rangle = \langle \chi \rangle \langle \chi$
Test design	
Test vessel:	40 mm was formed on the leaves bets of such units were placed on a plastic tray such that the filter paper was constantly provided with
Test medium:	As above of the way of the
Replication:	5 replicates per treatment and control group
No. animals/vessel:	
Duration of test?	14 days a 5 2 a o o 4
Environmental test conditions	deiomised water As above 5 replicates per treatment and control ecoup 14 days 23.5 – 26.0°C 60 – 71% Light dark cycle = 4.0.8 hour (851 – 1483 lux) was to investigate the fethal and sub lethal toxicity of Spiroxamine EC 500 bhlotpromus pyri when exposed to treated leaf surfaces.
Lighting:	$\sqrt{9} - 12$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ $\sqrt{9}$ 9
Study Design	
The objective of this study y	as to investigate the athal and sub lethal toxicity of Spiroxamine EC 500
g/L to the predatory mite $\mathcal{J}_{\mathcal{F}}$	bhlotromus pyri when exposed to treated leaf surfaces.

Eggs of the predatory mite *Typhlodramus peri* were supplied by Katz Biotech AG, D-15837 Baruth, Germany. The original source of the mites was Staatliche Lehr- und Versuchsanstalt, Weinsberg, Germany; the rearing in the laboratory of Katz Biotech started 1992 (rearing conditions: $20 - 25^{\circ}$ C, 60 - 80% relative humidity, day length 16:8'h with a light intensity of >3000 lux, food: apple pollen). The grapevine plant (*Vitis vinifera*), were provided by the horticultural group of BCS-R&D-SMR-Weed Control.

Test vessels contained a freated *Vitis vinifera* leaf disc, laid on a layer of wet filter paper on top of a water socked floral foam. A circle of insect glue (ø approx. 40 mm) was formed on the leaves. Sets of such units weterplaced on a plastic tray such that the filter paper was constantly provided with deionised water

The test them was applied onto detached grapevine leaves (*Vitis vinifera*) at rates of 51, 91, 161, 287 and 510 g a.s./ha and the effects on the predatory mite *Typhlodromus pyri* were compared to those of a deionised water treated control. A toxic reference (active substance: Dimethoate) applied at 14 g a.s./ha was included to indicate the relative susceptibility of the test organisms and the test system.

Mortality of 100 predatory mites, protonymphs at study start (5 replicates with 20 individuals per test group), was assessed 1, 3, 7, 10, 12 and 14 days after exposure by counting the number of living and dead mites. The number of escaped mites was calculated as the difference from the total number of exposed.

The reproduction rate of surviving mites was then evaluated from day 7 until day 14 after treatment B counting the total number of offspring (eggs and larvae) produced.

The climatic test conditions during the study were $23.5 - 26.0^{\circ}$ C temperature and 60 - 71% relative humidity. The light / dark cycle was 16:8 h with a light intensity range of 851 - 1483 dx.

II. Results and Discussion

Validity criteria according to Blümel *et al.* (2000) Daboratory residual contact test with the predatory mite *Typhlodromus pyri* Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products" were met:

- Mortality in the control group after 7 days to be $\leq 20\%$ (actual: 1%)
- Cumulative mean number of eggs per female to be ≥ 4 (actual: 6,14)
- Corrected mortality of the reference item to be 50% (actual 100%)

The mortality / escaping rate in the control group up to day 7 after treatment was 17%

No statistically significant mortality compared to the control group occurred in all fest item rates. The corrected mortality was below 10%. The LR₅₀ was therefore estimated to be >5100 g a.s./ha.

In the reference item group and mites were dead on day 7 of the study.

The mean number of offspring produced per female in the control group was 6 [4. This compared to 4.97 eggs/female in the 51 g as the rate of the test item, 606 eggs/female in the 91 g a.s./ha rate, 4.65 eggs/female in the 160 g a.s./ha rate 4.68 eggs/female in the 280 g a.s. the rate and 4.86 eggs/female in the 510 g a.s./ha rate

No statistically stonificant reduction in reproductive success compared to the control occurred at all test item rates.

At the 51 g as./ha rate, the reduction of reproduction was 191%. At the rate of 91 g a.s./ha, no reduction was found (-5.3%). At the higher rates of 161, 287 and 510 g a.s./ha a reduction of reproduction of 24.2, 23.7 and 20.9% was found, respectively. The ER₅₀ was therefore estimated to be >510 g a.s./ha.

Test concentration Mortality after 7 days (%)			Reproduction		
		Corrected	Rate (eggs/female)	Reduction relative to control (%)	
Control	¥17.0 A		6.14	-	
51	1500	-2,0	4.97	19.1	
91	17.0 J	80	6.46	-5.3	
161		6.0	4.65	24.2	
	25.0	9.6	4.68	23.7	
	17.0	0.0	4.86	20.9	
Reference item	100.0	100.0	-	-	

Table CP 10.3.2.2/05-1 Summa of mortality and reproductive effects

III. Conclusion

In this extended laboratory test the effects of Spiroxamine EC 500 g/L residues on the survival of the predatory mite Typhlodromus pyri were determined at the rates of 51, 91, 161, 287 and 510 gass./ha applied to detached grapevine leaves (Vitis vinifera).

The corrected mortality at all test item rates was below 10%. The LR₅₀ was estimated to be a.s./ha.

Reproduction was assessed for the all rates of Spiroxamine EC 500 g/L. At 51 g a.s./ha/the reproduction was reduced by 19.1%. No reduction (-5.3%) occurred at 91 g a.s./ha At the higher test item rates 161, 287 and 510 g a.s./ha, the reduction of reproduction was 24.2% 23.7% and 20.9% respect The ER₅₀ was estimated to be >510 g a.s./ha.

Assessment and conclusion by applicant:

Validity criteria according to Blümel et al. (2000) "Laboratory residual contact toot with the predatory a mite Typhlodromus pyri Scheuten (Acard Phytoseiidae) for regulatory testing of plant protection products" were met:

- Mortality in the control group after \mathcal{K} days to be $\leq 20\%$ (actual:
- Cumulative mean number of eggs per female to be ≥ 4 (actual 6.14)
- Corrected mortality of the eference item to be 250% factual 100%

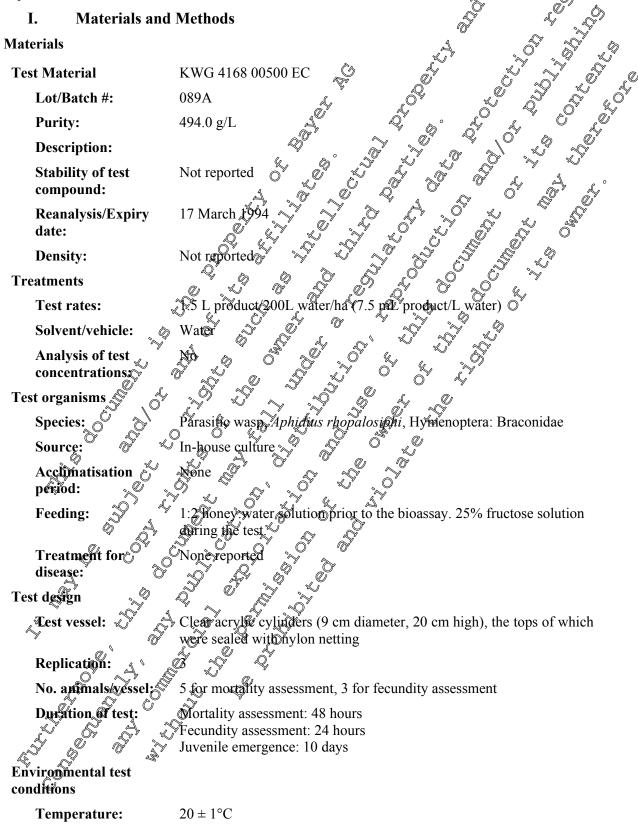
The study was conducted in accordance with the test method of et al. (2000), which is the current test guideline for this study type, and followed the recompanded meth ods and procedures. The study is therefore considered acceptable

 \bigcirc

n

The LR50 and ER50 were estimated to be >510 g as /ha

Data Point:
Report Autor:
Report Gar: 0 1994 & V O
Report Title: An laboratory expluation of the side-effects of Fungicide KWG 4168, on the
parasitie wasp Aphidius rhopedosiphi, when applied to barley seedlings
Report No: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
Document No: $M = 0.871 \pm 0.1-1$
Guideline(s) Ollowed in Sone 2 2 2 2
study: 4 Q and the form
Deviations from current l None V S
test guideline:
Previous evaluation verse and and accepted
$\sqrt{2}$
GLP/Officially Ves/conducted under GLP/Officially recognised testing facilities
recognised testing
facilities:
Acceptability/Reliability


Executive Summary

Patasitic wasps, Aphidias rhopalosiphi, were exposed to a KWG 4168 EC formulation to assess the effects of mortality and fecundity after a 48-hour exposure period.

The wasps were exposed to the test item at 1.5 L product/ha (equivalent to 741 g a.s./ha), a control and to the reference item, dimethoate.

KWG 4168 had no effect on either the survival or the fecundity, and little effect on the activity of adult *Aphidius rhopalosiphi* when they were exposed to fresh residues on plants. However topical application of the product to pupae within their mummified host resulted in the death of most of the wasps that were exposed.

Photoperiod:

16 hour light : 8 hour dark at >4000 lux

Study Design

This study was conducted in order to assess the effetcs of a KWG 4168 EC formulation opparasies wasps (*Aphidius rhopalosiphi*) in a mortality study over 48 hours followed by boundity assessments for 24 hours and juvenile emergence over a further 10 days.

The wasps used in the study were up to 48 hours old and were deprived of food for approx $\sqrt[4]{7}$ ho prior to the test.

Pots of barley seedlings were treated with the test product at a rate of 1.5 L product in 200L of water. Three pots of barley seedlings were used for the control, three for the KWG 4168 treatment and one for dimethoate. Once the product had dried on the plants, the treated seedlings were enclosed within Clear acrylic cylinders (9 cm diameter, 20 cm high) the tops of which were sealed with polon netting.

Fifteen mated females were used for each of the centrol and KWG 4168 treatments and 5 females for the dimethoate treatment (340 g a.s./ha). The waspe were confined over the seedlings.

The pots were stored in a controlled environment roop maintained at $20 \pm 1^{\circ}$ C, with a 16 b photoperiod.

The condition of the wasps was recorded at approximately 1, 2, 4, 24 & 48 h after their introduction. They were classed as live, affected or moribund/dead. To assess sub-lethal effects, the behaviour of the confined wasps was assessed after 30 mins and 2 h, and assessments of their condition were made up to 48 h after treatment.

After the 48 hours, wasps surviving on the treated and control plants were transforred to additional untreated pots of barley seedlings. The fecundity of the surviving wasps was then assessed over a further 24 h period in clear acrylic cylinders of combined, 20 cm high, the tops of which were sealed with nylon netting. After 34-hours the vasps were repoved and the numbers of fournmies produced were counted after a further 10 days.

In the second part of the study, the test item was also applied topically to the mummies produced in the first part of the study. Aummies that were produced were attached to glass plates and sprayed with either the test product at 1.9 L product/ha, or water (control). The mummies were then observed over a 10-day period to assess emergence.

II. Results and Discussion of

No specific assessment of validity criteria was made in the study report.

First part of the test: During the two day exposure period, no wasps died in either the control or the spiroxamine meatments. All of the wasps in the toxic standard treatment (dimethoate) died within 24 hours. The residues of spiroxamine appeared to have a slight effect on the behaviour of the confined wasps with evidence of short term refellency from the treated plants resulting in fewer insects resting compared to the control. However, there was no treatment effect on the fecundity of the wasps following exposure to residues of spiroxamine. The LR₅₀ and ER₅₀ for adult wasps is therefore considered to be >741 g a.s./ha.

In the second part, most of the mumpiles (78.6%) sprayed with spiroxamine failed to emerge, whereas 25 of the 26.96.2%) control mummies (18.6%) sprayed with spiroxamine failed to emerge, whereas a spiroxamine had no effect on either the survival or the fecundity, and little effect on the activity of adult *Aphidius rhopalosphi* when they were exposed to fresh residues on plants. However topical application of the product to pupae within their mummified host resulted in the death of most of the wasps that were exposed.

Table CP 10.3.2.2/01-1	Mortality following exposure to residues of KWG 4168
	filter unity renowing exposure to residues of filter of filte

Treatment	48-hour mortality	(%)	
Control	0	~	
KWG 4168 at 741 g a.s./ha	0	A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dimethoate at 340 g a.s./ha	100 (after 24 hours)		

Most of the mummies (78.6 %) sprayed with KWG 4168 and to emerge, whereas 25 of the control mummies did develop to adults.

		4.0	O' .	(× .	Cr
Table CP 10.3.2.2/01-2	Mummies ner wasn	and emercence	following evnasu	re to residué	s of KW€C 4168
1 abit C1 10.5.2.2/01-2	munites per wasp	and chief genee	Tonowing CAppau		7 01 IX 11 0 71 80

Treatment	Mean no. mummies/wasp & Emergence & of mummies produced) &
Control	7.4 A & Q Q 96.2 O Q Q
KWG 4168 at 741 g a.s./ha	
III. Conclusion	

In conclusion, in this laboratory study spiroxanine applied in the maximum recommended rate (741 g as/ ha) had no effect on either the survival (adult mortality 0%) of the fecundity, and little effect on the activity (avoidance) of adult Aphidius rhogalosiphi when they were exposed to fresh residues on plants. However topical application of the product to pupae within their munimified host resulted in the death of most of the wasps that were exposed (78 % mortality). The fecundity of the adult was not negatively affected. The LR₅₀ and ER₅₀ for adult wasps is therefore considered to be >74 be a.s./ha.

Assessment and conclusion by applicant:

C.S. The study has been assessed against the current IOBC Mean Briggs et al. guideline (2000) "A laboratory test for avaluating the effects of plant protection products on the parasitic wasp, Aphidius rhopalosiphi (DeStephani-Perez) (Hymenoptera: Braconidae)". Vandity criteria were met:

- Mortality in the control group <13% (actual: 0%)
- Mortality in the reference item group ≥50% (astual: 100%)
- Mummies per female produced in the control group≥5 (actual: 7.4)
- Number of female wasps producing no munimies 22 (insufficient data to make assessment)

O

The study was conducted prior to the issue of the current IOBC test methods but the first part of the study uses a test method which is largely consistent with that of Mead-Briggs et al. guideline (2000). The number of replicates used in the mortality assessment was fewer than the recommended four but on the whole the test design is considered to be valid and the current validity criteria have been met, where these can be assessed. The results are therefore considered suitable for use in the risk assessment. The second part of the gudy was non-standard and the current risk assessment scheme does not require effects on the puppe to be assessed. However, consideration of these results will be ~0 given in the risk assessment.

Based QW the standard barangers assessed in this study type, the LR₅₀ and ER₅₀ for adult wasps are considered to be >741 g a Sha. Effects were seen following application to the mummies themselves which is not a standard parameter of this study type. Some uncertainty may be created as a consequence of this but other available data with this species, most notably a semi-field study (M-00853 201-1). In this study aphid mummies, containing the parasitoid pupae, were exposed to Spiroxamine EC 500 at 737 g a.s./ha which led to 95% emergence. Thus, there was a clear lack of

effects following application to the mummies therefore there should be no uncertainty over possible effects on *Aphidius* pupae.

Data Point:	KCP 10.3.2.2/02
Report Author:	
Report Year:	
Report Title:	2007 Toxicity to the parasitoid wasp Aphidius rhopaesiphi (DESTROHAN) PERES (Hymenoptera: Braconidae) using an extended aboratory tex Spiro mine by
	(Hymenoptera: Braconidae) using an extended laboratory test Spirovamine BC
	500 g/l
Report No:	$CW07/012$ Q^{*} Q^{*} Q^{*} Q^{*} Q^{*}
Document No:	<u>M-289317-01-1</u>
Guideline(s) followed in	MEAD-BRIGGS ET AL. (2000), MEAD-BRIGGS ET AL Quraft 2006),
study:	CANDOLFIET AL. (2004)
Deviations from current	None A A A A A A
test guideline:	
Previous evaluation:	yes, evaluated and accepted
	RAR (2010) 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	

Executive Summary

The objective of this extended abormory study was to investigate the lethal and sublethal toxicity of Spiroxamine EC 500 pL to the parasitoid was *Aprilians Aprilians sublethal sublethal*

The effects of restricts of Spiroxamine EC 500 g/C on the survival of *Aphidius rhopalosiphi* were determined at 100, 173, 300, 520 and 900 g a.s./ha, applied to barley plants. In the dose rates of 173 and 900 g a.s./ha 3/3% corrected mortality was observed. At the rates of 100, 300 and 520 g a.s./ha no mortality was detected.

The reduction in reproductive success relative to the control at the 100, 300, 520 and 900 g a.s./ha rate was 37.5, 18.1, 19 and 5.2%. No reduction (-43.1%) was detected at the 173 g a.s./ha rate.

A statistically significant dose related repellenceffect of the test item at 900 g a.s./ha was observed.

The LR50 and FR50 were estimated to be >900 g a ha.

I. Materials and Methods

Material

Test Material KWO 4168 EC 500 g/L Lot/Batch #: PF90087683 Purity: 49.8% Description: Not reported Stability of test Not applicable compound: 31 January 2010 date: Density: 1.006 g/mL

Treatments

-y rlev plants which in diameter in diameter in the hole i fi 100, 173, 300, 520 and 900 g a.s./ha in 400 L water **Test rates:** Solvent/vehicle: Deionised water Analysis of test None concentrations: **Test organisms** Aphidius rhopalosiphi **Species:** Source: Katz Biotech AG, D-15837 Baruth, Germany 10% fructose solution Feeding: **Test design** The test units consisted of a pot with treated barley plants which were, ° **Test vessel:** enclosed within a clear polyacrylic cylinder (195mm high and 00 mm group group group group group yrst^r in diameter) with a hole (approximately 5 nom in diameter) for the introduction of the parasitoids. After introduction the hole was closed by a stopper The top of the cylinder was closed with a fine mester gauze. As above 🖄 **Test medium:** Steplicates per treatment and control group **Replication:** No. animals/vessel: 🔊 5 **Duration of test Environmental te** conditions Temperature: 0 90% Relative humidity The light dark cycle was 16 hours. The light intensity was 467 -Lighting: Di 15 lux in the mortality phase, 549 - 1716 lux in the parasitation phase and 1360 - 10650 ux in the reproduction phase of the study wasured once per phase). Study Design The objective of this extended to orated study was to investigate the lethal and sub-lethal toxicity of Spiroxamore EC 500 g/b on the parasitoid wasp Aphidius rhopalosiphi when exposed on a plant surface.

Test rates of 100, 179, 300, 520, 900 g ag/ha, a control and reference item (dimethoate at 3 g a.s./ha) groups were tested.

The mummies Astained from the breeder wore distributed to several glass tubes which were tapered at the end, obliguely ground and to be closed with silicone stoppers. Until the start of the study the mummies were stored at the temperature given by the breeder. Two days prior to the start of the study all hatched animals were removed from the tubes to ensure that the age of the test animals was below 48 hours. The animals were ted via feeding tubes inserted into the boring of silicone stoppers. The feeding solution consisted of 3 parts of water + 1 part of honey.

For the mortality assessment seven days prior to the start of the study the barley plants were sown (10-12 see grains each). For the reproduction assessment five days prior to the start of the study the barley plants required were sown (18- 20 seed grains each). One day after the start of the study the plants were infected with *Rhopalosiphum padi*, and the soil surface of the pots was covered with quartz sand.

The test units consisted of a pot with treated barley plants which were enclosed within a clear polyacrylic cylinder (195 mm high and 100 mm in diameter) with a hole (approximately 5 mm in diameter) for the introduction of the parasitoids. After introduction the hole was closed by a stopper. The top of the cylinder was closed with a fine mesh gauze.

Prior to application the plants were sprayed with a 10% fructose solution and were left to dry for at least one hour. After spraying the plants with fructose solution the soil surface was covered with a thin tayer of quartz sand before treatment.

The suspensions for the test and reference items were prepared at the day of application group at concentrations of 100, 173, 300, 520, 900 g a.s./ha, a control and reference item (2 g a.s./ha) group at were also tested. They were applied to the test plants ising a spraver specially constructed, permitting area application.

After the spray coating had dried, the potted plants were enclosed within the polyaer lic cylinder

Within the first hour after application the test aniperiod were introduced from prepared test tubes by slightly blowing them.

If all wasps were in the test unit, the glass tube was removed and the ortifice closed with a stopper. During the exposure phase of 2 days the test animals had access to the sugar colution on the treated plants.

To determine whether residues of the test item were recellent to the wasps. Observations on the position of the individual insects were made during the initial the hours after their release. Five separate observations were made at approximately 30 minute intervals starting 0-15 minutes after the introduction of all wasps. Each wasp was recorded as being on either the plants, cylinder or soil.

Wasps on the plants were not counted directly, but the number of wasps on the villed and soil were subtracted from the number of introduced wasps.

At the end of the posure period the condition of the test animals was recorded as either, live and unaffected, affected, mornbund of dead.

Subsequently b healthy fernales were transferred and topt individually in untreated acrylic cylinders with aphid-infested barley plants one day later the ways were removed and the plants kept for 12 more days. The cylinders were aerated to avoid the formation of condensed water on the walls. The parasitation rate was determined by counting the number of munchies for each individual wasp.

At 2, 24 and 48 hours of the test, the number of morebund and dead wasps was summed up for each replicate and calculated as percentages. A mean value of the six replicates was calculated.

The percentage of observations of wasps settled on the plants over the whole assessment period was calculated for each treatment. The calculation was based on the parasitoids on the plants and the cylinder because under normal circumstances the wasps do normaturally visit the sand surface beneath the plants. Any individuals observed to be on the sand were nevitably there because they have been affected by the treatment to such an extent that they cannot alight on the plants or the cylinder. Therefore these individuals were not included in the statistical malysis, since their position in the arenas was not a direct consequence of any potential tepellent effect. Data of the control and the test item were assessed with suitable statistical procedures.

Reproductive performance was calculated for each replicate and expressed as mummies per female.

The experiment was performed in a controlled environment room at a temperature of $18 - 22^{\circ}$ C and a relative humility of $60 - 90^{\circ}$. The light dark cycle was 16:8 hours. The light intensity was 467 - 1115 lux in the mortality phase, 545 - 1716 lux in the parasitation phase and 1560 - 10650 lux in the reproduction phase of the study (measured once per phase).

II. Results and Discussion

The validity criteria used in the study have been met:

- Mortality in the control group $\leq 13\%$ (actual: 0%)
- Mortality in the reference item group $\geq 50\%$ (actual: 53.3%)
- Mummies per female produced in the control group ≥ 5 (actual: 16.5)
- Number of female wasps producing no mummies ≤ 2 (actual: 0%)

After 48 hours of the test all wasps were found alive in the control group and on the group treated with 100, 300 and 520 g a.s. test item/ha. In the 173 and 900 g a.s. test item/ha rates 96.67% of the wasps survived and 3.3% were found dead or moribund. In the reference item group 23.3% of the wasps were dead and 30% were moribund after 48 hours of exposure

 Table CP 10.3.2.2/02-1
 A summary of the effects of Spiroxamine 500 pL on mortality of Aphildius rhopalosiphi on barley plants

mopulosipili on suricy più		K,
Test rate (g a.s./ha)	Mortality (%)	IJ Ÿ
Control		0
100		Î.
173	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
300		
520		
900		
Reference item		

The mean number of municipation of the control group was 16.5. This compared to 10.3 mummies/female in the 100 g a.s. /h@rate of the test item 23.7 and 13.5 mummies/female in the 173 and 300 g a.s./ha rate and 13.4 and 157 mummies/female in the 20 and 900 g a.s./ha rate of Spiroxamine 500 g .

The reduction in reproductive success relative to the control at the 100, 300, 520 and 900 g a.s./ha rate was 37.5, 18.1019 and 5.2% No reduction (-43.1%) was detected at the 173 g a.s./ha rate.

Table CP 19.3.2.2/02-2	Asummary	of the effects	of Spiroxanni	ne 500 g/L or	n reproduction of Aphidius
rhopalo aphi on barley	plants 5		Ő V	~	

Test rate (g a.s./ha	Mean nummies/femate	Reduction relative to control [%]
Control	16.50 2 5 5	0
	10.3 × ir or	37.5
173		-43.1
300		18.1
520 520 520 520 520 5 5 5 5 5 5 5 5 5 5	3.4 & S	19
900	15 Fr Q	5.2
Reference it on the second sec	n.d. Ø	n.d.
	× Y	

During the observations in the initial 3 hours of the test a mean of 32% of the wasps settled on the plants in the control group. In the groups treated with 100, 173, 300, 520 and 900 g a.s./ha a mean of 34.7, 305, 24.2, 23.5 and 4.7% of the wasps settled on the plants. In the toxic reference group 39.3% of the wasps were found on the plants.

Table CP 10.3.2.2/02-3	A summary of the mean effects of Spiroxamine 500 g/L on repellency of Aphi	idius
<i>rhopalosiphi</i> on barley p	plants	<i>a</i> .°

Test rate (g a.s./ha)	% wasps on j	plant	Relative to co	ntrol [%]
0	32		0	
100	34.7		-8.3	
173	30.5	<i>~</i>	4.7	
300	24.2		200.5	
520	23.5		26.6	
900	4.7		8504*	
Reference item	39.3		22.9	

*Statistically significant p <0.0001. One-way ANOVA, p values are adjusted apprding & Dunnet

III. Conclusion

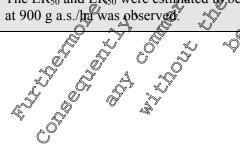
In this extended laboratory test the effects of residues of Spiroxamine EC 500 c/L on the survival of *Aphidius rhopalosiphi* were determined at 100, 173, 300, 520 and 500 g a.s./ha applied to barley plants. In the dose rates of 173 and 900 g a.s./ha 3.3% corrected mortality was observed. At the rates of 100, 300 and 520 g a.s./ha no mortality was detected

The reduction in reproductive success relative to the control at the 100,000, 520 and 900 g a.s./ha rate was 37.5, 18.1, 19 and 5.2%. No reduction (-43.1%) was detected at the 173 g a.s./ha rate.

A statistically significant dose related repellent effect of the test item at 960 g a.s. ha was observed.

The LR50 and ER50 were estimated to be >900 g as/ha.

Assessment and conclusion by applicant:


Validity criteria have been assessed according to the current extended *Aphidius rhopalosiphi* test method by Mead-Briggs *et al.* (2009) and have been pet:

• Mortality in the control group \$10% (actual 0%)

- Mortality in the reference item group \geq 50% (actual: 53.3%)
- Mummies per female produced in the control group ≥ 5 (actual: 16.5)
- Number of female wasps producing to mummies 2 (actual: 0%)

It is noted that this study pre-dates the issue of the formal test method by Mead-Briggs *et al.* (2009) for the extended test design but was conducted in accordance with a draft (2006) version as well as the standard glass plate test design method. (Mead Briggs *et al.* (2000)). The methods used in this study are consistent with the 2009 version and followed the recommended methods and procedures. The study is therefore considered acceptable.

The LR₅₀ and ER₅₀ were estimated to be >900 g a.s./ha. A significant repellent effect of the test item at 900 g a.s./ha was observed.

Data Point:	KCP 10.3.2.2/03
Report Author:	l l l l l l l l l l l l l l l l l l l
Report Year:	2001
Report Title:	Acute effects of a repeated spray treatment with the fungicide KWG 4168 by 500 on lycosid spiders (Pardosa spp., mainly P. agricola) under extended laboratory of conditions
Report No:	SXR/SP 04
Document No:	<u>M-008522-02-1</u>
Guideline(s) followed in	Auswirkungen von Pflanzenschutzmitteln auf Spornen der Gattung Pardosa
study:	(Araneae, Lycosidae) im Laboratorium. Richtlinenvorschlag für die Penfung von Pflanzenschutzmitteln im Zulässungsverfahren Teil VI, 23-24.9 (Webling, A and Heimbach, U., 1994)
Deviations from current test guideline:	None of the second seco
Previous evaluation:	yes, evaluated and accepted DAR (1997), RAR (2010)
GLP/Officially	Yes, conducted under GL Office ally recognised testing facilities
recognised testing facilities:	
Acceptability/Reliability:	Yes 0 4 4 . 4 . 7 . 6 . 6

Executive Summary

The effects of a repeated spran reatment with KW & 4168 EC 500 on lycosid widers were examined under extended laboratory conditions over 15 days. Spiders were exposed to the test substance via a spray delivering nominally 1.5 L product na (equivalent to 737 g a.s. ha) on test days 0 and 8.

No significant effects on mortality, behaviour or feeling were observed over thetest period.

The results of this standy indicate that ground-dwelling spiders as represented by Pardosa spp. (mainly P. agricola) will not be impacted when exposed to a repeated pray treatment with 1.5 L/ha KWG 4168 EC 500. The LR $\hat{\mu}$ and \hat{BR}_{50} were considered to be ≥ 1.5 L product that (>1.5 g a.s./ha). Ś

ð

Ø

Materials and Methods I.

Materials	
Test Material	/K W (J 4108 BC 500 /)
Lot/Batch # 🤉 🔬	089A based on Form. No. 04023/0021
Purity:	991.4 @L O O O
Description:	Clear yellow liquid
Stability of test	Maximum expected loss of a.s. by hydrolysis <0.1%
compound: Reanalysis/Expiry	1¢December 1994
date: 🧖	
Density 🖓 🖉	Not reported
Treatments	
Test rates:	Two applications of 1.5 L/ha (equivalent to 737 g a.s./ha) in 300 L
	water, equivalent to 0.285 mL per test vessel per application
Solvent/vehicle:	Water
Analysis of test	No
concentrations:	

Test organisms

Species: Source:

Pardosa spp. (mainly Pardosa agricola)

Plastic boxes of approx. 10 x 10 x 5.5 cm of mesh size 1 mm containing 125 g soil.

Collected from untreated fields approximately 3 km south of Monheim, Germany

Fed onion flies (*Delia antiqua*)

20 replicates per treatment

Natural "silty sand"

Individually housed

15 days

Test design

Feeding:

Test vessel:

Test medium:

Replication:

No. animals/vessel:

Duration of test:

Environmental test conditions

Temperature:

Relative humidity:

Study Design

x 10 x 5.5 cm covered with plastic screens ig 125 g soft. The effects of a repeated spractice the area with KWG 41680EC 500 on lycosid obiders were examined under extended laboratory coorditions over 15 days \bigcirc

Test species were Fardosa spp. spiders (mainly Pagdosa spricela) collected from untreated fields approximately 30 m south of Monheim, Germany. Spiders were held unted for three days to acclimate them to test conditions. Spiders were fed at times during the test period with 2 to 6 onion flies (Delia antiqua), with a total of 20 flies introduced over the duration of the test.

Test vessels were plastic boxes of approximately 10 x 10 x 5.5 cm (surface area approximately 95 cm²), covered with plastic screens of mesh size 10nm. To each test vessel was added 125 g natural "silty sand" soil.

Application of the spran solution was performed twice, on days 0 and 8, delivering nominally 1.5 L/ha test substance of 300 Owate to the test vessels. Application of the test substance was conducted with a motor-driven spray boom delivering nominally 0.28 mL spray fluid to each vessel per application. Control vessels were sprayed with drinking water only. Measured amounts of applied test fluid were between 0.27 and 0.40 mL persox.

A single spray application of 2 L Ma of Pletasystox R EC 250 blau (containing the a.s. oxydemeton methyl) served as reference treatment

Each treatment condition included 20 individually housed spiders.

Assessments of spider condition were made on days 0 (2h, 4h, 6h), 1, 4, 5, 7, 8 (2h, 4h, 6h), 11, 13 and 15 following application.

Spiders were assessed as being affected (upright and attempting to walk, showing signs of reduced coordination), moriound (on their back or side, either immobile or twitching slightly) or dead (showing no movements after mechanical stimulation). The number of provided onion flies eaten was also recorded.

Test boxes were maintained in a light thermostat at 20 to 23°C with a relative humidity of 63 to 86%.

II. **Results and Discussion**

Validity criteria were not assessed in the study report.

In the control boxes, all spiders survived the 15-day test period unaffected. None of the 20% revealed any impacts on behaviour during the study period.

All 20 of the exposed spiders survived the repeated spray treatment with 1.5 2/ha KWG 4468 Only one spider showed reversible impacts on behaviour.

The reference treatment caused a 100% mortality following application

Table CP 10.3.2.2/03-1 Mortality after exposure to spray treatments

Nominal	Cumulative	e mortality by week	\sim . \sim	, Q	Total om	ortality
concentration (L/ha)	1	2 &	3			
Control	0	0	0 0			
2 x 1.5	0					A A
Reference	100		100			0

Significantly different to the cortfol

Control spiders consumed an average of 0.33 onion flies per individual per day over the 19-day exposure period. Those spiders exposed to the test substance consumed an average of 0.35 onion flies per individual per day. The individual feeding activity was not statistically significantly affected by exposure to the test compound

Table CP 10.3.2.2/03 2 Feeding activity during exposure to spray treatments

	Average number of flies eaten by day 5			
concentration (L/ha)		115 13	15	Total
Control	1.0 4 1.0 0.5 0 0.65	0.2	0.53	4.95
2x 1.5	1.1.2 • 0.9 • 0.25 • 0.35 × 0.35	1:12 0.12	1.0	4.55
Reference	9.00 1 - 0 - 5 - 0 - 0 - 0	 *	-	0.00

Conclusion III.

The results of this study indicate that ground-gwelling spiders as represented by *Pardosa* spp. (mainly P. agriceta) will not be impacted when exposed to a repeated spray treatment with 1.5 L/ha KWG 4168 EC 500. The LR₅₀ and ER₅₀ were considered to be >1.5 L product /ha (>737 g a.s./ha).

Assessment and conclusion by applicants

No validity oriteria assessment was included in the report, therefore, an assessment has been made against the current IOB Frest method for testing effects of plant protection products on spiders of the genus Pardosa Araneae, Lycosidae) under laboratory conditions (Heimbach et al, 2000).

The gaide fine suggests a maximum mortality of two spiders (6.7%) with 30 replicates after three weeks or four spiders (13.3%) if the test is sextended. The current study has only 20 Eplicates but the control mortality was 0% therefore the criterion is considered to have

been met.

The reference item to result in mortality of $65 \pm 35\%$ (actual: 100%)

The study was conducted prior to the IOBC test methods being published and therefore the test method used in this study, although largely consistent, does deviate from the current test methode. However, the validity criteria from the current IOBC test method are considered to have been met therefore the study is considered to be acceptable, the results valid and suitable for consideration in the risk assessment.

Ô

The LR₅₀ and ER₅₀ were considered to be >1.5 L product /ha (>737 g a.s./ha

	KCP 10.3.2.2/04
Data Point:	KCP 10.3.2.2/04
Report Author:	
Report Year:	
Report Title:	Acute effects of repeated spray application of KWG 4168 on carabid beetles
	(Bembidion tetracolum) under extended laboratory conditions of a second se
Report No:	SXR/CA 115 A O O O O
Document No:	$\underline{M}_{008528-01-1} \xrightarrow{\sim} \xrightarrow{\sim} \xrightarrow{\sim} \xrightarrow{\sim} \xrightarrow{\sim} \xrightarrow{\sim} \xrightarrow{\sim} \sim$
Guideline(s) followed in	PRA guideling 22 2 AS
study:	BBA guideline 23-2,1%
Deviations from current	None of the transformed and the transformed an
test guideline:	
Previous evaluation:	ves Waluater and a control with a control of the second se
	DAR'(1997), RAR(2010)
GLP/Officially	DAR (1997), RAR (2010) Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability.	Yest + Y = 2 + Y = 2
O. ^V	

Executive Summa

The effects of a repeated spray treatment with KWG 4168 EC 500 on carabid beetles were examined under extended laboratory conditions over 21 days. Beetles were exposed to two treatments of 1.5 or 3.0 L product/ha (equivalent to 741 and 1482 g a.s./haptest substance via a spray.

No significant effects of mortality, behaviour or feeding were observed over the test period.

The results of this study indicate that carabid beetles will not be impacted when exposed to a repeated Thus, the LR₃₀ and ER₅₀ were considered to be >3.0 L spray treatment of 1.5 or 3.0 L@product/ha. product/ha (>1482 g a Qha)

andM I. Materials ethod Material Test_kMaterial based on Porm. 04023/0021 ot/Batch # Yellow houid Description Maximum expected loss of a.s. by hydrolysis <0.2%Stability compound: Reanalysis/Expiry 17 March 1994 dat@: **Density:** Not reported

Treatments

reactification	
Test rates:	Two applications of 1.5 or 3.0 L product/ha (equivalent to 741 and 1482 g a.s./ha) in 400 L water, equivalent to 0.8 mL solution per text vessel per application Water None Carabid beetle <i>Bembidion tetracolum</i> aged 3–5 weeks Commercial supplier (Dr. Thieme, D-18 f84 Sagerheide) Fed onion fly (<i>Delia antiqua</i>) pupae
Solvent/vehicle:	Water Dia Strategy and Strategy
Analysis of test concentrations:	Water None Carabid beetle <i>Bembidion tetracolum</i> aged 3-5 weeks Commercial supplier (Dr. Thieme, D-18) 84 Sagerheider Fed onion fly (<i>Delia antiqua</i>) pupae
Test organisms	
Species:	Carabid beetle Bembidion tetracolum aged 3-5 weeks
Source:	Commercial supplier (Dr. Thieme, D-18184 Sagerheide)
Feeding:	Fed onion fly (Delia antiqua) pupae
Acclimation:	Three days A & Q Q A & O & O & O
Test design	
Test vessel:	Fed onion fly (<i>Delia antiqua</i>) pupae Three days 1.2 L physic boxes of 16.8 × 11.8 × 6.2 cm covered with mm plastic mesh screens containing 250 g natural sol
Test medium:	Learny sand soil revealed 2 mm from Laacter Hot? Monheim, which had been untreated with pesticides for several years
Replication:	Five replicates per atment
No. animals/vessel:	Three males and three demales per vessel
Duration of tests	$^{\circ}21 \text{ darvs}$
Environmental test conditions Temperature	Five replicates per vessel Five replicates per vessel 21 days $20 = 23^{\circ}$ C 40° - 80% (five days with deviations, ranging from 40 – 85% RH)
Relative humidity	69 80% (five days with devations ranging from 40 - 85% RH)
Study Design	
This study was conducted in under more readistic condition	n order to evaluate the effects of KWG 4168 exposure to carabid beetles of via a repeated spray application over 21 days.
18184 Sagerheide) and age periodically throughout the t	<i>tetracolum</i> beetles, obtained from a commercial supplier (Dr. Thieme, D- d between 3 and 5 weeks. Beetles were fed six pupae of <i>Delia antiqua</i> est period.
rest vessels were 1.2-L plast	ic upsets of approximately 10.8 x 11.8 x 0.2 cm, covered with plastic screens

Test vessels were 1.2-L plastic boxes of approximately 16.8 x 11.8 x 6.2 cm, covered with plastic screens of mesh size 1 mm. To each test vessel was added 250 g loamy sand soil sieved to 2 mm. Test soil was collected from Laacher Hot. Monheim, from a field that had been untreated with pesticides for several years.

Application of the spray solution was performed twice, on days 0 and 7, delivering nominally 1.5 or 3.0 L product/bit (equivalent to 741 and 1482 g a.s./ha) test substance in 400 L water to the test vessels. Application of the test substance was conducted under constant air flow through a fine nozzle, delivering nominally 0.8 mL spray fluid to each vessel per application. Control vessels were sprayed with drinking water only.

Assessments of beetle condition were made on days 0 (2h, 4h), 1, 2, 4, 7, 8, 11, 14, 17 and 21 following application. Beetles were assessed as being affected (upright and attempting to walk, showing signs of

reduced coordination), moribund (on their back or side, either immobile or twitching slightly) or dead (showing no movements after mechanical stimulation). The number of pupae consumed was also recorded.

