1646

Discovery and characterization of BAY-6035, a novel benzodiazepine-based SMYD3 inhibitor

S. Gradl', H. Steuber', J. Weiske', N. Schmees', S. Siegel', D. Stöckigt', C.D. Christ', F. Li², S. Organ², D. Barsyte-Lovejoy², M.M. Szewczyk², S. Kennedy², S. Trush², P. Brown², M. Vedadi², C. Arrowsmith², M. Husemann¹, A.E. Fernandez-Montalvan¹, V. Badock¹, M. Bauser¹, A. Hägebarth¹, I.V. Hartung¹, C. Stresemann¹

INTRODUCTION

 SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase, which was initially described as a H3K4 methyltransferase involved in transcriptional regulation.¹ SMYD3 has recently been reported to methylate and regulate several cancer-relevant non-histone proteins such as mitogen-activated protein kinase kinase kinase 2 (MAP3K2),² vascular endothelial growth factor receptor 1 (VEGFR1),³ RAC-alpha serine/threonine-protein kinase (AKT1),⁴ and the human epidermal growth factor receptor 2 (HER2)⁵ (Figure 1). In addition, the overexpression of SMYD3 has been linked to poor prognosis in certain cancers, supporting its possible oncogenic role for SMYD3 and making it a potential target for anticancer drug development.^{6,7} Here, we report the discovery of a novel, potent and selective SMYD3 inhibitor BAY-6035. 								
Histone H3 H3 H4 H4 Histone H4 Role in gene regulation H3 H4 Function unknown MAP3K2 MAP3K2 Activation of MAPK signaling MAP3K2 AKT1 Higher activity and								
by blocking PP2A phosphatase complex VEGFR1 Enhanced phosphorylation activity MYD3 SM								
Figure 1. Reported methylation substrates of the SMYD3 methyltransferase. SMYD3 is described as a protein methyltransferase regulating the transcription of oncogenes and signaling pathways frequently dysregulated in cancer. AKT1, RAC-alpha serine/threonine-protein kinase; HER2, human epidermal growth factor receptor 2; MAP3K2, mitogen-activated protein kinase kinase kinase 2; PP2A, protein phosphatase 2; VEGFR1, vascular endothelial growth factor receptor 1.								
METHODS								
Thermal shift assay, ultra-high-throughput screening (TSA uHTS) was used to identify compounds that induce a positive shift (stabilization of the protein) at the SMYD3 protein melting point (Tm). Scans were measured from 25 °C to 80 °C at a scanning rate of 0.1 °C/s.								
Catalytic inhibition of SMYD3 was confirmed by scintillation proximity assay (SPA). S-Adenosyl-L-methionine (SAM) was used as the methyl donor, and MEK kinase 2 (MEKK2)-derived peptide employed as the substrate of SMYD3.								
The binding of SMYD3 inhibitors was confirmed by isothermal titration calorimetry (ITC). In addition, surface plasmon resonance (SPR) measurements were done to confirm binding. Kinetic curve fittings were done with a 1:1 binding model. The experiments were performed in the presence of SAM.								
The structure of SMYD3 was determined by using X-ray crystallography, as described previously ⁷ with slight modifications.								
The on-target activity of SMYD3 inhibitors was assessed by cellular MAP3K2 methylation assay. HeLa cells were transfected with HA-tagged MAP3K2 and untagged SMYD3. MAP3K2 methylation was assessed by Western blot using specific in-house generated K260me3 antibody.								
REFERENCES								
 Hamamoto R, Furukawa, Y, Morita M, Iimura Y, Silva F et al. Nat Cell Biol 2004, 6:731-40. Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW et al. Nature 2014, 510:283-7. Kunizaki M, Hamamoto R, Silva FP, Yamaguchi K, Nagayasu T et al. Cancer Res 2007, 67:10759-65. Yoshioka Y, Suzuki T, Matsuo Y, Nakakido M, Tsurita G et al. Oncotarget 2016, 7:75023-37. Yoshioka Y, Suzuki T, Matsuo Y, Tsurita G, Watanabe T et al. Cancer Med 2017, 6:1665-72. Carlson SM and Gozani O; Cold Spring Harb Perspect Med 2016, 6. Mitchell LH, Boriack-Sjodin PA, Smith S, Thomenius M, Rioux N et al. ACS Med Chem Lett 2016, 7:134-8. Sirinupong N, Brunzelle L, Doko F, and Yang 7: L Mol Biol 2011, 406:149-59. 								