Test boxes were maintained in a light thermostat at 20 to 23°C with a relative buridity of 60 0 80%. Humidity varied between 40 and 85% on five days during the test, however this was not considered to affect the outcome of the study.

II. Results and Discussion

Validity criteria were not assessed as part of the study.

In the control boxes, 29 out of 30 beetles were still alive at the end of the 21 day exposure period (mortality rate: 3.3%). No behavioural impacts were recorded during the course of the study. A repeated exposure to a spray application of KWG 4168 & 500 at a rate of 15 or 3.0 L/ha did not result in sublethal or lethal impacts on the test beetles (mortably rates: 3.3 and 6.6% for the 1.5 and 3.0 L/ha treatment, respectively). Under identical test conditions, the reference formulation (50 and 100 g/ha Methylparathion WP 40) caused a 50% mortality within the 21 day test period.

Nominal	Cumulative mortality by week (%)
concentration (L/ha)	
Control	
2 x 1.5	3.3 . 3.3 . 3.3 . 3.3
2 x 3.0	
Reference	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
,	

The individual feeding activity was also statistically not affected by the test compound. If the total number of puper consumed per viable beeffe per day in the control plots of 0.25 is used as a basis for comparison and assumed to be 100%, then the feeding rates for the 1.5 and the 3.0 L/ha KWG 4168 EC 500 treatment were 54% (0.21). In contrast, the reference treatment caused a statistically significant reduction of the feeding activity, which corresponded to 44% (0.11) of that of the controls.

Nominal concentration		Ş	Mean feeding rate
(L/ha) 🔬	Week by Week 2	Week 3	
Control		0.23	0.25
2 x x 5	6.17 5 5 6.27	0.20	0.21
2 x 3.0	0.16 0.26	0.21	0.21
Reference	0 12 0 12 0 12	0.10	0.11

Table CP 10.3.2.2/02-2 Feeding activity after exposure to spray treatments

III. Conclusion

In this extended laboratory test, application of spiroxamine twice a week resulted in corrected mortality rates of 0% for 1.5 L. product/ha and 3.5 % for 3.0 L product/ha. The feeding activity was not significantly affected (16%).

The LR_{50} and ER_{50} were considered to be >3.0 L product/ha (>1482 g a.s./ha).

Assessment and conclusion by applicant:

Validity criteria were not assessed in the study and there is currently no formalised test method for *Bembidion tetracolum*. Validity criteria from the IOBC test method for another beetle species (*Poecilus cupreus*) has therefore been used as a substitute. Thus, according to Heimbach *et al* (2000) "A method for testing effects of plant protection products on the carabid beetle *Poecilus cupreus* (Coleoptera, Carabidae) under laboratory and semi-field conditions" the validity criteria were not.

- Mortality to be less than 6.7% in the water control (actual: 3.3%)
- Mortality to be 65% (± 35%) in the reference item within 2 weeks (actual: 5% mortal after 21 days)

Based on this the study is therefore considered acceptable and the resums suitable for use in the ris assessment.

The LR₅₀ and ER₅₀ were considered to be >3.7 L product/ba (>1482 g a. 5 ha).

CP 10.3.2.3 Semi-field studies with non-target arthropods

Two semi-field studies using Spiroxanone EC/500 are available and have been semmafized below.

Data Point:	
Report Author:	
Report Year:	
Report Title:	Effects of KWG 4168 kg 500 of the life cycle of ladybird beetes (Coccinella
0	septempunctate) undersemited conditions
Report No:	$SX_R = 0$
Document No:	<u>Moros545-01-1</u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Guideline(s) followed in	BBA godeline 3 - 2.1.5 (Pinsdorf, 1989)
study:	None & A & A & A & A & A & A & A & A & A &
Deviations from current	None & A A A A A A A A A A A A A A A A A A
test guideline	None w at the test of test
Previous evaluation:	ves, evaluated and accepted
	4 DAR (1997) RAR (2010)
GLP/Qthicially	Yas conducted under GLAOfficially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Refability	

Executive Summary

The effects of a repeated spray application of 125 L/backWG 4168 EC 500 on the life cycle of the seven pointed badybird beetle (*Coccueila septempunctăta* L.) were tested under outdoor conditions for 61 days. Ladybird beetles were exposed to two treatments of 1.5 L/ha test substance *via* a spray.

The fecundity of the ladybird both females do not statistically significantly differ between the control and the KWG 4068 treatment. Hatch ate of the eggs laid by the KWG 4168 treated beetles was even statistically significantly higher than of those laid by the control beetles.

The results of this study indicate that, under normal agricultural practice, ladybird beetles as represented by the seven polyted ladybird beetle will not be impacted by a repeated spray application of KWG 4168 EC 500 up to 1.5 Kha. Moreover, there were no indications of treatment – related effects on the reproductive performance of this non-target beneficial species.

I. **Materials and Methods**

Materials

I. Materials and	Methods
Materials	
Test Material	KWG 4168 EC 500
Lot/Batch #:	089A based on Form. 04023/0021
Purity:	491.4 g/L
Description:	Clear yellow liquid
Stability of test compound:	Not reported
Reanalysis/Expiry date:	16 December 1994 $\mathcal{O}^{\mathcal{O}}$
Density:	Not reported a star of the sta
Treatments	
Test rates:	Two applications of 1.5 L/ha
Solvent/vehicle:	Drinking water 2 2 2 2 2 2
Analysis of test concentrations:	None of the second seco
Test organisms	
Species:	4 to 5 day old ladybird farvae (Coccinella sentemprinctata)
Source:	De ommercial supplier (PK-Nútzlingszuchten, 73642 Welzheim)
Feeding:	Peg aphios of a free free free free free free free f
Feeding:	Test species were purchased from a commercial supplier as eggs laid between July 4 and 5, 1994. The eggs were transferred to petri dishes
Ø A	A and 100 They were fed with aphids (Myzus persicae) and kept in a Dimate control cabinet at a temperature of 23 - 25°C, 40 - 60% relative humidity and in a light-dark-cycle of 16:8 hours until one day before application
Test design	
Test design	Tray housing infested beam plants, with stainless steel frames 52 x 33 x 4 cm. Mylon gauze was added to prevent escape and unwanted predation or parasitisation
Arest medium:	Garsden sou
Replication:	four replicates per treatment
No. animals/vessel:	
Duration of test:	of days
Environmental test	Ş.
Temperature:	Outdoor part of study: $13 - 33^{\circ}$ C Indoor part of the study: $22 - 26^{\circ}$ C
Relative humidity:	50-60% with very occasional drops up to 45% and peaks up to 70%

Study Design

The aim of this semi-field study was to evaluate the side-effects of KWG 4168 EC 500 exposure under conditions more realistic to the field. For this, 2nd instar larvae were confined over aphid-infested broad bean seedlings treated with the test product and their survival, differentiation rates and the reproductive capacity of the descendants were assessed.

Test species were *Coccinella septempunctata*, obtained from a commercial supplier (PK Nützlingszuchten, 73642 Welzheim) and aged between 4 and 5 days. Beetles were fed pea aphads.

Twenty randomised beetle larvae were carefully put onto the aphid infested broad beans within the centre of each planted replicate tray. The broad bean plants were sealed by a rectangular enclosure made of nylon gauze to prevent the larvae from escaping. After approximately 1 hour, the nylon gauze enclosure was removed and the four replicate trays of each treatment (control, text and reference compound) were arranged along a line close to the study site and jointly sprayed. Immediately after spraying, stainless steel frames (52 x 33 cm = 0.17 pr) of 14 cm height were finnly pressed onto the planted trays and the planted central area enclosed between the frame ways.

The upper borders of the steel frames were twisted to the inner side to prevent Deetle larvae from excape. Then, rectangular enclosures made of rolon gauze ($4\sqrt{x}$ 28 \times 50 cm) were put of the upper site of the steel frames to keep predators like birds and small mammals as well as parasites out of the test system. The entire cage system was put into larger trays which were provided with an outlet and could be filled with water if required. Subsequently, all cage devices were transferred to the study site where they were arranged in a block design. *Via* drainage holes in the bottom of the inner trays, the plants could be supplied with water during precipitation free intervals without influencing the spray deposit on the leaf surfaces by filling the outer tray with water.

When prey aphids were harmed by either treatment, they were replaced regularly until day 10 after application which allowed to discriminate between direct and indirect adverse effects.

A hand-operating pray boom was used to apply both active treatments and the drinking water. All replicate cages of a treatment were set up in a line within an area of 1.5 × 10m in size, to ensure even application. The sprayer was carried on the back while walking along the treatment area. Spray application rate was controlled by adjusting walking speed. This was lested before and recorded during the application. The applied spray fluid volume was 300 L/hc (450 m) per 15 m² plot). The 450 ml spray fluid was held in reservoir container. Spray fluid vas advanced to an Agrotop spray boom (I red with Lurmark 03F110 nozzles), via dead-space free ball-valves, which delivered the spray at a constant pressure of 2.0 back

Since KWG 4168 EC 500 will be repeatedly applied in a the field, a second exposure of the same generation was simulated by exposing adult beetles to treated plants during the fecundity assay in that week which was considered for hatching tate. The beap plants were treated in a spray cabinet. A motordriven spray boom (spray nozzfe. Teepet 800 5 E - SS) was moved at 3.5 m/second in a distance of 45 cm over the bean plants. All replicate plants of a treatment were set up in a line to ensure even application. The applied spray fluid volume was 500 L/ha (30 mL per treatment). The 30 mL spray fluid were held in reservoir containers. Spray fluid was delivered at a constant pressure of 3.0 bar.

The conditions of the ladybid beeffe larvae was recorded at approximately 24 hours after application. They were classed as being live, affected moribund/dead and pupated. Further checks were conducted on days 4 and 5. After appearance of the first pupa at day 5, checks were made daily until the last visible larva had been suppated.

The pupal and preparal stages were sampled on a daily basis by cutting off the leaves on which pupae were clinging. They were stored in plastic petri dishes (9 cm diameter) under controlled laboratory condition (22 - 26°C; 45 - 65% air humidity; 16:8 hour light:dark cycle). After emergence, beetles were transferred into uncontaminated breeding containers. Observations on test animals were continued to assess potential effects of the active treatments on fecundity. The sex of the beetles was determined by

microscope 4 to 8 days after emergence. Then, all surviving animals from one treatment were pooled and subdivided into groups of up to 20 individuals with equalized sex ratios.

The rearing containers consisted of macrolon with side and rear walls of nylon netting. The front wall was removable. The floor was lined with filter paper. Breeding cages were maintained at 24 - 29°C, 16 h photoperiod >1000 lux and 40 - 80% air humidity. The laboratory cabinet was ventilated by the prconditioning system of the building. During the bioassay, beetles were fed on aphids that were held on various plants which were exchanged regularly. Every 7 days, the beetles were transferred to clean disinfected cages. To support oviposition, uncontaminated fan-folded filter papers were placed between the aphid - infested plants. Filter papers on which eggs had been deposited were removed from the cage daily (excluding weekends) and replaced against fresh filter papers. After removal from the cage eggs, were counted and disposed off. Starting with day 14 felative to that date when the last test bette had emerged, all eggs which were laid during the subsequent 7 days were sampled and stored in a petri dish (1 egg-batch per dish) until hatching. The hatching rate of this week was determined and extrapolated to the total amount of eggs laid.

Weather conditions during the outdoor part of the study were continuously recorded at an stablished weather station located approximately 0.5 km apart from the study site. During the indoor phase, temperature and relative air humidity were monitored by hygrometors.

II. Results and Discussion

In the control and the test substance cages, more than 50% of the added larvae were easily visible during most of the assessment periods. In contrast, only one larvae were recorded in the reference cages. However, only a marginal number of dead larvae were recorded in the reference cages, which is most presumably related to the small size of the test larvae at that time.

On average, control beetles entered the pupal stage $\sqrt[47]$ days after application. In the cages which were treated with the test substance, larvae pupated on average a bit carlier (7.3 days after application) than in the control cages. In the control cages out of the 80 added larvae were not recovered at the end of the outdoor part of the study. Including the mortality in the pupal stage, the control mortality was 15.0%. The corrected preimagnal mortality for the KWG 4168 treatment was calculated to be 2.9%.

	<u> </u>	
Test parameter		
Controle, Contro	^O KW654168 EC 500	Reference item
Initial No. of larvae	200	20
Technical losses	20	0
No. of the ad larvae found	1	0
Not of pupae found in the second in the seco	17.5	0
No. of emerged ocetles	16.5	0
% total mortality	17.5	100

Table CP 10.3.2.3/01-1 The average number of portalities recorded at each developmental stage in the test cages

¹ Mean of three replicates in the control and KWG 4168 EC 500, two in the reference item

The results of the fectindity fertility test are presented below. The controls laid on average 379.4 eggs per female remales which emerged from KWG 4168 EC 500 treated larvae produced 413.5 eggs on a per female basis. The hatching rate of eggs laid by treated females averaged 88.6% whereas in the controls a significantly lower hatching rate of 82.1% was recorded. The reproductive performance R [%] of the ladybird beetles which were exposed to KWG 4168 EC 500 was 117.6 % relative to the controls.

 Table CP 10.3.2.3/01-2
 The total number of eggs laid and larvae hatched in relation to treatment in the control cages (fertility was only tested on eggs laid between day 34 and day 40 after application)

Test parameter	Treatment ¹		
	Control	KWG 4168 EC 500	
Initial No. of larvae	22.7	22.0	
Initial No. of females	14.7	14,0 27 27 27	
Total No. of eggs laid	5356.7	\$283.7 Q \$ \$	
No. of eggs laid per female	1268.0	413.5	
No. of hatched larvae	4630 of 5631 2	4841 of 5463	
% hatching rate	82.1 4 6 2	88.6 2 2 2	
Total No. fertilised eggs/female	312.0	368.0 O O O O	
¹ Mean of four replicates			

III. Conclusion

For larval ladybird beatles, direct overspray and fresh residues of Spiroxamine 500 FC under semi-field conditions did not have harmful effects on completion of metanorphoses, focundicy and hatch rate when applied at rates of 737 g a.s./ha in the field followed by a second praying in reproduction phase in the lab. The effect on preimaginal mortality (29%) is not significant. Moreover, there were no indications of treatment related effects on the reproductive performance of this non-target beneficial species.

Assessment and conclusion by applicant:

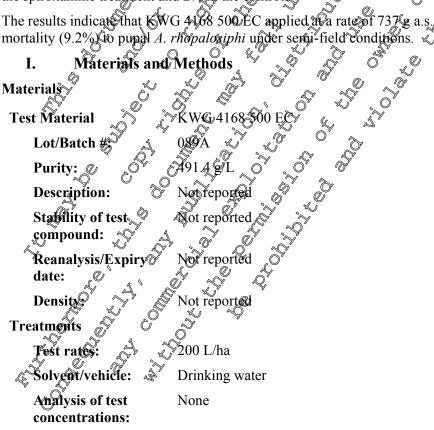
The study was conducted to an ON BBA guideline but with some modifications.

Although not directly applicable to this study, an assessment of validity has been made against the current IOBC test method by Schmuck R *et al.* (2000) for *Coccinella* in order to determine if the results achieved are valid:

 \bigcirc

- The level of pre-imaginal mortality of the lackae exposed to the reference item should result in a pre-imaginal mortality of at least 40% (actual average = 100%)
- The number of eggs laid by control females should be ≥2 fertile eggs per viable female per day (actual. 1268 eggs per female were laid @er 61 days which equals 20.8 eggs per viable female per day).

According to guidance on testing and interpretation of studies with non-target arthropods by Candolfi *et al.* (2000), the tecommended model erop for vineyard uses is apple or vines whereas this study used broad beans which is the recommended crop for arable crop uses. The study has not been conducted to the current test method along but the parameters assessed are consistent and the validity criteria of the current laboratory test method are considered to have been met. The study is therefore considered acceptable and the results spitable for use in the risk assessment.


Data Point:	KCP 10.3.2.3/02
Report Author:	
Report Year:	1994
Report Title:	A semi-field evaluation of the side-effects of the fungicide KWG 4168 5005C, applied to winter wheat, on the robust life-stage of the parasitic wasp Aphidius rhopalosiphi
Report No:	BAY-94-3
Document No:	<u>M-008539-01-1</u>
Guideline(s) followed in study:	None
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted DAR (1997), RAR (2010)
GLP/Officially recognised testing facilities:	Yes, conducted under GLP/Officially recognised testing factifities
Acceptability/Reliability:	Supportive only , Y , Y , Y , Y , Y

Executive Summary

A semi-field study was carried out to determine the side-effects of the fungicide KWG 4168 500 EC on the robust pupal stage of the aphid parastroid, sphidins rhop dosiphi

In the control, 98% of the wasps emerged successfully compared with 95% in the spiro amine treatment and 69% in the dimethoate treatment. Over half (71%) of the waspe, that everged in the dimethoate treatment were found dead inside the clip cages by the time assessments were made, probably due to their contact with product residues on the left surface. This compared with wasp mortalities of 11% in the spiroxamine treatment and 2% in the control %L \cap

The results indicate that KWG 4168 500 EC applied ava rate of 737 g a.s./ka had no relevant effects on mortality (9.2% do pupal A. rhopaloxiphi under servi-field conditions.

Test organisms	
Species:	Aphidius rhopalosiphi Not reported (reared in culture) Not reported Mummies containing pupating wasps were collected and stored in the stored
Source:	Not reported (reared in culture)
Feeding:	Not reported
Acclimation:	Mummies containing pupating wasps were collected and stored in the field lidded plastic pots for two days prior to being treated in the field storage conditions were 12, 19°C, 16 hour photoperiod
Test design	
Test vessel:	Three blocks of three plots (each $2 \times 5 \text{ m}$) were marked out in the crops using "flexicanes". Each separated from the next with a 2 m buffer strip. The three treatments (test product, to sic standard and a water treated control) were randomly assigned to the plot
Test medium:	Chalky loan soil (moist, with a medium tilth and firm compaction)
Replication:	Three \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}
No. animals/vessel:	
Duration of test:	7 days in field with additional todays in laboratory as required
Environmental test conditions Temperature:	3 – 26°C 9.0 mto (excluding day 3, 1 0 mm@f rainfall was observed)
Defenteure: *	
Rainfall:	9.0 mtp (excluding day 3, 1) mm@f rainfall was observed)
Study Design	
A semi-field story was earring the robust pupal stage of the	ed out to determine the side-effects of the fungicide KWG 4168 500 EC on applied parasitorid, Applidius phopal siphi, ©
upper sarraces of leaves at t mummies were prepared for	minutes containing parasitoid pupae of a uniform age were attached to the hove heights in a crop of mature winter wheat. Three replicate plots of 15 each treatment and these were then sprayed. Plots were treated with the test C at 55 L/hay, a toxic standard Dimethoate 40 at 0.85 L/ha) or with water

Clip-cages were placed over the mammes following treatment to prevent their being dislodged. The success of emergence of adult ways from the nummers was then assessed every 1-2 days over a 7 day period.

The trial was carried out in a crop of winter wheat var. Hunter, on an arable farm in southern England. The grop had not previously been treated with plant protection products but had received fertiliser treatments in February, April and Mag 1994 At application the crop was at the end of flowering.

Three blocks of three plots reach $2 \text{ m} \times 5 \text{ m}$) were separated from the next by a 2 m buffer strip. The three treatments (test product, toxic standard and a water treated control) were assigned to the plots in a randomised block design.

Whilst still attached to short/lengths of leaf, the laboratory-reared mummies were attached to the upper surfaces of teaves in the crop using small staples. The mummies were positioned so that when the leaf was released, they were still visible when viewed from above, *i.e.* so as to be directly exposed to spray. Three groups of five mummies were placed in each plot, the groups being at separate heights of approximately 75, 65 and 55 cm above the ground. To achieve this, the mummies were fixed to the flag leaves and first leaves of the crop plants.

The plots were then treated using an AZO compressed-air sprayer with a 1-m-wide spray boom fitted with flat-fan nozzles (Teejet 8002). The sprayer was calibrated beforehand so that all treatments were applied at a volume rate equivalent to 200 L/ha. Products were diluted in tap water immediately prover to application and tap water was applied to the control treatment plots.

The chalky loam soil was moist, with a medium tilth and firm compaction.

During spraying, water-sensitive papers were fixed to leaves in the crop, at similar heights to the aphidomummies to record the droplet deposition patterns obtained within the crop.

The emergence of the wasps from the mummies was assessed by carefully opening the clip ages at 1, 2, 3, 5, 6 and 7 days after treatment (DAT). It was recorded whether any adult wasps found were alive or dead, and whether any had died during emergence.

After 7 days any intact mummies were collected on and returned to the aboratory. These were kept for a further 3 days and a final assessment of emergence made 10 part. Storage conditions for these mummies were 21 - 24°C.

Temperature and rainfall during the study period were monitored using a weather station (Delta-T Instruments data logger fitted with a tipping-bucket rain gauge and ar temperature probe) placed at the field margin.

II. Results and Discussion

In the control treatment, 43 out of 44 wasps (98%) emerged successfully, althoughone of these had died in the clip-cage before being assessed. In the KWG 4168 500 EQ ireatment, 42 out of 44 wasps (95%) emerged successfully but 5 had died before they were assessed. In the dimethoate treatment, 31 out of 45 wasps (69%) emerged but 22 had died before they were assessed. Fourteen mummies in the dimethoate treatment failed to develop, compared with two in the KWG 4168 500 EC treatment and none in the control. None of the mummies removed to the laboratory between 7 and 10 DAT gave rise to any further adults

These results would suggest that the toxic standard treatment of directhoate had affected a proportion of the wasps within the protective pupal cocoon, preventing them from developing into adults. No such effect was seen in the KWO 4168 500 EC treatment, despite the fast that the mummies would almost certainly have been hit by spray droplets - as indicated by the water sensitive papers. These papers also suggest that the exact position of mummies within the upper parts of the crop did not appear to have a marked influence on their risk of exposure

In addition, 71% of the wasps emerging in the dimethoate treatment died before being assessed (*i.e.* mostly within 24 hour of emergence). Since the survival of wasps was poorest in the first few days after treatment, it is probably that they were killed by being exposed to product residues on the leaf surface. The results do not suggest that residues of KWG 4168 500 EC were harmful to the emerging adult wasps.

III. Conclusion

A semi-field study was carried out to determine the side-effects of the fungicide KWG 4168 500 EC on the robust pupal stage of the sphid parasitoid, Aphidius rhopalosiphi.

In the control 98% of the varsps emerged successfully compared with 95% in the spiroxamine treatment and 69% in the dimethodic treatment. Over half (71%) of the wasps that emerged in the dimethodic treatment were bound dead inside the clip cages by the time assessments were made, probably due to their contact with product residues on the leaf surface. This compared with wasp mortalities of 11% in the spiroxamine treatment and 2% in the control.

The results indicate that KWG 4168 500 EC applied at a rate of 737 g a.s./ha has no relevant effects on mortality (9.2%) to pupal *A. rhopalosiphi* under semi-field conditions.

Assessment and conclusion by applicant:

The study was not conducted to any relevant guideline and as such it is not assessed against any specific validity criteria.

The results of the study are considered to be valid in their own right but it is noted that the crop used in the study was winter wheat and therefore has limited relevance to the crop for which this representative formulation is used on (vines). According to guidance on testing and interpretation of studies with non-target arthropods by Candolfi *et al.* (2000), the recommended model crop for vineyard uses is apple or vines whereas this study used cereals which is the recommended crop for arable crop uses.

The study has therefore been submitted as supporting information only

CP 10.3.2.4 Field studies with non-target arthropods.

Field studies using Spiroxamine EC 500 are available and have been summarized below.

Data Point:	KCP 10.3Q2.4/01 0 V V V V V V V
Report Author:	
Report Year:	
Report Title:	A field study to evaluate the effects of a KWG 4168 EC 500 containing 500 g/l
	Spiroxamine against the predatory mite, Typhlodromus pyri in yines (one
2	Jocation in Germany)
Report No:	98062/G1-NFTP
Document No:	$M_{P} 0 849 4 0 1-1$
Guideline(s) followed in	BBA-gardeline Feil VI, 23-2.3.3 (1994)
study:	
Deviations from current	
test guideline	
Previous evaluation."	yes, evaluated and classified
GLP/Officially	Yes conducted under GLB Officially recognised testing facilities
facilities:	
Acceptability/Relability	Supportive only w
<i>a</i> . Š ^V	

Executive Summary

This study was conducted in order to assess the effects on population development of KWG 4168 EC 500 on predatory mites *Typhtedromus pyres* in a study over 4 weeks.

The mites were exposed to residues of the test item at a total rate of 1297 g a.s./ha over four treatments, a control and to the reference item for 4 weeks.

Whilst there was a statistically significant difference in the number of mite eggs after the first two applications by the end of the study the number of predatory mite eggs observed in plots treated with the test substance was again signalar to the number of eggs in the untreated control. At no observation was the number of adult productory mites in plots treated with the test substance statistically different from the control.

Four applications of KWG 4168 EC 500 with an interval of approximately two weeks did not lead to a reduction of predatory mite populations.

I.

Materials

Materials and Methods

Test Material KWG 4168 EC 500 Strand St Lot/Batch #: 04023/0627 510.5 g/L **Purity: Description:** Liquid Stability of test Not reported Not the second s compound: **Reanalysis/Expiry** 17 August 1998 date: 1.003 g/cm **Density:** from nom Treatments **Test rates:** ominal dose. Solvent/vehicle: Water 1059 fr than ied aid no dif Analysis of test concentrations: **Test organisms** Ø Predatory **Species:** hlodromus pyrį Biote X IFUQUmweltanalytik GmbH, Source: erGi chnolgi Acclimatisatio period: pollen Feeding reported Treatment for disease: **Test design** 4724 004 Replication Duration of test: **Environmental test** conditions Temperature **Relative hum**

Study Design

 \sim This study was conducted in order to assess the effects on population development of KWG 4168 EC 500 on predatory mites (Typhrodromus pyri) in a study over 4 weeks.

Riesting vipes were planted at a density of 3570 plants per ha and plots of 10 vines were used for testing. Vines were treated with four spray treatments with 14 ± 4 days interval between each treatment. All treatments were applied using a knapsack sprayer and the amounts applied did not differ more than 10% from nominal dose. The first application was 0.075% of the product application rate followed by 3 applications of 0.15% of the recommended application rate. The total dose applied to the crops was 1297

g a.s./ha. A control treatment (water) and toxic reference treatment (Mancozeb, 750 g/kg) were also used as part of the study.

Population development of the predatory mites was assessed in all three treatments. Leaf samples were taken 6 times throughout the study and the number of mites on the sample was determined. The first assessment was a few days before the first application; the second, third and fourth took place may 2 days before the second, third and fourth applications, respectively; the 5th assessment was 7 days after the last application and the 6th assessment was approximately 4 weeks after the last application. At all samplings in all plots 25 fully developed leaves, if possible of the same size, were selected randomly from the 8 vines in the centre of the middle row of each plot.

Temperature and relative humidity at the test site varied between 11 526 °C and 35 - 70% respectively throughout the study.

II. Results and Discussion

Four weeks after the spraying sequence the number of adult predatory miles was quite similar between plots treated with the test substance and the untraited control. At no observation was the tumber of predatory mites in plots treated with the test substance statistically different from the control.

Table CP 10.3.2.4/01-1 Effect on adult predatory mites following exposure to restrues of KWG 4168 EC 500

Treatment	% reduction compared to the control at each assessment	, Y
		6
KWG 4168 EC 500	-56.5 7 24.2 6 5 7 24.2 6 5 7 24.2 6 5 7 24.2 6 5 7 7 24.2 6 5 7 7 7 24.2 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8.3
Reference item		86.3

402	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 . S	\sim		
Table CP 10:3.2.4/01-2	Donulation dansity	following of	Socure to	nociting o	£ V.W.C 4169 EC 500
1 abie CF 1(2).2.4/01-2	r opulation delisity	IOING WING CX	Josurg to	resides o	I N W G 4100 EC 300
		() p 0 1	L (///)	4//18	

Treatment	Averageoumber of predatory	mites por 25 le	aves at@ach ass	essment	
	1 5 A 2 5 5 74.8 5 8 5 6	<u>, , , , , , , , , , , , , , , , , , , </u>	₹. *	5	6
Control)¥42.80°	§133.5	99.5	96.8
KWG 4168 500			101.3	123.0	88.8
% * reduction compared to the control *		6.2	24.2	-23.6	8.3

The numbers of eggs in the plots treated with KWG 4168 EC 500 was statistically different from the control plots on two occasions, at the third and fifth evaluation. On the third evaluation date, it was significantly lower in the KWG 4168 EC 500 treated plots whereas on the fifth evaluation date, the number of eggs in the treated plots was significantly higher than in control plots. At the final evaluation four weeks after the last treatment, the number of eggs was again quite similar between the control and the plots treated with KWG 4168 EC 500.

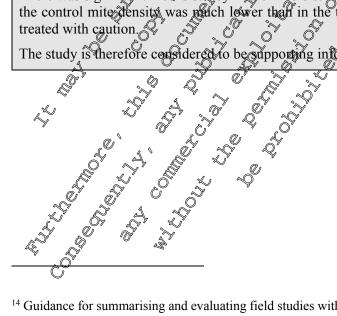
Table CP 10.3.2.4/01-3	Effect on predatory mite eggs following exposure to residues of KWG 4168 EC
500	

Treatment	% reduction of	% reduction compared to the control at each assessment				
	1	2	3	4	5	6 4 .4
KWG 4168 EC 500	-133.3	14.6	51.7	42.6	-416.7	
Reference item	-34.8	41.5	66.0	77.5	60.0	

III. Conclusion

Four applications of KWG 4168 EC 500 with an interval did not lead to a reduction of predatory mite populations.

Assessment and conclusion by applicant


The study was conducted in 1998 and therefore prodates much of the current ondance for NTA field testing as detailed in Candolfi et at. (2009), ESCORT 3 and de Jong et al. (2010) Analytical dose verification of spray solutions and more advanced statistical techniques, including MDD analysis, are now used as standard in field studies and this study did not employ either of these.

There is a formalised IOBC test method for predatory mite field trials by Blümel et al. (2000) "Guidance document to detect side effects of plant protection products of predetory mites (Acari: Phytoseiidae) under field conditions: vineyards and ochards". The study was not specifically conducted to this test method as it again pre-dates this guidancobut the test methodology used in the study is largely consistent,

Despite the age and lack of recognised guidance being referenced by the study, the results are considered to be valid in their own right and can be used to support the risk assessment by demonstrating an absence of long term effects to mites in vines following application of Spiroxamine EC 500. The study report concluded that the results were valid of the basis that the toxic standard gave the expected level of effect when compared to the control O

There was significant inconsistency in the mite distribution between replicates and before treatment the control mite density was much lower than in the treatment plots therefore the results should be

The study is therefore considered to be supporting information only.

¹⁴ Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. De Jong et al. (2010)

Data Point:	KCP 10.3.2.4/02
Report Author:	
Report Year:	1998
Report Title:	Effects on Typhlodrdomus pyri predatory mites of 'KWG 4168 EC 500' under typical vine culture conditions on grape vines, Germany 1997
Report No:	BAY23
Document No:	<u>M-008496-01-1</u>
Guideline(s) followed in	BBA-guideline VI, 23-2.3.4 (1990)
study:	
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted RAR (2010)
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing facilities:	
Acceptability/Reliability:	Supportive only \rightarrow \sim
Executive Summarv	

Executive Summary

This study was conducted in order to asses the officacy of KW predatory mites (Typhlodromus pyri) in a study over 4 weeks. Ô

The application rates were 216, 426, 550, 667, 754 and 889, mL/ha in the 1st, 2nd, 3rd, 4th, 5th, and 6th applications, respectively. A control treatment (water) and toxic reference, treatment (Topas 100 EC, 105 g/L penconazole) were also used as part of the study. The number of mites on leaf samples was assessed after each treatment and 4 weeks after the final treatment.

Six applications of KWG 4068 EC 500 with as interval of approximately, two weeks did lead to populations of the predatory miteoreducing to

ap, strolle, I. Materials and Methods Materials **Test Material** Lot/Batch # **Purity:** Description: Stability of test Teported compound: Reanalysis A A Adate: Density Treatment 296, 426, 550, 667, 754 and 889 mL/ha in the 1st, 2nd, 3rd, 4th, 5th, and 6th applications, respectively olvent Water vehi@é Analysis of test None concentrations:

Test organisms	
Species:	Predatory mites, Typhlodromus pyri
Source:	Staatliche Lehr- und Forschungsanstalt fiir Landwirtschaft, Weinbau und Gartenbau None Pollen None reported 4 weeks
Acclimatisation period:	None
Feeding:	Pollen ∇ D D D D
Treatment for disease:	None Pollen
Test design	
Replication:	
Duration of test:	4 weeks A . A . A . A . A . A . A . A . A . A
Environmental test conditions	Pollen None reported 4 4 weeks 2.4 - \$2.9°C Monthly average 6.9 - 90.0 mm
Temperature:	$2.4 - 52.9^{\circ}C^{\circ}$
Precipitation:	Monthly average $6.9 - 90.0 \text{ mm}$
Study Design	
This study was conducted (<i>Typhlodromus pyri</i>) in a	d in order to assess the efficacy of KWG 4168 EC 500 on predatory mites study over 4 weeks.

Rows of 15 vines from plots of 120 m^2 Ressling vines were used for testing. Vines were treated with six spray treatments with $14 \oplus 2$ days interval between each treatment. All treatments were applied using a plot tunnel sprayer. The application rates were 216, 426, 550, 667, 754 and 889 mL/ha in the 1st, 2nd, 3rd, 4th, 5th, and 6th applications, respectively. A control reatment (water) and toxic reference treatment. (Topas 100 EC, 105 g/f pencenazole) were also used as part of the study.

Leaf samples were taken 6 tones throughout the study and the number of mites on the sample was determined. The population of predatory mites was assessed by determining the number of mites on leaf samples, using the washing method. Leaf samples consisting of 25 leaves were taken 1 day before the first treatment, after the first of fifth/reatment, 1 week and 4 weeks after the final treatment. At all samplings in all plots 25 fully developed leaves. If possible of the same size, were selected randomly from each test plot.

Temperature at the test site varied between 24 - 32 % C and the monthly average precipitation was 6.9 - 90.0 mm.

1. Results and Discussion

Table CP 10.3 4/02-1 KWC 4168 C 500 actual and nominal application rates

	Nominal application rate (ml/ha)	Actual application rate (ml/ha)
KWG 4068 EC 500	220	216
	\$440	426
	550	550
	660	667

	Nominal application rate (ml/ha)	Actual application rate (ml/ha)
	770	754
	880	889
Reference item	60	58 0 4 5
	120	
	150	
	180	
	210	

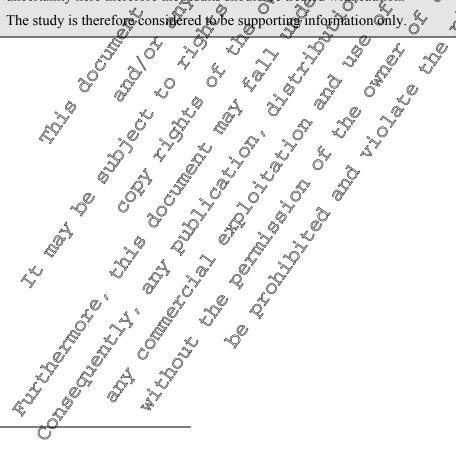
During a multiple spray treatment of KWG 4168 FC 500, the populations of predatory mites in the test plots were close to those in the control plots up to Y week after the final treatment. At the final assessment, populations of the predatory mites were reduced to 59% of the control level. The decrease of predatory mite populations in all plots during the study is consistent with expectations from natural population dynamics.

Table CP 10.3.2.4/02-2	Effect on predato	ry mites follo	wing exposure to	residues of	KW6 4168 EC 500
		*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Q

Treatme nt	Number of	mites per &	leaves				24 24	
	Pre- assessme nt		After 2 nd treatment nt	After 3rds	After 4 th treatme	After 5 th Greatme	⁹ 1 week after 6 th treatme nt	4 weeks after 6 th treatme nt
Control		2290	987 4	351	° 270	J,79	120	190
KWG 4168 500				396 , , , , , , , , , , , , , , , , , , ,		204	114	112
Reference substance	220 5	241		0368 O	260 G	206	134	116
	A reduction comparcit to the control							
KWG 4168 500				P-7, 2, , , , , , , , , , , , , , , , , , ,	-9	-14	5	41
Reference substance			-199	5 ² 1	4	-15	-12	39
III.	Conclusio	n 🆉 🤞	, , , , , , , , , , , , , , , , , , ,					

Six applications of KWC4168 C 500 with an interval of approximately two weeks were made to vines. Predatory mites were not impacted by a multiple spray treatment with 0.055 % Spiroxamine EC 500 on any assessment day except on the day of the final evaluation (41 % effect).

Assessment and conclusion by applicant:



The study was conducted in 1997 and therefore pre-dates much of the current guidance for NTA field testing as detailed in Candolfi et al. (2000), ESCORT 3 and de Jong et al. (2010)¹⁵. Analytical dose verification of spray solutions and more advanced statistical techniques, including MDD analysis are now used as standard in field studies and this study did not employ either of these.

There is a formalised IOBC test method for predatory mite field trials by Blümel et al (2006) "Guidance document to detect side effects of plant protection products on predatory mites (Activi: Phytoseiidae) under field conditions: vineyards and orchards". The study was no specifically conducted to this test method as it again pre-dates this guidance but the test methodology used in the study is largely consistent.

Despite the age and lack of recognised guidance being referenced by the stody, the result are considered to be valid in their own right and can be used to support the risk assessment by demonstrating an absence of long term effects to mites in vines following application of Spiroxamine EC 500. Predatory mites were not impacted by a multiple spory treatment with 0,055 % Spiroxanine EC 500 on any assessment day except on the day of the final evaluation (41 % effect). That value, . however, might be a not treatment-related effect out an antypical increase in the population density on the control plots. This conclusion is based on the following observations: (1) the population definity of predatory mites typically decreases dowards the end of the growing season as it is recorded in the treated study plots, (2) there was no short-term impact at any treatment day and no long term response up to the last treatment which indicates that Spiroxamine EC 500 has no impact on reproduction, and (3) the population density in the soft standard plots follows very closely the in the freated plot (Topas 100 EC is known to be harmless to predatory mites. It is therefore considered that the measured 41% reduction at the final timepoint is an artefact of the data and the fact that the control numbers were higher on the occasion than typically expected. However, it is gecogoised that there is some uncertainty here therefore the results should be treated with caution.

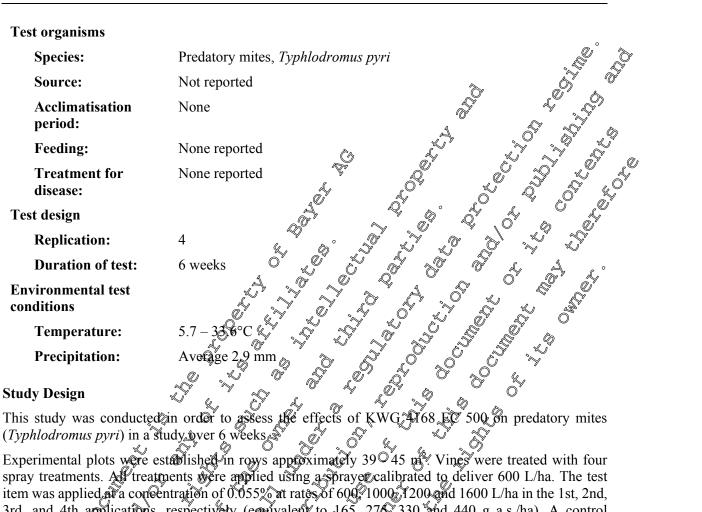
The study is therefore considered to be supporting information only.

¹⁵ Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. De Jong et al. (2010)

Data Point:	KCP 10.3.2.4/03
Report Author:	;
Report Year:	1996
Report Title:	A field experiment to determine the effects of KWG 4168 EC 500 on the break of the predatory mite Typhlodromus pyri (Acari, Phytoseiidae) in vines in Germany
Report No:	ER-95-29
Document No:	<u>M-008505-01-1</u>
Guideline(s) followed in	Boller, E. (1983) and Heimann-Detlefsen (1991)
study:	
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted Q Q & A A
	$ RAR(2010) \qquad \qquad$
GLP/Officially	Yes, conducted under GLP/Officially recognized testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only and a second s

Executive Summary

ĸw This study was conducted in order to assess the effects of predatory mites (Typhlodromus pyri) in a study over 6 weeks. Ò Ĩ


3 The application rates were 600, 1000, 1200 and 1600 Lina in the 1st 2nd, 3[®] and 4th applications, respectively (equivalent to 165, 275, 330 and 440 g as./ha). A control treatment (water) and toxic reference treatment (Rody, 91% fenpropathrin), were also used as part of the study. The number of mites on leaf samples was assessed after one, four and six weeks after the final treatment.

The effect of the test substance on Tphlodromus pyri was calculated a 25% after the third application. towards the end of the study it was not possible However, due to the very low numbers of T. pyri pres to obtain a realistic percent effect.

I. Materials and Methods

Materials **Test Material** Lot/Batch **Purity:** Description: n reported Stability of test Not reported compound: **Reanalysis** ptendbe date: ot reported Density Treatments 00, 1000, 1200 and 1600 L/ha Water ent vehi@e Analysis of test None concentrations:

This study was conducted in order to assess the effects of KWG 168 fc (*Typhlodromus pyri*) in a study over 6 weeks a feature of the study

Experimental plots were established in rows approximately 39045 pt. Vines were treated with four spray treatments. All treatments were applied using a sprayer calibrated to deliver 600 L/ha. The test item was applied at a concentration of 0.055% at rates of 600, 1000, 1200 and 1600 L/ha in the 1st, 2nd, 3rd, and 4th applications, respectively (equivalent to 165, 275, 330 and 440 g a.s./ha). A control treatment (water) and toxic reference treatment (Rody, 1% fem ropathrin applied at a rate 20 g a.s./ha) were also used as part of the study.

The predatory mites were assessed shortly before each application and approximately one, four and six weeks after the final freatment. Leaf samples consisting of 25 leaves were taken one, four and six weeks after the final treatment and the number of adults, juveniles and eggs were recorded. All leaves were examined within 24 h of their collection and populations of mites were assessed by visual observation of leaves under a binocular microscope.

Temperature at the test site varied between 5.7 33.6% and the average precipitation was 2.9 mm.

Results and Discussion

There was a gradual decline in the humber of Teyri present in the control plots from a mean of 306.75 motiles per 25 leaves at the beginning of the study to 2.25 by the end. T. pyri numbers in samples from the KWG 4168 treated plots were very simplar to those in control plots with a mean of 331.25 motiles per 25 leave Oat the beginning of the study declining to zero by the end. No statistically significant differences between the numbers of any stage of T. pyri sampled in the test substance and control plots were detected or any sampling occasion (P=0.05 in Anova). Rody was harmful to all stages of T. pvri.

In Rody (reference standard) treated plots T. pvri motiles were virtually eliminated after the first application of test substances and remained absent for the remainder of the study. Statistically significant differences in the number of T. *pyri* motiles observed in the toxic reference and control treatments were observed (p = 0.05 in Anova and Tukeys) after the first and second applications.

Evaluating the product according to Henderson & Tilton, the effect of the test substance on *Typhlodromus pyri* was calculated at 25% after the third application of treatments.

Treatment	Pre- assessment	9 days after 1 st	4 days after 2 nd	18 days after 3 rd	7 days after 4 th	32 days after 4 th	46 days after 4 th
	Number of a	treatment adult mites pe	treatment er 25 leaves	treatment	treatment	treatment C	treatment 2
Control	114.5	52.57	17.50	5,00 L	2.00 %	0.50	
KWG 4168 EC 500	126.25	41.50	11.25		¥0.50 0 ×	0:25	
Reference item	108.25	0.00	0.00	0.00		0.00 Jy	0.00
	Number of j	uvenile mites	por 25 leaves				
Control	75.75	8.50	¢6.2 5	1.50	9 .35	£600 Q	1.00
KWG 4168 EC 500	62.75	12.50	6 ²⁵	1755		0.000	\$0.00
Reference item	52.25	0:900 00 00	0.00		0.00	0.00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00
	Number of	eggs per 25 lea	aves 8	Ŷ.ô	K, V	, ĉŝ	
Control	116.50	12.50	7.25	0.00	0.00	Ç0.25	0.00
KWG 4168 EC 500	142.25	36.73	\$.50 ~~	20975 S		0.00	0.00
Reference item	902.50 ⁵	*0.00	0.00	0.00	0.00	0.00	0.00
 	Conclusion			Şa "Ça "	0		

			\$A.	*
Table CD 10 2 2 4/02 1	Number of predators	mitos following ownosure	e to residues of KWG 4168 🕅	500 @
1 able Cr 10.3.2.4/03-1	Number of predatory	miles ionowing exposure	: 10 TESIUUES OF K W G 4100 AC	· 300 °

IIK Conclusion

The effect of the test substance of *Typhodromas pyri* as calculated at 25% (Henderson & Tilton) after the third application. No statistically significant differences between the numbers of any stage of *T. pyri* sampled in the est substance and control ports were detected on any sampling occasion. However, due to the very low numbers of *T. pyri* present towards the end of the study it was not possible to obtain a realistic percent effect.

Assessment and conclusion by applicant:

The study was conducted in 1996 and therefore pre-dates much of the current guidance for NTA field testing as detailed in Candoff *et al.* (2000), ESCORT 3 and de Jong *et al.* (2010)¹⁶. Analytical dose verification of spray solutions and more advanced statistical techniques, including MDD analysis, are now used as standard in field studies and this study did not employ either of these.

There is a formalised IOBC test method for predatory mite field trials by Blümel *et al.* (2000) *"Guidance document to delect side effects of plant protection products on predatory mites (Acari:*

Ċ

¹⁶ Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. De Jong *et al.* (2010)

Phytoseiidae) under field conditions: vineyards and orchards". The study was not specifically conducted to this test method as it again pre-dates this guidance but the test methodology used in the study is largely consistent.

Despite the age and lack of recognised guidance being referenced by the study, the results are considered to be valid in their own right and can be used to support the risk assessment by demonstrating an absence of long term effects to mites in vines following application of Spiroxanine EC 500. The results demonstrated that the toxic standard gave the expected level of effect when compared to the control therefore the study is considered to be valid.

The mite density was very low in the samples taken in the second hat of the study in the control and test item treatment, therefore there is much uncertainty in drawing any firm conclusions over the potential long-term effects and recovery of mites following treatment of Spiro amire EC 500. The results should therefore be treated with caution.

The study is therefore considered to be supporting information only

	Main Main <th< th=""></th<>
Data Point:	KCP 10.3.2 4/04 & C C C C
Report Author:	
Report Year:	
Report Title:	Effects of 'spiroxamine EC 500' on feedatory mites (Typhestromus pyri) under
	typipal vine culture conditions on grape vices, Germany 1999
Report No:	BAY43 & O' A O A A A
Document No:	BAY43 <u>91-024960-016</u> BB4-Richtlinie VL - 2 3 4/1991
Guideline(s) followed in	BBA-Richtlinie VI 3-2.3 Q(1991)
study:	
Deviations from current	None of the state
test guideline:	None None None None None None None None
Previous evaluation:	
GLP/Officially	RAR (200) & 2 2
	Yes, conducted under CLP/Officially recognized testing facilities
recognised resting	
facilities	
Acceptability/Reliability:	Supportive only a start

Executive Summary

This study was conducted in order to assess the effects of residues of Spiroxamine EC 500 on predatory mites (*Typhlodromus pyr*) over A weeks

The application rates were 300 721, 798 and 732 mL product/ha in the 1st, 2nd, 3rd and 4th applications, respectively. A control treatment (water), soft reference treatment (Bayfidan spezial WG, a.s. triadimenol) and toxic reference treatment (Antracol WG, a.s. probineb) were also used as part of the study. The number of miles or leaf samples was assessed after each treatment and 4 weeks after the final treatment.

Four applications of Spiroxamine EC 500 with an interval of approximately two weeks led to populations of the predatory miles that were 12% lower than the control level.

Materials and Methods

Test Material

Spiroxamine EC 500 04023/0627

Lot/Batch #:

Purity:	508.5 g/L
Description:	Orange/brown
Stability of test compound:	Not reported
Reanalysis/Expiry date:	10 th November 1997
Density:	1.005 g/ml
Treatments	
Test rates:	300, 721, 738 and 732 mL product/ha in the 1st, and, 3rd and 4th applications, respectively
Solvent/vehicle:	Water
Analysis of test concentrations:	Yes A A A A A A A A A A A A A A A A A A A
Test organisms	
Species:	Predatory miles, Typhlodromus pyri & 5 5
Source:	Staatliche Lehr-wind Ferschungsanstalt fiir kandwittschaft, Weinbau
Acclimatisation	508.5 g/L Orange/brown Not reported 10 th November 1997 1.005 g/ml 300, 721, 738 and 732 mL product/hr in the 1st, 2nd, 3rd and 4th applications, respectively Water Yes Predatory miles, <i>Typhilodromus pyri</i> Staatliche Lehr-and Forschungsanstart für Landwirtschaft, Weinbau für Gartenbau Nore Not reported Note reported weeks 5.5 - 44.2%
Feeding:	Not reported if it of the it
Feeding: Treatment for disease: Test design &	None reported
Test design 🖉 🖉 🧹	
Replication:	
Dogation of test	Wweeks O' W O
Test design Replication: Distation of test Environmental test conditions	
Temperature:	$\bigcirc 5.5 \rightarrow 34.2^{\circ} \bigcirc \qquad \bigcirc $
Precipitation:	Monthly average 38.4 Cos.2 mm
Study Design	$5.5 \rightarrow 34.2^{\circ}$ Monthly average 38.4 -68.2 mm

This study was conducted in order to assess the effects of Spiroxamine EC 500 residues on predatory mites (*Typhlodfomus pyri*) in study over the weeks.

Rows of 15-20 vines from plots of 159 (169 m² vines were used for testing. Four plots per test were used. Vines were reated with four spray treatments with 12 - 14 days interval between each treatment. All treatments were applied using a plot tunnel sprayer. The application rates were 300, 721, 738 and 732 mb product/ha in the 12 2nd, 3rd and 4th applications, respectively. A control treatment (water), soft reference treatment (Bayfidan spezial WG, a.s. triadimenol) and toxic reference treatment (Antracol WO, a.s. probineb) were also used as part of the study.

Leaf samples were taken 6 times throughout the study and the number of mites on the sample was determined. The population of predatory mites was assessed by determining the number of mites on leaf

samples, using the washing method. Leaf samples consisting of 25 leaves were taken before the first treatment, 1 week after each application and 4 weeks after the final treatment.

Temperature at the test site varied between 5.5 – 34.2°C and the monthly average precipitation was 38.4 – 68.2 mm. II. Results and Discussion Table CP 10.3.2.4/04-1 Spiroxamine EC 500 actual and nominal application rates

	Nominal application	on rate (ml/ha)	Actoal applicati	on rate (m ha)	
Spiroxamine EC 500	300	J. O'	300	Ő, P, Č	
	750				20%
	750		738 20 2		
	750		732	∧	

After exposure to a multiple spray treatment of Spiroxsmine BC 5000the populations of predator mites at the final assessment were reduced by 12% (Henderson & Tilton) when compared to the control. There was no statistically significant difference between the population of the control and the test substance L. plots.

The toxic standard caused a \$9% reduction (H & T) relative to the control 4 weel after the final Lega -Į, treatment. Ø

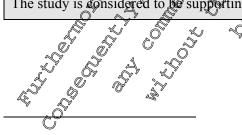
Table CP 10.3.2.4/04-2 Effect on predatory makes following exposure to residues of Spiroxamine EC 500

Treatment	Number of n	nites per 25 lean	ves S		- Q	
6	Pre- assessment (6 days after 1 st 0 % treatment	7 days, after 2 nd treatment	7 days after 3 rd 3 treatment	8 days after 4 th treatment	4 weeks after 4 th treatment
Control	586	(16 1)	207	A86	84	75
Spiroxamine EC 500				140 ⁹	77	62
Soft reference standard	519		y203 5 6	120	80	64
Toxic reference	493			54	12	7

Treatment	Number of mites per 25 leaves								
	Pre- assessment	6 days after 1 st treatment	7 days after 2 nd treatment	7 days after 3 rd treatment	8 days after 4 th treatment	4 weeks after 4 th treatment 9			
	% reduction	of Spiroxamine	e EC 500 compa	ared to the cont	rol	5 5 0			
Effect (Abbot)	-	4	-2	25		¥17 × ~			
Effect (H & T)	-	-2	-9	20	3	139 4			
	% reduction	of soft reference	ce standard con	pared to the co	ontrol 2				
Effect (Abbot)	-	13	2	35~~ .~	5 % 0				
Effect (H & T)	-	2	JY Q	D &		4			
	% reduction	of toxic standa	rd compared to	the control					
Effect (Abbot)	-	39	45,7	74 67	80 5	291 28			
Effect (H & T)	-	28	35 . 5 .	65 0 5	83 5 0	89			

III. Conclusion

Four applications of Spirozamine EC 500 with an interval of approximately two weeks there was no statistically significant difference between the population of the control and the test substance plots.


Assessment and cooclusion by applicant:

The study was conducted in 1999 and therefore pre-dates much of the current guidance for NTA field testing as detailed in Candolfi *et al.* (2000), ESCORT 3 and decong *et al.* (2010)¹⁷. Analytical dose verification despray solutions and more advanced statistical techniques, including MDD analysis, are now used as standard in field studies and this study dat not employ either of these.

There is a formalised IOBC test method for predatory mite field trials by Blümel *et al.* (2000) "Guidance document to detect side effects of plant protection products on predatory mites (Acari: Phytoseiidae) under field confitions, wineyards and orchards". The study was not specifically conducted to this test method is it again pre-dates this guidance but the test methodology used in the study is largely consistent.

Despite the age and lack of recognized guidance being referenced by the study, the results are considered to be valid in their own right and can be used to support the risk assessment by demonstrating an absence of long term effects to nites in vines following application of Spiroxamine EC 500. The results demonstrated that the toxic standard gave the expected level of effect when compared to the control therefore the study is considered to be valid.

The study is considered to be supporting information only.

¹⁷ Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. De Jong *et al.* (2010)

Data Point:	KCP 10.3.2.4/05
Report Author:	
Report Year:	1999
Report Title:	Effects of 'spiroxamine EC 500' on predatory mites (Typhlodromus pyri) under typical vine culture conditions on grape vines, Germany 1999
Report No:	BAY42
Document No:	<u>M-024963-01-1</u>
Guideline(s) followed in	BBA-Richtlinie VI, 23-2.3.4 (1991)
study:	
Deviations from current	None $\nabla $
test guideline:	
Previous evaluation:	yes, evaluated and accepted
	RAR (2010)
GLP/Officially	Yes, conducted under GRP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only Δ ∂ \mathcal{Q}

Executive Summary

This study was conducted in order assess the ffects of Spiroxamin predatory mites (Typhlodromus pyri) in a study over 4 weeks.

The application rates were 302 283, 756, 762, 935 and 769 full product/ha in the 2nd 3rd, 4th, 5th, and 6th applications, respectively A control treatment (water), soft reference treatment (Bayfidan spezial WG, a.s. triadimenol) and toxic reference reatment (Antracol WG, a sprobineb) were also used as part of the study. The number of mites on leaf samples was assessed after each reatment and 4 weeks after the final treatment. s. Ô

Six applications of Spiroxamine ES 500 with an intervation approximately two weeks led to populations of the predatory inters reducing to 41% of the control Pevel.

Jost 25 Jr MaterialSan I. Materials ô Test Material iroxâmii Lot/Batch **Purity:** Description: range/brov Stability of test Vot reporte compound: Reanalysis/ date: 00**5** m Densit Treatment Ø02, 283, 756, 762, 735 and 769 mL product/ha in the 1st, 2nd, 3rd, 4th, and 6th applications, respectively Water ehicle: Analysis of test Yes concentrations:

Test organisms	
Species:	Predatory mites, Typhlodromus pyri
Source:	Staatliche Lehr- und Forschungsanstalt fiir Landwirtschaft, Weinbau und Gartenbau None Not reported None reported 4 4 weeks
Acclimatisation period:	None
Feeding:	Not reported
Treatment for disease:	None Not reported
Test design	
Replication:	
Duration of test:	4 weeks A . A . A . A . A . A . A . A . A . A
Environmental test conditions	
Temperature:	$6.4 \rightarrow 4.2^{\circ}C^{\circ}$
Precipitation:	Monthly average 38.4 568.2 mm
Study Design	
This study was conducted (<i>Typhlodromus pyri</i>) it a	

Rows of 12-16 vines from plots of 77 - 039 m² Riesling vines were used for testing. Four plots per test was used. Vines were treated with six spray treaments with 10 - 14 days interval between each treatment. All treatments were applied using a plot trianel sprayer. The application rates were 302, 283, 756, 762, 735 and 769 mL product/ha in the 1st 2nd, 3^c, 4th, 5th, and 6th applications, respectively. A control treatment (water), soft reference treatment (Bayfidan spezial WG, a.s. triadimenol) and toxic reference treatment (Antracol WG, a.s. probineb) were also used as part of the study.

Leaf samples were taken 8 times throughout the study and the number of mites on the sample was determined. The population of predatory mites was assessed by determining the number of mites on leaf samples, using the washing method, beaf samples consisting of 25 leaves were taken before the first treatment, 1 week after each opplication and 4 weeks after the final treatment.

Temperature at the test site varie between $6.4^{\circ}_{\circ}34.2^{\circ}_{\circ}$ and the monthly average precipitation was 38.4 -68.2 mm

IL Results and Discussion

Table CP 10.3.24/05-1 Spiroxamine EC 500 actual and nominal application rates

	Nominal application rate (ml/ha)	Actual application rate (ml/ha)
Spiroxmin EC 500		302
	306	283
	750	756
Č ⁹	750	762
	750	735

Nominal application rate (ml/ha)	Actual application rate (ml/ha)	
750	769	

After exposure to a multiple spray treatment of Spritchard at the final assessment, were reduced by 59% (H & T) when compared to the control. The toxic standard caused a 93% reduction (H &T) relative to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final treatment of Spritchard to the control 4 weeks after the final to the con

Table CP 10.3.2.4/05-2	Effect on predatory mites follo	owing exposure to residues	s of Spiroxamine EC 500
	······································		

Treatment	Number of 1	mites per 2	5 leaves 🗸		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ê° Ŷ		
	Pre- assessment	7 days after 1 st app.	8 davs after 2 nd app, _s	6 days after 3°C Papp.	days after 4 th app	7 days after 5 th app. S	days after 6 th app.	4 weeks after 6 th Stpp. Ø
Control	142	88	97 .~~	57	S C	37.5		50
Spiroxamine EC 500	214	130 05	73	\$\$	51 0		39	₿1 Ĵ
Soft reference standard	159		395 P	54 ^G		370 2		36
Toxic reference	167 🤤	75 °		*35 °C				4
	% reduction	compared	l to the con					
Effect (Abbot)	12- 2-	-480, ,		-140	\$C5 ~~	-3_©	26	38
Effect (H & T)		24 &	37	A A	44	32	51	59
Ŭ Ža	% Deduction	n of soft ref	erence star	dardcom	pared to the	e control		
Effect (Abyot)	- 2		-23	to S	-18	0	8	28
Effect (H & T)	°., ℃	-3 🔬	. d o z	¢ 15 🌾	-Š	11	17	36
	& reduction	1 of toxic st	andard con	npared to	he control			
Effect (Abbot)	· - 2 (\$15 ₅	230 .2	939 O	58	62	79	92
Effect (H & T)	- 8	280	95 8°	480	65	68	82	93

H & D. Henderson & Tilton

Conclusion III.

Six applications of Spirox mine EC 500 with an interval of approximately two weeks led to populations of the predatory pites being reduced by 59% when compared to the control level.

sment and conclusion by applicant:

Ô₃

The study was conducted in 1999 and therefore pre-dates much of the current guidance for NTA field testing as detailed in Candolfi *et al.* (2000), ESCORT 3 and de Jong *et al.* (2010)¹⁸. Analytical dose verification of spray solutions and more advanced statistical techniques, including MDD analysis are now used as standard in field studies and this study did not employ either of these.

There is a formalised IOBC test method for predatory mite field trials by Blümel *et al.* (2000) "*Guidance document to detect side effects of plant protection products on predatory mites (Acari: Phytoseiidae) under field conditions: vineyards and orchards*". The study was no specifically, conducted to this test method as it again pre-dates this guidance but the test methodology used in the study is largely consistent.

Despite the age and lack of recognised guidance being referenced by the stody, the results are considered to be valid in their own right. The results demonstrated that the toxic standard gave the expected level of effect when compared to the control therefore the study is considered to be valid.

The study is considered to be supporting information only

Data Point:	KCP 10.3.2 4/06 & 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Report Author:	
Report Year:	
Report Title:	A field experiment to determine the effects of KWG 4168 PC 506 on the
	predatory mite Appblyseius aberrans (Aesri: Phytoseiidae) in vines in Southern
	predatory mite Anoblyseius aberrans (Acsri: Phytoseiidae) in vines in Southern <u>Alaly</u>
Report No:	₩ER-95-24
Document No:	<u>M-008498-001-1</u> O O N N N N
Guideline(s) followed in	Boller, F. 1983 and Heimann-Detlefsen (1991)
study:	
Deviations from corrent	None None None None None
test guideline; O	
Previous evaluation:	way evaluated and accepted
, Q	RAR (2010) A A A A A A A A A A A A A A A A A A A
GLP/Officially	Yes conducted under GLP Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Šupp@tive only
Guideline(s) followed in study: Deviations from ourrent test guideline: Previous evaluation: GLP/Officially recognised testing	Boller, E. (1983) and Helmann Detlefsen (1991)

Executive Summary

This study was conducted in order to assess the effects of KWG 4168 EC 500 on predatory mites (*Amblyseijis abberans*) on vines in a study over 4 weeks.

The application rate of the test item was 300 g a sona for three applications. A control treatment (water) and toxic reference treatment (Danitol, of g/l Genpropathrin) were also used as part of the study. The number of mites on leaf samples was assessed one and four weeks after the final treatment.

The effect of the test substance on *Smblyserus abberans* was calculated to be 18.5% 4 weeks after the third application.

¹⁸ Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. De Jong *et al.* (2010)

I. **Materials and Methods**

Materials

(Amblyset abberans) in vines in a study over 4 weeks.

Experimental plots were established in blocks of 36 m², consisting of 22-30 vines. Vines were treated with three spray treatments at 14-day intervals. All treatments were applied using a sprayer calibrated to deliver 7000 L/ha. The test item was applied at a rate of 300 g a.s./ha in a volume of 1000 L/ha. A control reatment (water) and toxic reference treatment (Danitol, 91 g/L fenpropathrin applied at a rate 20 g a.s./ha) were also used as part of the study.

The predatory mites were assessed shortly before each application and approximately one and four weeks after the final treatment. For each assessment leaf samples consisting of 25 leaves were taken and the number of adults, juveniles and eggs were recorded. All leaves were examined within 24 hours of their collection and populations of mites were assessed by visual observation of leaves under a binocular microscope.

Temperature at the test site varied between 11.5 - 38 °C. There was very little fainfall during the study. Approximately 50% of the total rainfall occurred over a two-day period shortly before the second application of test substances. There was no rainfall during or shortly after any of the application occasions.

II. Results and Discussion

By the final observation four weeks after the third application of the test substance, nombers of adults, nymphs, larvae and eggs in the control plots had increased from a mean of 25.00 motiles per 25 teaves one week after the third application to 61.00 by the end of the study.

In the treated plots the mean number of motiles observed per 25 Geaves was 31,00 at the predreatment observation increasing to a mean of 67.00 per 25 leaves by the end of the study. There were no statistically significant differences between the numbers of mites observed in test substance treated plots and control on any sampling occasion

Treatment	assessment	2 weeks after 1st treatment	2 weeks åfter 2 ⁿ Freatmont	1 week after 3 rd treatment	Oweeks after 3 rd treatment
	Number of ad	lult mites per 25 te	aves y s		
Control	11.75	17.50	19.25 ° O	9.58	19.50
KWG 4168 EC 500	Number of ad	ult mites per 25 fe 17.50 1600	12.96 ³ 22.32 29.00 0 5	x 25 @.	15.50
Reference 6	12.25		$\frac{1}{2} \frac{1}{2} \frac{1}$	0.00	0.00
item				ч 0 -	
~¢ A					
			<i>u</i>		
		\sum_{n}			

Table CP 10.3.2.4/06-1 Number of predatory mates following exposure to resultues of KWG 4168 EC 500

Treatment	Pre- assessment	2 weeks after 1 st treatment	2 weeks after 2 nd treatment	1 week after 3 rd treatment	4 weeks after 3 rd treatment					
	Number of adult mites per 25 leaves									
	Number of ju	venile mites per 25	leaves							
Control	9.00	11.75	6.75	7.00	18.75					
KWG 4168 EC 500	11.50	10.75	5.25	9.00	2750					
Reference item	9.25	0.25	0.00 €							
	Number of eg	ggs per 25 leaves	$\rho' \sim$							
Control	1.00	1.25	2.50	19:50 × 5	19.23					
KWG 4168 EC 500	2.25	1.00		8.25	Q5.50 Q 4					
Reference item	1.75									
	Total motiles									
Control	23.00	\$3.00°	2800 2800	\$24.75 °C	61.00					
KWG 4168 EC 500	31.00		24.00 °		67.00					
	Total prey									
Control	89 5	8965	59.00	45.50	36.00					
KWG 4168 EC 500	©1.25	91.75¢	48.75 5	30.005	33.25					

III. Conclusion

The overall effect of KOWG 4 108 EC 500 on predatory mites (Amplyseius abberans) in vines was 18.5% four weeks after the final application. A O

Assessment and conquision by applicant.

S. The study was conducted a 1996 and therefore pre-dates much of the current guidance for NTA field testing as detailed in Candolfi & al. (2000), ESCORT 3 and de Jong et al. (2010)¹⁹. Analytical dose verification of spray setutions and more advanced statistical techniques, including MDD analysis, are now used as standard in field studies and this study did not employ either of these.

There is a formalised ADBC test method for predatory mite field trials by Blümel et al. (2000) "Guidance domment to detect side Effects of plant protection products on predatory mites (Acari: Phytoseiidae under field conditions: vineyards and orchards". The study was not specifically conducted to this dest method as it again pre-dates this guidance but the test methodology used in the study is bargely consistent.

Despite the see and lack of recognised guidance being referenced by the study, the results are considered to be valid in their own right and can be used to support the risk assessment by

¹⁹ Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. De Jong et al. (2010)

demonstrating an absence of long term effects to mites in vines following application of Spiroxamine EC 500. The results demonstrated that the toxic standard gave the expected level of effect when compared to the control therefore the study is considered to be valid.

The study is considered to be supporting information only.

CP 10.3.2.5 Other routes of exposure for non-target arthropods

Acceptable risks have been demonstrated in the risk assessments for non-target arthropods following application of Spiroxamine EC 500 following the proposed uses. It is therefore considered that other routes of exposure, *e.g. via* systemic activity, do not need to be specifically investigated the standard species risk assessments for the in-field and off field exposure *via* contact to foliar residues were acceptable, therefore additional studies investigating other routes of exposure were not considered necessary.

CP 10.4 Effects on non-target soil meso- and macrofauna

CP 10.4.1 Earthworms

The avaialable earthworm toxicity data for spiroxanine EC 500 and the metabolites of spiroxamine are summarised in the table below.

Table CP 10.4.1-1	Summary	of ear	thworm	toxiØty	studies	with	spirox	amine	netabolites :	and
Spiroxamine EC 500	s s	<u>k</u> ,	ŝ	L,		L.		, Ôj	Ø	

Spiroxannine EC 500				S. O	3
Organism	Arest item	C Test type &	Endpoints		Reference
Earthworm (Eisenia fetida)	Spiroxamine EC	56 d Chronic toxicity; 5 16% peat	NOEC 4.0 mg a.s./kg soil do NOEC corr 2.0 mg as/kg soil dw	S S EU	<u>M-008843-01-1</u>
		KStatistical Re-analysis	EC10 C20 not determinable	NEW	<u>M-760439-01-1</u>
Earthworm	Spiroxamine EC	56 d Chronic toxicito, 5% peat	a.s./kg/soil dw;	EU	<u>M-026522-01-1</u>
(Eisenia fetida)	500 g	Statistical Re-analosis	$\mathcal{BO}_{10}/\mathcal{EC}_{20}$ not determinable	NEW	<u>M-760441-01-1</u>
Earthworm (Essenia fetida)	Spiroxamine & C	56. d'Chronie boxicity 5% peat	NOEC 158.40 mg/kg soil dw (equivalent to 80 mg a.s./kg soil dw);	NEW	<u>M-416761-01-1</u>
		Statistical Re-analysis	EC ₁₀ /EC ₂₀ not determinable	NEW	<u>M-761531-01-1</u>
Earthword (Eistenia setida)	َ الْمَرْكَ الْمَرْكَ ا الْمَرْكَ الْمَرْكَ ال	56 d Chronic toxicity; 5% peat	NOEC 100 mg/kg soil dw;	EU	<u>M-281615-01-1</u>
(Eiseniafelida)	y K K (3 4168- desethyl (M01)	Statistical Re-analysis	EC ₁₀ 93.8 mg/kg soil dw EC ₂₀ 120 mg/kg soil dw	NEW	<u>M-760435-01-1</u>

Organism	Test item	Test type	Endpoints	Reference
Earthworm (Eisenia andrei)	KWG 4168- despropyl (M02)	56 d Chronic toxicity; 10% peat	NOEC 100 mg/kg soil dw; NOECcorr 50 mg/kg soil dw ¹ ; EC ₁₀ >100 mg/kg soil dw; CC _{10 corr} >50 mg/kg soil dy	M-680755-019
Earthworm (<i>Eisenia fetida)</i>	KWG 4168-N- oxide (M03)	56 d Chronic toxicity; 5% pear Statistical Re-analysts	NOEC 160 mg/kg soil dw EC ₁₀ 245 mg/kg soil dw C ₂₀ 287 mg/kg soil dw	MI-281610-01-1 MI-281610-01-1
Earthworm (<i>Eisenia fetida)</i>	KWG 4168-acio (M06)	56 d Chrome toxicity 10% peat	NOEC 100 mg/kg Spil dwy EC 10 100 mg/kg soidew;	<u>M1-727023-01-1</u>

EU: previously evaluated as part of the original EU review and listed in FFSA conclusion and DAR NEW: new study or data generated since the previous EU review or previously not submitted Values in **bold** have been used in the Osk assessment

¹ The NOEC from the study, which was conducted using soil with a 10% beat content, has been diversed by 2 to account for lipophilic effects from compounds with a Logpow>2 \bigcirc

Toxicity endpoints

In accordance with the Terrestrial Guidance Document (SANCO/10329/2002), to account for the high organic matter content in the test fails, the effect concentrations are corrected by a factor of 2 for lipophilic substances with log P_{ov} 2. Note that endpoints have only been corrected for studies in which artificial soil with a 10% peat content was used. The Log P_{ov} of spiroxamine is 2.79 and 2.98 at pH 7 for diastomers A and B, respectively and at pH Othese value are 4.88 and 5.08, respectively. Thus, correction of the endpoint is necessary where artificial soil with a 10% peat content has been used.

The Log P_{ow} of spiroxamine-description (M01) is 2.41, 1.97 and >3.64 at pH 4, 7 and 9, respectively. The Log P_{ow} of spiroxamine-despropyl (M02) is 2.95, 1.41 and 3.44 at pH 4, 7 and 9, respectively. The Log P_{ow} of spiroxamine-N-oxide (M03) is 2.82, 2.59 and 2.63 at pH 4, 7 and 9, respectively. The Log P_{ow} of spiroxamine-carboxylic acid (M06) is 2.45, 20.25 and 0.10 at pH 4, 7 and 9, respectively. Thus, correction of the endpoint for the studies using M01 M02 and M03 would be necessary but only where artificial soil with a 40% peat context has been used.

Three reproduction studies are available using Spiroxamine EC 500. However, the older two studies which provided NOEC values of ≥ 3 kg/a.s./hg/(NOEC_{corr} equivalent to 2.0 mg a.s./kg soil dw) and ≥ 3.75 kg a.s./ha (NOEC equivalent to 5.0 mg a.s./kg soil dw) adpopted an application method in which the soil surface was oversprayed with the test material and therefore this was not evenly mixed within the soil. This application is no longer an acceptable method and these studies have been presented as supporting information only. The reproductive risk assessment for earthworms has therefore been conducted using the more recent study in which the test material was incorporated into the soil which provided a OEC of 1584 mg product/kg soil dw (equivalent to 80 mg a.s./kg soil dw).

Earthworm reproduction data for spiroxamine technical are not available. However, the available formulation data are considered to be more relevant for the risk assessment as this has been generated using the representative formulation itself and also represents the toxicity to spiroxamine.

Acute earthworm toxicity data are available for spiroxamine technical and have been summarised in Document M-CA Section 8. However, no acute risk assessment has been presented because acute earthworm data are no longer a data requirement under EU Regulations 283/2013 and 284/2013.

Exposure

Full details of the PEC_{soil} calculations have been provided in Document M-CP Section 9 Environmental Fate. The maximum initial and accumulation PEC_{soil} values for spiroxamine and its metabolities, as calculated using FOCUS equations, are given in the table below for the highest application rate of 300 g a.s./ha.

Substance	Max PEC _{soil}	g a.s./ha		x Os./ha
Substance		PFC		
			Max PECsoil	PEC wil accumulation
	(mg/kg)	○ (m g /kg) √	(mg@kg)	(mg/kg)
		· Vines		O & Q
Spiroxamine	0.200		0.3Ž2 - S	≪0.555 [€]
M01	0.022	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0, 0.372 0, 0.944	0.964
M02	0.0Q6	0.020	0.032	\$.040
M03	~017 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0718		∛ 0.037
M06	0.0% Č	× ~ 0.052~	\$ \$9.023 \$	0.104

Table CP 10.4.1-2	PEC _{soil} for spiroxamine and its metabolites
1 abic C1 10.4.1-2	

PEC_{soil} values used in the risk assessment are highlighted in **bold**

For the risk assessment below the risk envelope approach has been used in which the PEC_{soil} values for the proposed use with the highest application bate has been used. Thus, the risk assessment has been conducted for the risk on grapes at 2 \times 300 g a.s./ha Furthermore, the PEC_{soil} accumulation values were greater than the traximum initial PEC_{soil} values therefore the risk assessment has been conducted using the worst case PEC_{soil} ccumulation values.

For Spiroxamine EC 500 the formulation P6C_{soil} was determined to be 0.401 mg/kg soil for the maximum application rate of 500 g s./ha. Please tefer to Document M-CP Section 9 Environmental Fate for further details

Isomers

For parent spiroxamine the environmental fate son degradation data currently suggest that there is no significant selective degradation of isomers over time. As a result, the toxicity data generated using the mixture of the isomers (*i.e.* SpiroRamine EC 500) are considered to represent the toxicity of the isomers in the ratios that would occur in the son following application. In accordance with the isomer Guidance Document²⁰ it is therefore not necessary to apply any additional Uncertainty Factor (UF) to the risk assessment (*i.e.* a UF of 1.0 is used).

For the metabolites of spiroxadine there are no chiral data available to be able to make this assessment therefore there is a possibility that selective degradation of isomers could occur in the soil over time. In order to account for any possible increased toxicity to soil organisms as a result of an increase in the ratio of a single somer on UE has been applied to the risk assessment of M01, M02, M03 and M06.

²⁰ Guidance of EFSA on risk assessments for active substances of plant protection products that have stereoisomers as components or impurities and for transformation products of active substances that may have stereoisomers. EFSA Journal 2019;17(8):5804

The UF have been calculated following the recommendations of the isomer Guidance Document and have been presented in the table below. Q_{μ}°

 Table CP 10.4.1-3
 Uncertainty Factors determined for the earthworm toxicity data with the metabolites of spiroxamine

Test item	Study reference	Test material batch number	Isomer ratio	UF 1°
Spiroxamine	-	-	- 8	
M01	<u>M-281615-01-1</u>	921103ELB02	A:B 56:40	4.70 5 0
M02	<u>M-680755-01-1</u>	AE 1344303-PU-01	A:B & 1:16.0 °	12.5 0
M03	<u>M-281617-01-1</u>	KTS 10324-1	D1:92:D3:94 27:26:20:27	10.0
M06	<u>M-727123-01-1</u>	AE 13443 -01-02	A.B 47.53	4.26

¹ Changes in stereoisomeric excess are unknown therefore Unce@ainty Factor = 100/content of lowest stereoisomer (%) used for ecotox endpoint [as indicted in Pable BA, p.20 of isomer GDF and assumes that the toxicological effects of the mixture can be attributed to pringle isomer @his assumes that all enantioner ratios can be safely assumed to be 50:50. For example A:B ratio of 854:16 would be 100/(16/2) = UF of 12

² No additional UF required for parent is no significant change in isomeric ratios has been deponstrated This assumes that all enantiomer ratios can be safely assumed to bc50:50.

Risk assessment

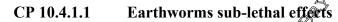
The risk assessment has been conducted in accordance with the Ferrestrial Gradance Document (SANCO/10329/2002).

The effect concentrations for piroxanine (Spiroxanine EC 500) and for the instabolites are compared to the PEC_{soil} values in the following table.

Table CP 10.4.1-4	Earthworm risl	c assessment f	or spiro	kamine a	nd xe levant	metabolites following
application of Spirox	amine EO 500 tovi	nes 🌮 🔊	ð	AN AN	- (7)	metabolites following

			J			
Intended . use	Vines 2 x 300 gas./ha					
Chronic effects	Chronic effects on ear hworning a start of the start of t					
a de la companya de l		EC.	UF ¹	TER_{LT}^{2} (criterion TER \geq 5)		
Spiroxamine	158.4 mg product bg soil	0.400 mg product/kg soil	1.0	395		
EC 500	(80 mg@.s./kg_oil dw)	0,555 mg a.s./kg soil	1.0	144		
M01	93.8 mg/kg soil dw	0.064 mg/kg soil	4.76	308		
M02	50 mg/k@soil d	0.040 mg/kg soil	12.5	100		
M03		0.037 mg/kg soil	10.0	270		
M06	100 mg/kg soil dw,	0.104 mg/kg soil	4.26	226		

¹ Uncertainty Factor applied to account for the unknown effect of a possible change in isomer ratios over time ² TER calculated as follows: Toxicity endpoint/(PEC_{soil} × UF)


The TER₁ values for spinoxamine and the metabolites M01, M02, M03 and M06 all exceed the trigger value of \mathcal{O} , therefore acceptable risks to earthworms, following the proposed uses of Spiroxamine EC 500, can be concluded.

Biodiversity

No relevant scientifically peer-reviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxicological perspective, on earthworms. Therefore, it is considered that the potential impact of the active substance on biodiversity and the ecosystem, including potential interest of the food web, are covered by the risk assessment for earthworms in this section.