¹Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany ²Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada

A core library of ~410,000 small molecules was screened to identify compounds that bind to and stabilize SMYD3 in a TSA assay.

More than 3,900 confirmed hits which bind to SMYD3 at a compound concentration of 120 μ M were identified.

With a reduced compound concentration of 100 µM and selectivity testing against 🛛 😂 The SMYD3 inhibitors within the benzodiazepine cluster were found to SMYD1 and SMYD2, 1,238 confirmed hits which bind specifically to SMYD3 (**Figure 2**) were identified.

A benzodiazepine cluster was selected for further optimization based on the dose-response analysis and structural attractiveness (**Table 1**).

Inhibition of the catalytic SMYD3 activity was in the 10-40 µM potency range as determined by SPA (**Table 1**).

Figure 2. Thermal shift assay screening. Screening cascade resulted in 1,238 primary hits. A benzodiazepine cluster was selected for further optimization. RFU, relative fluorescence units; SPA, scintillation proximity assay.

80-

BAY-6035 at 1.6 Å.

$\begin{array}{c} & & & \\ & & & \\ &$					First SAR of the benzodiazepine hit cluster derived from the primary screening results							
Cpd	R1	R2	Concentration dependent SMYD3 TSA ∆T _m [K]				SMYD1 TSA ∆T _m [K]	SMYD2 TSA ∆T _m [K]	SMYD3 SPA IC ₅₀ [M]			
1	F	\checkmark	0.7	1.3	2.0	2.8	2.5	3.4	4.1	0.0	0.0	1.2E-05
2	$\langle \rangle$	\checkmark	0.4	1.0	1.4	1.3	2.1	2.1	3.0	-0.2	0.2	1.8E-05
3	F	~~~~	0.2	0.8	1.2	1.5	1.8	2.1	3.3	-0.2	0.2	2.4E-05
4	$\langle \rangle$	$\sim\sim$	0.2	0.6	0.9	1.4	1.7	1.6	2.3	0.2	0.2	2.2E-05
5	$\langle \rangle$	$\sim\sim$	0.0	0.2	0.8	1.0	1.6	1.2	2.1	-0.1	0.1	2.7E-05
6	F	$\sim\sim$	0.0	0.7	0.6	0.9	1.4	1.0	1.4	0.0	0.2	n.d.
7	s)	\sim	0.2	0.7	0.8	0.8	1.2	0.9	1.8	-0.2	0.0	1.8E-05

First structure-activity relationship (SAR) for the benzodiazepine cluster was derived from primary screening. The catalytic inhibition of SMYD3 was confirmed using a scintillation proximity assay. n.d., not determined; SAR, structure-activity relationship; TSA, thermal shift assay.

BAY-6035 inhibits cellular methylation of MAP3K2 by SMYD3

BAY-6035 inhibited the cellular methylation of MAP3K2 by SMYD3 dose-dependently with an IC₅₀ of 183 \pm 13 nM in MAP3K2 and SMYD3-transfected HeLa cells (Figure 5).

RESULTS

Benzodiazepine-based SMYD3 inhibitors are peptide substrate-competitive

- Direct binding of the inhibitor series into the catalytic pocket of SMYD3 was confirmed by X-ray crystallography (**Figure 3**).
- The co-crystal structure revealed binding to the substrate binding site and occupation of the hydrophobic channel for lysine binding (Figure 3).
- exploit a thus far unprecedented hydrogen bond pattern (**Figure 3**).

X-ray structure at 2.0 Å resolution

Early chemical starting point identified by uHTS TSA screening and crystal structure

3. Crystal structure of the benzodiazepine-based SMYD3 inhibitor binding. SAM: S-Adenosyl-L-methionine: TSA, thermal shift assay; uHTS, ultra-high-throughput screening.

BAY-6035 is a novel selective tool for the exploration of SMYD3 inhibition

- BAY-6035 demonstrated potent SMYD3 inhibition with an IC₅₀ of 88 nM (Figure 4A) and an equilibrium dissociation constant (K_d) of 100 nM as determined by ITC (**Figure 4B**) or with SPR of (**Figure 4C**).
- BAY-6035 showed highly selective inhibition of SMYD3 with no activity on other methyltransferases (Figure 4D) or kinases (data not shown).
- The X-ray structure of BAY-6035 binding is presented in Figure 4E.