With respect to the earthworm risk assessment, which demonstrated an acceptable outcome with large margins of safety and without the need for risk mitigation, the applicant concludes that the use of the representative lead formulation (Spiroxamine EC 500) has a low potential to cause unacceptable effects on biodiversity and the ecosystem *via* trophic interactions. To the best of our knowledge and with the presented safety profile of the spiroxamine a.s., metabolities, and the representative lead formulation, the applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any unacceptable effects on biodiversity applicant does not foresee any

Data Point:	KCP 10.4.1.1/03
Report Author:	KCP 10.4.1.1/03
Report Year:	
Report Title:	Spiroxamune EC 200 G: Effects on survival, growth and reproduction of the
	earthworm Eisenia fetida tested in artificial sol
Report No:	KRA@RG-R*420/11 & S & & & & &
Document No:	<u>M2976761-01-1</u>
Guideline(s) followed in	ISO 11268-2: 1998 (E) and OE @D 222: April 13, 2004
study:	
Deviations from current test guideline:	None, Solar States
Previous evaluation;	No note Source when the submitted a S
Previous evaluation:	
CI D/OCC .: 11.	Yes, conducted under GLP(Officially recognised feating facilities
recognised testing facilities:	
Acceptability/Reliability:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ÊS O	

Executive Summary

The purpose of this study was to assess the effect of Spirosamine EC 500 G on survival, growth and reproduction on the earth worm *Eisenta fetida*.

In an 8 week study, earthworms were exposed to Spiroxamine EC 500 G at nominal concentrations of 50.00, 89.00, 158.40, 282.00 and 502.00 mg/test item/kg dry weight artificial soil. There were 40 earthworms per treatment group, at test initiation they had a mean weight range of 0.25 to 0.47 g.

Exposure to Spiroxanine EC 5000G did not show significant lethal effects to the earthworm *Eisenia fetida* in artificial soil up to the Lighest test concentration of 502.00 mg test item/kg dry weight soil.

There were no statistically significant differences in growth or reproduction data at test concentrations of up to 15840 and 282.00 mg test item/kg dry weight soil, respectively. There were statistically significant differences in growth and reproduction data at \geq 282.00 and 502.00 mg test item/kg dry weight soil, respectively. The overall NOEC and LOEC values related for growth were therefore determined to be 15840 and 282.00 mg test item/kg dry weight soil. The overall NOEC and LOEC values related for growth were therefore determined to be 15840 and 282.00 mg test item/kg dry weight soil. The overall NOEC and LOEC values related for growth were therefore determined to be 282.00 mg test item/kg dry weight soil.

I. Materials and	Methods
Materials	
Test Material	Spiroxamine EC 500 G
Lot/Batch #:	EDFL013642
Purity:	508.1 g/L
Description:	Yellow-brown liquid
Reanalysis/Expiry date:	8 August 2014
Density:	1.006 g/mL $\sqrt{2}^{4}$ $\sqrt{2}^{4}$ $\sqrt{2}^{4}$ $\sqrt{2}^{4}$ $\sqrt{2}^{4}$
Treatments	
Test rates:	Nominal: 50.00, 89.00, 158,40, 282,00 an 502.00 mg/kg soil
Analysis of test concentrations:	Methods Spiroxamine EC 500 G EDFL013642 508.1 g/L Yellow-brown liquid 8 August 2014 1.006 g/mL Nominal: 50.00, 89.09, 158.40, 282,00 and 502.00 mg/kg soil No Earthworna (<i>Eisenia fetida</i>) For Graff, 38104 Bratunschweig, Germany Four days prior to test initiation Finely ground animer manufe Plastic boxes (16.5 x 42 x 6 cm) covered with perforated plastic lids Artificial soil: 500 g dry weight Four perfreatment group Ten-animals per test wessel
Test organisms	
Species:	Earthworn (Eisenia fettera)
Source:	Prof. Graff, 28104 Braunschweig, Germany
Acclimatisation period:	Foundays prior to dest initiation
Feeding:	Finely ground animal manufe O Sy is the
Test design Test vesser Test medium	
Test vessel.	Plastic boxes $(16.5 \times 1/2 \times 6 \text{ cm})$ covered with perforated plastic lids
Test medium 🔊 🕺	Artificial soil: 500 g dry weight
Replication:	Four per freatment group
No. animals/vessel:	Ten animals per test vessel
Duration of test:	Eight weeks
Environmental test	
Temperature:	$20^{\circ}\pm 2^{\circ}$
pH: Photoperiod:	Four per treatment group Ten animals per test vessel Eight weeks $20 \pm 2^{\circ}$ $5.64 \Rightarrow 6.94$ 16 Nours hight, 8 nours dark (light intensity: 400 – 800 lux)
Study Design	

This study was conducted in order to assess the effect of Spiroxamine EC 500 G on the survival, growth and reproduction on the earthworm *Eisenia fetida* during an exposure into an artificial soil at five different test concentrations. The earthworms were acted to each of the four replicate test vessels. Test vessels were plastic boxes (length, width x height *ca.* 16.5 x 12 x 6 cm) with perforated plastic lids.

The test soil consisted of 73.82% industrial quartz sand, 20% kaolinite clay, 5% sphagnum peat, 1% dried cattle manure and 0.18% calcium carbonate. Prepared soil consisted of approximately 500 g of dry weight.

The earthworms were exposed to nominal concentrations of 50.00, 89.00, 15840, 282.00 and 202.0 mg test item/kg dry weight artificial soil.

Incubation was at $20 \pm 2^{\circ}$ C with a photoperiod of 16 hours light and 8 hours dark at approximately 400 to 800 lux.

After 4 weeks of exposure, the content of each test vessel was empired and the source works were counted, removed and weighed before the substrate was returned to the respective test units minus the worms. Mortality and behavioural abnormalities (*e.g.* fack of movement and rigidity) were observed this stage (28 days after application). For the LC₅₀ calculation, probit analysis was used with ToxRatPro Version 2.10 statistical software.

At test initiation and after 4 weeks of exposure, the adult test organisms of each vessel were weighed (individually at initiation and together after 4 weeks exposure). Weights were determined by washing the worms and placing them on filter paper to absorb surplus water. The data were statistically evaluated using Williams multiple sequential t-test. For the \mathbb{RC}_{50} calculation, probit analysis was used with ToxRatPro Version 2.10 statistical setsware

At test termination, the number of arriving juveniles per test versel was determined by placing the test vessels in a water bath of 50 to 60 °C and counting all emerging worms. Reproduction was determined by the number of alive juveniles at test termination. The data were statistically evaluated using Welch-t test for inhomogeneous variances with Barlerrorh-Holm Adjustment For the EC₅₀ calculation, probit analysis was used with To RatPro Version 2.10 statistical software

The earthworms were fod finely ground cattle manure throughout the test which was added to the soil weekly. At each feeting date, the amount of food consumed by the adult earthworms was visually estimated for each est vessel.

II. Results and Discussion

Validity criteria according to the OECD 222 version of the guideline to which the study was performed were met:

- Tach replicate (containing 10 adults) to have produced ≥30 juveniles by the end of the test (actual: 32,00 468)
- The coefficient of variation of reproduction to be \$9% (actual: 11.6%)
- Adult mortality over the initial 4 weeks of the test to be $\leq 10\%$ (actual: 0%)

No mortality of adult earthworms were observed after 8 days test duration either in the control group or at any test concentration.

	worms	Number of dead worms	Mortality (%)
Control			
Control A A	100	0	0
		0	0
50,00 G G G	X		
Mean	10	0	0
S.D.	0	0	0
89.00			

Table CP 10.4.1.1/03 (Montality and survival data observed after 28 days exposure

mg test item/kg dry	Number of survi	ving Number of dead worm	
weight artificial soil	worms		
Mean	10	0	
S.D.	0	0	
158.40			
Mean	10	0	
S.D.	0		
282.00			
Mean	10		
S.D.	0		
502.00			
Mean	10		F 0 P L A .
S.D.	0		

Statistically significant differences in growth relative to the controp were observed at the two highest test concentrations of 282.00 and 502.00 mg test item/kg dry weight soil results of a Wolliams multiple t sollyers sequential t-test, two-sided, $\alpha = 0.05$ Ø Ò

O' (

	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			0
mg test item/kg dry	Number of O	Weight of worms	Weight of worms	Weight change
weight artificial soil 🛛 🔩	Numbek of Surviving worths	Weight of worms	Weight of worms (Day 28)	^(%)
Control				
Mean 🖉		0.92 5	0.58	80.87
Control Mean S.D. 50.00			0.58 0.58 0.58	4.76
50.00 50 50 50 50 50 50 50 50 50 50 50 50 5				
Mean 🔗	40 0 [×] 40°	0.30 S	0.55	81.02
Mean S.D. 89.00 Mean S.D.		(Day 0) 0.32 5 0 9.01 5 5 0.30 5 5 0.01 5	0.55 0.55 2012	9.49
89.00				
Mean 🔊	10 S >	A 33 0 2	0.58	76.84
S.D.			0.01	8.94
Mean A S.D. A 158.40 C				
Mean 🔬		\$.34	0.59	74.07
S.D.		\$34 \$0.02 \$	0.03	2.60
282.00 25		ð.31		
Mean	10	0 .31	0.52	66.05*
S.D.		0.01	0.03	8.78
502.00				
Mean S S	10 5	0.31	0.48	56.21*
502.00 Mean 502.00 S.D. 50 50 50 50 50 50 50 50 50 50 50 50 50		0.01	0.02	1.80

* Statistical Significantly different compared to the control

No statistically significant differences in the number of juveniles were observed at test concentrations of 50.00, 89.00, 158.40 and 282.00 mg test item/kg dry weight soil. Statistically significant differences were observed at the highest test concentration of 502.00 mg test item/kg dry weight soil (results of a

Welch-t test for inhomogeneous variances with Bonferroni-Holm adjustment, one-sided smaller, $\alpha =$ 0.05.

mg test item/kg dry weight artificial soil	Mean	S.D.	Coefficient variation	% of control
Control	397.9	46.1	۶ 11.6	
50.00	355.8	38.0	10.7 0	89.4 2 5 0
89.00	343.3	42.7		86.8
158.40	373.5	95.0	@25.4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	93.9 × × ×
282.00	347.3	40.0 0	5 11 fr 80 0	
502.00	294.3	xJ2.6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.3 A 5	74.0* \$ 74.0* \$ 74.0*

Table CD 10 / 1 1/02 2 Invanile continuoums non test vessel observed after 56 de

* Statistically significantly different compared to the control

A reference item, Derosal (active substance: 36% carbendazin) was sted from 31 January 2011 to 5 April 2011 in a dose response study. Dosages of 0, 125, 2.5 and 5, 0 mg 5./kg dby weight soil were tested by application into the artificial soil at test initiation. Mortaloy of adult earthworms as compared to control organisms was not observed throughout the test. Observed body weight changes at the application rates of 2.5 and 5.0 mg a.s. kg dry weight soil were statistically significantly reduced in comparison to the control group ($\alpha = 0.03$). Reproduction data at all application rates were statistically significantly reduced in comparison to the Control group ($\alpha = 0.95$). The EC₅ for reproduction was determined to be 1.66 mg a.9/kg div weight soil with 25% confidence limits between 1.62 - 1.69 mg a.s./kg dry weight soil.

III. Conclusion

Based on the biological and statistical significance of the effects observed on growth and reproduction, it is concluded, that the overall NOEC for this study is 158.400 ng test item/kg dry weight soil (equivalent to 80 mg/a.s./kg soil). Thus, the overall LOEC is determined to be 282.00 mg test item/kg dry weight soil (equivalent to 1425mg å.s./kg soil). j"

Assessment and conclusion by applicant:

The study was conducted to an older version of the current test guideline but the validity criteria remain the same in the corrent OECD 222 (2016) version. The validity criteria have been met:

- Each replicate (containing 10 adults) to have produced ≥ 30 juveniles by the end of the test Č, (actual: 32% to 468)
- The coefficient of variation of eproduction to be $\leq 30\%$ (actual: 11.6%)
- Adult mortality over the initial 4 weeks of the test to be $\leq 10\%$ (actual: 0%)

The reference substance produced significant effects with an EC₅₀ of 1.66 mg a.s./kg soil. This is in line with the values given in the OEC 22 guideline of 1 - 5 mg a.s./kg soil. Thus, the sensitivity of the organisms was confirmed

The test substance was incorporated into the soil as is now required.

The study is therefore considered to be acceptable.

The NOEC was 158.40 mg test item/kg dry weight soil (equivalent to 80 mg a.s./kg soil).

The results from this study have been statistically re-analysed and a summary of these results is presented below. Q_{a}°

Data Point:	KCP 10.4.1.1/04
Report Author:	
Report Year:	
Report Title:	2020 Calculation of EC10 and EC20 values for Eisenva fetida with spiroxample EC500
	in a reproduction study
Report No:	0471836-ECO17 A Q A A A A
Document No:	<u>M-761531-01-1</u>
Guideline(s) followed in	None & B D D D D D
study:	None to the
Deviations from current	None to to to to to the to the to
test guideline:	None A & Q A A A A
Previous evaluation:	No, not previously submitted y jor y y y y
GLP/Officially	not applicable of the second s
recognised testing	
facilities:	
Acceptability/Reliability:	Yes y g g g g g g g g g g g g g g g g g g
Executive Summary	

Executive Summary

The report <u>M-416761-01-1</u> on the effects of Spiroxamme EC 500 for the earthworm (*Eisenia fetida*) reproduction study did nov provide estimates of EC₁₀ or EC₂ values. Therefore, these values have been calculated in accordance with the Appenet to Com. Reg. 284/2013 Due to the lack of a significant dose response, the determination of EC₂₀ and EC₂₀ values for reproduction was not possible.

I. Methods

The statistical evaluation was performed with statistical software ToxRat Standard v3.3.0. Due to the lack of a significant dose response between treatment and control, the determination of EC_{10} and EC_{20} values for reproduction was not possible?

II. 🖇 Results 🖉

Due to the lack of a significant dose response, the determination of EC_{10} and EC_{20} values for reproduction was not possible $\sqrt{2}$

III. Conclusion

Due to the lack of a significant dose response between treatment and control, the determination of EC_{10} and EC_{20} values for reproduction was not possible.

Assessment and conclusion by applicant:

The statistical re-evaluation of the reproduction data could not determine reliable EC_{10} and EC_{20} values due to a lack of a dose-response

The NOPC based on growth of 158.40 mg/kg dws remains the most critical endpoint from this study and has been used in the risk assessment.

The conclusions made in the re-evaluation work are considered to be fully valid.

Data Point:	KCP 10.4.1.1/01
Report Author:	Heim
Report Year:	1994
Report Title:	Influence of KWG 4168 EC 500 on the reproduction of earthworms (Eisen a first
	fetida)
Report No:	HBF/RG 186
Document No:	<u>M-008843-01-1</u>
Guideline(s) followed in	ISO draft ISO/DIS 11268-2 (1993)
study:	
Deviations from current	None $\nabla $ O $O' $ A'
test guideline:	
Previous evaluation:	yes, evaluated and accepted
	DAR (1997), RAR (2010)
GLP/Officially	Yes, conducted under GEP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only A O Q O' O' Y

Executive Summary

The purpose of this study was to investigate the texperity of KWG/168 EC 500 exposure to earthworms and its influence on their reproduction.

In an 8-week study, earthworm were exposed to KWG 4168 EC 500 at nominal conceptrations of 1.5 L product/ha and the 4-fold rate of 6.0 L product/ha (equivalent to 0.75 and 3.0 kg a.s./ha, respectively). There were 40 earthworms per treatment proup with a mean weight a trest implation of 0.43 g.

Exposure to KWG 4168 EC 500 did not show significant lethal effects to the earthworm *Eisenia fetida* in artificial soil up to the highest test concentration of 6.9 ½ product/ha

There were no statistically significant reductions in earthwork body weight or reproduction data. The overall NOEC was therefore determined to be ≥ 3 kg a.s./ha corresponding to ≥ 4.00 mg a.s./kg soil.

I. Materials and Methods

Materials 🖉	K WG 4168 EC 500 C
Test Material	Å WG 4168 EC 500 7
Lot/Batch #:	089 A according to 04023/0021
Purity:	2994 g/E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Description:	Clear yellow liquid
Reanalysis/Expire	March 1994
datë:	
Trestments	
Test rates	Nominal: 1.5 product/ha and the 4-fold rate of 6.0 L product/ha
	(equivalent to 0.75 and 3.0 kg a.s./ha, respectively)
Test organisms	
Species: 2 A	Earthworm, (<i>Eisenia fetida</i>)
Source.	Prof Graff, D 3300-Braunschweig
Acclimatisation	One day prior to test initiation
period:	
Feeding:	Finely ground cattle manure

Test design

8	
Test vessel:	1.2 L plastic boxes (16.5 x 12 x 6 cm) covered with a fine mesh gauge (0.5 mm)
Test medium:	Artificial soil: 500 g dry weight; 725 g wet weight. 10% peat contents used
Replication:	used Four per treatment group Ten animals per test vessel Eight weeks
No. animals/vessel:	Ten animals per test vessel $vessel vessel vesse$
Duration of test:	Eight weeks
Environmental test conditions	
Temperature:	$20 \pm 2^{\circ}C$
Water content:	$20 \pm 2^{\circ}C$ Test start: $27.97 + 28.1\%$ (53.6 - 51.8% of WHC _{ma}) 47.4%
рН:	6.04 - 600 4 4 4 4 4 4 4 4 4 4
Photoperiod:	6.04 - 600 4 3 3 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4
Study Design	
This study was conducted j	n order to assess the effect of KWG 4168 EC 500 on the reproduction of

This study earthworms during an exposure into an artificial soil at two different test concentrations.

Ten earthworms were added to each of the four replicate test vessels. Rest vessels were 1.2 litre plastic boxes (length x width x height ca 6.5 212 x 6 cm) covered with a fine mesh gauze (mesh size 0.5 mm). \bigcirc

The test soil consisted of 69% fine gnartz sand, 10% dried, finely ground peat, 20% kaolin clay and 1% calcium carbonate. Fach vessel was filled with 725 g of propared soil. Prepared soil consisted of approximately 500 g of dry weight artificial soil and 125 g of water

The earthworms were exposed to nominal concentrations of 1.5 D product/ha and the 4-fold rate of 6.0 L product/ha (equivalent to 0.75 and 3.0 kg a.s./ha, respectively).

22C with a photoperiod of 16 hours light and 8 hours dark at approximately 400 Incubation was at $20 \pm$ to 800 lux. Ŵ

The moisture content and maximum water appacit of the test substrate was determined with a hydrometer at 105°C and the pH was measured using an electronic measuring instrument.

After 4 weeks of exposure, the content of each est vessel was emptied and the adult worms were counted, removed and weighted before the substrate was returned to the respective test units minus the worms. Mortality and behavioural abnormalities (e.g. lack of movement and rigidity) were observed at this stage (28 days after application)

At test termination, the number of surviving juveniles per test vessel was determined by placing the test vessels in a water bath of 50 to 60 °C and counting all emerging worms. Reproduction was determined by the number of alive juveniles at test termination.

The carthworms were fed tinely ground cattle manure throughout the test which was added to the soil weakly. A each feeding date, the amount of food consumed by the adult earthworms was visually estimate@for each test vessel.

At test termination, reproduction and body weight data were statistically evaluated by the Mann-Whitney-Wilcoxon U-Test.

II. **Results and Discussion**

No assessment of validity criteria were made in the study report.

No mortality of adult earthworms were observed after 28 days test duration at the test concentration of 6.0 L product/ha and in the control group. At the test concentration of 1.5 L product/ha a slight mortality (5%) was observed. There was no significant difference in weight alteration data between the control and the treatment groups (U-Test, p = 0.05).

T 11 CD 40 44 4/04 4			. CA. a.	••• • *	5
Table CP 10.4.1.1/01-1	Mortality and w	veight observat	tion data after	· 28 days exposur	e 冷

	e iv		
Number of applications and application rate (L/ha)	Mortality (%)	Weight alter Survivors (%	
Control	0	$\sqrt{24\pm5}$	
1 x 1.5	5±6	+ 30 = 4	
1 x 6.0		2 2 $\pm 26 \pm 3$	

Offspring data were observed following 56 days of exposure at the test concentrations of 1.5 apr 6.0 L product/ha. There was no significant difference between the control and the treatment groups (U-Test, p=0.05). m

Control 92 ± 0 -57 0^{-7} 2.0 ± 0.3 4^{-7} 1 x 1.5 10.0 \pm 0.9 109 108 \pm 0.20 90 1 x 6.0 0.5 \pm 1.00 0.5 \pm 1.00 0.5 \pm 1.00 85	Number of applications and application rate (L/ha)	Numbers per O	% of control		% of control
1×60 $0.5 \pm 1.0\%$ 10^{2} $0.5 \pm 1.0\%$ 10^{2} $0.5 \pm 1.0\%$ $0.5 \pm 1.0\%$			-5 5 0	2.0 00.3	-
$1 v 6 0$ () () $1 0 5 \pm 10$ () () $1 0 2 v = 0$ () $1 0 2 v = 0$ () $1 7 \pm 0^{\circ}$ () $1 8 5$	1 x 1.5	10.0 0.9 %	109 3	1.8 ± 0.2	90
	1 x 6.0	8.5 ± 18 40	103 2	1.7±0.3	85

Table CP 10.4.1.1/01-2 Reproduction data per Surviving adult earthyorm after 56 days exposure

A reference item, Derosal (active substance: 36% carbenda 21m) was tested from 20 December 1993 to 10 February 1994 in a dose esponse study. Dosages of 0.10, 025 and 0.50 kg formulation/ha were tested by application onto the soil surface at test initiation. Mortality of adult earthworms as compared to control organises was not observed throughout the test. The application rate of 0.5 kg/ha slightly reduced the biomass increase of adultearthworms and the final biomass of juvenile earthworms. The application rates of Q25 and 0.5 kg/ha reduced the number of juveniles by 49 and 31%, respectively. The NOEC and LOEC values were 0.10 and 0.25 kg/ μ , respectively (equivalent to 0.032 and 0.08 kg a.s./ha, respectively).

Conclusion Ш

There were no effects of KWG 4168 EC 900 on earthworm mortality, bodyweight or reproduction when applied at rates of 1.5 and 6.0 L product/ha. The NOEC has been determined to be 6.0 L product/ha (\geq 3 kg a.s./ha) corresponding with \geq 4.00 mg a.s./kg soil (considering a soil density of 1.5 g/cm³ and a depth of 5 cm).

and conclusion by applicant:

The study has been assessed against the validity criteria according to the OECD 222 (2016) Guideline "Barthworm Reproduction Test (*Eisenia fetida/Eisenia andrei*)" and these criteria have been met:

- \bigcirc Each replicate (containing 10 adults) to have produced \ge 30 juveniles by the end of the test (actual: 86 to 105 juveniles)
- The coefficient of variation of reproduction to be $\leq 30\%$ (actual: 9.72%)

• Adult mortality over the initial 4 weeks of the test to be $\leq 10\%$ (actual: 0%)

The coefficient of variation for reproduction in the control was calculated from the total number of juveniles in the four control replicates (105, 86, 87 and 89, respectively). This gave a mean of 20 per replicate, the SD was 8.9 and the CV was 9.72%.

The reference substance produced significant effects at concentrations of 0008 kg a.s./ha) which is lower than the values given in the OECD 222 guideline. However, the sensitivity of the organisms was still confirmed as effects were seen at lower rates than those stated in the guideline.

It is noted that the test substance was applied to the surface of the test soils and was not prixed int the soil as is now required. For this reason the results should be treated with caution and as a result the study has therefore been submitted as supporting information only.

The NOEC has been determined to be 6.0 L product/ha (≥ 3 kg a.s./ha) corresponding with ≥ 4.00 kg a.s./kg soil.

The results from this study have been statistically re-analysed and a summary of these results is presented below.

Data Point:	$V C D 10 \times 11/As$ (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
Report Author:	
Report Year:	
Report Title:	Calculation of EC10 and EC20 values for Eiseria fetica with spiroxamine EC 500
	"In a reproduction study
Report No:	
Document No:	$\frac{047836 - 5208}{M^{-7}60439 - 01 - 10} $
Guideline(s) followed in	
study:	
Deviations from current test guideline.	None of the second seco
test guideline:	
Previous evaluation:	No, nor previously submitted
GLP/Officially	- The second sec
recognised testing 🔊	
facilities:	not applicable
Acceptability/Reliabilit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Executive Summary

The report <u>M-008843-01-1</u> on the effects of Spirovamine EC 500 in the earthworm (*Eisenia fetida*) reproduction study didnot provide estimates of EG₁₀ or EC₂₀ values. Therefore, these values have been calculated in accordance with the Annex to Conv Reg. 284/2013. Due to the test design and the lack of effects above 10% between treatment and control, the determination of EC₁₀ and EC₂₀ values for reproduction was not possible. Therefore, EG₁₀ and EC₂₀ values were estimated to be above the test rate of 6.0 L/ha

- ugatment an possible Therefore, I of 6.0 L/ha.

I. Methods

The statistical evaluation was performed with statistical software ToxRat Standard v3.3.0. Due to the test design and the lack of effects above 10% between treatment and control, the determination of EC_{10} and EC_{20} values for reproduction was not possible.

II. Results and Discussion

Due to the test design, and the lack of effects above 10% between treatments and the control, the determination of EC_{10} and EC_{20} values for reproduction was not possible. Therefore, EC_{10} and EC_{20} values are estimated to be above the test rate of 6.0 L/ha.

III. Conclusion

Due to the test design and the lack of effects above 10% between treatment and control, the determination of EC_{10} and EC_{20} values for reproduction was not possible. Therefore, EC_{10} and EC_{20} values were estimated to be above the test rate of 6.0 L/ha

Assessment and conclusion by applicant:

A reliable EC10 and EC20 could not be determined

The NOEC of 6.0 L/ha (equivalent to 4.00 mg a.s./kg soil) remains the most critical endpoint from this study and has been used in the risk assessment.

The values determined in the re-evaluation work are considered to be fully valid.

\$	
×	
Data Point:	KCP 10471.1/022 .5
Data Point:	
Report Year:	
Report Year:	Influence of Spike aming EC 500 on the reproduction of earthworms (Eisenia
	fetida) dested with 5 % peat in the test substrate
Report Nov	MPERG 34900 0 0 0
Document No:	<u>M@26522-91-1</u> 0 0 0
Guideline(s) followed in	ISO/DIS 1268 (1996); BBA Guideline, Part VI-2-2 (1994)
study:	
Deviations from carrent	Yestrefer below), 5% beat in the ternsubstrate
test guideline: 🕡	5% peat in the tern substrate \mathcal{O}
Previous evaluation:	Qes, evaluated and accepted
4	(RAR Q010) (Q Q Q Q
GLP/Officially	Yes conducted under GLP Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only O

Executive Summary

The purpose of this study was to investigate the effects of Spiroxamine EC 500 on the reproduction of earthworks in artificial soil with 5% peat in the test substrate.

In an week study, with worms were exposed to Spiroxamine EC 500 at nominal concentrations of 750, 1500 and 3050 g a.s./ha. There were 40 earthworms per treatment group.

Exposite to Spiroxamine EC 500 did not show significant lethal effects to the earthworm *Eisenia fetida* in artificial soil up to the highest test concentration of 3750 g a.s./ha.

There were no statistically significant reductions in earthworm body weight or reproduction data. The overall NOEC is therefore determined to be \geq 3750 g a.s./ha, corresponding to \geq 5.00 mg a.s./kg soil $\mathbb{Q}_{\mathbb{P}}^{\circ}$

overall NOEC is therefore d	etermined to be ≥ 5750 g a.s./na, corresponding to ≥ 5.00 mg a.s./kg solution
I. Materials and	Methods
Materials	
Test Material	Spiroxamine EC 500
Lot/Batch #:	04023/0778(0627)
Purity:	488.9 g
Description:	Clear brown liquid
Reanalysis/Expiry date:	3 June 2001 $(\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \end{array})^{\circ} (\begin{array}{c} 0 \\ 0 \end{array})^{\circ} (\begin{array}{c} 0 \end{array})^{$
Treatments	
Test rates:	Nominal: 750, 1500, and 3750 g.a.s./ha
Test organisms	Methods Spiroxamine EC 500 04023/0778(0627) 488.9 g Clear brown liquid 3 June 2001 Nominal: 750, 1500, and 3750 g.a.s./ha Earthworms(<i>Eisenia fetida</i>) Prof. Graff, 38104 Braunschweig, Germany One day prior to test initiation
Species:	Earthworn (Eisenia fetilia)
Source:	Prof. Graff, 38104 Braunschweig, Germany
Acclimatisation period:	One day prior to test initiation
Feeding:	Finely ground cattle manure
Test design	
Test design Test vessel Test medium: Replication:	Finely ground cattle manure Finely ground cattle manure 1.2 L plastic boxes (16.5 x 12 x 6 ont) covered with a fine mesh gauze (0.5 mm) Artificial soil: 500 g dry weight; added water: 121 g. 5% peat used Four per treatment group Ten animals per test vessel Sight woeks
Test medium:	Arthficial soil: 500 g dry weight; added water: 121 g. 5% peat used Sour per treatment group Ten animals per test vessel
Replication:	Four per treatment group Image: Construction of the second seco
	/ LEW MILLINGLE DEL 1994 VESSE/
Duration of test:	Sight weeks
Environmental test	Fight works $20 \pm 2^{\circ}C$ $6.45^{\circ}-6.56^{\circ}$ to hours light ∞ hours dark (light intensity: 400 – 800 lux) ∞
Teteperature:	$-\frac{1}{2}0 \pm 2 C$
Photoporiod:	to hours dight & hours dark (light intensity: 400 - 800 lux)
Photoperiod:	\mathcal{A} is nous name in the stark (light intensity. 400 – 600 lux)
Study Design	
This study was conducted in	norder to assess the effect of Spiroxamine EC 500 on the reproduction of

earthworms during an exposure into an artificial soil at three different test concentrations. Ten adult earthworms were added to each of the four replicate test vessels. Test vessels were plastic boxes (length x width x height *ca*. 16.5 x 12 x 6 cm) covered with a fine mesh gauze (mesh size 0.5 mm).

The test soil consisted of 74% fine quartz sand, 20% kaolin clay, 5% dried, finely ground peat, 1% dried, finely ground cattle manure and 1% calcium carbonate. Prepared soil consisted of approximately 500°g of dry weight soil and approximately 121 g of water.

The earthworms were exposed to nominal concentrations of 750, 1500 and 3750 g a.s./ha.

Incubation was at $20 \pm 2^{\circ}$ C with a photoperiod of 16 hours light and 8 hours dork at approximately 4 to 800 lux.

After 4 weeks of exposure, the content of each test vessel was emptied and the adult worms were counted, removed and weighed before the substrate was returned to the respective test units minus the worms. Mortality and behavioural abnormalities (*e.g.* tack of movement and rigidity) were observed at this stage (28 days after application).

At test termination, the number of surviving juveniles per test vessel was determined by placing the test vessels in a water bath of 50 to 60 °C and counting all emerging worms. Reproduction was determined by the number of alive juveniles at test termination.

The earthworms were fed finely ground cattle manure throughout the test which was added to the coil weekly. At each feeding date, the amount of food consumer by the adult earthworms was visually estimated for each test vessel.

At test termination, reproduction, and body weight data were statistically saluated by the Mann-Whitney-Wilcoxon U-Test.

II. Results and Discussion

No assessment of validity exiteria vere made in the study report.

No mortality of adult earthworms were observed after 28 days test duration at the test concentrations of 750 and 1500 g a.s./ha in the control group and the test concentration of 3750 g a.s./ha a slight mortality (3%) was observed. There was no stenificant difference in weight alteration data between and the control and the treatment groups OU-Test p=0.03).

Table CP 10.4 1/02-1 Mortality and weight observation data after 28 days exposure

Concentration (g a.s./ha)	Weight altera survivors	ation of the
	%	U-Test*)
Control & A & 3 & A & A	$+39\pm9$	
	$+34 \pm 3$	-
	$+34 \pm 10$	-
3750	$+42\pm9$	-

*) Results of the U-test: - = weights of control and we treatment do not differ significantly (p=0.05). + = weights of control and the treatment do not differ (p=0.05).

Offspring data were observed following 56 days of exposure at the test concentrations of 750, 1500 and 3750 g a.s. that There was no significant difference between the control and the treatment groups (U-Test, p=0.05).

Table CP 10 3.1.1/02 Reproduction data per surviving adult earthworm after 56 days exposure

Application rate (g a.s./ha)	Numbers per adult	ult Variation coefficient (%)	Juvenile worms	
a.s./ha)			%	U-Test*)
Control	17 ± 3	20	100	

Application rate (g a.s./ha)	Numbers per adult	Variation coefficient (%)	Juvenile worms	
			%	U-Test
750	18 ± 2	11	101	- 5
1500	17 ± 2	12	A.7	-~~ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3750	17 ± 5	28	<u>4</u> 98	<u> </u>

*) Results of the U-test: - = numbers of control and the treatment do not differ significantly (p=0.05) of control and the treatment do not differ significantly (p=0.05) weights

A reference item, Derosal (active substance: 36% carbendazim) was tested from 12 July 2000 to September 2000 in a dose response study. Dosages of 0.10, 0.25 and 0.50 kg/ha were tested by application onto the soil surface at test initiation. Mortality of adult earthworps as compared to control organisms was not observed throughout the test. The test showed significant reduction in body weight at 0.25 and 0.5 kg/ha. The highest dosage of 0.5 kg/a.s./ha/teduced the number of juvehile earthworps by 46%. The NOEC and LOEC values were 0.10 and 0.25 kg/ha, respectively (equivalent to 0.016 kg a.s./ha and 0.032 kg a.s./ha, respectively a surface at a surface of the number of a surface of 0.5 kg/ha.

III. Conclusion

There were no effects of KWG 4168 EC 500 on earthworm modality odywsight or reproduction when applied at rates of 750, 1500 and 3750 g a.s. Fa. The NOFE was determined to be \geq 3750 g a.s./ha corresponding to \geq 5.00 mg a Skg (considering a soft density of k^2 g/cm³ and a depth of 5 cm).

Assessment and conclusion by applicant:

The study has been assessed against the validity officeria according to the OECD 222 (2016) Guideline "Earthworm Reproduction Pest (Eseniafetida/Eseniafandrei)" and these officeria have been met:

- Each replicate (containing 10 adults) to have produced > 0 juveniles by the end of the test (actual 40 to 198 juveniles)
- The coefficient of variation of reproduction to be $\leq 30\%$ (actual: 14.6%)
- Adult mortality over the initial 4 weeks of the test to be $\leq 10\%$ (actual: 3%)

The coefficient of variation for reproduction in the control was calculated from the total number of juveniles in the four control replicates (188, 159, 174 and 140, respectively). This gave a mean of 168 per replicate, the SD was 24.5 and the SV was 14.6%

The reference substance produced significant effects at concentrations of 0.032 kg a.s./ha) which is lower than the values given in the OECD 222 guideline. However, the sensitivity of the organisms was still confirmed as effects were seen at lower rates than those stated in the guideline.

It is noted that the test substance was applied to the surface of the test soils and was not mixed into the soil as is now required. For this reason the results should be treated with caution and, as a result, the study has therefore been submitted as supporting information only.

The NOEC was determined by be $\gtrsim 50$ gas./ha corresponding to ≥ 5.00 mg a.s./kg.

The results from this study have been statistically re-analysed and a summary of these results is presented below.

Data Point:	KCP 10.4.1.1/06		
Report Author:			
Report Year:	2020		
Report Title:	Calculation of EC10 and EC20 values for Eisenia fetida with spiroxamine EC 500		
	in a reproduction study		
Report No:	0471836-ECO9		
Document No:	<u>M-760441-01-1</u>		
Guideline(s) followed in	None \mathcal{O} \mathcal{O} \mathcal{O}		
study:			
Deviations from current	None $\nabla \qquad \bigcirc \qquad $		
test guideline:			
Previous evaluation:	No, not previously submitted		
GLP/Officially	not applicable		
recognised testing	not applicable		
facilities:			
Acceptability/Reliability:	Yes A ∂^{2} ∂^{2} Q^{2} ∂^{2} ∂^{2} ∂^{2} ∂^{2}		

Executive Summary

The report <u>M-026522-01-1</u> on the effects of Spirovamine EC 500 in the earthworm *Eisenia fetida*) reproduction study did not provide estimates of EC₁₀ or EC₂₀ values. Therefore, these values have been calculated in accordance with the Annex to Com Reg. 283/2005. Due to the Gst design, reduced number of concentrations tested, a lack of a significant dose response and the first design, reduced number treatment and control, the determination of EC₁₀ and EC₂₀ values for reproduction was not possible. Therefore, EC₁₀ and EC₂₀ values are estimated to be above the test rate of 3/50 g a $\frac{6}{7}$ ha.

I. Methods

The statistical evaluation was performed with statistical software ToxRat Standard v3.3.0. Due to the test design, reduced number of concentrations tested a lack of a significant dose response and lack of effects above 10% between treatment and control, the determination of EC_{10} and EC_{20} values for reproduction was not possible.

II. Results and Discussion

Due to the test design, educed number of tested concentrations, tock of a significant dose response and the lack of effects above 10° between treatment and control, the determination of EC₁₀ and EC₂₀ values for reproduction is not possible. Therefore, EC₀ and EC₂₀ values are estimated to be above the test rate of 3750 g a.s./ha.

III. Conclusion

Due to the test design, reduced humber of concentrations tested, a lack of a significant dose response and lack of effects above 10% between treatment and control, the determination of EC_{10} and EC_{20} values for reproduction was not possible. Therefore, EC_{10} and EC_{20} values are estimated to be above the test rate of 3750 g a.s. (ha.

Assessment and conclusion by applicant:

The statistical re-evaluation of the reproduction data could not determine reliable EC_{10} and EC_{20} values.

The NOE of 3750 g as the (equivalent to 5.00 mg a.s./kg soil) remains the most critical endpoint from this study and has been used in the risk assessment.

The conclusions made in the re-evaluation work are considered to be fully valid.

CP 10.4.1.2 Earthworms field studies

No data are available. Field data with Spiroxamine EC 500 are not considered necessary as an acceptoble or risk following the proposed uses has been demonstrated using the available laboratory data.

CP 10.4.2 Effects on non-target soil meso- and macrofauna (other than earthworms)

The avaialable soil meso- and macro-fauna (other than earthworms) toxicity data for spiroxamine.

Organiam	1				Reference
Organism	Test item	Test type	© Endpoints	or de	, Keierence
Folsomia candida	Spiroxamine	28 OChron & toxicity 5% peat Statistical & Re-analysis	NOEC 52 mg a.s./kg soil dw EC%/EC2Onot	EU EU NEW	51-289274-01-4 5760439-01-1
Folsomia candida	Spiroxamine	28 d Chronic toxicity; 5% peat Statistical	NOFC 75 mg a & kg son dw EC10 175 mg a.s./kg soil dw	NEXO NEXO	M-761559-01-1
		Resimalysic	₩ 258 mg		<u>M-701337-01-1</u>
Folsomiq Candida	Spiroxamin@EC	28 d Chronic 28 d Chronic 5% peac 5% peac	soft dw (equivatent to 12.5 mg a 3 kg soil dw) FC 10 > 25,0 mg/kg soil dw (equivalent to > 2.5 mg a.s./kg soil dw)	NEW	<u>M-688132-01-1</u>
Falsomia candida		28 d Chronic	NOEC 35.0 mg/kg soil dw (equivalent to 17.2 mg a.s./kg soil dw) EC ₁₀ 40.8 mg/kg soil dw (equivalent to 20.1 mg a.s./kg soil dw)	NEW	<u>M-761545-01-1</u>
Episomig@andida	Š K∭ G 4168-	28 d Chronic toxicity; 5% peat	NOEC 316 mg/kg soil dw	EU	<u>M-289321-01-1</u>
	desethyl (M01)	Statistical Re-analysis	EC ₁₀ /EC ₂₀ not determinable	NEW	<u>M-760431-01-1</u>

Table CP 10.4.2-1 Summary of soil macro-organism (other than earthworm) oxicity studies with spiroxamine, Spiroxamine EC 500 and metabolites

Organism	Test item	Test type	Endpoints		Reference
	KWG 4168-	28 d Chronic toxicity; 5% peat	NOEC 316 mg/kg soil dw	EU	<u>M-288905-6-1</u>
Folsomia candida	despropyl (M02)	Statistical Re-analysis	EC ₁₀ 308 mg/kg soil dw EC ₂₀ 402 mg/kg	NEW	M-\$0410-07-1
Folsomia candida	KWG 4168-N- oxide (M03)	28 d Chronic toxicity; 5% peat	NOEC 100 mg/kg soil dw EC ₁₀ >160 mg/kg° soil dw	NEO	M-08785-01-1 ⁵ 6 6 ⁴
Folsomia candida	KWG 4168-acid (M06)	28 PChrone Atoxicito 5% peat	NCDEC 1060 mg/kg soil dw GEC ₁₀ > 1000 mg/kg soil dw		<u>M-727</u> <u>M-727</u> <u>M</u>
Hypoaspis aculeifer	Spiroxamine & C	Ad Chronic toxisity; 5% peat	NOEC 200 mg/kg soil dw (equivalent to 100 mg ass./kg soil dw EC ₁₀ >200 mg/kg soil dw (equivalent to >100 mg a.s.(bg soil dw)		M-688129-01-1
Hypoaspis aculeifer	Spirexamine EC	4 d Chrohic toxicity; 5 peat	NOEC 1900 mg/kg soil dw (equivalent to 505 mg a.s./kg soil	NEW	<u>M-443019-01-1</u>
Hypoaspis aculeiger	KWG 4 208-	14 d Chronic toxicity 3% pear	NOÉC 50 mg/kg soil dw SC ₁₀ 94.1 mg/kg soil dw	NEW	<u>M-680684-01-1</u>
Hypoax aculeifer	KWG 168- despropyl (M02)	14 Chronic Soxicity 5% peat	NOEC 100 mg/kg soil dw EC ₁₀ >100 mg/kg soil dw	NEW	<u>M-680694-01-1</u>
Hypoaspis achleifer	KWG@168-N oxide (M03)	10 d Chronic toxicity; 5% peat	NOEC 100 mg/kg soil dw EC ₁₀ >100 mg/kg soil dw	NEW	<u>M-680687-01-1</u>
Hypotaspis Geuleifen	KWC 4168-acid (M06)	14 d Chronic toxicity; 5% peat	NOEC 1000 mg/kg soil dw EC ₁₀ >1000 mg/kg soil dw	NEW	<u>M-727128-02-1</u>

EU: previously evaluated as part of the original EU review and listed in EFSA conclusion and DAR NEW: new study or data generated since the previous EU review or previously not submitted Values in **bold** have been used in the risk assessment

Toxicity endpoints

In accordance with the Terrestrial Guidance Document (SANCO/10329/2002), to account for the high organic matter content in the test soils, the effect concentrations would be corrected by a factor of 2 for lipophilic substances with log $P_{ow} > 2$. The Log P_{ow} of spiroxamine is 2.79 and 2.98 at pP 7 for diastomers A and B, respectively and at pH 9 these value are 4.88 and 508, respectively. Thus, correction of the endpoint would be necessary where artificial soil with a 10% peat content has been used. The Log P_{ow} of spiroxamine-desethyl (M01) is 2.41, 1.97 and >3.64 at pH 4, 7 and 9 respectively. The Log P_{ow} of spiroxamine-desethyl (M02) is 1.95, 1.41 and >3.64 at pH 4, 7 and 9 respectively. The Log P_{ow} of spiroxamine-despropyl (M02) is 1.95, 1.41 and >3.64 at pH 4, 7 and 9 respectively. The Log P_{ow} of spiroxamine-despropyl (M02) is 0.45, -0.25 and 0.10 at pH 4, 7 and 9 respectively. The respectively are artificial soil with a 10% peat content has been used. It is noted that all of the rivalable studies using spiroxamine or its metabolites with *Folsomia* and *Hypoaspis* have used artificial soil with a reduced (5%) peat content therefore correction of the endpoint to be necessary.

Four reproduction studies with *Folsomia candida* are available, two with spiroxamine technical and two using Spiroxamine EC 500. For the technical material the lowest endpoint derived out of the two studies was a NOEC of 32 mg a.s./kg soil dw therefore this value has been used in the risk assessment of spiroxamine. For Spiroxamine EC 500, the first study tested up to a maximum concentration of 25 mg product/kg soil dw, at which there were no significant effects blative to the Control A second study was therefore conducted at higher, encentrations in order to better define the NOEC. A NOEC of 35 mg product/kg soil dw was determined in the second study and was established based on a LOEC of 55 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw. It is therefore appropriate to use the defined NOEC of 35 mg product/kg soil dw in the risk assessment of Spiroxamine EC 500.

For *Hypoaspis aculeiter*, reproduction data for sphoxamine technical are not available. However, the available formulation data are considered to be more relevant for the risk assessment as this has been generated using the representative formulation itself and also represents the toxicity to spiroxamine. Two studies using Spiroxamine EC 500 are available, from which the lowest endpoint was a NOEC of 200 mg product/kg solid dw. Phis value has therefore been used in the risk assessment below.

Exposure

Full defails of the PECC_{il} calculations have been provided in Document M-CP Section 9 Environmental Fate. The maximum mitial and accumulation PEC_{soil} values for spiroxamine and its metabolites, as calculated using POCUS equations, are given in the table below for the highest application rate of 300 g a.s./ha.

	Q 1 x 300	sa.s./ha	2 x 300	g a.s./ha
Substance	Max PEC _{soil}	PEC soil accumulation (mg/kg)	Max PEC _{soil} (mg/kg)	PEC _{soil} accumulation (mg/kg)
		Vines Vines		
Spiroxemine	Q.200 Q	0.277	0.372	0.555
	0.022	0.032	0.044	0.064
MODY CY	0.016	0.020	0.032	0.040
LE 1903	<u>گ</u> 0.017	0.018	0.033	0.037
© [°] M06	0.012	0.052	0.023	0.104

Table CP 10.4.2-2 PBC soil for spirosamine and its metabolites

PEC_{soil} values used in the risk assessment are highlighted in **bold**

For the risk assessment below the risk envelope approach has been applied in which the PEC_{soil} values for the proposed use with the highest application rate has been used. Thus, the risk assessment has been conducted for the use on grapes at 2 x 300 g a.s./ha. Furthermore, the PEC_{soil} accumulation values were greater than the maximum initial PEC_{soil} values therefore the risk assessment has been conducted using the worst case PEC_{soil} accumulation values.

For Spiroxamine EC 500 the formulation PEC_{soil} was determined to be 0.401 mg/kg soil for the maximum application rate of 300 g a.s./ha. Please refer to Document M. P Section 9 Environmental Fate for further details.

Isomers

For parent spiroxamine the environmental fate soil organization data currently suggest that there is no significant selective degradation of isomers over time. As a result, the toxicity data generated using the mixture of the isomers (*i.e.* spiroxamine or Spiroxamine EC 500) are considered to represent the toxicity of the isomers in the ratios that would occur by the soil following application. In accordance with the isomer Guidance Document²¹ it is therefore not necessary to apply any additional Uncertainty Factor (UF) to the risk assessment (*i.e.* a UF of 10 is used).

For the metabolites of spiroxamine there are no chiral data available to be able to make this assessment therefore there is a possibility that selective degradation of somer's could occur in the coil over time. In order to account for any possible increased toxicity to soil organisms as a result of an increase in the ratio of a single isomer, an UF has been applied to the risk assessment of 0101, 002, 003 and 006. The UF have been calculated following the recommendations of the isomer Gindance Document and have been presented in the table below.

Table CP 10.4.2-3	Uncertainty	Factors	detern	nined	for the	soil me	so- a	nd macro-fa	una toxicity data
with the metabolites of	spiroxamine	Ô,	Ô	×		×,	(n		

Test item	Study reference	Test material batch	Isomer ratio	UF ¹
		nation der s	Isomer ratio	
Folsomia can				
Spiroxamine		- 1 2 8		1.0 ²
M01	<u>M-28932101-1</u>	2 103ELB02	A:B \$6.42	4.76
M02	M-288905-01-17 ×	92116 ELB03	Ax9 55:42	4.76
M03	<u>M-687854-01-1</u>	M26999	D1:D2:D3:D4 22:21:26:31	9.52
M06	M-727120-01-1	QUE 1343313-00003 0	A:B 47:53	4.26
Hypoaspis ac	ulleifer 🏷 👡 🎙			
Spiroxanthe	- <u></u>		-	1.0 ²
M01	<u>M-680684-01</u>		A:B 52:48	4.17
M02	<u>M-680694-01-1</u>	AE 1344293-PU-01	A:B 83.1:16.0	12.5
M03		M26999	D1:D2:D3:D4 22:21:26:31	9.52
M06	<u>M-727128-051</u> 5	AEQ344313-01-03	A:B 47:53	4.26

²¹ Guidance of EFSA on risk assessments for active substances of plant protection products that have stereoisomers as components or impurities and for transformation products of active substances that may have stereoisomers. EFSA Journal 2019;17(8):5804

¹ Changes in stereoisomeric excess are unknown therefore Uncertainty Factor = 100/content of lowest stereoisomer (%) used for ecotox endpoint [as indicted in Table B.1, p.30 of isomer GD] and assumes that the toxicological effects of the mixture can be attributed to a single isomer. This assumes that all enantiomer ratios can be attributed to be 50:50. For example A:B ratio of 83.1:16 would be 100/(16/2) = UF of 12.5

² No additional UF required for parent as no significant change in isomeric ratios has been demonstrated

Risk assessment

The risk assessment has been conducted in accordance with the Terrostrial Guidance Document (SANCO/10329/2002).

The effect concentrations for spiroxamine, Spiroxamine EC 500 and for the metabolites are compared to the PEC_{soil} values in the following table.

Table CP 10.4.2-4 Soil meso- and macro-fauna (other than carthworms) risk assessment for spiroxamine, Spiroxamine EC 500 and relevant metabolities following application of Spiroxamine EC 500 to vines

			<u> </u>	
Intended use	Vines 2 x 300 g a.s./ha			
Chronic effects	on soil meso- and macro2fau	na (other than earthwornes)		
Test item	NOEC/EC10	PECcoil V		TORLT ²
				(criterion TER ∠ ≥ 5)
Folsomia candia	la 🗸 👔			0
Spiroxamine	32 mg a.s. Rg soil Rw	0.555 mg a.s./kg soil		57.7
Spiroxamine EC 500	35 mg product (kg	0401 mg product/kg sou		87.3
M01	3.16 mg/kg/soil dw	0.064 mgAQ soil	4.7@	1037
M02	308 merkg soil dw 🐇	0.040 mg/kg soil	4.7@ 4.76	1618
M03	1000ng/kg sóil dw	0.037 mg/kg soil	9.52	284
M06	1000 mg kg soit dw	0.104 mg/kg soit	4.26	2257
Hypoaspis acule	ifer 🖒 🔭 🔬 🖧			
Spiroxamine	200 mg product/kg	0,401 mg productskg soil	1.0	499
EC 500	(100 mg a.s./kg soil to)	0.555 mg a.s./kg soil	1.0	180
M01	50 mg/kg and dw y	0.064 mg/k@soil	4.17	187
M02	100 mg/kg sojbitw	0.040 mg/kg soil	12.5	200
M03	100 mg/kg soil dw	0.037, mg/kg soil	9.52	284
M06	1000 mg/kg soildw	0.004 mg/kg soil	4.26	2257

¹ Uncertainty Factor applied to account for the unknown effect of a possible change in isomer ratios over time ² TER calculated as follows: Toxicity endpoint/(PEC_{soil} × UF)

The TER & values for spiroxamine, Spiroxamine EC 500 and the metabolites all exceed the trigger value of 5 therefore acceptable risks to soil meso- and macro-fauna (other than earthworms), following the proposed uses of Spiroxamine EC 500, can be concluded.

Biodiversity

No relevant scientifically peer-reviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxicological perspective, on soil meso- and macrofauna (other than earthworms). Therefore, it is considered that the potential impact of the active substance on biodiversity

and the ecosystem, including potential indirect effects via alteration of the food web, are covered by the risk assessment for soil meso- and macrofauna (other than earthworms) in this section.

With respect to the risk assessment for non-target soil meso- and macrofauna, which demonstrated an acceptable outcome with large margins of safety and without the need for risk mitigation, the applicant concludes that the use of the representative lead formulation (Spiroxamine EC 500) has a low potential to cause unacceptable effects on biodiversity and the ecosystem via trophic interactions. To the best of our knowledge and with the presented safety profile of the spiroxamine a.s., metabolites and the representative lead formulation, the applicant does not foresee any unacceptable effects on biodiversity and the ecosystem with spiroxamine.

CP 10.4.2.1 **Species level testing**

and the ecosystem	vith spiroxamine
CP 10.4.2.1	Species level testing
Data Point:	KCP 10.4.2.1/01
Report Author:	
Report Year:	
Report Title:	1st final report amendment Spirstamine FC 500 Effects on repoduction of the collembola Folsomia cardida in artificial soil
Report No:	collembola Folsomia candida in artificial soil S S S S
Document No:	<u>M-6362132-04 1</u> 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guideline(s) follow	ed in Regulation (EC) No 1107/2009 (2009)
study:	OECD-Guideline for testing chamicals No. 232 Collembolan Reproduction Test
	an Soil' (adopted July 29, 2016)
	ISO 41267 Soil Quality – Indibition of reproduction of Collembola (Folsomia candida) by soil contaminants, 2014
Deviations from cur	ront None of a star of v
test guideline:	
test guideline: Previous evaluation	No, hot previously submitted ~ 2
GLP/Officially	Image: Second conducted under GEP/Officially recognized testing facilities
recognised testing	
facilities	
Acceptability/Relia	DIJULY: Yes , Star , St
6 0	
Executive Summa	ry A Q V X O O

Collembola (Edisomia candida) age 10 to 2 days were exposed to Spiroxamine EC 500 incorporated into artificial soil in a 4 week study in order to assess the effects on mortality and reproduction.

Folsomia vandida wereexposed to test concentrations of 1.56, 3.13, 6.25, 12.5 and 25.0 mg test item/kg dry weight soil.

There were no statistically significant effects observed on the mortality and reproduction of Folsomia candida up to and including the test concentration of 25.0 mg test item/kg dry weight soil.

The NOEC and LOEC values for reproduction were determined to be ≥25.0 and >25.0 mg test item/kg dry weight soil, respectively.

Methods erials and

Materials Test Material Spiroxamine EC 500 Lot/Batch #: EM4L018425 **Purity:** Spiroxamine EC 500 50.0% w/w, corresponding to 501.6 g/L

Description:	Yellow liquid
Reanalysis/Expiry date:	1.004 g/mL 1.56, 3.13, 6.25, 12.5 and 25.0 mg test item/kg dry weight soil Folsomia candida, Collombola, Isotomidae, age 100 12 days Ibacon GmbH, 64380 Rossdorf, Germany 2 mg of granulated dry veast at best initiation and after 14 days
Density:	1.004 g/mL
Treatments	
Test rates:	1.56, 3.13, 6.25, 12.5 and 25.0 mg test iten Kg dry weight soil
Test organisms	
Species:	Folsomia candida, Collembola, Isotomidae, age 100 12 dáys
Source:	Ibacon GmbH, 6438 Rossdorf, Germany
Feeding:	2 mg of granulated dry veast at best initiation and after 14 days
Test design	
Test vessel:	Glass containers (volume: 100 mL; diameter; Ocm) sealed with lide
Test medium:	Artificial soil according to QECD 232 (2016). 5% Beat content
Replication:	8 replicates for the control, 4 replicates for test concentration and 1
	additional container per treatment to test the part and water content of the soil at test termination
No. animals/vessel:	40 nørstest versel 4 av 4 3 a
Duration of test:	4 weeks a far a fa
Environmental test	the soil at test termination $\sqrt{2}$
conditions	
conditions Temperature:	18 - 22°C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
рН: 🔗 🖉 🖉	$26.0 - \Theta^2$
conditions Temperature: pH: Photoperiod:	16 hours fight: Shours dark (400 – 800 lux)
Study Design	
reproduction of Collembola	n order to assess the effects of Spiroxamine EC 500 on the mortality and (Estsonnic candida) over 4 weeks.
The Collembola were 1040 the test vessels and placed o fine quarter sand, 20% kaolin	the soil at test termination 10 per test vessel 4 weeks 4 weeks 18 - 22°C 6.0 - 0.2 16 hours fight: 8 hours dark (400 - 800 lux) A order to assess the effects of Spiroxamine EC 500 on the mortality and <i>E olsomed candida</i>) over 4 weeks. 12 days old at test onitiation. Ten juvenile Collembola were introduced to no the surface of the artificial soil. The test soil was composed of 74.8% (ay, 5% sphagnum peat and 0.2% calcium carbonate.
The astrificial soil was kept	at 1800 229 and we test vessels were exposed to $400 - 800$ lux in the
Test concentrations of 1.56.	(2.13, 6.25, 12.2) and 25.0 mg test item/kg dry weight soil were applied to

the artificial fill. Eight replicates were exposed to the control treatment and four replicates were exposed to the 1.56 3.13 6.25, 12.5 and 25.0 mg test item/kg dry weight soil treatments. At test initiation and after 14 days, the Collembola were fed with approximately 2 mg of granulated dry vestor

J. yeast {

A reference test with the toxic standard, Boric acid, was performed at least once a year to ensure that the laboratory test conditions are adequate and to verify that the response of the test organisms does not change significantly over time.

Water content was checked 14 days after application by reweighing the additional test vessels. If the water loss exceeded 2% of the initial water content, the missing amount of water was added to all vessels of the treatment group.

Reproduction data were observed at test termination. Juveniles were counted twice under brocular microscopes. Statistical analysis was performed on the reproduction data using Shapiro-Wilk's test and Levene's test ($\alpha = 0.01$) to test for normal distribution and homogeneity. Since the reproduction data were normally distributed and homogeneous but did not follow a monotonicity trend (contrast trend) the Dunnett's t-test was used to compare treatment and controt values (multiple comparison, $\alpha = 0.05$, or e-sided smaller).

Mortality data were observed at test termination. Mossing adult Collembola were assumed dead and degraded. Statistical analysis was performed on the mortality data using Fisher's Exact Binomial Test (multiple comparison, with Bonferroni Correction $\alpha = 0.05$, one sided greater).

The software used to perform the statistical analysis was Tox Rat Professional, Version 3.3.0, Tox Rat® Solutions GmbH.

Behavioural abnormalities were also recorded at test termination.

II. Results and Discussion

Validity criteria according to the QSCD 232 guideline (2016) were mer

- Mean adult mortality should not exceed 20% of the end of the test actual (6.3%)
- The mean number of preventies per vessel should be at least 100 at the end of the test (actual: 390 483)
- The coefficient of variation calculated for the number of juveniles should be less than 30% at the end of the definitive test (actual: 53%) %

There was slight morality observed at all test concentrations, however the mortality was not statistically significant at any test concentration (Fisher's Exact Test, $\alpha \neq 0.05$, one-sided greater). The highest and lowest mortalities were observed at concentrations of 6.25 and 14.5 mg test item/kg dry weight soil, respectively. The NOFC and LOEC alues for mortality were determined to be ≥ 25.0 and >25.0 mg test item/kg dry weight soil, respectively.

Treatment group (mg test item/kg ætificial soil dry weight soil)		Stindard deviation	Significance ¹
Control			-
1.56	5.0 0 27	∠± 10%	n.s.
3.13		± 10%	n.s.
6.25		± 8%	n.s.
12.5		± 5%	n.s.
25.0	\$5.0 × ~	± 10%	n.s.

Table CF 10.4.2.1/01-1 Mortanty data observed after 28 days exposure

¹Fisher's $\alpha = 0.05$

- not applicables

n.s. not significantly different compared to the control

There we no statistically significant effects on reproduction of *Folsomia candida* up to and including the highest concentration of 25.0 mg test item/kg soil (Dunnett's t-test, $\alpha = 0.05$, one-sided smaller). The NOEC and LOEC values for reproduction were determined to be ≥ 25.0 and ≥ 25.0 mg test item/kg dry weight soil, respectively.

Treatment group (mg test item/kg artificial soil dry weight soil)	Mean number of juveniles	Standard deviation	% of control	Significance ¹
Control	449	± 33	-	- & \$
1.56	417	±19	93	n.s. Y Y
3.13	459	± 53	102	Cus. 7 2 6
6.25	468	± 52	1040	n.s.
12.5	452	±19 @	A91	h.S. 2
25.0	456			ns v

 Table CP 10.4.2.1/01-2
 Reproduction data observed after 28 days exposure

¹Dunnett's t-test, $\alpha = 0.05$, one-sided smaller

- not applicable

n.s. not significantly different compared to the control

To verify the sensitivity of the test softem, the reference frem (boric acid) was tested at concentrations of 30.5, 48.8, 78.1, 125 and 200 mg/kg soil dry weight in a separate study. In the most recent GLP study, an EC₅₀ of 104.6 mg/kg soil dry weight was determined. The effects on the reduction of reproduction showed that the test system was sensitive and reflected the expected toxicity as given in the OECD 232 test guideline (50% reduction in reproduction at about 100 mg/kg soil dry weight).

III. Conclusion

Spiroxamine EC 500 caused no statistically significant, effects on mortality and reproduction of Folsomia candida up to and including the highest test concentration of 25.0 mg test item/kg dry weight soil.

The NOEC and COEC values for mortality were determined to be ≥ 25.0 and ≥ 25.0 mg test item/kg dry weight soil, respectively. The LC₅₀ was estimated to be ≥ 25.0 mg test teem/kg dry weight soil.

The NOEC and LOEC values for reproduction were determined to be ≥ 25.0 and ≥ 25.0 mg test item/kg dry weight soil, respectively requivalent to ≥ 12.5 and ≥ 12.5 mg a.s./kg soil dry weight, respectively). Due to the lack of a concentration-response relationship, no reliable EC_x-calculation was possible. Therefore, no EC_x EC₂₀ value can be reported However, the EC₅₀ was estimated to be ≥ 25.0 mg test item/kg dry weight soil.

Assessment and conclusion by applicant:

This is mew study that has not been previously submitted or evaluated.

Validity criteria according to the PECD 232 grideline (2016) were met.

- Mean adult mortality should not exceed 20% at the end of the test (actual: 6.3%)
- The mean number of uventies per Qessel should be at least 100 at the end of the test (actual: 390,0483)
- The coefficient of variation calculated for the number of juveniles should be less than 30% of the end of the definitive test (actual: 7.3%)

The treference item also demonstrated sufficient sensitivity of the test organisms. The study is therefore considered acceptable.

The DEC value for reproduction was determined to be 25.0 mg test item/kg dry weight soil (equivalent to 12.5 mg a.s./kg soil dry weight).

Data Point:	KCP 10.4.2.1/02
Report Author:	
Report Year:	2021
Report Title:	Spiroxamine EC 500: Effects on reproduction of the Collembola Folsomia candida in artificial soil
Report No:	156131016
Document No:	<u>M-761545-01-1</u>
Guideline(s) followed in	Regulation (EC) No 1107/2009 (2009)
study:	OECD-Guideline for testing chemicals No. 233 Collembolan Reproduction Dest
	in Soil" (adopted July 29, 20, 6)
	ISO 11267 Soil Quality – Inhibition of reproduction of Collembola (Folsonia
	candida) by soil contamponts, 2014 🦴 🖉 🖓 🖓 🖉
Deviations from current test guideline:	None
Previous evaluation:	No, not previously submitted
GLP/Officially	Yes, conducted under CLP/Officially recognised testing facilities
recognised testing facilities:	
Acceptability/Reliability:	Yes a a a a a a a a a a a a a a a a a a a

Executive Summary

Collembola (*Folsomia candida*) aged 10 to 12 days were exposed to Spiroxanine EG 500 incorporated into artificial soil in a 4 week study in order to assess the effects on mortality and reproduction.

Folsomia candida were exposed to test concentrations of 29, 55, 95, 115, 139, 180 and 250 mg test item/kg dry weight soll.

There were no statistically significant effects observed on the mortality of *Folsomia candida* up to and including the test concentration of 55 mg test item/kg dry weight soil and no statistically significant effects observed on reproduction at the test concentration of 35 mg test item/kg dry weight soil.

The NOEC and LOEC values for mortality were determined to be 50 and 35 mg test item/kg dry weight soil, respectively. The NOEC and LOEC values for reproduction were determined to be 35 and 55 mg test item/kg dry weight soil, respectively. The EC $_{30}$ and EC $_{30}$ were determined to be 40.8, 54.6 and 95.3 mg test item/kg dry weight respectively.

I. aterials and Materials iroxamine **Test Material** M44£027099 Lot/Batch droxamine H 00 49.2% w/w, corresponding to 494.1 g/L ellow liquid Description Januar 2024 Reanary date 1.004 g/mL Densit Treatments Test rates: 35, 55, 75, 95, 115, 135, 180 and 250 mg test item/kg dry weight soil

Test	organisms	

i est oi gamsins	2
Species:	Folsomia candida, Collembola, Isotomidae, age 10 – 12 days Ibacon GmbH, 64380 Rossdorf, Germany 2 mg of granulated dry yeast at test initiation and after 14 days Glass containers (volume: 100 mL; diameter: 5 cm) sealed with Ids
Source:	Ibacon GmbH, 64380 Rossdorf, Germany
Feeding:	2 mg of granulated dry yeast at test initiation and after 14 days
Test design	2 mg of granulated dry yeast at test initiation and after 14 days
Test vessel:	Glass containers (volume: 100 mL; diameter: 5 cm) sealed with Ids
Test medium:	Glass containers (volume: 100 mL; diameter: 5 cm) sealed with lids
Replication:	8 replicates for the control, 4 replicates per test concentration and 1
No. animals/vessel:	10 per test vesse 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Duration of test:	4 weeks \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
Environmental test conditions	additional container per treatment to test the pH and water content of the soil at test termination 10 per test vessel 4 weeks 18 - Q2°C 59 - 5.9 16 hours light. 8 hours dark (400 - 800 hx)
Temperature:	18 - Q2°C , a b b b c b b b b
pH:	5.9 - 5.9 $\frac{1}{2}$ $$
Photoperiod:	16 hours light 8 hours dark $(400 - 800 \text{ tox})$
Study Design	
This study was conducted in reproduction of Collembola (ordec to assess the effects of Spiroxamme EC 500 on the mortality and Folsomia candida) over weeks.
the test vessels and placed of fine quartz and, 20% kaolin	12 days old at test initiation. Ten juvenile Collembola were introduced to no the surface of the artificial soil. The test soil was composed of 74.8% $clay 5\%$ sphagning peat and 0.2% calcium carbonate.
The artificial soil was kept a controlled environment cham	The to 2°C and the test versels were exposed to 400 - 800 lux in the test versels were exposed to 400 - 800 lux in the

Test concentrations of 35, 55, 72, 95, 145, 135, 180 and 250 mg test item/kg dry weight soil (equivalent to 17.2, 27.1, 36.9, 46, 256.6, 56.4, 86.6 and 723 mg a.s./kg soil) were applied to the artificial soil. Eight replicates were exposed to the control treatment and four replicates were exposed to the 35, 55, 75, 95, 115, 135, 180 and 250 mg test item/kg dry weight soil treatments.

At test initiation and after 14 days, the Collembola were fed with approximately 2 mg of granulated dry yeast

A reference test with the toxic standard, boric acid, was performed at least once a year to ensure that the laboratory test conditions are adequate and to verify that the response of the test organisms does not change significantly over time.

Water content was checked 14 days after application by reweighing the additional test vessels. If the water loss exceeded 2% of the initial water content, the missing amount of water was added to all vessels of the reatment group?

At the end of the test the content of the test containers was suspended in water, the suspension was tinted with daro ink and stirred with a fine brush. The Collembola drifted to the surface. Adult animals were counted once visually, juvenile animals were counted using FolsomiaCounter, a photo based evaluation software, which automatically determines the number of juvenile animals from a digital photograph.

Statistical analysis was performed on the reproduction data using Shapiro-Wilk's test and Levene's test $(\alpha = 0.01)$ to test for normal distribution and homogeneity. Since the reproduction data were normally distributed and homogeneous but did not follow a monotonicity trend (contrast trend) the William's ttest was used to compare treatment and control values (multiple comparison, $\alpha = 0.05$, operative domain of the comparison of the comparison of the compares smaller).

Mortality data were observed at test termination. Missing adult Collembola were assumed dead and degraded. Statistical analysis was performed on the mortality data using Step-down Cocloran-Apriliage Test ($\alpha = 0.05$, one-sided greater). An LC₅₀ value was calculated by applying Weibulk Analysis, values were compensated for control mortality using Abbot's formula. The ESx values for reproduction were calculated by Probit Analysis.

The software used to perform the statistical analysis was ToxRat Professional, Xersion 3.3.0, ToxRat Solutions GmbH.

Behavioural abnormalities were also recorded at test

II. **Results and Discussion**

Validity criteria according to the OECD 232 guideline 20

- Mean adult mortality should not exceed 20% at the end of the test actual.
- The mean number of juvepites per vessel should be at least 100 at the end of the test (actual: 1150 to 1484)
- The coefficient of variation calculated for theorem of jugeniles should be less than 30% at the end of the definitive test (actual: 8.3%)

There was significant mortality observed at dest concentrations of 75 mg test item/kg dry weight soil and above (Step-down Cochran-Armitage, Test (a = 0.05, one-Sided greater), The NOEC and LOEC values for mortality were determined to be 55 and 75 mg test dem/kg dry weight soil, respectively. The LC50 of Spiroxamine EC 900 for Folsomia candida martificial soil was determined to be 153.9 mg test item/kg soil (95% confidence limits of 130.200 182,9 mg test item/kg soil). No abnormal behaviour was observed with the surviving Collembola.

Treatment group (mg	Mean mortalito (%)	Standard Deviation	Significance ¹
test item/kg artificial soil dry weight)	Mean mortality (%)		
Control of Cor	40 % ~ ~	±.7%	-
35		£15%	n.s.
55	$\begin{array}{c} 5 \\ \hline 3 \\ \hline 2 \hline 2$	± 5%	n.s.
75		± 10%	*
95 J	32 ~ ~ ~ ~	± 15%	*
115		± 17%	*
		± 14%	*
180 5 5 5	50	± 12%	*
250	93	± 15%	*

Table CP 10.4.2.1/02-1 Mortality data observed after 28 days exposure

¹ Step-down Cochran-Armitage Test, one-sided greater, $\alpha = 0.05$ - not applicable

n.s. Not significantly different compared to the control

* Significantly different compared to the control

There were no statistically significant effects on reproduction of *Folsomia candida* at the test concentration of 35 mg test item/kg soil (Williams t-test, $\alpha = 0.05$, one-sided smaller). At the concentration of 55 mg test item/kg soil and above reproduction was statistically significantly reduced compared to the control.

Therefore, the NOEC for reproduction was determined to be 35 mg test item/kg soil and the OEC for reproduction was determined to be 55 mg test item/kg soil. The EC₁₀ for Folsomia candida, in artificial soil was determined to be 40.8 mg test item/kg soil (95% confidence limits of 26.3 to 51.8 ang test? item/kg soil). The EC₂₀ was determined to be 54.6 mg test stem/kg soil (95% confidence limits of 39.8 to 65.4 mg test item/kg soil). The EC₅₀ was determined to be 95.3 mg test item/kg sojf (95% Confidence limits of 83.3 to 107.9 mg test item/kg soil, Probit Analysis).

		40 ⁻		
Treatment group (mg test item/kg artificial soil dry weight)	Mean number of juveniles	Standard o deviation o	5% of contrat	Significance
Control	1349			
35	1242	\$\$6 \$\$ \$		- 27 0 59. 27
55	1153		985 <i>f</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
75	831 2 4	\$\$176		* 0
95	701 Q Q	± 169	×52 2 4 4 4 4	
115	412 gr 29	±\$69		*
135	397	\$± 126\$\$	Ø29 ×	*
180	374 4 4	±126 ~ ~		*
250		¥71, 9		*
¹ Williamest test $\alpha = 0$	05 one-sided smaller		71 12	

Table CP 10.4.2.1/02-2	Reproduction data of	bserved after 28 d	avs exposure
1 abit C1 10.4.2.1/02-2	iteproduction data o	both the anter 20 u	ago capusaat

¹ Williams t-test, $\alpha = 0.05$, one-sided smaller

n.s. Not significantly different compared to the control

* Significantly different compared to the control Q 1 To verify the sensitivity of the test system, the reference item (boric acid) was tested at concentrations of 30.5, 48.8, 78. 1, 125 and 200 mg/kgsoil dry weight in a separate study. In the most recent GLP study, an EC₅₀ of 104.6 mg/kg soil dry weight was determined. The effects on the reduction of reproduction showed that the test system was sensitive and reflected the expected toxicity as given in the OECD 232

test guideline (50% reduction interproduction at about 100 mg/kg soil dry weight).

Ш Conclusion

Spiroxamine EC 500 caused no statistically significant effects on mortality and reproduction of Folsomia candida up to and including the concentration of 35 mg test item/kg dry weight soil.

The NOEC and LOEC values for mortality were determined to be 55 and 75 mg test item/kg dry weight soil, respectively. The LCs was estimated to be 153.9 mg test item/kg dry weight soil.

The NOFE and OEC values for reproduction were determined to be 35 and 55 mg test item/kg dry weight soil, respectively. The EC₁₀, EC₂₀ and EC₅₀ were determined to be 40.8, 54.6 and 95.3 mg test item (g dry weight respectively.

Assessment and conclusion by applicant:

This is a new study that has not been previously submitted or evaluated.

Validity criteria according to the OECD 232 guideline (2016) were met.

- Mean adult mortality should not exceed 20% at the end of the test (actual: 4%)
- The mean number of juveniles per vessel should be at least 100 at the end of the test (astual 1150 to 1484)
- The coefficient of variation calculated for the number of juveniles should be less than 30 the end of the definitive test (actual: 8.3%)

The reference item also demonstrated sufficient sensitivity of the test organism therefore considered acceptable.

The NOEC value for reproduction was determined to be 35 mg test item Rg (equivalent to 17.2 mg a.s./kg soil dry weight).

	KCP 10.4.2.1/03
Data Point:	KCP 10.4.2.1/02/ × × × A. A.
Report Author:	
Report Year:	
Report Title:	1st final report amendment - Spiroxamine EC 500. Effects on reproduction of the
_	predatory mite Hypoaspis acute for in autificial soil
Report No:	
Document No:	<u>MACC8129-01-1</u>
Guideline(s) followed in	Regulation (EC) to 1104/2009 (2009)
study:	@ECD 226: Guidelines for the testing of chemicals - Redatory Mite (Hypoaspis
	(Geotaelaps) aculeifer) reproduction fest in soil, adopted Joby 29, 2016
Deviations from current	Ningo O O S S S S S
test guideline:	
test guideline: Previous evaluation	No, not previously submitted
	Yes, conducted under GLP Officially recognised testing facilities
recognised testing	
facilities: Ø	
Acceptability/Reliability	
Executive Summar	

Executive Summa

Adult *Hypoaspis* aculeifer were exposed to Spiroxamine FC 500 in a 14-day study to assess the effect on mortality and reproduction.

Hypoaspis aculeifer were exposed in artificial soil to a control and to test concentrations of 25, 50, 100, 200 and 400 mg test item/kg dry weight soil, according to guidelines set out in OECD 226 (2016). Dimethoate was used as a toxic standard.

The NOEC and LOEC values for mortality were determined to be \geq 400 and >400 mg test item/kg dry weight soil, respectively.

The NOEC and LOES values for reproduction were determined to be 200 and 400 mg test item/kg dry weight soil respectively.

The EC value was estimated to be >400 mg test item/kg dry weight soil.

aterials and Methods ŝ

Materials

Test MaterialSpiroxamine EC 500Lot/Batch #:EM4L018425

Purity:	Spiroxamine EC 500: 50.0% w/w, corresponding to 501.6 g/L
Description:	Yellow liquid
Reanalysis/Expiry date:	Spiroxamine EC 500: 50.0% w/w, corresponding to 501.6 g/L Yellow liquid 09 May 2020 1.004 g/mL 25, 50, 100, 200 and 400 mg test item/kg dry weight soft <i>Hypoaspis aculeifer</i> , predatory mite, Laelapidae Ibacon GmbH, 64380 Rossdorf, Germany One spatula of cheese mites <i>HyropHagus putrescentiae</i> at test initiation and on test days 2, 5, 7, 9 and 12 Glass containers (valume: 100 ml, diameter: 5 cm) with tight screw top fuls
Density:	1.004 g/mL
Treatments	
Test rates:	25, 50, 100, 200 and 400 mg test item/kg dry weight soft 2
Test organisms	
Species:	Hypoaspis aculeifer predatory mite, Laetopidae
Source:	Ibacon GmbH, 64380 Rossdort Germany J S S
Feeding:	One spatula of cheese mites <i>Flyrophagus putrescentiae</i> at test
Test design	
Test vessel:	Glass Containers (volume: 100 ml, diameter: 5 cm) with tight screw
Test medium:	Astiticial soil. 5% peapeontent
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	additional container per treatment to test the pH and water content of
	The test substrate at test termination.
No. animals/vessel:	$\frac{10 \text{ pcs-test vcssel}}{10 \text{ pcs-test vcssel}} \rightarrow \frac{10 \text{ pcs-test vcssel}}{10 \text{ pcs-test vcssel}} \rightarrow 10 \text{ pcs-test$
Duration of test:	14 paays in it is in the second secon
conditions	
Temperature:	322°
pHi A	$\delta $
Photoperiod	162 hours/light: 89 hours dark (24,400 – 800 lux)
	8 replicates for the control 4 replicates per treatment group and 1 additional container per treatment to test the off and water content of the test substrate at test termination 10 per test vessel 14 aays 18 - 22°0 6.0 - 6.2 16 nours light: 8 hours dark (at 400 – 800 lux)
Study Design	n other to presess the effects on reproduction of Spirovamine EC 500 on
This study was conducted in	n other to research afflicts on reproduction of Spirovamine EC 500 on

This study was conducted in order to assess the effects on reproduction of Spiroxamine EC 500 on *Hypoaspis aculeifer* over 14 days.

Ten stult female *Hypoaspis aculatier* per replicate (8 replicates for the control group and 4 replicates for each treatment group) were exposed to control and treatments. Concentrations of 25, 50, 100, 200 and 400 mg test tem/kg dry weight stil were mixed into the artificial soil. The test soil was composed of 74.8% fine quartz-and, 20% kaolin clay, 5% sphagnum peat and 0.2% calcium carbonate. The soil was prepared according to the guideline DECD 226 (2016).

During the test *Hypoaspis acueifer* were fed with cheese mites (*Tyrophagus putrescentiae*) and kept in ventilated glass vessels. Temperatures of 18 - 22°C and a light regime of 400 – 800 Lux, 16 hour light: 8 hour dark were maintained throughout the test in a controlled environment chamber.

A reference test with the toxic standard, BAS 152 11 I (a.s. dimethoate), was performed at least once a year to ensure that the laboratory test conditions are adequate and to verify that the response of the test organisms does not change significantly over time.

Water content was checked 7 days after application by reweighing the additional test vessels. If the water loss exceeded 2% of the initial water content, the missing amount of water was added to all vessels of the treatment group.

Reproduction data were observed at test termination. Juveniles were counted twice under brocular microscopes. Statistical analysis was performed on the reproduction data using shapiro-Wilk's test and Levene's test ($\alpha = 0.01$) to test for normal distribution and homogeneity. Since the reproduction data were normally distributed and homogeneous, further statistical analysis was performed using Williams t-test (multiple comparison, $\alpha = 0.05$, one-sided smaller).

Mortality data were observed at test termination. Missing adult mites were assumed dead and degraded. Statistical analysis was performed on the mortality data using Fisher's Exact Binomial Rest (multiple) comparison, with Bonferroni Correction, $\alpha = 0.05$, one-sided greater).

The software used to perform the statistical analysis was ToxRat Professional, Version 3,340, ToxRat® Solutions GmbH.

II. Results and Discussion

Validity criteria according to the OECD 226 guideline 2016) to which the study was conducted were met.