BAY-6035 (µM) ר 100 0 0.004 0.01 0.04 0.1 0.4 1.1 3.3 10 0 _____

IC₅₀ = 183 nM 1 10 100 1000 1000 BAY-6035 (nM)

methylation of MAP3K2 in HeLa cells. HeLa cells were transfected with SMYD3 and HA-MAP3K2 and treated with the indicated compounds MAP3K2 methylation was assessed by Western blot using a K260me3-specific antibody. The methylated MAP3K2 signal was normalized to total MAP3K2. MAP3K2, mitogen-activated protein kinase kinase kinase 2; MAP3K2me3, tri-methylated MAP3K2.

5	Sign	İ
	X-	r
) Co ide	:) E
	Table	2
	Cpd	
	1	
	2	
	3	
	4	
	5	
	6	
	7	

ificant improvement of SMYD3 inhibition by X-ray-guided optimization

ray data of the catalytic pocket of SMYD3 in complex with a compound allowed a etter understanding of the binding mode (**Figure 3**).

mbination of the best "moiety" to benzodiazepine derivative resulted in the entification of BAY-6035 (Table 2).

2. Structure-activity relationship (SAR) development of the benzodiazepine cluster leading to BAY-6035.

$\int_{R_2}^{N} \int_{R_2}^{H} \int_{O}^{N} SAR of benzodiazepine ureas}$									
R2	Stereo- center	SMYD3 TSA ∆T _m [K]	SMYD3 SPA IC ₅₀ [M]	logD (pH 7.5)	Kinetic solubility (pH 6.5) [mg/L]				
	(rac)	5.3	1.9E-6	2.1	95				
H ₂ N	(s) (r)	10.9 8.5	2.4E-8 1.9E-7	1.4	319				
HN	(s)	10.2	5.3E-8	1.4	> 413				
	(s)	9.9	1.7E-7	1.5	> 455				
H ₂ N ^N ⁺	(s)	8.7	2.5E-7	1.4	294				
H ₂ N [×]	(s)	7.2	7.9E-7	1.4	330				
HN	(s)	7.2	2.5E-7	1.4	374				
HN NH	(s)	7.5	3.9E-7	1.3	252				
	(s)	7.2	4.8E-7	1.3	257				

$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$									
Cpd	R2	Stereo- center	SMYD3 TSA ∆T _m [K]	SMYD3 SPA IC ₅₀ [M]	logD (pH 7.5)	Kinetic solubility (pH 6.5) [mg/L]			
10		(s)	8.8	4.5E-7	1.7	> 427			
11	HO	(s)	6.1	1.1E-6	1.5	254			
12	F K N	(s)	2.8	4.7E-6	2.4	345			
13		(s)	5.5	9.7E-7	2.2	312			
14		(s)	5.7	1.3E-6	2.2	-			
15	F F	(s)	7.3	7.5E-7	2.0	294			
16	F F	(s)	6.1	2.3E-6	2.1	231			
17		(s) (r)	9.9	8.8E-8 2.5E-6	1.9	363			

Compound (s)-17: BAY-6035

Figure 6. The SMYD3 inhibitor BAY-6035 fulfils the probe criteria. ITC, isothermal titration calorimetry; PAINS, pan-assay interference compounds; PMT, protein methyltransferases; SAR, structure-activity relationship; TSA, thermal shift assay.

BAY-6035 was identified as a highly potent and selective SMYD3 inhibitor by the optimization of a primary benzodiazepine hit cluster.

The binding geometry of BAY-6035 to its substrate pocket in SMYD3 was unambiguously characterized by X-ray crystallography.

BAY-6035 specifically inhibited cellular methylation of MAP3K2 by SMYD3.

In conclusion, BAY-6035 is a novel, selective and potent SMYD3 inhibitor probe and will foster a better understanding of the biological role of SMYD3 in cancer (Figure 6).

ACKNOWLEDGEMENTS

Aurexel Life Sciences Ltd. (www.aurexel.com) is thanked for editorial assistance in the preparation of this poster, funded by Bayer AG.

PLACEHOLDER FOR **QR CODE**