- Mean adult female mortality should not exceed 20% at the end of the test (actual: 0%)
- The mean number of juveniles per replicate (with 10 adult females introduced) should be at least 50 at the end of the test factual; 196 to 237)
- The coefficient of variation calculated for the number of uverile mitesper replicate should not be higher than 30% at the end of the definitive test (actual: 5.2%)

Mortality of *Hypoaspis aculeiferv* in the test item treated groups ranged from 0% ∞ 3%. The values were not statistically significantly different compared to the control (Pisher's Exact Pest, $\alpha = 0.05$, one-sided greater). The NOEC and LOEC values were determined to be 2400 and >400 mg test item/kg dry weight soil, respectively.

Treatment group (mg Mean mortanity (%)	Standard deviation	Significance ¹
soil dry weight soil		
Control 0 25 0 0 30 0 0 0		-
	$\pm 5^{\circ}$	n.s.
50 4 3 9 4 9	A S	n.s.
	♥ ≠±5	n.s.
	± 5	n.s.
	± 0	n.s.

Table CP 10.4.2.1	/03-1 Mq	rfality data	observed	after 1	4 days	exposure

¹Fisher's Exacting Est, one-side greater, $\alpha = 0.05$

There were no statistically significant effects on reproduction of *Hypoaspis aculeifer* up to and including the test concentration of 200 mg test item/kg dry weight soil (Williams t-test, $\alpha = 0.05$, one-sided smaller). At the concentration of 400 mg test item/kg dry weight soil a statistically significant decrease of reproduction was observed. The NOEC and LOEC values were determined to be 200 and 400 mg test item/kg dry weight soil, respectively.

Treatment group (mg test item/kg artificial soil dry weight soil)	Mean	Standard deviation	% of control	Significance ¹
Control	220	± 13	-	- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25	210	± 12	95	n.s. y y y
50	187	± 7	85	
100	216	± 12	99	n.s.
200	213	± 19	27	h.S. 2
400	200		91 2 2 2	

Table CP 10.4.2.1/03-2	Reproduction data observed after	[•] 14 days exposure
------------------------	----------------------------------	-------------------------------

- not applicable

n.s. not significantly different compared to the control

* significantly different compared to the ontrol

The reference item dimethoate showed statistically significant treatment related effects on reproduction at a concentration of 2.23 mg dimethodie/kg soil and above The EC 50 for Peproduction Was 2.47 mg dimethoate/kg soil. The EC₅₀ determined in the reference test is slightly below the recommended range given in the test guideline (3.0-7.0 mg a.s.kg soil), however, the results are considered to confirm that the test organisms at this test facility are sensitive to the effects of the effe the results achieved in this study are considered to be valid The range of the past seven reference tests was between 2.47 to 442 mg & s./kg soil

III. Conclusion

Spiroxamine ECO00 caused no statistically significant effects on mortality of Hypoaspis aculeifer up to and including the test concentration of 400 mg test item kg draweight soil. Therefore, the NOEC and LOEC values for mortality were determined to be \$400 and \$400 mg test item/kg dry weight soil, respectively.

The NOPC and LOE Value for reproduction were determined to be 200 and 400 mg test item/kg dry weight soil, respectively (equivalent to 100 and 200 mg/a.s./kg/dry weight soil, respectively).

EC_x values could not be determined by statistical analysis since there was no adequate concentration response, therefore no EC_{10}/EC_{20} -value can be reported. However, the EC_{50} was estimated to be >400 mg test item/kg dry weight soil.

Assessment and conclusion by applicant

Validity criteria according to the most recent OECD 226 guideline (2016), to which the study was conducted, were met. "

- Mean adult female wortality should not exceed 20% at the end of the test (actual: 0%)
- The mean number of juyeniles for replicate (with 10 adult females introduced) should be at least 50 at the end of the test (actual: 196 to 237)
- The coefficient of variation calculated for the number of juvenile mites per replicate should not be higher than 30% at the end of the definitive test (actual: 5.9%)

The reference substance was also considered to demonstrate sufficient sensitivity of the test organisms.

The study is therefore considered acceptable.

The NOEC value for reproduction was determined to be 200 mg test item/kg dry weight soil (equivalent to 100 mg a.s./kg dry weight soil). Q_{μ}°

Data Point:	KCP 10.4.2.1/04
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500E G: Influence on mortality and reproduction on the soil
	mite species Hypoaspis aculeiter tested in artificial soil
Report No:	KRA-HR-69/12 \mathcal{A} \mathcal{Q} \mathcal{A} \mathcal{A} \mathcal{A}
Document No:	$\underline{M-443019-01-1}$
Guideline(s) followed in	OECD 226 from October 03, 2008: OFCD guideline for the Festing of Chemicals
study:	- Predatory mite (Hypoaspis (Feolaglaps) aculeifer) reproduction test in soil
	US EPA OCSPP: None 🗸 🖉 🖉 🖉 🎝 🔬
Deviations from current	None A A A A A
test guideline:	
Previous evaluation:	No, not previously submitted
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Yes a grant of the second seco

Executive Summary

The purpose of the study was to assess the effects of Spirovamine EC 500E G on mortality and reproduction on the soil mite species *Hipposspis acutater* tested during an exposure of 14 days in artificial soil comparing control and treatment.

Ten adult, fertilized, fernale *Hypoaspis acuteifer* per replicate (Scontrol replicates and 4 replicates for each test item concentration) were exposed to control and treatments. Concentrations of 100, 178, 316, 562 and 1060 mg test item/kg dry weight artificial soil were rested.

The Not beserved Effect Concentration (NOEC) was calculated to be ≥ 1000 mg test item/kg dry weight artificial soil. The Lowest Observed Effect Concentration (LOEC) >1000 mg test item/kg dry weight artificial soil.

I. Materials and Methods

Materials

```
      Test Material
      Spiroxamine SC 500F G

      Lot/Batch #:
      EDFL013642

      Purity:
      Analysed content(s) of a.s.: 508.1 g/L corresponding to 50.5 % w/w

      Description:
      Liquid, yellow-brown

      Stability of test compound:
      Sufficient based on expiration date

      Reanalysis/Expiry
      08 August 2014

      Density:
      1.006 g/mL
```


Treatments

Test rates:	100, 178, 316, 562 and 1000 mg test item/kg dry weight artificial soil
Solvent/vehicle:	Deionised water
Analysis of test concentrations:	100, 178, 316, 562 and 1000 mg test item/kg dry weight artificial soil Deionised water No <i>Hypoaspis aculeifer</i> Reusable glass vessels (Weck Mini-Sturzglas, Solume 140 mL, 4 diameter 5 cm at the bottom, height 7 cm) 2000 K aclier and 2000 K aclie
Test design	
Test species:	Hypoaspis aculeifer
Test vessel:	Reusable glass vessele (Weck Mitri-Sturzglas, Folume 140 mL, diameter 5 cm at the pottom, height (cm)
Test substrate:	
Replication:	Eight control teplicates and our replicates for each test tem
No. of animals/vessel:	
Duration of test:	14 days (plas two days for extraction)
Environmental test conditions	Calcium carbonate Eight control teplicates and our replicates for each test item concentration Ten 14 days (plas two alays for extraction) $20 \pm 2^{\circ}C$ Test start: 6.19 to 6.38 Test start: 6.19 to 6.38
Temperature: 🚿	$20 \pm 2^{\circ}C^{\circ}$
	$20 \pm 2^{\circ}C$ Test start: 6.19 to 6.38 Test end: 6.19 to 6.38 16 h light : 8 k dark (400 - 809 lux) 47.43% to 52.7% of WHC has 47.43% to 52.7% to 5
Photoperied.	16 h light : 8 h dark (400 – 809 lux)
Water content:	\mathbb{Q} 47.43% to 52.7% of WHC ax \mathcal{O}
Study Design	
The second states of the second states of	

The purpose of the study was to assess the effects of Spiroxamine EC 500E G on mortality and reproduction on the soil mite species *Hippossips acuteifer* tested during an exposure of 14 days in artificial soil comparing control and treatment.

Nominal test concentrations were 109, 178, 316, 502 and 1000 mg test item/kg dry weight artificial soil.

Ten adult female mites were added to each of the four eplicate test vessels (eight for the control). Test vessels were reusable glass vessels (Weck Mun-Sturzglas, volume 140 mL, diameter 5 cm at the bottom, height 7 cm), filled with approximately 20g dry weight artificial soil dry weight.

Directly after the addition of the *Hypouspis aduleifer*, they were fed with cheese mites (*Tyrophagus putrescentiae*). Cheese mites were bred on brewers yeast in the laboratory. During the continuation of the test the soil mites were fed 3, 7 and 10 days after test start with the cheese mites.

The vessels were kept in temperature controlled room at 20 ± 2 °C under a 16-hour light to 8-hour darkness whoto period. The light intensity at light period was between 400 - 800 Lux.

The surviving adults and living juveniles were counted as described under bioassay procedure. Missing adults (compared to the number of initially placed test organisms) were considered to be dead, since dead mites cannot be extracted.

The transfer of the test animals was finished within two hours after the application of the test item. After a period of 14 days, the surviving adults and the living juveniles per test vessel were extracted, applying a temperature gradient. The content of each test vessel was carefully transferred to sieve vessels (mesh

size approximately 0.8 mm). Each sieve vessel was put onto another vessel containing a fixing liquid. The vessels were positioned in MCFADYEN-Extractor. The temperature was increased from approximately 25 to 40 °C within two days. Extracted mites were collected in a fixing solution (20 %) ethylene glycol, 80 % deionised water; 2 g detergent/L fixing solution were added). The extracted mites in the fixing solution were stored in a refrigerator until the start of the counting of surviving adults and juveniles. All *Hypoaspis aculeifer* (adult females and juveniles) were counted inder a binocular.

The surviving adults and living juveniles were counted as described under bloassay procedure. Missing adults (compared to the number of initially placed test organisms) were considered to be dead, since dead mites cannot be extracted.

Endpoints of the test were mortality of the adult, fornale *Hypoaspis aculeifer* in comparisor to the initially placed test organisms expressed in % and the number of offspring hatched from the eggs and surviving until the end of the test period per test cossel (reproduction)

For the determination of normal distribution and homogeneity of variance Kolmogorroff-Smirnov Test and Cochran-Test ($\alpha = 0.05$), respectively were used. Data of reproduction were normally distributed and homogeneity of variances was given. Therefore William's t-test for homogeneous variances (onesided smaller, $\alpha = 0.05$) was used to determine NOEC and LOPC values. The software used to perform the statistical analysis was ToxRat Pro2.10.

II. Results and Discussion

Validity criteria according to the guideline to which the study was conduced were met

- Mean adult female mortality in the controls must not exceed 20% (actual: 5.0%)
- The mean number of juve ile mites per replicate to be at least 50 (actual: 326.8)
- The coefficient of variation for reproduction to be \$0% (actual: 15.1%)

n

In the control group 50% of the adult *Hypoaspis aculeits* f died which is below the allowed maximum of $\leq 20\%$ mortality. The LC₅₀ could not be calculated and is considered to be ≥ 1000 mg test item/kg dry weight artificial soll.

Adults/vessel	Control	Treatment (mg test item/k	g dry weight a	rtificial soil)	
Adults/vessel		100	×178 × ×	∀316	562	1000
Replicate 1				8	10	10
Replicate 2				8	10	10
Replicate 3			100	9	9	9
Replicate 4	10°		Ŷ0	10	10	9
Replicate 5	A0 2	- & ~~	-	-	-	-
Replicate 6	105		-	-	-	-
Replicate 7	Î O		-	-	-	-
Replicate C	100	-	-	-	-	-
Mean Star	9.5	9.8	10.0	8.8	9.8	9.5
Standard deviation	1.4	0.5	0.0	1.0	0.5	0.6
Coefficient of variation	14.9	5.1	0.0	10.9	5.1	6.1
% Mortality	5.0	2.5	0.0	12.5	2.5	5.0

Table CP 10.4 2.1/04 Supprval of adult, female Bypoaspis acue for after after 14 days

Adults/vessel	Control	Treatment	(mg test item/ka	g dry weight a	rtificial soil)	°
		100	178	316	562	1000

Concerning the number of juveniles statistical analysis (William's t-test, one-sided smaller, $\alpha = 0.05$), revealed no significant differences between control and any concentration tested.

Therefore, the No-Observed-Effect-Concentration (NOEC) for reproduction was ≥ 1000 mg test item/kg dry weight artificial soil. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction was > 1000 mg test item/kg dry weight artificial soil. An \mathbb{CC}_{50} for reproduction could not be calculated and is considered to be >1000 mg test item/kg dry weight artificial soil.

Table CP 10.4.2.1/04-2	Reproduction of	Hypoáspis	aculaife	r after	14 days	after	test start	0.
(Juveniles/replicate)	-	0*		Š	<u></u>	Š		L

· · ·	-	4	<u>~~~~</u>	<u>,0 </u>	<u> </u>	
Adults/vessel	Control	Treatment	ng test item/k	g dry weight a		
		299 ¹⁰		\bigcap^{*}	5 @	1000
Replicate 1	218		370	256	311 5 .	* \$6 3
Replicate 2	309	. 3 58 0	3725 _	3.05	325 ⁰ &	386
Replicate 3	316 &	, 359 🖓	• • • • • • • • • • • • • • • • • • • •	\$31 ~	Ø 46	357
Replicate 4	~ 350	320		363 35	37.6	340
Replicate 5	3754			б ^х		-
Replicate 6	ý349. Š	- 2 ~		- 2 0	-	-
Replicate 5 Replicate 6 Replicate 7	332				-	-
Replicate 8	K366	~	P- 8 C	- 2	-	-
Mean 👸	326.8	339.0	345.5	314.5	339.5	361.5
Standard deviation	49.4		>30.6 🔬 🔬	^{\$*} 45.1	28.3	19.0
Coefficient of variation	15.1 190 ×	19.6 J	8.8	14.3	8.3	5.3
% Mortality		103.7°´ 😪	JUJ./	96.3	103.9	110.6
4	\circ \sim	S R	a,			

The reference item dimethoate produced an C_{50} of 3.894 mg a.s./kg for mortality and an EC_{50} of 6.62 mg a.s./kg for reproduction. The EC₅₀ determined the reference test is within the recommended range given in the test guideline (3.0 - 7.0 mg d.s./kg soil) therefore the results are considered to demonstrate sufficient sensitivity of the test organism.

III. Conclusion

The No Observed Effect Concentration (NOEC) was calculated to be ≥ 1000 mg test item/kg dry weight artificial foil (equivalent to 565 mg a.s./kg soil). The Lowest Observed Effect Concentration (LOEC) ≥ 1000 mg test item/kg dry weight artificial soil.

Assessment and conclusion by applicant:

Validity criteria according to the most recent version of the OECD 226 guideline (2016) were met.

- Mean adult female mortality in the controls must not exceed 20% (actual: 5.0%)
- The mean number of juvenile mites per replicate to be at least 50 (actual: 326.8)

• The coefficient of variation for reproduction to be $\leq 30\%$ (actual: 15.1%)

The reference substance was also considered to demonstrate sufficient sensitivity of the cost organisms.

The study is therefore, considered acceptable.

The NOEC was determined to be 1000 mg test item/kg dry weight artificial soil (equivalent to 505 mg a.s./kg soil).

 EC_{10} and EC_{20} values have not been determined as part of this study. However, it is very fear from the results that there was no treatment-related effect whatsoever. It fact, the number of juveniles produced was slightly greater in the majority of treatment groups when compared to the control. For this reason it is considered that no EC_{10} or EC_{20} value would be determinable and the data have not been subject to statistical re-evaluation.

CP 10.4.2.2 Higher tier testing

No data are available. Field data with Spiroxamine EC 500 are not considered necessary as an acceptable risk following the proposed uses has been demonstrated using the available laboratory data.

CP 10.5 Effects on soil nitrogen transformation

The available soil nitrogen transformation that for Spirexamine EC \$00 and the metabolites of spirexamine are summarized in the table below.

		a Star	
Test item	Endpoints	\sim	Reference
Spiroxamine EC 900 Nitrogen transformation	<pre><25% effect after 42% ays at 10.0 mg/kg.soil (5.0) mg ays kg soil)</pre>	NEW	<u>M-680763-01-1</u>
KWG 4168-desethyl (M01)	<25% efféret after 28 days af 4.53 mg/kg soil	EU	<u>M-282056-01-1</u>
KWG 4168-despropyl (M02) KWG 4168-despropyl KWC 4168-despropyl	<25% effect after 7&days at 5.0 mg/kg soil	NEW	<u>M-680757-01-1</u>
(M403) Nitrogen transformation	<25% effect after 56 days at 6.9 mg/kg soil	NEW	<u>M-680759-01-1</u>
KWO 4168-acid (M06)	<25% effect after 28 days at 5.0 mg/kg soil	NEW	<u>M-688317-01-1</u>

Table CP 10.5-1 Summary of nitrogen transformation studies with spiroxamine and metabolites

EU: previously evaluated as part of the original EU review and listed in EFSA conclusion and DAR NEW: new study or data generated since the previous EU review or previously not submitted Values in both have been used in the risk assessment

Toxicity endpoints

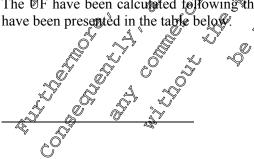
Nitrogen transformation data for spiroxamine technical are not available. However, the available formulation data are considered to be more relevant for the risk assessment as this has been generated using the representative formulation itself and also represents the toxicity to spiroxamine.

Exposure

Full details of the PEC_{soil} calculations have been provided in Document M-CP Section 9 Environmental Fate. The maximum initial and accumulation PEC_{soil} values for spiroxamine and its metabolites as calculated using FOCUS equations, are given in the table below for the highest application rate of 300 g a.s./ha.

Max PEC _{soil} (mg/kg) 0.200	PECsoil accumulation (mg/kg) Vince	Mag PECsoil PECsoil accumul mg/kg) PECsoil PECsoil accumul mg/kg) 02372 0 02555	
0.200		Q372 Q Q2555	
0.200	0.277	0 /372 2 0 /3555	a
			Ň
0.022	<u>لار 0.030 کې کې (1.00 مې کې (1.00 مې کې (1.00 مې کې کې (1.00 مې کې کې</u>))
0.016	1 020 C	Q 00032 0 0 0.000	Å
0.017	0.048	0.0330 0.037	47
0.012	\$ 052 ×		
	0.016	0.016 0.017 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.	0.016 0.017 0.017 0.018 0.018 0.033 0.033 0.033 0.037 0

Table CP 10 5-2 PEC coil for spiroxamine and its metabolites


For the risk assessment below the risk envelope approach has been applied in which the PEC_{soil} values for the proposed use with the toghest application rate has been used. Thus, the risk assessment has been conducted for the use on grapes at 2 x 300 g as /ha. Furthermore, the PECoil accumulation values were greater than the maximum initial PEC soft alues therefore the risk assessment has been conducted using the worst case PECsoil accumulation values. Ô

For Spiroxamine EC 500 the formulation PEC was determined to be \$401 mg/kg soil for the maximum application rate of 3000 a.s. Sa. Please refer to Document M-GP Section 9 Environmental Fate for further details.

Isomers

For parent spiroxamine the environmental fate soil degradation date currently suggest that there is no significant selective degradation of isomers over time. As a result, the toxicity data generated using the mixture of the isomers (*i.e.* Spiroxamine EC 500) are considered to represent the toxicity of the isomers in the ratios that woold occur in the soil following appreation. In accordance with the isomer Guidance Document²² it is therefore not necessary to apply any additional Uncertainty Factor (UF) to the risk assessment (*i.e.* a UF of 1.0 is used)

For the metabolites of spiroxamine there are no chiral data available to be able to make this assessment therefore there is a possibility that selective degradation of isomers could occur in the soil over time. In order to account for any possible increased toxicity to soil organisms as a result of an increase in the ratio of a single isomer, an UF has been applied to the risk assessment of M01, M02, M03 and M06. The VF have been calculated following the recommendations of the isomer Guidance Document and have been presented in the table below.

²² Guidance of EFSA on risk assessments for active substances of plant protection products that have stereoisomers as components or impurities and for transformation products of active substances that may have stereoisomers. EFSA Journal 2019;17(8):5804

Table CP 10.5-3 Uncertainty Factors determined for the nitrogen transformation data with the
metabolites of spiroxamine

	P			
Test item	Study reference	Test material batch number	Isomer ratio	UF 15 5
Spiroxamine	-	-	- 8	1.0 2 5 5
M01	<u>M-282056-01-1</u>	921103ELB02	A:B 56:42	406 6
M02	<u>M-680757-01-1</u>	AE 1344303-PU-01	A:B 83.1:16	12.5 5
M03	<u>M-680759-01-1</u>	M26999	D1:D2:D5 04 22:21:26:39	9.57 57 64
M06	<u>M-688317-01-1</u>	AE 1344313-01-05	A:B 4053 °	4.26

¹ Changes in stereoisomeric excess are unknown therefore Uncertainty Pactor = 100/content of lowest stereoisomer (%) used for ecotox endpoint [as indicted in Table B.1, p.30° of isomer GD] and assume that the toxic logical effects of the mixture can be attributed to a single isomer. This assumes that all mantioner ratios can be safely assumed to be 50:50. For example A:B ratio of 83.1:16 would be 100/(16/2) = 0F of 12.5

Cryo Official ² No additional UF required for parent as no significant change in isomeric ratios has been demonstrated

Risk assessment

The effect concentrations for Spirokamine EC 500 and for the metabolites are compared to the PEC soil values in the following table. Ô Ô

Table CP 10.5-4 Soil micro-organism risk assessment for spiroxamine and pelevant metabilites following application of Spiroxamine EC 500 to vines m Ő, Ô

			<u> </u>	
Intended use		Vines 2 x 300 g a.s./ha		
Test item	Endpoint @	S PECsoil	U	Risk acceptable 2
Spiroxamine EC 500	5.0 mg/a.s./kg soil)	0.401 mg product/kg soil	2 1.0	Yes
MOL	<25% effect after 28 days at 4.53 ms kg soft	0.064 mg@rg soil	4.76	Yes
M02	<25% effect after #0 days at 5.0 mg/kg/soil	0.040 mg/kg soil	12.5	Yes
M03 @	<25% effect after 56 days at 6.9 mg/kg soil		9.52	Yes
M06	<25% effect aft@28 days at \$5.0 mg/g soil	04.04 mg/kg soil	4.26	Yes

¹ Uncertainty Factor applied to account for the inknown effect of a possible change in isomer ratios over time

² Risk assessment has compared the MOEC against the PEC_{soil} × UF

Formulated sphoxamine had no significant effect on soil micro-organisms at concentrations up to 5.0 mg a.s./kg soil. This is higher than the praximum PECsoil of 0.555 mg a.s./kg following the worst-case application to grapes. Thus, the margins of safety in the risk assessments are a factor of 9.0 for spiroxatome. This supports the conclusion that under field conditions, the proposed uses of Spiroxamine EC 500 pose of unacceptable risk to non-target soil micro-organisms.

In addition, no significant effects (>25%) were shown in the studies with M01, M02, M03 and M06 at concentrations greatly exceeding the predicted soil concentrations. Acceptable risks to non-target soil micro-organisms from exposure to the metabolities, following application of Spiroxamine EC 500, have therefore also been demonstrated.

Biodiversity

No relevant scientifically peer-reviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxicological perspective, on soil micro-organisms. Therefore, it is considered that the potential impact of the active substance on biodiversity and the ecosystem, including potential indirect effects *via* alteration of the food web, are covered by the risk assessment for soil micro-organisms in this section.

With respect to the risk assessments for soil micro-organisms, which demonstrated an acceptable outcome with large margins of safety and without the need for risk mitigation, the applicant concludes that the use of the representative lead formulation (Spiroxamine EC 500) has a low potential to cause with a comparison of the presented safety profite of the spiroxamine a.s. metabolites and the representative lead formulation, the applicant does not foresee any unacceptable effects on biodiversity and the ecosystem via trophic interaction. To the best of our knowledge and with the presented safety profite of the spiroxamine a.s. metabolites and the representative lead formulation, the applicant does not foresee any unacceptable effects on biodiversity and the ecosystem with spiroxamine.

Summaries of the available soil micro-organism statues have been presented below.

	KCP 10,504 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Data Point:	KCP 10.504 0 Y Y Y Y Y
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500: Effects on the activity of the soil microflora in the
	aboratory (nitrogen transformation)
Report No:	Aborat@y (nitrigen transformation) y <thy< th=""> y y</thy<>
Document No:	<u>M-680763-491-1</u> O O V V V V
Guideline(s) followed in	None of the of t
study:	
Deviations from current	Storage temperature of soil extracts no effect)
test guideline: O	
Previous evaluation:	No, not previously submetted
Ô,	
GLP/Officially	Yes conducted under GLP Officiently recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Executive Summerv	S P N S S

Executive Summary

The purpose of this study was to assess the effects of the test item on the activity (nitrogen transformation) of soil microfleta in the laboratory.

Spiroxamine EC 500 was tested at concentrations of 2.0 and 10 mg test item/kg soil dry weight.

The test item Spiroxamine EC 500 had no impact on nitrogen transformation (nitrate content, mineral nitrogen content and nitrate formation rates) of soil microorganisms when applied at 2.0 mg and 10 mg test item/kg sold dry weight reatment.

I. Materials and Methods

Materials

 Spiroxamine EC 500

 Lot Batch #:
 EM4L018425

 Active ingredients:
 Spiroxamine (KWG 4168): 50.0% w/w, corresponding to 501.6 g/L

 Description:
 Yellow liquid

Stability of test compound:	Not reported
Reanalysis/Expiry date:	09 May 2020
uale:	
Density:	1.004 g/mL
Treatments	
Test rates:	1 and 5 mg a.s./kg (corresponding to 2.0 and 10 mg SP& EC 500/kg)
Solvent/vehicle:	Ultrapure water $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
Analysis of test concentrations:	None
Test design	
Test vessel:	500 mL plastic boxes containing 300 g dw soil
Test soil:	A loamy sand a grad of a grad a grad
Source:	In der Speyerer Hohleno. 917
Replication:	Three per control and test group
Duration of test:	4 days days of the day of the days
Environmental test conditions	Not reported 09 May 2020 1.004 g/mL 1 and 5 mg a.s./kg (corresponding to 2.0 and 10 mg SPX EC 500/kg) Ultrapure water None 500 mL plastic box excontaining 360 g dw soil A loamy sind In der Speyerer Hohk No. 977 Three per control and test group 42 days 20 ± 230 7.2 b 7.5 48 to 50% of maximum watecholding capacity Constant dateness Wass to assess the effects of the test item on the activity (nitrogen officient in the laboratory. b) (containing 300 g dV weight (dw)) were tested.
Temperature: 🔬	2 2 2 2 2 2 2 2 2 2
рН:	7.2 37.5 37 37 37 37 37
Moisture:	48 to 50% of maximum water holding capacity
Photoperiod:	Constant dationess &
Study Design	R R R R R
The purpose of this study transformation) of soil micro	was to assess the effects of the test item on the activity (nitrogen of the laboratory.
Triplicate samples of each se	pip(containing 300 g df) weight (dw)) were tested.
The soil batch used in this s	udy was according to the puideline and was taken from fallow grassland,

where no pesticides or organic or mineral fertiliser had been used on the soil for at least four years prior to test invitation. The soil was collected from Rhineland Palatinate district authority, Mechtersheim Germany municipality and the location was "In der Speyerer Hohl ", No. 977". The soil was a loamy sand.

The water content of one replicate of each treatment group was determined at each sampling date. Water losses were compensated by adding ultrapure water. Throughout the study, the water content ranged from 48% to 50% WHC. The pH was determined at test start and on day 28 in one replicate of each treatment group over the coupe of the study, the pH value was between 7.2 and 7.5.

All solvents openemicals used were of analytical grade or higher purity. The lucerne meal used was fine powdered by the present green green green green analytical carbon and nitrogen content was 40.9% and 2.7%, respectively. The ratio of carbon to nitrogen was 15 / 1.

The test item was soluble in water; therefore a stock solution in ultrapure water was prepared by dissolving 44.9 mg Spiroxamine EC 500 in 50 mL ultrapure water and mixed into the soil by means of

a laboratory mixer. Throughout the application the soil was ventilated and the soil water content was adjusted to 48% of WHC.

To the control, acetone treated quartz sand (evaporated) and additionally 0.5% lucerne meal (based on soil dry weight) was mixed into the soil. The soil water content was adjusted to 49% of WHC, the soil water content was determined in one replicate of each treatment group at each sampling.

For the determination of nitrogen content, soil samples were taken within 6 hours after application and afterwards on each sampling date (7, 14, 28 and 42 days). The nitrogen content was determined in each sample of treated and control soils.

For extraction, 24 g to 25 g soil were suspended in 100 mL 0.1 M CCl-solution and agrated for one hour. The suspension was centrifuged (Multifuge 3,4, 4350 rpm) and the extracts were stored deep frozen.

Amounts of 70.8 mg, 74.0 mg, and 72.2 mg ammonium sulfate, sodium nitrite and potassium nitrate, respectively, were diluted in 1000 mL (amoonium sulfate, sodium nitrite) and 100 ml (potassium nitrate) 0.1 M KCl to prepare the standard stock solutions for ammonium-N, nitriteN and nitrate N determination. Appropriate aliquots of the stock solutions were automatically diluted by the dilution unity with 0.1 M KCl to prepare 6 standard solutions at a range of 0.5 mg/L to 3.0 mg/L for ammonium-N and nitrite-N and 7 standard solutions at a range of 1.0 mg/L to 72.0 mg/L for ammonium-N and nitrite-N and 7 standard solutions at a range of 1.0 mg/L to 72.0 mg/L for ammonium-N and nitrite-N and 7 standard solutions at a range of 1.0 mg/L to 72.0 mg/L for attract-N determination. Before photometric determination frozent soil extracts were thawed. For nitrite N, nitrate-N and ammonium-N determination undiluted extracts were used. For determination undiluted extracts (days 0 to 28) and 1:2 in 0.1 M KCl diluted extracts (day 42) were used.

II. Results and Discussion

Validity criteria according to the OECD 216 (2000) spideling, to which the study was conducted, were met as the control variation between control reportates was less than $\pm 15\%$ (maximum variation: 3.05%).

No adverse effects of the test item on nitrate content in soil were observed at day 28. At day 28, differences to the control were 1.35% and 12.62% in the 2 mg and 10 mg test item/kg soil dry weight treatment, respectively.

No adverse effects of the test item on mitrate content in soil were observed at test end at day 42. At day 42, differences to the control were 488% and -1014% if the 2 mg and 10 mg test item/kg soil dry weight treatment, respectively.

At day 28 and 42, the difference was statistically significant compared to the control for the high test rate (Student t-test, $\alpha = 0.05$).

Very low nitrite and ammonium contents below 1.8 mg/kg dry weight were measured at day 28 and 42 in control and the test item treatments

The mineral nitrogen contents in soil were within the trigger range of $\pm 25\%$ at day 28. At day 28, differences to the control were -2.01% and -12.75% in the 2 mg and 10 mg test item/kg soil dry weight treatment, respectively.

The mineral nitrogen contents in sol were within the trigger range of $\pm 25\%$ at day 42. At day 42, differences to the control were -1.88% and -10.01% in the 2 mg and 10 mg test item/kg soil dry weight treatment. respectively.

At day 3° and 3° , the difference was statistically significant compared to the control for the high test rate (Studenty-fest, $6^{\circ} = 0.05$), but within the trigger range.

Days after	Control		2 mg/kg soil dw		10 mg/kg soil d	w C
treatment	Ammonium	CV	Ammonium	Dev. %	Ammonium	Dev. 🖗
0	6.771	1.70	6.484	-4.24	6.483	-4.23
7	1.354	4.95	1.277	-5.69	1.786	OI2.416
14	0.805	4.10	0.710	-11.80	0.984	22.34 0
28	0.774	59.17	0.457	-40.96	0.594 🖑	23.26 °
42	0.741	0.81	0.723	-2.43	9.704 Q	-4.99
* Significa	antly different to	the control (t-test at $p \le 0.05$) °			
able CP 10.			ormation test, effec	the test it	em on nitrite (m	an vanes) 🗸

Table CP 10.5/04-1	Nitrogen transformation test, effects of the test item on ammonium (mean values)
1 abit C1 10.5/04-1	The ogen is ansior mation (est, chects of the test item on animonium (mean values)

Table CP 10.5/04-2	Nitrogen transformation	test, effects o	of thetest item o	n nitrite (mea	n væðnes) 🖇	-
--------------------	-------------------------	-----------------	-------------------	----------------	-------------	---

Days after	Control	, Ø	2 mg/kg soil dw	. 4° 67	10 mg/kg soil dy	w, s ^r
treatment	Nitrite	CV 0	Nîtrite	Dev. %	10 mg/kg soil d Nitrite	Dev. %
0	0.303	- /	0.262	-12.93*	0.267	*1.88*
7	0.258	000 ×	0.258	Q.00 X	ω 0	¥0.00
14	0.258	0.00	9.258 0 0	0.00	0.258	0.00
28	0.258		0.258	£.00 k	0.258	0.00
42	0.258	Ø.00	@,258 \$ W		0.258	0.00
* Significa	untly different to	the control (K	test at p≤0.05)			

*	Significantly di	ferent@o the	control (14	est at p≤0.05)	1 2	a y		
	_C	~\ ^	¥ 4.	N L	\sim		1 and a second s	
			. 0	40° 45°		S	em on nitrate (mean value	``
Tabl	e CP 10.5/04-3	» Nitroge	n transfor	mation cest, el	fects of t	hè test a t	em on nitrate (mean value	es)

Days after	Control 炎		2 mg/kg soil dw		10 mg/kg soil d	W
treatment	Nitrate	v v	Nitrate	Dev. %	Nitrite	Dev. %
0	26.6405	0.20 J	27,005	\$62*	27.017	1.40*
7				1.48	23.366	-0.01
14	26.363	J. KO	26.293	-0.27	23.901	-9.34*
28	38.926	Q\$6	38 :400	-1.35	34.013	-12.62*
42	49.628	0.98 0	48.694	-1.88	44.598	-10.14*

*

Significantly, different to the control (t-test at $p \le 0.05$) le CP 105904-4 Not ogen transformation test, effects of the test item on N_{min} (mean values) Table CP 105/04-4

Days after treatment	Control		2 mg/kg soil dw		10 mg/kg soil d	W
		CV	N _{min}	Dev. %	N _{min}	Dev. %
	33.717	0.58	33.821	0.31	33.767	0.15
7	24.980	2.50	25.248	1.07	24.810	-0.68
14	27.426	2.85	27.261	-0.60	25.143	-8.32*

Days after Control		0 0		10 mg/kg soil dw		
ti catiliciti	N _{min}	CV	N _{min}	Dev. %	N _{min}	Dev. %
28	39.958	1.43	39.116	-2.11	34.865	-12.7
42	50.627	0.96	49.674	-1.88	45.560	-10.01*

Significantly different to the control (t-test at $p \le 0.05$)

Table CP 10.5/04-5 Nitrogen Transformation Test: Effects of the test item on Nitrote Form **Rates (Mean Values)**

Č,	,	
Interval ¹	Control	2.mg/kg soil dw
		Mean mg NO-N/kg soil dry weight per day
Sampling days	mg/day CV %	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
0 - 7	-0.468 -21.37	2.56 os. ~0.522 411.54 n.s.
0 - 14	-0.020 -300.00	\$ 40,056 A 480.00 n.s0,223 1015,00 *
0 - 28	0.439 3.10	0.405 -7.74 no 0.250 -49.05 *
0 - 42	0.547	0.5075 -5085 pn.s. 0 0.449 & -23.40 *
Interval ¹		Mean me NO3-19kg soil dry weight per day ³ 0
Sampling days	mg/day CV %	$1 \text{ mgsday} $ Dec $3\%^4$ sig. ⁵ mg/day Dev. $\%^4$ sig. ⁵
0 - 7	-00468 0-21.34	0.522 11.54 n.s.
7 - 14	50.428 12,02	√ 0.368 √ -14092 Ap.s. 0.076 -82.24 *
14 - 28	0.898 4.01 %	0.8653.67 n.s. 0.722 -19.60 *
28 - 42	0.764 6.28	a 0.735 -3.80 p.s. 0.756 -1.05 n.s.
¹ : Time interval		

²: Calculated from the mean values of NO₃-N content between the sampling date and day 0

³: Calculated from the mean values of NO₃-Scontent between each sampling date

⁴: Deviation from control ⁵: sig.: Significance according Statent-t test, two sided $\alpha = 0.05$ (* = significant; n. s.: not significant)

CV: Coefficient of variation (calculated as SD mean value * 200)

The reference item sodium chlorde was tested in a GLP study. Sodium chloride was tested at 16 g/kg soil dry weight. The variation of replicate control samples was less than 15%. The reference item had a retarding effect of more than $\pm 25\%$ compared to the control at days 28 and 96 after application. The results of the study proved sensitivity other test system and provided assurance that the laboratory test conditions are adequate.

Conclusion & III.

After 42 days, the test term spiroxamine EC 500 had no impact on nitrogen transformation (nitrate content, mineral nitrogen content and nitrate formation rates) of soil microorganisms when applied at 2.0 mg and 10 mg test item kg soil dry weight treatment (equivalent to 1.0 and 5.0 mg a.s./kg soil dry weight, respectively). ŝ

Assessment and conclusion by applicant:

Validity criteria according to the OECD 216 (2000) guideline were met as the control variation between control replicates was less than $\pm 15\%$ (maximum variation: 3.05%).

The reference item demonstrated sufficient sensitivity of the test system.

The study is therefore considered acceptable.

After 42 days, the test item had no impact on nitrogen transformation of soft microorganisms when applied at rates up to 10 mg test item/kg soil dry weight (equivalent to 5.0 mg a.s./kg soiDdry respectively).

Data Point:	KCP 10.5/01
Report Author:	
Report Year:	
Report Title:	Influence of KWQ 4168 fbc 500 6n microbial mineralization of Atrogen in soil
Report No:	AJO/113193 \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
Document No:	M-008754-0101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guideline(s) followed in	Guidelines for the Official Festing of Plant Protectents, Bort VI, CA "Influence on
study:	the Activity of the Soil Microflora", BBA Braunschweig, Germany, March 1990
	(2nd ed.)
Deviations from current	Yes (Lefer below) Only a single replicate was tested yes, evaluated and accepted
test guideline:	Only a single replicate was tested
Previous evaluation:	
	\mathbb{R} AR (2010) \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}
GLP/Officially	Yes conducted under GLR Officiator recognised testing frontities
recognised testing facilities:	
Acceptability/Reliability:	Supportive only 2 2 2 2

Executive Support

Executive Summary Control of the effect of exposure to KWG 4468 EG 500 on two laterne meal amended soils was investigated over 56 days.

1

It was found that a rate of 1 SL KWG 4168 EC 500/ha (equivation to 2 µL product/kg soil dw) had no meaningful influence on the turnover of pitrogen in either a silty sand (1.0 % org. C, pH (KCI) 5.9) or a silt (1.7 % org 2, pH4KCI .0). The 10-fold overdose of 15 L KWG 4168 EC 500 (equivalent to 20 µL product/kg soil (hw) caused a temporary rediction of nitrogen mineralisation rates. However, at the end of the experiments the amounts of nitrate found in the 10-fold overdosed samples of the silty sand and sitt were ca. 13% and 8% less than in the untreated controls, respectively.

(7)* *	\sim	
I. 🖉 Material	and Metho	ods 🖉
Materials		
Test Materia	KWG	\$C 506
Lot/Batch #:	30,012	2918
Purey:	O Not re	ported
Description:	, \$494.0	g/L
Stability of test	Not re	ported
compound:		
Reanalysis/Expi	r y 17 Ma	rch 1994
date:		

Density:	Not reported
Treatments	
Test rates:	2 and 20 μ L/kg soil dw (1.5 and 15 L test item/ha)
Solvent/vehicle:	Quartz sand
Analysis of test concentrations:	None
Test design	
Test vessel:	500 mL glass bottles containing 250 edw soil
Test soil:	A silty sand and a sand
Source:	Experimental fators Laacherho and Hörchen 2
Replication:	None
Duration of test:	56 days 4^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10} 3^{10}
Environmental test conditions	Not reported 2 and 20 μ L/kg soil dw (1.5 and 15 L test item/ha) Quartz sand None 500 mL glass bottles containing 250 gdw soil A silty sand and a sould Experimental fatms Laacherhot and Histchear None 56 days $20 \pm 2^{\circ}$ C Soil 1 Test start: Test start: 6.0° 6.0° Test start: 7.0° Test end; 6.1° 6.0° Test start: 7.0° Test end; 7.0° 7
Temperature:	$20 \pm 2^{\circ}C$
pH:	Soil 1 m Soil 2 C
, Ø	Test start: 56.0° 7.0° Test start: 7.0° Test end: $57-6.2^{\circ}$ Test end 57.1°
اپ Photoperiod: م	Soil 1 Test start: 6.0 Test start: 7.0 Test end 7.1 Constant darkness in order to evaluate the effect of exposure to KWG EC 500 on nitrogen Itural soils. oil equivatent to 10 g dry weight (dw) were extracted and analysed
Study Design 5	
This study was conducted in mineralisation in two agrics	in order to evaluate the effect of exposure to KWG EC 500 on nitrogen
Triplicate samples of each s	oil (equivalent to 10 g dry weight (dw)) were extracted and analysed
Soil 1 was a silty sand from	A field that had not received any plant protection products for over 10 years.
It consisted of 1.0% organic	a field that had not received any plant protection products for over 10 years. carbon, and had a microbial biomass of 221 mg microbial carbon/kg soil
Soil 2 was a sill from field	that has not received any plant protection products for five years. This soil
consisted of 1.7% organic	arbon 2 2 2
Application rates of equival and 20 µL test item kg soil	arbon 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sti J.T	ed with either 10 ground quartz sand/kg soil dw (control) or a mixture of
quartz sand and the test item mixing, 250 g dry weight	n, and were mixed with 5000 mg/kg soil dw pulverised lucerne meal. After samples, were poured into 500 mL grown glass bottles and closed with
parafilm.	
Soils were held on the dark a and 2, to specifyely.	at $30 \pm 2^{\circ}$ C and at about 38.1 and 42.9% water holding capacity for soils 1
Samples were extracted a	Jund analysed for ammonium-N, nitrite-N and nitrate-N plus nitrite-N and after 14, 28, 42 and 56 days.
Cĩ -	

II. Results and Discussion

Validity criteria were not assessed as part of the study report.

Nitrite was not found in any of the soil samples.

During the 56-day experiments, in soils amended with lucerne meal, it was found that 1.5 L KWG 40.68 \odot EC 500/ha (equivalent to 2 µL product/kg soil dw) had no meaningful influence on the turnover of \sim nitrogen in either a silty sand or a silt. The 10-fold overdose of the compound caused a temporary reduction of nitrogen mineralisation rates in a silty sand (max. 24% on day 28).

At the end of the experiments, environmentally relevant differences (>25%) between the treated and control samples were no longer evident.

Table CP 10.5/01-1	Nitrogen mineralisation in s	soil 1, a silty sa	nd, after exp	osure t@KWGA	68 EC
500			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Å Å	Ő

Days after	mg nitrogen/kg soil dw ¹ by exposure (PL KWG 4168 EC 5007kg softdw)					
treatment	0 μL		2 µL		209uL	
	Ammonium	Nitrate	Ammonium	Ditrate	Ammonium	Nitrate
0	3.36 ± 0.06	20.33 ± 0.49		20 3 ± 0.06	3.40 ± 0.12	20.14 ± 0.17
14	1.43 ± 0.06	9.50 ± 0.75	1434 ± 0:09	\$298 ± 0,99		7.86 ± 0.30
28	1.00 ± 0.06	d())	0.93 ± 0.00	26.26/± 1.3	0.88 ± 0.065	2 ¥ 54 ±0.45*
42	0.83 ± 0.02	36@5±0.34		36.03 ± 6.75	0.86 ± 0.04 «	30.41 ±0.62*
56	1.17 ± 0.00		A.17 ≭0 .00	45.09 ± 1.20	1.04 ± 0.45	$40.00 \pm 1.04*$

* Significantly different to the control (the st at $\sqrt{20.05}$)

Ô

Table CP 10.5/01-2	Nitroger	mineralisatio	n in soil 2, a silt	, after exposur	e to KWG 4168 EC 500
					V V

Õ

Days after	mg artrogen kg soil dw1 by exposure (ut KWG 4168 EG 500/kg soil dw)				
treatment		20 μL			
	Ammonium Nitrate A Ammonium Nitrate	Ammonium	Nitrate		
0	4.08 ± 0.14 32.32 ± 0.60 4.32 ± 0.10 32.92 ± 0.27	4.25 ± 0.08	32.83 ± 0.10		
14	$1.17 - 0.08 \ \ 26.9 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1.06 ± 0.04	24.28 ±0.62*		
28	1.07 ± 0.08 48.83 ± 0.35 00 ± 0.13 48.74 ± 0.45	0.96 ± 0.06	43.52 ±0.71*		
42 *	$0.56 \pm 0.00 \qquad 60.68 \pm 0.71 \qquad 1.56 \pm 0.00 \qquad 60.72 \pm 0.73$	1.56 ± 0.00	56.01 ±1.54*		
56	$1.17 \pm 0.00 \qquad 7950 \pm 0.58 \qquad 4.17 \pm 0.00 \qquad 80.15 \pm 1.07$	1.17 ± 0.00	73.15 ±0.73*		

* Significantly different to the control (t-test at $p \le 0.05$)

ÎII. Conclusion

At the end of the experiments, the amounts of nitrate found in the 10-fold overdosed samples (15 L product/ha) of the vilty and and silt were ca. 13% and 8% less than in the untreated controls, respectively.

When applied as recommended, KWG 4168 EC 500 should not negatively influence the turnover of nitrogen in soils.

Assessment and conclusion by applicant:

The study was conducted to a BBA test guideline and not OECD 216 although the methodology used is consistent.

Validity criteria according to the current OECD 216 (2000) test guideline could not be assessed as it would appear that only a single replicate vessel was tested for each treatment. Q_{a}°

The study supports the risk assessment by demonstrating <25% effects at concentrations up to $\sqrt{5}$ l product/ha but as the report contains only limited details of the test method and because the validit criteria cannot be assessed the study has been submitted as supporting information only.

Data Point:	KCP 10.5/02
Report Author:	
Report Year:	
Report Title:	Influence of KWG 4168 on glucose stigulated respiration in soil
Report No:	AJO/113093
Document No:	$\underline{M}_{008747-01-1}$
Guideline(s) followed in	Guidelines for the Official Testing of Plant Protectants Part VI, 1-1 "Influence on
study:	the Activity of the Soil Microff oral", BBA Bratnischweig, Getmany March 1990
	(2nded) a with the two of the local sectors and the local sectors
Deviations from current test guideline:	None V V V V V V V V V V V V V V V V V V V
Previous evaluation:	yes, evaluated and accepted
	Yes, conducted under GLP/Officially recognised testing facilities
GLP/Officially	Yes, conducted under GLP/Officially recognised resting facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive conly O S S S

Executive Summar

Two agricultural soils were exposed to concentrations of 2 μ L and 20 μ L RWG 4168/kg dry weight soil to determine the effection glocose sumulated respiration over 28 days_m

It was determined that 1.5 L KWG 4168/ha (equivalent to 2μ L product/kg dry weight soil) and 15 L KWG 4168/ha (equivalent to 20 μ L product/kg dry weight soil) had no influence on soil respiration after addition of glucose to a silty sand.

after addition of glucese to asiny game. When applied as recommended, WGAY68 should have no influence on degradation of organic carbon in soils.

Materials and M ethods I. Material Test Material Lot/Batch # t reporte Puri Not reported Description Not reported Stability of compound 17 March 1994 Rean@lysis/F date: **Density:** Not reported

Treatments

Test rates:	Nominal: Measured: Quartz sand No 1 litre clear glass jars covered with clear glass lids
Solvent/vehicle:	Quartz sand
Analysis of test concentrations:	No 1 litre clear glass jars covered with clear glass lids 3 28 days
Test design	
Test vessel:	1 litre clear glass jars covered with clear glass lids
Replication:	
Duration of test:	28 days
Environmental test conditions	1 litre clear glass jars covered with clear glass lids $\sqrt{2}$ \sqrt
Temperature:	$20 \pm 2^{\circ}C$
Photoperiod:	24 house arkness of the standard
Study Design	A A A A A A A A A A A A A A A A A A A
This study mas son dusted i	" When to Kanaga the offering of WWC Will O BC 500 on an instigution on an

This study was conducted in order to assess the effects of KWG4168 EC 500 on soiDespiration over 28 days. Concentrations of glucose added were selected based on the results of a preliminary range-finding test.

Soil 1 was a silty sand from a field that plant protection chemicals had not been used on for 12 years. Soil 2 was a silt from a field that plant protection chemicals had not been used on for 5 years.

The application concentrations of the test item were 4.5 L and 15 L KWG 4168/ha which corresponded to 2 μ L and 20 μ L KWG 4168/kg dryweight soil.

Sieved soil was added with either 10 g ground quartz and/kg dry weight soil (control) or a mixture of quartz sand and KWG 4168 at test concentrations. The simples were mixed in 4 litre aluminium containers by rolling on a gyrowheel mixer for 15 min at 50 rpm

After mixing, soil samples equivalent to 50 g bry weight were poured into 1-litre clear glass jars and these were covered with clear glass lids. The fids were loose enough to allow air exchange, but tight enough to slow evaporation of moisture.

Soil 1 required 3000 mg glucose kg dry weight, and wil 2 required 4000 mg/kg to induce maximum respiration dates, this was added the samples were mixed and then poured into plastic cylinders (3 cm diameter 23 cm long). The cylinders were connected to a gas analyser and the quantities of carbon dioxide released per hour per kg dry weight soil were measured.

Soils were held in the daft at $20 \pm 2^{\circ}$ C and about 38.1% (Soil 1) and 42.9% (Soil 2) water capacity.

To determine the influence of the product on glucose stimulated soil respiration, triplicate, moist samples (equivalent to 25 g dry weight) were taked from each treatment on day 0 (within 3 hours after treatment), and after 1/4 and 28 days of incedation.

II Results and Discussion

Validity criteria were not assessed as part of the study report.

The test term had no meaningful impact on the respiration of the soil. The CO_2 released from the treated soil was \pm 5% of that released from the control.

 Table CP 10.5/02-1
 CO2 released from treated soil (mg CO2/hour/kg dry weight soil) as compared to untreated control

untreateu c				° 🗞
		% of control		
		0 days after treatment	14 days after treatment	28 Gays after treatment
Soil 1	2 μL	96.6	96.7	98.8
	20 µL	103.0	98.7	
Soil 2	2 μL	94.9	97.64	97.2 2 2 5 5
	20 µL	104.8		

Exposure to the test item did not cause a change in sofepH

Table CP 1	10.5/02-2 pl	H of soils treated with KWG 4168 for 28 days
Soil 1	Control	$5.9 \qquad \qquad$
	2 μL	
	20 µL	5.9 Y Y Y Y
Soil 2	Control	
	2 μL	
	20 μL	
TTT		

III. Conclusion

During 28-day experiments, 9.5 L KWG 4468/har equivalent to 2 uL product/kg dry wt soil) and 15 L KWG 4168/ha (equivalent to 20 aL product/kg dry wt soil) had no influence on soil respiration. The study concluded that when used as recommended, KWG 4168 should have no negative influence on the turnover of organic carbon in soils.

Assessment and conclusion by applicant:

The study was conducted to a BBAGest godeline and no DECD 217 although the methodology used is consistent.

Validity ariteria according to the current OECD 21% (2000) test guideline could not be assessed as it would appear that only a single replicate residue tested for each treatment.

The study supports the risk assessment by definition <25% effects at concentrations up to 15 L product/ha but as the report contains only limited details of the test method and because the validity criteria cannot be assessed the study has been submitted as supporting information only. It is further noted that data on the effects of respiration are not a core data requirement and these results are not required for the risk assessment.

Litter bag study

The following litter bag study is available using Spiroxamine EC 500. Although this study type is no longer considered suitable for use in risk assessment, the study has been submitted for completeness.

Data Point:	KCP 10.5/03
Report Author:	
Report Year:	2004
Report Title:	Spiroxamine EC 500: Effects on soil litter degradation
Report No:	LKC-SLD 20/03
Document No:	<u>M-109748-02-1</u>
Guideline(s) followed in study:	Minutes of a meeting on the requirement of data according to EU directive 91/414/EEC, Annex III, point 10.6.2 from Kula and Guske, BBA, Germany March 2001
Deviations from current test guideline:	None
Previous evaluation:	yes, evaluated and accepted RAR (2010)
GLP/Officially	Yes, conducted under GLP/Officially recognised testing facilities
recognised testing facilities:	
Acceptability/Reliability:	Supportive only is in the second seco
Executive Summary	

Executive Summary

C **30**0 on soil This study was conducted in order to nvestigate the effect degradation.

Six 81 m² plots each were used to which was applied 28.8 § a.s. And (57.54 g test item ha). Litter bags containing 4 g wheat straw were buried, and degradation was assessed for the time periods 0 to 29, 0 to Ŵ 92, and 0 to 173 days through weighing. ŗQ

Litter degradation in treated test plots was comparable to control plots over the course of the study, at 104.6, 97.8, and 99.5% for the time periods 0 to 200 to 92, and to 1% days, respectively.

Residues of KWG 168 KC 500 were therefore determined to have no influence on organic matter breakdown after 3, and 6 months. breakdown after \mathbb{A}_{p}^{3} , and 6 months

I. Materials and M

Materials **Test Material** Lot/Batch **Purity: Description:** Clear brown Not reporte Stability of test compound: **Reanalysis** 0§∕Jănuar∳ date Densit Treatment 8.8 g a.s./ha (57.54 g test item/ha), equivalent to a plateau concentration of 19.2 µg a.s./kg soil Solvent/vehicle: Water Analysis of test None concentrations:

Test design

Test plots:	9 x 9 m (81 m ²) plots untreated by any formulation including 3 spiroxamine for at least three years
Test soil:	Silt (USDA)
Location:	Bayer experimental farm Höfchen, Burscheid, Germany
Replication:	Six plots per treatment and control
Duration of test:	173 days

Study Design

This study was conducted in order to investigate the effects of exposure to KWG 4168 EQ 500 op soil degradation.

Test plots were 9 x 9 m (81 m²) plots untreated by any formulation including spirox mine for at least three years. There were six replicates in the treatment and in the control.

Spiroxamine was applied at a rate of 28.8 g a.s./ha (57.54 g to fitem tha), equivalent to a flateau concentration of 19.2 µg a.s./kg soil 0

Untreated seeds of summer barley, wariety "Scarlett", were soon ontoall plots at a rate of \$66.0 kg/ha. Directly after sowing 48 litter bags (12 x 22 cm, mesh size 8 mm filled with \$2 of try wheat straw each were buried per plot. On the same day the calculated annual application rate of 450 g a.s./ha (899.1 g test item/ha), was applied in a volume of 300 Lowater/Na to the treament plots.

Degradation was assessed for the time periods to 20, 0 to 22, and 0 to 1 12 days through weighing.

II. Results and Discussion

The application of the estimated plateau concentration of spirox amine resulted in soil residues of 21.1 µg a.s./kg dry soil. which is 110.0% of the nominal amount of 19.2 µg/kg. The application of the annual rate of KWG 168 EC 500 resulted in soft residues of 253 µg as./kg dry soil four days after the spray application, corresponding to 73.0% of nominal

Litter degradation in treated test plots was comparable to control plots over the course of the study, at 104.6, 97.8, and 99.5% for the time periods 0 to 29, 0 to 92, and 0 to 173 days, respectively.

The results of this study show that littler degradation is soil was not inhibited by exposure to the test item. At no sampling time (29,92, and 173 days after introduction of litter-bags into the soil), could a statistically significant difference in proportion of wheat straw degradation be observed between untreated control plots and the plots treated with the test item.

A

Table CE 10.5/03-1	. Tran	farmanna		BEC 500 on litter degradation
1 able Ca 10.5/03-1	~ Enectsso	a exposure to	KW84100	SEC 500 on inter degradation

5

	Control Q 2	KWG 4168 EC 500	% of control
0-29 d			
Wheat straw degraded (g)	\$0.05	0.68	104.6
Wheat straw degraded (%)	1635	17.00	
0-92	\$		
Whent straw degraded (g)	2.20	2.15	97.8
Wheat so aw degraded (%)	55.02	53.82	
0 - 173 d			
Wheat straw degraded (g)	3.55	3.53	99.5

	Control	KWG 4168 EC 500	% of control]
Wheat straw degraded (%)	88.67	88.26	, Z) <u></u>

Data are means of four plots

III. Conclusion

Litter degradation in treated test plots was comparable to control plots over the course of the surdy, at 104.6, 97.8, and 99.5% for the time periods 0 to 29, 0 to 92, and 0 to 173 days, respectively.

Residues of KWG 4168 EC 500 were therefore determined to have no influence on organic matter breakdown after 1, 3, and 6 months.

Assessment and conclusion by applicant:

The study is considered valid in its own right but as fater bag studies are not a core data requirement and are no longer accepted as a refinement study, the study is therefore deefned to be supporting information only.

CP 10.6 Effects on terrescrial non-target higher plants

The available data for spiroxamin with non-target terrestrial points are presented in the table below.

Organism	Test iten	S Test type	Encipoints		Reference
Avena sativa m Allium cepa m Beta vulgaris d Brassica rapa Daucus carada Glycine max d			NOER 2,400 g a.s./ha ER ₅₀ >2,400 g a.s./ha	EU	<u>M-136408-02-1</u>
Abuttion theophrasti _d Amaranthus retroflexus _d	Spirox and ine EC		$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} $	EU	<u>M-302061-01-1</u>
Avena sativerm Allium cepa ^m Beta vulgaris d Brassea rapa d Daucus carota d Mycine max d	Spiroxamete EC	Vegetative.	NOER 150 g a.s./ha ER ₅₀ 960 g a.s./ha	EU	<u>M-051682-01-1</u>
Abutilon theophrastica Amaratifius retroflexus	SpiroSamine EC	21-day Vegetative Vigour	NOER 100 g a.s./ha ER ₅₀ >400 g a.s./ha	EU	<u>M-302060-01-1</u>

Table CP 10.6-1 Summary of non-target terrestrial plant studies with Spiroxamine CC 500

d: dicotylodonous; m: monocetylodonous

The available data to assess the toxicity of spiroxamine to non-target terrestrial plants have been generated using the representative formulation, Spiroxamine EC 500, and are therefore considered suitable for use in the risk assessment. The lowest ER_{50} values were determined in the seedling emergence and vegetative vigour studies using *Abutilon theophrasti* and *Amaranthus retroflexus*. It should be noted that there were less than 50% effects in these studies at the maximum rate tested of 400

g a.s./ha therefore the ER_{50} has been set as >400 g a.s./ha and is considered to represent a conservative estimate of the toxicity of Spiroxamine EC 500. This value has been used in the risk assessment below.

Exposure

Effects on non-target terrestrial plants are of concern in the off-field environment, where plants may be exposed to spray drift. The amount of spray drift reaching off-crop habitates is calculated using the appropriate percentile estimates, which depends on the number of applications, and is derived from the BBA (2000²³) values from the spray-drift predictions of Ganzelmeier & Kautmann (2009⁴).

The worst case representative use of Spiroxamine EC 500 is for two spiplications to grapes (late) at a maximum rate of 300 g a.s./ha. This use has been considered in the ask assessment below and covers all other representative uses of Spiroxamine EC 500

The drift rate (predicted environmental rate, PER ofield) associated with grapes has been calculated based on spray drift predictions for one application using 90th perceptile drift values and for two applications using 82nd percentile drift values. This gives drift rates of 8.02% at 7 m for grapes (late) and 7.23% at 3 m for grapes (late) for one and two applications, respectively. These equate to drift factors of 0.0502 and 0.0723 for one and two applications, respectively.

The calculated drift rates in g a.s./ha for the use on stapes are presented in the for owing table.

Table CP 10.6-2 Off-field drift	rates follo	wing apr	olication o	f Spiroxa	mine EC 50	ÌØ
	~~~~		n Or		JU . O	

Сгор		Number of applications	Driff distance	Drift factor	S O	✓ PER _{off-field} ○ (g a.s./ha)
	(g a.s./ha)			\$0.0802 ²	2 ⁹ 1.0	24.1
Grapes (late)	300			0.0023	j. j.Y	41.2

* Worst case MAF for two applications to sold substrate

The highest  $PEQ_{off-field}$  value has been determined to be 41.2 g a, what and has therefore been used in the risk assessment below.

### Isomers

In terms of organism exposure, the critical highest predicted concentrations in the environment will occur immediately or very shortly after application derefore the effects of potential changes in the isomer ratios over time in the environment are not considered to be relevant to the non-target terrestrial plant risk assessment. However, even if exposure to residues over a prolonged period of time were to occur, according to the current residues data set for spiroxamine there are no indications of a significant change in isomer ratios therefore ho additional factor feed be applied to the risk assessments below (*i.e.* an UF of 1.0 has been used).

### Risk assessment for Terrestrial Non-Target Figher Plants

The risk to non-target terrestrial plants in the off-crop environment from spray drift following application of Spiroxymine C 500 has been assessed by comparing the ER₅₀ values from seedling



- ²³ BBA (2000) Bundesanzeiger Jg. 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung übel die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain.
- ²⁴ Ganzelmeier H., Rautmann D. (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2000, Pesticide Application. Public domain.

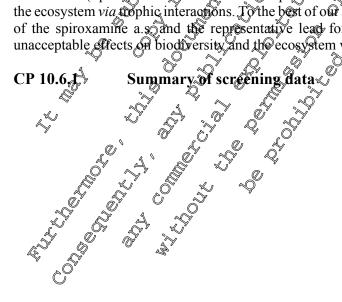


emergence and vegetative vigour effects with the highest PER_{off-field} in order to calculate TER values according to the following equation.

ER50 (g a.s./ha)

elow 2 The TER value has been evaluated against the trigger value of 5 and are presented in the table

Table CP 10.6-3 Spiroxamine EC 500	TER values for non	-target te	rrestral plants
-	e	0	


			~		JK .	$l \cap $	
Crop	Effect	ER50	Application	Ŵff	-field exposur	e	Trigger
		(g a.s./ha)	ga.s/ha	`.	o q	Ů, O, V	value
			g a.s/ha	Distance	× ••••		value
		(		(m) 🖓	(goi.s./ha)	L,	4
	Seedling emergence &	A.			≯ [`] وْجٌ ⊀	\$ \$	
Grapes (late)	Vegetative	3400 k		3	541.2 5 5 5 5 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5 7	-9671 -9670 -200	05
	vigour		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				ð l
		Q″					

Based on seedling emergence and vegetative vigour data, an acceptable wisk to non-target plants has been demonstrated following the proposed uses of Spiroxamine BC 500 with TER values in excess of the trigger value of 5. No further risk assessment is considered to be necessary.

### **Biodiversity**

0 No No relevant scientifically per-reviewed open literature could be found on spiroxamine or its major metabolites, from an ecotoxicological perspective, an non carget terrestrial plants. Therefore, it is considered that the potential impact of the active substance op biodiversity and the ecosystem, including potential indirect effect via alteration of the food web, are covered by the tisk assessment for non-target terrestrial plants in this section. Ø × P

With respect to the NTOP off-field task assessment, which demonstrated acceptable off-field risks without the need for osk mitigation, the applicant concludes that the use of the representative lead formulation (Spiroxamine FC 500) has a low potential to cause macceptable effects on biodiversity and the ecosystem via tophic interactions. To the best of our knowledge and with the presented safety profile of the spiroxamine a so and the representative lead formulation, the applicant does not foresee any unacceptable effects on biodiversity and the ecosystem with spiroxamine.





Data Point:	KCP 10.6.1/01
Report Author:	;
Report Year:	1999
Report Title:	Herbicidal screening data for KWG 4168 EC 500
Report No:	DOM 99123
Document No:	<u>M-027298-01-1</u>
Guideline(s) followed in	OECD A OF A
study:	
Deviations from current	None
test guideline:	
Previous evaluation:	yes, evaluated and accepted accepted and acc
	RAR (2010)
GLP/Officially	No, not conducted under P/Officially recognized testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Supportive only
	Supportive only

### **Executive Summary**

Screening data were generated in 1999 to assess potential torbicidal effects of KWG 468 EC 500. The test substance was applied to the soft surface in which plants were subsequently grown and to the foliage of the emerged plants at application rates of 250, 500, 950, 1000, 1500, 2000 and 250 g as./ha. These application rates were up to three times higher than the proposed use rate (at theorem) of 750 g a.s./ha.

Test species were monocot maize (Zea mays), wild oat (Avena fatura), cockspur (Echinochloa crusgalli), black twitch (Alopecurus myosuraides), and green bristle grass (Secaria virdis) and dicot white mustard (Sinapis alba), sugar beet (Beta vulgaris), Cavers (Galium aparine), indian mallow (Abutilon theophrasti), common amaranth (Imaranthus setroflexus) and ivyteaf morning glory (Ipomoea hederacea).

When KWG 4168 EC 500 was applied to the soil (pre-emergence) no effect was observed on maize, wild oat, cock pur or white mustare Slight phytotoxic effects (50%) were observed on sugar beet, black twitch and cleavers at the triple proposed application rate. Phytotoxic effects (50-95%) were observed of green bristle grass indiat mallow, common anaranto and ivyleaf morning glory at the triple proposed maximum application rate. Relevant phytotoxic effects ( $\geq 50\%$ ) were observed on indian mallow and common amaranto at the single proposed maximum application rate.

When KWG 4168 C 500 was applied to the toffage (post-emergence), slight phytotoxic effects (<50%) were observed on maize, black witch and wild out Phytofexic effects ( $\geq$ 50%) were observed on sugar beet, cockspure green bristle grass, indian mallow, common amaranth, cleavers, ivyleaf morning glory and white mustard at the tople proposed maximum application rate.

I. & Materials and	Methods &			
Materials				
Test Material	KWG 42/68 EC	\$⁄500		
Lot/Batch #:	04023/0627,07	78		
Purify: S	50:6%			
Description: A	Not reported			
Reanalysis/Expiry	Not reported			
dater				
Treatments				
Test rates:	Nominal:	250, 500, 750, 1000	), 1500, 2000 and	2250 g a.s./ha



-	
Test organisms	_ 0
Species:	Monocot: maize ( <i>Zea mays</i> ), wild oat ( <i>Avena fatua</i> ), cockspur ( <i>Echinochloa crus-galli</i> ), black twitch ( <i>Alopecurus myosuroides</i> ), and green bristle grass ( <i>Setaria virdis</i> ) Dicot: white mustard ( <i>Sinapis alba</i> ), sugar beet ( <i>Beta vulgaris</i> ) cleavers ( <i>Galium aparine</i> ), indian mallow ( <i>Abutilon theophrosti</i> ), common amaranth ( <i>Amaranthus retroflexus</i> ) and ivyleaf morning glory ( <i>Ipomoea hederacea</i> )
Test design	
Test vessel:	Greenhouse pots of $420 \text{ cm}^2$ $\sqrt[3]{420} \text{ cm}^2$
Test medium:	Soil (texture: sandy loam, organic matter, 2.5-3%)
<b>Replication:</b>	Ten seeds per species of the the the ten seeds per species of ten seeds per set of ten seeds per seeds per set of ten set of te
Duration of test:	Pre-emergence: finally alu Mon was done after al days post-
Environmental test conditions	22:15°C inta day fright cycle
<b>Temperature:</b>	22:15°C inta day/fright cycle of a contract of the contract of
Relative humidity:	
Photoperiod:	50% 7 14 hours light, 10 bours dark (illuminated at 800 lux) 9
Study Design	
The purpose of this report herbicidal crop protection pro	
(maize, wild oat, cockspur, bl	blied as an EC 500 formulation in 1000 L water/ha at monocot species lack witch and green bristle grass) and dicot species (white mustard, sugar common amaranth and ivelear morning glory) at test concentrations of 00 and 2250 g a.s./ha
	ed in single applications at an automatic spray chamber at a height of 45 separately in the pre-emergence and foliar tests.
greenhouse for approximatel days after breatment. For th	species were place P. For the foliar test, the plants were grown in the y 14 days provide to application and the final evaluation was completed 17 e. pre-emergence test, the plants were placed within 24 hours prior to tration was completed 21 days after treatment.
Visual phytotoxicity was destruction of above ground j	parts and 0% was normal growth (no visual damage).

II. Results and Discussion No validity criteria were assessed as part of the study report. Table QP 10.64 01-1 A Values damage observed at the completion of the pre-emergence test

Species &	Results (&	effect) at dif	ferent applic	ation rates			
C	250 g	500 g	750 g	1000 g	1500 g	2000 g	2250 g
	a.s./ha	a.s./ha	a.s./ha	a.s./ha	a.s./ha	a.s./ha	a.s./ha



Species	Results (	% effect) at dif	ferent applic	ation rates			
Maize	0	0	0	0	0	0	0 2 0
Sugar beet	20	30	30	30	30	40	40 0
Black twitch	0	0	0	0	0		20
Wild oat	0	0	0	0 🖏	0 5	0 0	RY R
Cockspur	0	0	0	0	0	0	Sé 🐥 d
Green bristle grass	20	30	30	- <b>4</b> 6	40, .	95 ° °	800 0
Indian mallow	50	50	60	70° 5	70 2		80
Common amaranth	50	50		70	80		40 ⁰
Cleavers	40	40	20	40 2	300 5	50 0 5	400
Ivyleaf morning glory	0						<50
White mustrard	0						0

# Table CP 10.6.1/01-2 Walues damage observed at the completion of the foliar applied test

<b>C</b>	D. C.	- CC		- 1° Å 0	0		
Species	Respires (%	enecidat an	ferent applic		Ly l	1	
	O A	- \$ <del>6</del>	$\sim$				
ŝ	250 g a.s./Na	, 5000 g O	750 g	1000g	a.s.#ba	2000 g	2250 g
Ča	a.s./Na	a.s./ha	₄a.s./ha ∽y ័	a Sha	a.s.Aba	a.s./ha	a.s./ha
Maize	0 0	100	20	Ş20 ~Ş	<u>3</u> 07	40	40
Sugar beet	40,0	30 2	Ô ^Ŷ , Ŷ	70, 5	×80	80	80
Black twitch	249 4	20		30 0	30	30	30
Wild oat	0 0 ³⁴		ROY NO	30 30	0	40	30
Cockspur 🔬 [*]	0	20	950 <u>9</u> 7	40	50	60	60
Green Sristle			50 ² , 0	40	50	50	50
Indian mallow	7Q 0	80.07	90 OF	90	90	95	100
Common amaranth	50,50	\$70 \$70	\$ ⁸⁰	80	90	90	90
Cleavers			50	30	60	60	60
Ivyloaf morning glory	200	9 7 30	30	50	50	70	80
White mustrard	20	30	50	70	60	80	70



#### III. Conclusion

In the pre-emergence test, 18% of all species tested showed relevant phytotoxic effects of  $\geq$ 50% all the single proposed maximum application rate.

In the post-emergence test (foliage), 64 % of all species tested showed relevant phytotoxic of  $\geq$ 50% at the single proposed maximum application rate of 750 g a.s./ha.

### Assessment and conclusion by applicant:

The study is considered valid in its own right. As screening data it is accepted that this we and GLP study. Validity criteria cannot be assessed as the data generated are not suitable for an assessmer against OECD 227 or 208 and this is not considered to be appropriate as the study was simply screening test.

The results are considered suitable to support the risk assessment but the study have been submitted as supporting information only. It is noted that everal Tier & GLP plant studies are available with this formulation and the results of these will be used for the fisk assessment. 

#### **CP 10.6.2** Testing on non-target plants

Data Point:	KCP 10.6.2/01 25 4 9 0
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500 - Terrestrial plants toxicity, seedling mergence, Tier II
Report No:	$TWK71789 \qquad \qquad$
Document No:	<u>M-136078-02</u> OEQD 208 (Draft, 2000)
Guideline(s) followed in	DECD 208 (Draft, 2000) ~ ~ ~ ~
study:	
Deviations from current	Xes (refer below)
test guideling:	For some and with a carbon content of $2.28 \pm 0.16\%$ was used
	because the compression of available soils with a carbon content <1.5% was too
Â, Ŭ	
Previous evaluation:	ves, evaluated and accepted &
GLP/Officially	ŘAR (2010) × 0 0 ×
GLP/Officially	Yes conducted under GLP Officiatly recognised testing facilities
GLP/Officially recognised testing	
lacinues. »	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
Acceptability/Reliability:	Yes 2 A G C

### Executive Summary

The effect of Spiroxamine EC 500 on the seedling emergence of monocot oat (Avena sativa), onion (Allium cepa) and dicot sugar beet (Beta vulgaris), turnip (Brassica rapa), carrot (Daucus carota) and soybean (Glyane man) crops was studied at nominal concentrations of 150, 300, 600, 1200 and 2400 g a.s./ha. ~Õ

The NQEC and  $C_{50}$  values for shoot height, fresh weight and seedling emergence of all species were 2400 and >2400 g a, tha, respectively.

were no compound related phytotoxic effects. There



### I. **Materials and Methods Materials Test Material** Spiroxamine EC 500 Lot/Batch #: 04023/0778(0627) **Purity:** 488.9 g/L **Description:** Brown liquid **Reanalysis/Expiry** 06 March 2001 1000g a.s./ha date: **Relative Density:** $1.006 \text{ g/cm}^3$ Treatments **Test rates:** Nominal: Solvent/vehicle: Deminer **Test organisms** Monocotyledons Dat (Apena saiva), onion Alium Sepa); **Species:** Decotyledons: sugar beet (Berg vulgeris), turnip (Bassicarapa), Carrot (Daucies carata) soybean (Gycine max) & Source: Heine & Garveng D-31d 57 Sarstedt; Lochow Petkus GmbH, D-29296 Bergen Südwersaat Gbr, Dr 76437 Rastatt KWS Kleinwanzlebener Saatzucht AG, D-37555 Einbeck **Test design** Plastic Dower pots with a diameter of Test vessel sugar beet, turnip and carrot: natural soil (texture: sandy mediums Test Dat, onion. loam, grain size $\leq 2$ mm, carbon content: $1.32 \pm 0.10\%$ , pH: $6.5 \pm 0.1$ ) bean: natural soid (texture: loany sand, grain size: <2 mm, carbon $\pm 0.16\%$ , pH: 5.8 $\pm 0.3$ ) content: 2 28 plicates per dosage and control per species Replication No. plants **Duration of test** Environmental te conditions Temperature: Relative bumidity Khours fight, 8 hours dark at $4200 \pm 480$ lux Photoperiod: Study Design

This study was conducted in order to assess the toxicity of Spiroxamine EC 500 on two monoconsteadonae and four dicotyledonae plant species.

Monocotyledonae test species were oat (Avena sativa) and onion (Allium cepa); dicotyledonae test species were sugar beet (Beta vulgaris), turnip (Brassica rapa), carrot (Daucus carota) and soybean (Glycine max).



Plants were grown in 12 cm plastic flowerpots in a climatic hall at  $20 \pm 10$  °C under a 16 h light 8 h dark photoperiod. Each species consisted of six pots of five plants in each.

The test soil for oat, onion, sugar beet, turnip and carrot was a sandy loam sieved to 2 mm with an organic carbon content of  $1.32 \pm 0.10\%$  and a pH of  $6.5 \pm 0.1$ . The test soil for soybean was a loamy sand sieved to 2 mm with an organic carbon content of  $2.28 \pm 0.16\%$  and a pH of  $5.8 \pm 0.3$ .

At test initiation, serial dilutions of Spiroxamine EC 500 were sprayed on the containers of test medium, and sown seeds using a field sprayer at a rate of 200 L/ha. Nominal test concentrations were 150, 306, 600, 1200 and 2400 g a.s./ha of the test item along with a water control

The test containers were bottom watered and fertilised with nutrient solution throughout the fest as needed.

Temperature and humidity were recorded continuously throughout the test using a thermohygrografh.

Visual observations of phytotoxicity and plant mortality were made on days 7, 15 and 2Y. Phytotoxic symptoms included chlorosis, necrosis and wilting. At test termination, shoot height, fresh weight and phytotoxicity rates were determined.

The NOEC values for inhibition of short height, frest weight and onergence rate were determined by one way analysis of variance followed by Dunnett's test if statistically significant differences compared to control replicates were found.

### II. Results and Discussion

Validity criteria according to the study report were met in that the controls seedlings exhibited normal growth throughout the test

Due to technical reasons, for all plant species the biograss was determined as fresh weight instead of dry weight. This deviation was considered to have no impact on the quality and integrity of the study.

There were no statistically significant effects on the shoot height of any species following exposure to Spiroxamine EC 300 at any treatment.

There were no statistically significant effects on the fresh weight of any species following exposure to Spiroxamine EC 500 at any treatment.

There were no statistically significant effects on the seedling emergence of any species following exposure to Spiroxamme EC 500 at any treatment.

4	Ŷ	0* 0*	. ~			Shoothe	ight (cr	n)				
Treatment (g a.s./ha)	O v	)at		iion	Suga	r beet	Tu	rnip	Ca	rrot	Soy	bean
- S	<u> </u>	% 🔗 inhib.	a.	% [©] iothib.		% inhib.		% inhib.		% inhib.		% inhib.
Control	Ø7.3 ^		§11.2 °		*	-	11.5	-	9.4	-	19.9	-
150	35	4 0	1135	-2	8.9	-14	11.2	3	9.2	3	17.0	15
300	<b>39</b> .0		<b>9</b> .5	16	8.1	-4	11.6	-1	9.9	-6	19.0	4
6.600	38.4	-3 🕉	10.9	3	8.5	-9	11.9	-3	8.7	8	18.8	5
1200 Č	35.2	6	9.9	11	8.0	-3	11.0	4	8.3	12	18.3	8
2400	34.6	7	9.7	13	7.2	7	11.3	1	9.0	5	15.7	21

### Table CP 10.6.2/01-1 Trihibigon of spoot height



					]	Fresh we	ight (m	g)				
Treatment (g a.s./ha)			O	nion	Suga	ır beet	Tu	rnip	Ca	erot	Sog	bean o
		% inhib.		% inhib.		% inhib.	^∧	% inhib.	J.	% inhib.*		inhib.
Control	933	-	114	-	705	- 🐬	1005		90	- 🖉	1460	- 🖉
150	859	8	131	-15	841	-10	1011	-45	92	ð	<b>P</b> 317	Ô
300	1066	-14	87	24	691 🗸	à,	1162	-16	98 🖉	-9 0	1392	3
600	1007	-8	122	-7	89%	-27¢3°	1030	-4	93	R.	°1 <del>6</del> 84	¥¥8
1200	775	17	99	13	754	Å,	848		72	20 0	1466	-3 5
					/ ~		02	7 A	710	10/	1140	~
2400 Table CP 10.	803 <b>6.2/01-</b> 3	14 8 Rat	107 e of em	6 ergence	•	19 ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mergen	v v ce z			1140 5 5 5 5	
Treatment	6.2/01-3		e of em	ergence		19     9       ~~     ~       ~~     ~       Rate of e       ~       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *	<u> </u>					bean
able CP 10.	6.2/01-3	3 Rat	e of em	ergence		Rate of e		ñ e	Š ⁴			/bean % inhib.
[°] able CP 10. Treatment (g a.s./ha)	6.2/01-3	3 Rat	e of em	ergence		Rate of e		rnip `~` **	Š ⁴	rrot		%
Treatment	6.2/01-3 C	3 Rat	e of em	ergence		Rate of e	<b>T</b>	¢ †nip `> \$% inhib - \$ \$		rrot inhib.	Soy	% inhib.
`able CP 10. Treatment (g a.s./ha) Control	6.2/01-3 C	3 Rat	e of em	ergence	©71 5 Sugg 5 Sugg 80 70 70 70 70 70 70 70 70 70 7	Rate of e	<b>T</b> ¹ <b>T</b> ¹ 8 <i>Z</i> ⁰ 8 <i>Z</i> 8 <i>Z</i> 8 <i>Z</i>	¢ †nip `> \$% inhib - \$ \$		rrot inhib.	Soy	% inhib. -
`able CP 10.Treatment(g a.s./ha)Control150	6.2/01-3	3 Rat	e of em	ergence	© I	Rate of e	<b>T</b>	rnip `~` **	80 70	<b>rrot</b> <b>inhib.</b> - 20	Soy 68 57	<b>%</b> inhib. - 16
Treatment (g a.s./ha) Control	6.2/01-3 0 93 93 93	3 Rat	e of em	ergence	© Sugg Sugg 80 0 63	Rate of e by beet $\bigcirc$ mhib, $21 \bigcirc$	<b>T</b> ¹ <b>T</b> ¹ 8 <i>Z</i> ⁰ 8 <i>Z</i> 8 <i>Z</i> 8 <i>Z</i>	¢nip >> *nip >> % 0 inhib - \$ \$ \$	\$70 97	rrot, 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 71	<b>Soy</b> 68 57 77	%           inhib.           -           16           -13

#### Table CP 10.6.2/01-2 Inhibition of fresh weight

Species	NQEQ*	EC25 (g a.s./ha)	p = 95%	EC ₅₀ (g a.s./ha)	p = 95%
Oat	2400 2400	>2460	-	>2400	-
Onion 🖉	2400	2400 Q	-	>2400	-
Sugar beet	2400 5 ³	>2400	-	>2400	-
Turnip 0	2400	>2400	-	>2400	-
Carret O	2400	>2400	-	>2400	-
Soybean	2400	>2400	-	>2400	-

- not determinable

* the highest tested concentration of the test item at which no statistically significant effect is observed



Species	NOEC* (g a.s./ha)	EC25 (g a.s./ha)	p = 95%	EC50 (g a.s./ha)	p = 95%
Oat	2400	>2400	-	>2400	- 4 5
Onion	2400	>2400	-	>2400	
Sugar beet	2400	>2400	- _{Čs}	>2400	
Turnip	2400	>2400	- 🚿	2400	0 - 3 × 6
Carrot	2400	>2400	JOY	>2400 O	
Soybean	2400	>2400		, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V- 2 V

Table CP 10.6.2/01-5	Fresh weight after exposure to Spiroxamine EC 500
----------------------	---------------------------------------------------

- not determinable

* the highest tested concentration of the test item a which ho statistically significant effect is observed

Table CP 10.6.2/01-6	Seedling emergence aft	er exposure to	Spiroxapine 1	Ę <b>CŜ</b> ÕO 🖌	,
1 abit C1 10.0.2/01-0	Securing entergence are	va exposer e to	Spa Unalinge		Λ

		- ~ ~ ~ Y			w w
Species	NOEC* (g a.s./ha)	EQ5	$\mathbf{x}_{\mathbf{p}} = 95^{\circ}$	EC.	- ²
Oat	2400	R≥2400 02		¥ (^> .()	- **
Onion	2400	>2\$200		>2400	Č V
Sugar beet	2400	>2400 >2400 >2400		\$ ²⁴⁰⁰ \$	-
Turnip	2400		N 90	>2400	-
Carrot	2400	\$2400@ 5	- 27 0	©2400 √y	-
Soybean	2400 °	>2400		>2400	-
not determinable			y a by	$\sim$	

- not determinable

- not determinable * the highest tested concentration of the test item at which ne statistically significant effect is observed

The test item did not cause physicitoxic effects to all tested plant species in the tested concentration range of 150 - 2400 g a.s./ha

#### III. Conclusion

Exposure to Spiroxample EC 300 had no statistically significant effects on any of the species tested in terms of phytotoxicity at any treatment level up to 2400 g a.s./ha. Spiroxamine EC 500 did not cause any inhibitory effects in shoot height, thesh weight of rate of seedling emergence to any of the species tested at any treatment. The EQ 5 and EC 50 values for shoot height, fresh weight and seedling emergence were all >2400 g a.s. cha.

### Assessment and conclusion by applicant;

The study was conducted to a draft version of OECD 208 but did not use the validity criteria that are listed in the current version of QECD 208. The study has therefore been assessed against these criteria:

- Seedling emergence ©70 % (≥70% emergence for oat, onion, sugar beet, turnip and carrot. Emergence was 68% for soybean);
- No visible phytotoxic effects in seedlings (actual: none);
- We an survival of emerged seedlings  $\geq 90$  % (actual: achieved);
- Environmental conditions to be identical (actual: achieved with the exception that the soil used for soybean had a higher OC content)



The study was conducted in accordance with a draft version of OECD 208 but the test methods and procedures used are consistent with the current version. Thus, the study is therefore considered to be valid but it is noted that the emergence of control soybean plants was 68% which is just below the criterion of  $\geq$ 70 %.

The ER₅₀ values for shoot height, fresh weight and seedling emergence were 21 > 2400 g a.s./ha.

Data Point:	KCP 10.6.2/02
Report Author:	
Report Year:	
Report Title:	2008 Spiroxamine EC 500 G. Effect on the secoling-growth of two non crop species of
1	
Report No:	SE 08/001
Document No:	$M-302061-01-1 \land \qquad \bigcirc \qquad$
Guideline(s) followed in	OECD 208 (July 2006, adopted). Terrestrial (Non-Target) Plant Test: Seedling
study:	emergence and seedling growth test (Vier 2) $\sqrt{2}$
Deviations from current	
test guideline:	It was anticipated that the 2 non-orop species world not meet the validity criteria
	for emetgence Therefore, this criteria was no Omposed for the study, although
	emergence istreporter & w b b
	The seeds were used even if they did not reach the performance ofteria
	recommended in the Guidelines
0	To provide sufficient seedlings for a valid statistical analysis, 10 seeds were sown
	per pot (replicate) and in pots where seedlings emerged, additional seedlings
Ĩ	were removed.
Į V	A further modification is that the duration of thostudy was 28 days after
Draviere and heating	application. The second s
Previous evaluation:	yes, evaluated and accepted 5 5 0 5
GLP/Officially	RAR (2010) Wes, conducted under CH2P/Officially recognised testing facilities
recognised testing	aces, conducted under or 27/01 any recognised testing facilities
facilities	
Acceptability/Reliability/:	
Acceptaonity/ Kenabhity.	
vooutivo Summary	

### **Executive Summary**

The effect of spirox mine EC 500 G on the seeding emergence of two dicotyledonous (velvetleaf, *Abutilon theophrasti*, reduced pigweed, *Amaranihus retroflexus*) plant species was studied at nominal concentrations of 25, 50, 100, 200 and 400 g.48.ha.

The growth medium used in the test was sterilised soil (pH: 7.3; organic carbon: 0.81%).

All seeds were planted prior to test item application and the exposure time was 28 days after application. Spray treatments were once applied, at test initiation, at the nominal spray volume of 200 L/ha.

No statistical malysis was one for seedling emergence for either species tested.

For velvetleaf, there were no statistically significant impacts on observed mortality or growth stage development in any treatment groups as compared to the control. Biomass was significantly reduced at all application rates tested as compared to the control. There were slight phytotoxic effects observed including stanting and necrosis.

For redrost pigweed, there were no statistically significant impacts on observed mortality or growth stage development in any treatment groups as compared to the control. Biomass was not significantly reduced in any application rate tested as compared to the control.

The ER₅₀ values for both survival and biomass exceeded the maximum rate tested of 400 g a.s./ha.



#### I. **Materials and Methods Materials Test Material** Spiroxamine EC 500 G Lot/Batch #: PF90087683 **Purity:** 501 g/L **Description:** Clear brown liquid **Reanalysis/Expiry** 31 January 2010 date: **Density:** 1.006 g/mL Treatments **Test rates:** 25, 50, 100. Solvent/vehicle: None rafe 1 pplication Analysis of test Analysi r.ĥi∕o concentrations: **Test organisms** theophyasti; redrooppig **Species:** butilon[®] ARI MARE, Amaranthys retroflexus vig Dayer GropScience AG, Seeds supplied from commercial sources Source: Frankfurtam 26 Test design pots (10.5 cm diameter) ommercial plastic flower Test vessel Test mediam Sterilised soil at pl **Replication:** réolicatés Nø plants/ Duration of test Environmentalatest conditions Temperature: °C night time liØnt bours dark (light intensity: <15000 lux) Photonerio **Study Design**

This study was conducted in order to evaluate the effect of Spiroxamine EC 500 G on the seedling emergence and growth of wo dicotyledonous plant species.

Test species were two dicetyledonous plants (velvetleaf and redroot pigweed) from two different families.

Plants were grown in commercial plastic flower pots in a glasshouse at  $23 \pm 8$  °C during the day and 18  $\pm 8$  °C at night under a 16 hour light 8 hour dark photoperiod. Eight replicates with ten seeds per species were tested.

Sterilised sandy-silt loam was used as the test medium.



At test initiation, spray solution made up of the test item dissolved in deionised water to a volume of 200/L was applied to the soil surface using a spray chamber with an overhead nozzle (set at 30 cm above the sprayed surface).

Observations of phytotoxicity were made on days 7, 14, 21 and 28 according to the EPPO Standard 135. Germination was assessed daily and the first 5 seedlings were considered for the evaluation. Assessments of mortality were made on days 7, 14, 21 and 28. Biomass was determined at final assessment and growth stages at the final assessment were reported according to the phenological prowth stages and BBCH identification keys of weed species from the Compendium of Growth Stage Identification Keys for Mono- and Dicotylenous plants.

More than 5 velvetleaf seedlings emerged in all control pots and in total 26 seedlings were removed to leave 5 seedlings per pot for survial and biomass assessments. In no control pot did mote than 5 redroot pigweed seedlings emerge.

Statistical analysis was carried out on the mortality and biomass data using the FoxRat software for statistical analysis. No statistical analysis was carried out for emergence data.

### Analytical method

Samples of water were analysed using the validated analytical method  $M_2 = 2060 @1-1$ , report reference  $M_2 = 2060 @1-1$  (see Doc MCP Section 5)  $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$ 

### II. Results and Discussion

Validity criteria according to the study report were considered to have been met on the basis that >90% survival of untreated controls was whieved (100% for vervetlear and 100% for redroot pigweed).

Analysis of the highest application rate revealed the rate to be 95.3% of nominal

Mortality for both species tested at all test concentrations was 0% therefore Spiroxamine EC 500 G did not have a statistically significant impact on the survival of either species. For velvetleaf, biomass was significantly reduced at all application rates tested. For redroat pigyeed, biomass was not considered as significantly reduced by the statistical software at all application rates tested due to the very high variability within the replicates. There were no effects of growth stage development of treated plants in comparison to the untreated controls at all application rates tested for either species tested.

Species	Treatment group	Survival (%)	Bromass (	Biomass (g)					
	(g_a.s.ha) ♥		R B	s, s, b.	% CV	% Red	Sign.	(day 28)	
Velvetle	Control		Ø235 N	0.0767	32.6	-	-	12-14	
	25	100		×0.0223	14.9	36.4	+	12-14	
~~	50	2100 C	0.147	0.0487	33.0	37.4	+	12-14	
	190 <u></u>	100 2	0.158 0.941	0.0411	26.0	32.9	+	12-14	
29	200 × 200	ي 100	0.941	0.0228	16.2	40.3	+	12-14	
	400 4	1.06	0.125	0.0508	40.5	46.8	+	12-14	
Rechoot	Control	¥00	0.063	0.0341	53.8	-	-	12-16	
proveed s	400 Control 25	100	0.035	0.0324	91.9	44.4	+*	12-16	
	50	100	0.044	0.0326	73.8	30.5	+*	12-16	
	100	100	0.064	0.0203	32.0	-0.2	-	12-16	

Table <b>(2</b> 10.6.2/02-1)					
Tabla (20) 10 6 7/07 1	@ Sum on	of the offert	of Quinovomino	<b>F</b> (C) <b>500</b> C an	tostad spacios
1 abie VX 10.0.2/02-1	Summary		o of Spirozamilie	: E@300 G 01	l lesteu species
* y			× 1		1



Species	Treatment group	Survival (%)	Biomass	(g)				BBCH (day 28)°
	(g a.s.ha)		Mean	S.D.	% CV	% Red	Sign.	(day 28)°
	200	100	0.035	0.0227	64.9	45.0	+*	×12-1,6~
	400	100	0.048	0.0581	121.8	24.8	+* 0	12,8

S.D. standard deviation

#### Table CP 10.6.2/02-2 Summary of endpoints

S.D. standard C CV coefficient * Corrected va	t of variation llues		S S				
Table CP 10.0     Species	5.2/02-2 Sum	mary of endpoints		masser 2			
	NOER (g a.s./ha)	ER25 ER (g a.s./ha) (g		)ER E a.s./hat (g	Ros O'	ERM (g a.s./ha)	
Velvetleaf	400#	>400#	00# 2:	5# %	25#_Q`^	>400#	
Redroot pigweed	400#					×400 [#]	

# Extrapolated values, calculated values were not determined or dutside the range tested

* Corrected values

#### Conclusion III.

Based on the results of this secting growth study which the effect of Spiroxamine EC 500 G on two non-crop plant species (velvetlear and redroot preved) was tested under glasshouse conditions, the ER50 values for both survival and biomass exceeded the maximum rate tested of 400 g a.s./ha.

### Assessment and conclusion by applicant.

0 Validity conteria according to the current  $OE \bigcirc 208$  guideline (2006) have been assessed.

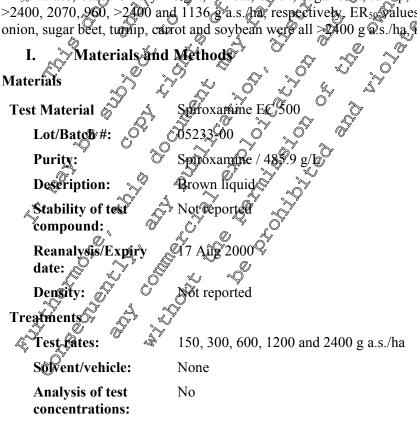
Ô

- The mean surplyal obemerged control seedlings is at least 90% for the duration of the study (actual: 100%) for both species) 47 K,
- The seedlings do not exploit visible phytotoxic effects (e.g. chlorosis, necrosis, wilting, leaf and stem deformations and the plants exhibit only normal variation in growth and morphology for that particular species (actual: achieved)
- Environmental conditions for a particular species are identical and growing media contain the same amount of sour matrix, support media, or substrate from the same source (actual: (Sachieved)
- The emergence of velvetheaf in the control was 82.5% of seeds sown (66 seedling emerged from the 81 seeds sown). The emergence of redroot pigweed in the controls was 36.3% of seeds sown (29 seedling emerged from the 80 seeds sown). Thus, the validity criterion of  $\geq$ 70% emergence was not met for redroot pigweed but this was expected and therefore this criterion is not though to apply here. Additional seedlings were planted so that 5 viable seedlings per pot could be achieved

It is poted that the sphergence of redroot pigweed was low but this was fully anticipated prior to the start of the study of the results of the study are considered to be valid and suitable for use in the risk assessment to demonstrate that effects are <50% at a rate of 400 g a.s./ha. The study is therefore considered acceptable.



r	<u>@</u>
Data Point:	KCP 10.6.2/03
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500 - Terrestrial plants toxicity, vegetative vigor, tier II
Report No:	TNW71791
Document No:	<u>M-051682-01-1</u>
Guideline(s) followed in	OECD 208
study:	
Deviations from current	None None
test guideline:	
Previous evaluation:	yes, evaluated and accepted
	$  \text{KAR} (2010) \rangle \rangle$
GLP/Officially	Yes, conducted under GLP/Officialky recognised testing factifies
recognised testing	
facilities:	
Acceptability/Reliability:	Yes y y y y y y
Executive Summary	


### **Executive Summary**

Terrestial non-target plant phytotocicity was assessed in order to evaluate the toxicity on 6 plant species over a period of 21 days after treatment (determination of EC2), EC5 and OEC calues).

The test item was sprayed onto the 2-4 leaf stage plant foliage at various concentrations. During the test the plants were observed for visual phytotoxicity symptoms and total number of dead plants. At the end of the test the shoot height and the dry weight of the shoots were measured

The most sensitive endpoint was inhibitory effects to soybe an dry weight with a NOEC of <150 g a.s./ha. The lowest ER₅₀ value determined was 260 g a.s./ha for unnip (dry weight).

 $ER_{50}$  values, based on dry weight, for oat, onion, sugar best, turner, carfot and soybean were >2400, >2400, 2070, 960, >2400 and 1136 g a.s./ha, respectively.  $ER_{50}$  values, based on shoot height, for oat, onion, sugar beet, turnip, carfot and soybean were all >2400 g a.s./ha, respectively.





Test organisms	
Species:	Monocotyledonae:
~ <b>F</b> · · · · · ·	Avena sativa (oat), Allium cepa (onion)
	Beta vulgaris (Sugar beet), Brassica rapa (turnip), Daucus carota
Source:	Heine & Garvens, Wenderter Str. 19, D-31157 Sarstedt Lochov- Petkus GmbH, Postfach 11 97, D-29296 Bergen, SODWESTSAAT Gbr. Im Rheinfeld 1-13; D-76437 Rastatt, KWS KLEINWANZLEBENER SAATZUCH AG, D-32555 Ethbeck
Test design	
Test vessel:	12 cm diameter alastic pots 2 2 2 2 2
Test soil:	Cartified LLAA acit a 2 (bata bac Sp2 22200)
<b>Replication:</b>	Six pots of the state of the st
No. animals/vessel:	Certified LUFA soil No. 2. (batch-no. Sp2.32300) Six pots Five plants perpot 21 days 55 - 100% 16 by ight 8 h dark. 4689 ± 2780
<b>Duration of test:</b>	$21 \text{ days}$ $\alpha$ $\gamma$ $\gamma$ $\gamma$ $\gamma$
Environmental test	
conditions	
Temperature: 🔊	$15 - 26^{\circ}$
Relative humidity:	55 - 100%
Photoperiod	16 bright Sh dark. 4680 $\pm$ 2780
Photoperiod:	
Terrestial non-target plant ph	hytotoxicity was assessed in order to evaluate the toxicity on 6 plant species
over a period of 21 days are	A contraction of the 25, Eeso and NOEC values).
The Monocotyledonae test species were <i>Repu vulgar</i>	ecies were Avena sativa (oat), Alltum cepa (onion) and the Dicotyledonae
max (soybean). The test iten	is (Sugar beet), Brassica rapa (turnip), Daucus carota (carrot) and Glycine n was applied on the plant folge after the plants had reached a 2-4 leaf
stage. The plants were botton	watered and fortilized throughout the test with nutrient solution as needed.
	plastic pots at 15 $-26^{\circ}$ C under a 16 h light 8 h dark photoperiod at 4680 ± stee of six pots of five plants in each.
Test soil was a sandy doam n (20 + 5 °C) until use.	umber 2.3, The soil has been stored at the test facility at room temperature
Nominal treatment rates wer	\$50, 300, 60, 1200 and 2400 g a.s./ha on the plant foliage along with a

water control Observations of phytoto Octy were made on days 7, 14 and 21 by visual observations of the plants. Survival and doweight were determined at test end on day 21 and were checked for statistically significant differences

A. Results and Discussion

Validite Criteria were not specifically assessed as part of the study report but the study was deemed to be valid.

Visual phytotoxicity



, Ô

The plants were observed on day 7, 14 and 21 for visual phytotoxicity rates.

For onion no test item related phytotoxic effects were observed after 7, 14 and 21 days. After 21 days at the concentrations 150 and 600 g a.s./ha, respectively one plant was dead the concentration 150 g a.s./ha true and true concentration 150 g a.s./ha two and at the concentration 600 g a.s./ha one additional plant was dead Ê,

Table CP 10.6.2/	03-1 Sugar beet: Phytotoxicity r	ates after 7, 14 and 21 days
Concentration	Effect	Phytotoxicity rate (6)
(g a.s./ha)		7 day 14 day 21 day 0
Control	- Q	
150	- &	
300		
600	Chlorosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Necrosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1200	Necrosis Necrosis	25 $37$ $37$ $26$ $57$ $521$ $2$
2400	Necrosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Dead plants	

T-11. CD 10 ( 2/02 1

Eurnip: Phytotocicity gates after 7, 14 and 21 days Table CP 10.6.2/03-2

Concentration	Effect Phytotoxicity ate	(%) <u>(</u> )	
(g a.s./ha)		14 day 21	1 day
Control		0	
150		0	
300	Necross of a state of the second seco	<10 <	10
600		21 14	4
1200	Necrosits 2 54 54 54 54 54 54 54 54 54 54 54 54 54	50 30	6
2400	Neeposis C . V . V71 0	56 50	0

Table CP 20.6.2/03-3 Carros Phytoexicity vates after 7, 14 and 21 days

Concentration	Effect A P P P	Phytotoxicity rate (%)				
(g a.s./ha)		7 day	14 day	21 day		
Control		0	0	0		
150		0	0	0		
		0	0	0		
6005 1200 0 1200	Nocrosis Y	<10	<10	<10		
1200	Necrosis	24	20	15		
2400	Necrosis	49	41	33		



Concentration	Effect	Phytotoxicity rate (%)					
(g a.s./ha)		7 day	14 day	21 day 5			
Control	-	0	0	0 4			
150	Necrosis	<10	<10				
300	Necrosis	<15 🖉	<125				
600	Necrosis	32		21,0 57			
1200	Necrosis		9 41 0° 04	Al of			
2400	Necrosis	69	69 0 0	56 2 2			

### Shoot height

No statistically significant differences of the shoot heights were found for out and carrot. Statistically significant differences of the shoot heights were found for onion and soybean at oncertrations>1200 g a.s./ha, for sugar beet at the concentration 2400 g a.s./ha and for turnin at concentrations >600 g a.s./ha.

### Biomass (dry weight)

The biomass was determined as dry weight on day 2

No statistically significant differences of the dry weight were found for oar and onion at all tested Table CP 10.62/03-5 Inhibition of shoot height

Concentration	٩,	y Kuringht (	cm)	A C	Sy a							
(g a.s./ha)		ænhib. (%)	onion [®]	(%)	Sugar beat	Imbib. (%)	Qurnip	Inhib. (%)	Carrot	Inhib. (%)	Soy- bean	Inhib. (%)
Control	43	- 4	20.8		©13.7 ℃	20)	16.2	-	27.3	-	30.7	-
150	Ø43.6	Ô ^V ć	) 19.1	120	130	003	15.7	3	25.7	6	29.9	2
300	43.7	0 0	¥∕		§14.3	-4	16.4	-1	26.9	1	29.7	3
300 <u>4</u> 600 <b>5</b>	43.9		§18.5	15	14.0	-2	13.4	17	25.2	8	28.7	6
1200	46.6	-5	16.0	(n)	Qr3.1	4	12.0	26	25.1	8	21.4	30
2400	<b>A</b> 3 ⁸ .5	1	ô7.3	20 2	9.2	32	9.8	40	24.6	10	18.3	40

Table CP 10.6203-5 Inhibition of hoot height

Table CP 10.8.2/03-6 Inhibition of droweight

Concentration	Bry m	Dry weight (ng)										
(g a.s./ha)	Oat	Inhib. (%)	Onion	Inhib. (%)	Sugar beat	Inhib. (%)	Turnip	Inhib. (%)	Carrot	Inhib. (%)	Soy- bean	Inhib. (%)
Control	238.5	-	15.5	-	254.1	-	219.3	-	321.8	-	528.3	-
150	198.4	17	13.9	10	256.5	-1	188.5	14	265.6	17	422.7	20



Concentration	Dry weight (mg)											
(g a.s./ha)	s./ha) Oat	Inhib. (%)	Onion	Inhib. (%)	Sugar beat	Inhib. (%)	Turnip	Inhib. (%)	Carrot	` & "	Soy-O bean	Inhib. (%)
300	212.7	11	13.8	11	288.2	-13	160.7	27 🔊	307.2	50	<b>3</b> 21.9	20
600	214.5	10	11.8	24	246.5	3	124.3	43	242.7		389.7	26
1200	228.4	4	9.8	37	220.4	13	95.0	\$57	226 27		228.3	57
2400	177.3	26	11.0	29	96.2	82	73.9.0	66	207.6	935 x	162.7	69

### Shoot height: EC25 and EC56 values with confidence range Table CP 10.6.2/03-7

	8	
Species	EC ₂₅	D = 0.50 $P = 0.50$
	(g a.s./ha)	(g a.s./ha) (g a.s./ha) (g a.s./ha)
Oat	>2400	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
Onion	>2400	2400 5 5 5 5 17692 >2400 5 5 5 5
Sugar beat	2146	
Turnip	1071	691 - 1998 ~ 2400 ~ ~ ~ ~ ~
Carrot	>2400 🖏 🕵	
Soybean	1339	987 - 1828 - 24002

## Table CP 10.6.2/03-8 Dry Weight EC25 and EC45 values with confidence range

Species	EC 25 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	EC50	P = 95%
ð	(g a.s.)ha) (g a.s	(g as./ha)	(g a.s./ha)
Oat 🔊	2354 2354 2944 0	2400	-
Oat Q Onion	926 0 5 445 - 1925 5 V	>2400	-
Sugar beat	1293 5 1296 - 1,796 5	2070	1741 - 2461
Turnip	278 2 278 2 2 2 2 2	960	633 - 1455
Carrot		>2400	-
Soybean		1136	790 - 1632
No effect levels	(NOPEC) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

# Table CP 10.6.2/03-9 Shoot Reight No effort level concentrations (inhibitory effects)

Species A A A	No observed effect concentration (NOEC) (g a.s./ha)
Oat by Or Strange	2400
Omion S	600
Sugar <del>be</del> at	1200
Turnip	300



Species	ecies No observed effect concentration (NOEC)			
	(g a.s./ha)			
Carrot	2400	ð		
Soybean	600	S ⁴	4 .4	

### Table CP 10.6.2/03-10 Dry weight: No effect level concentrations (inhibitory effects)

Species	No observed effect concentration (NOEC)
Oat	
Onion	(59 [#] 6) 5 × 4 4 2 × 4
Sugar beat	
Turnip	
Carrot	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Soybean	
[#] EC ₁₀ calculated as NOEC not determinable	

### III. Conclusion

The test item did not cause phytotoxic effects to oat and onion. Phytotoxic effects were caused at concentrations >600 g.a.s./ha for sugar beet and carot, at concentrations >300 g.a.s./ha for turnip and at concentrations >150 g.a.s./ha for soybean.

The test item did not cauce inhibitory effects in shoot beight to oat and carrot in the tested concentration range of 150 - 2400 g a.s./ha.

Effects in shoot height were caused for the plant species sugar beet at the concentrations >1200 g a.s./ha, for the plant species onion and soyberth at the concentration >600 g a.s./ha and for the plant species turnip at the concentration >300 g a.s./ha.

Effects in dry weight were caused at concentrations >1609 g/a.s./ha for oat, at concentrations >159 g a.s./ha for onion, at concentrations >1200 g a.g./ha for sugar beet, at concentrations >150 g a.s./ha for turnip, at concentrations >367 g a.s./ha for carrot and at all fested concentrations for soybean.

 $ER_{50}$  values, based on dry weight, for oar, onion, sugar beet, turnip, carrot and soybean were >2400, >2400, 2020, 960, >2400 and 1936 g as that respectively.  $ER_{50}$  values, based on shoot height, for oat, onion, sugar beet, turnip, carro and soybean were all >2400 g a.s./ha, respectively.

### Assessment and conclusion by applicant:

The study was conducted to the draft OECD 208 guideline which included vegetative vigour. Validity criteria according to the current OECD 227 (2006) guideline have therefore been assessed were met:

- The seeding energence is at least 70% (this cannot be confirmed from the study report)
- The control seedling do not exhibit visible phytotoxic effects (e.g. chlorosis, necrosis,
- wilting, leaf and storn deformations) and the plants exhibit only normal variation in growth and morphology for that particular species (actual: no photoxicity in controls)
- She mean survival of emerged control seedlings is at least 90% for the duration of the study
- (achieved)



• Environmental conditions for a particular species are identical and growing media contain the same amount of soil matrix, support media, or substrate from the same source (achieved)

The study is considered to be acceptable. It is noted that the criterion to confirm that the sections used to grow the plants for use in the test were viable of  $\geq$ 70% cannot be confirmed. However, as the necessary number of plants were treated at the start of the test and the survival criteria were met is considered that the plants were viable and there is no detrimental impact on the results by not being able to confirm that this criterion was met.

ER₅₀ values, based on dry weight, for oat, onion, sugar beet, turnip carrot and so beet, 2400, 2070, 960, >2400 and 1136 g a.s./ha, respectively.

	KCP 10 6 2/04
Data Point:	KCP 10.6.2/04
Report Author:	
Report Year:	
Report Title:	Spiroxamine EC 500 G: Effect on the vegetative vigour of two noncrop species
	of non-target terrestrial plants (Lier 2) 0 ~ ~ ~
Report No:	VV08/002 "" , , , , , , , , , , , , , , , , , ,
Document No:	M-302080-014 2 2 5 4 5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
Guideline(s) followed in	OE 227 (July 2006, adopted) modified for a non crop species study
study:	
Deviations from current	Xes (refor below)
test guideline:	It was anticipated that the two species would not meet the orderia for emergence.
Previous evaluation:	yes aluated and acepted . O & . O
$\sim$	$\mathbf{R} \mathbf{A} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{A} \mathbf{R} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$
GLP/Officially recognised testing facilities:	Yes, conducted and conducted a
recognised testing	
facilities:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Acceptability Beliability:	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Executive Summary

The effects of a spray treatment with Spiroxamine EC 500 O on two non-crop non-target plants (velvetleaf and redroor pigweed) were examined over 2% days. Plants at the 2 to 4 leaf stage were sprayed at 200 L/ha, delivering nominally 25, 50, 100, 200 and 400 g a.s./ha to the plants.

Both species treated with Sphoxamine EC_{00} G_{0} G_{0}

The results of this study indicate that sposure to Spiroxamine EC 500 G on two non-crop plant species yielded \mathbb{R}_{50} values for both survival and biomass in excess of 400 g a.s./ha. The most sensitive endpoint was biomass reduction, with a NOER of 200 and 100 g a.s./ha for velvetleaf and redroot pigweed, respectively.

I. Materials and Wethods

Materials

Test M piroxamine EC 500 G PF90087683 49.8% w/w (501 g/L) **Description:** Clear brown liquid

Stability of test compound:	Not reported
Reanalysis/Expiry date:	31 January 2010
Density:	1.006 g/mL at 20°C
Treatments	
Test rates:	25, 50, 100, 200 and 400 gas./ha
Solvent/vehicle:	None fy the state of the state
Analysis of test concentrations:	Analysis of the highest application rate had a receivery of 95.3%
Test organisms	
Species:	Velvetleaf (Abutilon neophyasti) and redroot pieweed (Amarabihus
Source:	Not reported 31 January 2010 1.006 g/mL at 20°C 25, 50, 100, 200 and 400 gass./ha None Analysis of the highest application rate had a recovery of 95.3% Velvetleaf (<i>Apptilont meophiasti</i>) and redroot pieweed (<i>Amardulhus</i> <i>retroflexus</i>) Obtained as unreated seeds from commercial sources via Bayer Cropscrence AG S cm drameter plastic pots Silt tram stoved to 2 mm Enght pots Fourplants eer pot 2) alays 25 ± 8 °C during the day, 18 ± 8 °C during the night 27 - 91%
Test design	
Test vessel:	for cm drameter plastic pots of the company of the
Test soil:	Silt fram sieved to mm
Replication:	Enght pats and a for the former of the forme
No. animals/vessel:	Fourplants per pot
Duration of fest:	2) days in the second s
Environmental test	
Temperature:	23 ± 8 °C during the day, 18 8 °C during the night
Relative humiðiy:	27 - 91% S a difference of the first of t
Photoperiod	1 (2) light 8 h dark. Lighting was natural daylight supplemented by artificial lighting. <15000 lux lamps turn on, >50000 lux shading closes
Study Design	

Study Design

Q

This study was conducted in order to evaluate the effect of Spiroxamine EC 500 G on the vegetative vigour of two wild dicotytedonous plandspecies.

Test species were velyetleaf (*foutilon theophrasti*) and redroot pigweed (*Amaranthus retroflexus*), two non-crop species of the ferent families.

Plants were grown in 13 cm plastic pots in a glasshouse at 23 ± 8 °C during the day and 18 ± 8 °C at night under a 16 light 8 h dark photoperiod. Each species consisted of eight pots of four plants in each.

Test soil was a silt loam sieved to 2 mm, sterilised with 120°C vapour for 30 minutes and fertilised with 2.4% Blaukorn per litre. Soil was composed of 59.1% silt, 24.2% clay and 16.7% sand. It had an organic carbon content of 1.30% and a pH of 7.31.

At the 2 to 4 leaf stage, serial dilutions of Spiroxamine EC 500 were sprayed on the plants using a laboratory track sprayer at a rate of 200 L/ha. Nominal test concentrations were 25, 50, 100, 200 and 400 g a.s./ha on the plant foliage along with a water control.

Observations of phytotoxicty were made on days 7, 14 and 21 by visual observations of the pla Survival and dry weight were determined at test end on day 21.

Analytical method

Samples of water were analysed using the validated analytical method MCO2060-01-1 report reference M-302060-01-1 (see Doc MCP Section 5).

II. Results and Discussion

The study was deemed to be valid in the study report as the criterion of 90% survival of the compol plants was met (100% survival for both species).

The spray chamber was calibrated by weighing the amount of water applied to known surface area, which gave a mean application volume 92% of normal. Availysis of the highest application rate revealed the rate to be 95.3% of normal.

Foliar application of Spiroxamine EG 500 G had no significant impact on the survival of treated velvetleaf plants at any application rates tested in this study. The YOER for survival was therefore 400 g a.s./ha and the ER₅₀ value for survival was >400 g a.s./ha.

Shoot dry weight (biomass) was significantly reduced at the highest application rate of 400 g a.s./ha. The NOER with respect to biomass was 200 g a.s./ha and the ER 6 value for biomass was >400 g a.s./ha.

Slight phytotoxic symptoms visualised as necrosis and stunting were observed at test end at all application rates tested.

There were no effects on growth stage development of reated plants in comparison to the untreated controls at all application rates tested.

Nominal	Survival (%)	Biomass (g)			
concentration (g a.s./ha)				% CV	Reduction from control (%)
Control	900 J 5	2.268	@2732.C	12.0	-
25 ~	1000	2,162 ~ 5	0.4046	18.7	4.7
50	100	2.05	Q 2810	13.7	9.4
100	1000	2:181	0.3269	15.0	3.9
200	100 8	¥1.999 & 6	0.1952	9.8	11.9
400		1,466 &	0.2962	20.8	35.4*

Table CP 10.6,204-1 DEffects of exposure @ Spirøyamine EC 500 on velvetleaf

* Significantly different the control

Foliar application of Spiroxanine EC 500 G had no significant impact on the survival of treated redroot pigweed plans at any application rates tested in this study. The NOER for survival was therefore 400 g a.s./ha and the ER₅₀ value for survival was >400 g a.s./ha.

Shoot $\frac{1}{2}$ weight (biomass) was considered as not significantly reduced at all application rates tested. However, the NOER for this endpoint was set at 100 g a.s./ha because of the 32.4% shoot dry weight reduction at the application rate of 200 g a.s./ha which was considered to be biologically relevant. The ER₅₀ value for shoot dry weight was >400 g a.s./ha.

Slight to moderate phytotoxic symptoms visualised as necrosis, leaf deformation and stunting were observed at all application rates tested. \mathbb{R}°

There were marginal effects on growth stage development of treated plants in comparison to the stage develop

Nominal	Survival (%)	Biomass (g)	Ĉa	Į,	
concentration (g a.s./ha)		Mean	SD 🗇	%CV	Reduction C from control
Control	100	1.456	0.2723		
25	100	1.741	0,5969	34.3 4	⁷ -19.8 ²
50	100	1.484	0.48050	32.4	$\bigcirc 1.9$ \circlearrowright \checkmark
100	100	1.351	0.5034	\$7.2 × ×	7.2
200	100	0.98	Q:3328 0	33 8	©Ž.4*
400	100	AQ243	0.3877	26.4 Č	14.6

 Table CP 10.6.2/04-2
 Effects of exposure to Spiroxamine EC 500 on redroot pigweed

* Significantly different to the control

A summary of the relevant endpoints is presented in the table below:

Table CP 10.6.2/04-3 Summary of endpoints after Exposure to Spiroxamine ECODO G

Species	Sur wal (g.a.s./L)		Biomass (ga.s	./L)	
	NOER V ER25	ER50	SOER ~	ER ₂₅	ER ₅₀
Velvetleaf	y≥400~~	× >406 0	200	302.8	>400
Redroot	≥400 , , , , , , , , , , , , , , , , , ,			>100	>400

* Corrected value

III. Conclusion

Both species treated of th Spiroxamine EC300 C showed slight phytotoxic symptoms of necrosis and stunting.

The results of this study indicate that exposure to Spiroxamine EC 500 G on two non-crop plant species yielded ER_{50} values for both survival and bomass on excess of 400 g a.s./ha. The most sensitive endpoint was bomass reduction, with a NOER of 200 and 100 g a.s./ha for velvetleaf and redroot pigweed, respectively.

Assessment and conclusion by applicant:

This study was previously evaluated in the DAR (2017), and deemed acceptable.

The study was conducted to the OECD Guideline 227 (2006) "Terrestrial plant test: Vegetative vigour test," Validary criteria according to the OECD 227 (2006) guideline were met:

- Sontrol plant survival $\geq 90\%$ (actual: 100% both species)
- Control plants to not exhibit visible phytotoxic effects (actual: achieved)

Ŵ

Ľ

The validity criterion of at least 70% seedling emergence of plants used in the study was anticipated to not be met, and therefore seeds used in the study were not assessed for emergence.

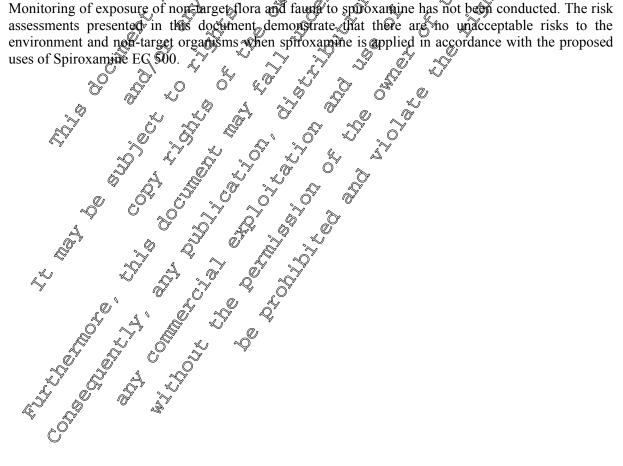
The study is therefore considered to be acceptable and the results suitable for use in the risk assessment.

ER₅₀ values for both survival and biomass were determined to be in excess of 400 g a.s./ha.

CP 10.6.3 Extended laboratory studies on non-target plants

No data for extended laboratory studies with non-target terrestrial plants are available. These data not necessary as an acceptable risk has been demonstrated for the proposed uses of spiroxanine DC Ó using the available Tier I laboratory data.

CP 10.6.4 Semi-field and field tests on non-target plants


No data for semi-field or field studies with non-target terrestrial plants and available. These data are not necessary as an acceptable risk has been demonstrated for the proposed uses of Spiroxamme EC \$00 using the available Tier I laboratory data

Effects on other terrestrial organisms (flora and fauna) **CP 10.7**

All required and available data have been submitted and evaluated in the presented fisk assessments. No No No further data are available or thought to be necessary with other terrestrial organisms.

Monitoring data **CP 10.8**

Monitoring of exposure of non-barget flora and fauge to sporoxamine has not been conducted. The risk assessments presented in this document demonstrate that there are no unacceptable risks to the

